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Boundary conditions in the simplest model of linear and second harmonic magneto-optical effect
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This paper is concerned with linear and nonlinear magneto-optical effects in multilayered magnetic systems
when treated by the simplest phenomenological model that allows their response to be represented in terms of
electric polarization. The problem is addressed by formulating a set of boundary conditions at infinitely thin
interfaces, taking into account the existence of surface polarizations. Essential details are given that describe
how the formalism of distributions~generalized functions! allows these conditions to be derived directly from
the differential form of Maxwell’s equations. Using the same formalism we show the origin of alternative
boundary conditions that exist in the literature. The boundary value problem for the wave equation is formu-
lated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically
ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear
surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through
surface susceptibility tensors is discussed. A problem of self-consistency of the model is highlighted, relating
to the existence of rescaling procedures connecting the different conventions. The linear approximation with
respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily
analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups.
Required representations of the tensors are given for the groups`m, 4mm, mm2, and 3m. With regard to
centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given
for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group
``m.
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I. INTRODUCTION

The boundary conditions to be discussed in this paper
essential to the development of the simplest theoretical m
els of surface linear and second harmonic magneto-op
effects in ferromagnetically ordered multilayers. An
multilayer can be visualized as a set of alternating lay
composed of different materials@Fig. 1~a!#. Each homoge-
neous region or layer transforms into the neighboring o
within an interface that is very narrow and inhomogeneo
When excited by monochromatic light of high intensity, t
multilayer may exhibit magneto-optical Kerr effects at bo
the fundamental frequencyv and second harmonic fre
quencyvS52v. If the multilayer is transparent enough, th
Faraday effect, at both frequencies, may also be obser
Normally, the response of the multilayer generating the
fects is completely described by means of electric~effective!
polarization.1–4 Since optical nonlinearity is assumed to
small, a consideration of the effects is carried out iterative
i.e., within a simple perturbation procedure. Consequen
there are two separate parts of the phenomenological s
tion to the problem.5

In the first part, the influence of the nonlinearity on t
response is neglected. Volume and surface linear polar
tions, induced by incident light in the layers and interfac
~transition regions!, are related to the primary electric fiel
through linear susceptibility tensors. The tensors may dep
respectively on volume and surface magnetization, ther
introducing linear volume- and surface-sensitive magne
optical effects. Since the influence of surface polarization
small, they can be considered as perturbations. Moreover
interfaces themselves are thought of as ideal surfaces~infi-
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nitely thin! on the basis that their thicknesses are mu
smaller than the wavelength of the radiation. The linear pr
lem is solved in an iterative way. In the first instance, a
surface polarizations are neglected. The electromagnetic
in all space is obtained from Maxwell’s equations subject
the conventional boundary conditions. The magnitude a
state of polarization~the Kerr angle and elllipticity! of these
fields in the transparent medium@Fig. 1~a!# contain informa-
tion about volume-sensitive magneto-optical effects. T
next procedure concerns the surface susceptibility ten
that determine the surface polarizations driven by the unp
turbed field. It should be noted that the normal componen

FIG. 1. ~a! Multilayer configuration for the model of magneto
optical effects.~b! Orientation of the physical and crystallograph
coordinate systems.
©2001 The American Physical Society32-1
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this field, across ideal interfaces, is discontinuous, and
consequences of this requires careful consideration. The
face polarizations become sources~instead of incident light!
radiating waves at the fundamental frequency. The co
sponding electric field, carrying information about surfa
contributions to linear magneto-optical effects, can be
tained from Maxwell’s equations, which now need to be a
companied by the unconventional boundary conditions
take into account singular polarizations that are assume
be localized exactly at the ideal interfaces.

The second part of the solution is similar to the fir
Primarily this concerns the state of the polarization and
tensity of second harmonic waves in the transparent~inci-
dent! medium. Instead of incident light, nonlinear surfa
and volume polarizations play the role of sources. T
boundary conditions for the second harmonic fields ob
ously remain the same as those for the linear perturba
fields, involving a nonlinear surface polarization in place o
linear surface polarization. The wave equation for the el
tric field in each layer may be inhomogeneous because o
nonlinear volume polarization. How both kinds of polariz
tions are related to the fundamental unperturbed field
matter of approximation. If each layer possesses a cente
inversion, then, within the electric-dipole approximatio
there exist no volume polarizations because a polar th
rank tensor is identically zero. For this reason, volum
sensitive second harmonic magneto-optical effects are
ferred to as forbidden in centrosymmetric media. Howev
they are not forbidden within the electric-quadrupole a
proximation that takes into account the nonlocality of t
response~spatial dispersion! through a polar fourth-rank
tensor.1,6 While considering surfaces and interfaces, it is
ways sufficient to take the electric-dipole approximation in
account. Since inversion symmetry is broken at surfaces
interfaces, surface-sensitive second harmonic magn
optical effects are never forbidden by symmetry. Irrespec
of these points the above-mentioned problem concerning
convention related to the driving field remains. For nonc
tosymmetric multilayers the electric-dipole approximati
does allow volume-sensitive second harmonic magn
optical effects. If the volume polarizations dominate over
surface ones, the latter are disregarded, and the convent
boundary conditions may be used.7

Following this approach, an interesting treatment of
surface-sensitive transverse Kerr effect was given for a se
infinite medium showing that it is possible to use line
magneto-optics for probing surface magnetism.8 Similar
ideas also apply to the development of simple models of
second harmonic magneto-optical effects in centrosymm
ric, ferromagnetically ordered multilayers.5,9

Although such phenomenological solutions are comm
our return to the basic principles has been influenced
subtleties that often cause ambiguities in the literature. Th
are due to the fact that boundary conditions involving surf
polarization at an ideal interface exist in two versions,10–14as
well as due to a variety of conventions for the surface po
ization itself in terms of its driving field. A relevant questio
emerges as to whether or not it is always true that a partic
convention, which should include both a preferred set
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boundary conditions and a driving field, has relationsh
with the others. This problem is considered in Sec. III,
provide general rescaling procedures linking the tensors
lated to often-encountered conventions. Unfortunately, s
a rescaling is not always possible in the case of anisotro
adjacent layers. To illustrate this feature of the phenome
logical model, an example will be given~Sec. V!. In Sec. II,
we give a rather elegant and quick method for deriving eit
version of the boundary conditions directly from the diffe
ential form of Maxwell’s equations, valid in the space
distributions ~generalized functions!. Although the validity
may be intuitively clear, we outline why this is so, for t
accept it merely as a postulate, as suggested before,10 seems
insufficient. The version of boundary conditions we prefer
considered thoroughly. For the case of normal incidence
version was also given elsewhere, but without details of
derivation.11 If it had been shown how the boundary cond
tions relevant to magneto-optics came about, there wo
have been no need to seek an analogy with electrostati12

In Sec. IV, the same method is used to describe the origin
an alternative and less simple set of boundary conditions.13,14

In view of the similarities in considering linear and seco
harmonic magneto-optical effects, we confine ourselves
the formulation of a boundary value problem for looking
the latter. Section V is devoted to this problem, with an e
phasis on the effects in centrosymmetric, ferromagnetic
ordered, multilayers. An auxiliary analysis revealing t
symmetry of the associated susceptibility tensors will also
carried out, pursuing the linear approximation with respec
magnetization.15 In this respect it is advantageous to exami
the invariance of the relevant polar and axial tensors un
ordinary point groups. In the case of surface-sensit
magneto-optical effects, this will be done for the often e
countered groups 4mm, mm2, and 3m, and the Curie group
`m governing the symmetry of an isotropic surface. T
tensors will be given in a 336 matrix form, and with refer-
ence to a physical rather than a crystallographic coordin
system@Fig. 1~b!#, so that it will be most convenient to us
the results while looking at the rotational anisotropy16 of
magneto-optical effects. To observe quadrupole contributi
to surface magneto-optical effects, along with the known
sult for the nonmagnetic part of volume polarizations~suit-
able for cubic and isotropic layers!, a representation for the
magnetic part will be given, provided that the correspond
axial fifth-rank susceptibility tensor is invariant under th
Curie group̀ `m. Finally, we shall summarize the essent
features of the model in an attempt to clarify the argumen

II. WAY OF DERIVING THE BOUNDARY CONDITIONS

The boundary conditions involving a surface polarizati
have the same form in all situations where the idealizatio
described in Sec. I, are applicable. However, since sec
harmonic magneto-optical effects are of particular sign
cance, we shall derive the boundary conditions relevan
this case. Obviously, it is sufficient to consider a plane s
face S between semi-infinite, anisotropic, not necessa
magnetic, media@Fig. 2~a!#.

The assumed idealization implies that Maxwell’s equ
2-2
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BOUNDARY CONDITIONS IN THE SIMPLEST MODEL . . . PHYSICAL REVIEW B 65 014432
tions hold in the space of distributionsD8(R3). This asser-
tion unequivocally follows from a procedure that introduc
the idealization correctly. The procedure begins with the
larization being continuous in all space including a transit
region of finite width h. A test function w, belonging to
D(R3), is then taken in order to obtain the purely regu
distributions from the corresponding classical Maxwell eq
tions in the usual way.17,18 Let f h be a certain component o
any of the fields, which obviously depends onh. For differ-
ent values ofh there is a sequence of actions^ f h ,w&. In
D8(R3), the weak convergencêf h ,w&→^ f ,w& as h→0
may result in a singular distribution along with the regu
one, both having a physical sense. A remarkable prope
asserted by the theorem,17 is that for any multi-indexa of the
differential operator Da the following is always true:
^Da f h ,w&→^Da f ,w& ash→0. This means that, on undergo
ing the weak limit procedure, the classical Maxwell equ
tions apply to the spaceD8(R3), where they have exactly th
same form, except that the densities of sources are define
distributions. With regard to the corresponding different
operators the following result will be often used below. If
regular distributionf has a discontinuity of the first kind at
smooth surfaceS, then

] f /]xi5$] f /]xi%1@ f #SNidS . ~1!

Here the derivative in the curly brackets is a function defin
almost everywhere~in the classical sense!. The next term on
the right-hand side~RHS! of Eq. ~1! is a singular distribution

FIG. 2. ~a! Ideal interface between semi-infinite homogeneou
magnetized media.~b! Corresponding transition region used for d
riving the boundary conditions in the classical way.~c! Illustration
concerned with the convention defining the surface polariza
through Eq.~9!.
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referred to as a single layer onS, wheredS is the surface
delta function, and@ f #S5 f 12 f 2 stands for the jump off
acrossS. The signs6 are linked to a chosen positive direc
tion of the unit normalN to S.17,18

The optical and magneto-optical response of the wh
medium is governed by the constitutive relation~in SI units!

D5«0E1PV1PSdS , ~2!

where all the fields are at the frequencyvS and belong to
D8(R3). The relationB5m0H assumes that the medium
does not respond to the magnetic fieldH at optical frequen-
cies. The fieldH is a regular distribution, and so are th
magnetic inductionB and the bulk polarizationPV. The latter
is unambiguously defined through the linear susceptibi
tensors as

PV5H «0x̂V1E1PNV, x3.0,

«0x̂V2E1PNV, x3,0,

and comprises the already known nonlinear volume con
bution PNV originating from the quadrupole or/and dipo
approximation. We do not definePV at the surface itself, for
doing so would be meaningless. The polarizationsPS and
PNV can be related to the fundamental electric field throug
surface and volume susceptibility tensor respectively. T
RHS of Eq.~2! includes a singular distributionPSdS ~single
layer!. Consequently, the electric displacementD is a linear
combination of the regular and singular distributions.

ln D8(R3), Maxwell’s equations relevant to the proble
are

curlH52 ivSD, ~3a!

curlE5 ivSm0H, ~3b!

div H50, ~3c!

div D50. ~3d!

Their forms are exactly the same as we understand them
the classical sense, i.e., for regions where all the fields
continuous. However, a significant difference is that Eqs.~3!
are valid in all spaceR3, provided they are understood in th
sense of distributions. Consequently, the differential ope
tors in Eqs.~3! lead to classical Maxwell equations and co
responding boundary conditions. Indeed, taking into acco
Eq. ~1!, a calculation of divH in Eq. ~3c! leads to divH
5$div H%1(@H#S ,N)dS . Here$div H% is a regular distribu-
tion corresponding to the classical divergence~where it ex-
ists!. The next term is defined as a simple layer of surfa
density (@H#S ,N), where@H#S5H12H2 is the hypotheti-
cal jump ofH acrossS. The sign1 corresponds to a chose
positive direction of the unit normalN to S @Fig. 2~a!#. On
the other hand, the equation divH50 should be valid every-
where inR3. Therefore, we have$div H%50, which is the
classical Maxwell equation, plus the conventional bound
condition (@H#S ,N)50 revealing the continuity of the nor
mal component of the magnetic field acrossS:

H3
12H3

250. ~4!

y

n
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Equation~3d!, where the displacement defined by Eq.~2!, is
more subtle. To cope with this the identity^div(PSdS),w&
52*S(PS,¹w)dS, involving a test functionwPD(R3), has
to be used. Leaving the calculation of divE until later, we
arrive at the equation

«0 divE1$div PV%1@P3
V#SdS1~]P1

S/]x11]P2
S/]x2!dS

1d~P3
SdS!/]x350, ~5!

where, in addition to a linear combination of the simple la
ers, a different kind of singularity—a double layer@the last
term on the left-hand side~LHS!# has appeared. Conse
quently, Eq.~5! can be satisfied only if the electric fieldE
comprises the singular term2«0

21(0,0,P3
SdS). Hence the

constitutive relation@Eq. ~2!# suggests that the normal com
ponent of D must possess no singularity. This singular
must therefore be attached to the normal component ofE. On
substituting the representation divE5$div E%1@E3#SdS

2«0
21](P3

SdS)/]x3 into Eq. ~5!, there follows the classica
Maxwell equation$div D%50, plus the boundary condition

D3
12D3

252]P1
S/]x12]P2

S/]x2 . ~6!

It is now clear that the three singular components ofPSdS
belong, respectively, toD1 , D2 , andE3 . This simplifies the
procedure for dealing with the rest of the equations. It f
lows from Eq.~1! that the LHS of Eq.~3a! is represented a
curlH5$curlH%2@@H#S ,N#dS . Since the singular term o
D is (P1

S ,P2
S,0)dS , Eq. ~3a! becomes

$curlH%1~2@H2#S ,@H1#S,0!dS

52 ivS$D%2 ivS~P1
S ,P2

S,0!dS ,

which instantly yields the classical Maxwell equatio
$curlH%52 ivS$D%, being valid everywhere inR3 except
the surfaceS, plus the linked boundary conditions for the tw
tangential components of the magnetic field:

H1
12H1

252 ivSP2
S , H2

12H2
25 ivSP1

S . ~7!

Since the fieldE possesses the above-mentioned singula
and the fieldH does not possess any, Eq.~3b! becomes

$curlE%2†@E#S ,N‡dS2«0
21curl~0,0,P3

SdS!5 ivSm0$H%,

and leads immediately to the classical Maxwell equat
$curlE%5 ivSm0$H% and the boundary conditions for the tw
tangential components of the electric field:

E1
12E1

252«0
21]P3

S/]x1 , E2
12E2

252«0
21]P3

S/]x2 .
~8!

It is worth noting that if the surface polarization vanishe
boundary conditions~6!–~8! turn into conventional ones
Moreover, if certain components ofPS vanish or do not de-
pend on eitherx1 or x2 , then some of the tangential comp
nents ofH andE may be continuous as in the convention
case.

The unconventional boundary conditions~6!–~8! can also
be derived from the integral form of Maxwell’s equation
However, if this classical method is pursued, the ideal s
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face has to be replaced with a transition region of widthh
with continuous polarizationPtrans within it @Fig. 2~b!#. The
surface polarization appears then almost in the sense o
weak limit: *2h/2

h/2 Ptransdx3→PS as h→0. In contrast to the
method described above, it necessary however to assume
*2h/2

h/2 D3dx3→0 as h→0, when applying Stoke’s theorem
and integrating the componentE35«0

21D32P3
transacross the

transition region.
Whichever way of deriving the boundary conditions

used, the assumption of ideal interfaces is only justified
the condition that thickness of the real interface is much l
than the wavelength. The corresponding surface polariza
PS, in fact, has to be defined from a nonlocal polarizati
within the ‘‘smooth’’ interface, and this can only be don
correctly using microscopic theory.3,20 How PS is related to
the fundamental fieldE at the ideal interface is, however,
matter of convention.

III. CONVENTIONS ON THE SURFACE POLARIZATION

In the ideal model of second harmonic magneto-opti
effects, the surface polarizationPS is induced by the funda-
mental electric fieldE at the surface, and is related to th
latter through a nonlinear surface susceptibil
tensor.1–4,19,21 However, an ambiguity occurs in setting u
such a relationship, since the normal componentE3 of the
field is discontinuous across the ideal surface. This inevita
leads to an uncertainty in choosing the most suitable field
drive the polarization. Actually the driving field may be ch
sen according to a clearly defined convention, and suc
solution does not ultimately lead to any logic
inconsistencies.22

To visualize how the most convenient convention com
about, the following expedient is pertinent. The anisotro
media can imaginatively be offset by pushing the lay
slightly off the ideal interface atx350 @Fig. 2~c!#. As a con-
sequence, a vacuum gap appears, while the position of
surface carryingPS remains unchanged. To return to the in
tial configuration, it is necessary to collapse the vacuum g
i.e., the coordinates ofa and b of the surfaces between th
anisotropic media and vacuum must go to zero. In the fi
instance, the conventional boundary conditions for the d
placementD ~at the fundamental frequency! have to be writ-
ten down. They are D3(a)5«0E3

1(a) and «0E3
2(b)

5D3(b), where a dependence on only the essential coo
nate is shown explicitly. At the surface, wherePS is local-
ized, all the components of the electric fieldE are continu-
ous, and, in particular,E3

2(0)5E3
1(0)5E3(0). It is thefield

E(0) that is related to the surface polarization through
surface susceptibility tensor. If the vacuum gap is collaps
both a and b tend to zero, and we have«0

21D3(a)5E3
1(a)

→E3(0) and«0
21D3(b)5E3

2(b)→E3(0). Hence the normal
component of the driving field can be defined exactly at
surface asE3(0)5«0

21D3(0). This justifies the particular
conventions21 avoiding the discontinuity of the driving field
across the ideal surface:

Pi
S5«0x i jk

S ~mS!F jFk , ~9!
2-4
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whereF15E1 , F25E2 , andF35«0
21D3 . The surface sus

ceptibility tensorx i jk
S in Eq. ~9! depends on the surface ma

netization whose direction is indicated by the unit vectormS.
Alternatively, for the same surface polarization two oth
conventions are possible and equally acceptable:

Pi
S5«0x i jk

S1~mS!Ej
1Ek

1 , ~10a!

Pi
S5«0x i jk

S2~mS!Ej
2Ek

2 . ~10b!

HereEi
1 andEi

2 are components of the fieldE at the positive
and negative sides of the interface, respectively, as defi
by a positive direction of the earlier introduced unit norm
N @Fig. 2~a!#.

It is wholly immaterial which convention is preferred. Th
form ~symmetry! of the corresponding susceptibility tens
remains the same, i.e., all the relevant tensors have coin
ing indices for their zero components. However, a differen
occurs but is solely in the values of the nonzero compone
that are linked to the third component of the driving fie
The form of the tensors is determined by their intrinsic sy
metry as well as by specific magnetic symmetry of the int
face. The former is universal and apparently consists in
variance of the tensor under the permutation of its last
indices. SincePS must not depend on a choice of any po
sible conventions, the three quadratic equations, concer
the relationship between Eqs.~10a! and ~10b!,

x i11
S1E1

21x i22
S1E2

21x i33
S1~E3

1!212x i23
S1E2E3

1

12x i13
S1E1E3

112x i12
S1E1E2

5x i11
S2E1

21x i22
S2E2

21x i33
S2~E3

2!212x i23
S2E2E3

2

12x i13
S2E1E3

212x i12
S2E1E2 ~11!

~wherei 51, 2, or 3! that involve the four field component
must be met along with the essential requirement for
tensorsx i jk

S1 andx i jk
S2 to have the same form. The bounda

condition forD3 ,

«31
1E11«32

1E21«33
1E3

15«31
21E11«32

2E21«33
2E3

2 ,

where the signs labelling the components of the permittiv
tensor refer to the layers above and below the interface
cording to the direction ofN, allows Eqs.~11! to become a
system of three homogeneous equations with respect to t
field components. Since the system must be satisfied fo
bitrary field components, the following relationships betwe
the two conventions come about:

x i11
S25x i11

S122x i13
S1~«31

1 2«31
2 !/«33

1 1x i33
S1@~«31

1 2«31
2 !/«33

1 #2,

x i22
S25x i22

S122x i23
S1~«32

1 2«32
2 !/«33

1 1x i33
S1@~«32

1 2«32
2 !/«33

1 #2,

x i33
S25x i33

S1~«33
2 /«33

1 !2,
~12a!

x i23
S25x i23

S1«33
2 /«33

1 2x i33
S1«33

2 ~«32
1 2«32

2 !/~«33
1 !2,

x i13
S25x i13

S1«33
2 /«33

1 2x i33
S1«33

2 ~«31
1 2«31

2 !/~«33
1 !2,
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x i12
S25x i12

S12x i23
S1~«31

1 2«31
2 !/«33

1 2x i13
S1~«32

1 2«32
2 !/«33

1

1x i33
S1~«31

1 2«31
2 !~«32

1 2«32
2 !/~«33

1 !2.

Alternatively, to invert these expressions~to have xS1 in
terms ofxS2), it is necessary merely to change all the s
perscripts ‘‘1’’ for ‘‘ 2’’ and vice versa. A similar rescaling
procedure can be derived for the conventions defined by E
~9! and ~10a!:

x i11
S15x i11

S 12x i13
S «31

1 1x i33
S ~«31

1 !2,

x i22
S15x i22

S 12x i23
S «32

1 1x i33
S ~«32

1 !2,

x i33
S15x i33

S ~«33
1 !2,

~12b!
x i23

S15x i23
S «33

1 1x i33
S «32

1 «33
1 ,

x i13
S15x i13

S «33
1 1x i33

S «31
1 «33

1 ,

x i12
S15x i12

S 1x i23
S «31

1 1x i13
S «32

1 1x i33
S «31

1 «32
1 .

Equations~12! constitute the most general rescaling proc
dures, which are undoubtedly correct if all the 18 comp
nents of the surface susceptibility tensor, related to a part
lar convention, are different. However, if there exist ze
components along with independent ones, serious do
arise about the validity of such rescaling. In other words,
inevitable arbitrariness in choosing the driving field not
ways maintains the identity of symmetry properties ofx i jk

S ,
x i jk

S1 , andx i jk
S2 . After these properties have been conside

in Sec. V, an example of such an inconsistency will be giv
This rather bewildering feature of the ideal phenomenolo
cal model vanishes if all the off-diagonal components«31
and«32 in Eqs.~12! are zero. For instance, an optically is
tropic multilayer in the polar configuration~magnetization is
normal to the interface! obeys this restriction. Thus, the thre
conventions become equivalent in the sense that, as foll
from Eqs.~12!, the tensorsx i jk

S , x i jk
S1 , andx i jk

S2 are simply
related to one another:

x i jk
S 5x i jk

S15x i jk
S2 , j , kÞ3,

x i j 3
S 5x i j 3

S1/«33
1 5x i j 3

S2/«33
2 , j Þ3, ~13!

x i33
S 5x i33

S1/~«33
1 !25x i33

S2/~«33
2 !2.

The rescaling procedure defined by Eqs.~13! is also legiti-
mate when the off-diagonal components are so small that
contributions to the driving field they cause can be neglec
If they are related exclusively to magnetization~as normally
occurs in linear magneto-optics!, then that is the case.

Whether or not any possible convention, associated w
the choice of the driving field, is related to the others throu
rescaling procedures, the components of the associated
face susceptibility tensor are entirely material paramet
Their values~normally unknown! can only be obtained from
experimental data on the state of polarization of second
2-5
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monic light.4 To avoid ambiguity, it is absolutely essential
state clearly the convention preferred when obtaining
presenting such data.

IV. ALTERNATIVE BOUNDARY CONDITIONS

Another set of boundary conditions can arise if the
sponse of the whole medium@Fig. 1~a!# is interpreted differ-
ently to that outlined in Sec. II. This certainly occurs wh
the displacement, in contrast with Eq.~2!, is represented
through the permittivity tensor as

D5«0«̂E1PNV1PSdS , ~14!

and, in addition to this, the tensor itself is artificially defin
at the surface to make this representation meaningful.
instance, let« i j

15d i j 1x i j
V1 if x3>0, and« i j

25d i j 1x i j
V2 if

x3,0. Clearly, the incorporation of the permittivity tensor
this way is actually equivalent to imposing some singular
on the bulk polarization, which should realistically be unr
lated to any singularity at all. Nevertheless, it is necessar
find out the consequences of such incorporation, and
method described in Sec. II can readily be applied for t
purpose.

In this case boundary condition~4! for the normal com-
ponent ofH obviously remains the same. By virtue of E
~14!, Eq. ~3c! is transformed into

«0 div~ «̂E1PNV!1~]P1
S/]x11]P2

S/]x2!dS1]~P3
SdS!/]x3

50, ~15!

where the double layer can be annihilated if the field«̂1E
comprises the simple layer2«0

21(0,0,P3
SdS). Since the me-

dium in the upper half-space@Fig. 2~a!# may be optically
isotropic, i.e.,« i j

15«33
1 d i j , the singularity2(«0«33

1 )21P3
SdS

must be associated withE3 . Therefore, the expressio
div «̂E5 $div(«̂E1PNV)%1(@ «̂E#S ,N)dS2«0

21](P3
SdS)/]x3

on being substituted into Eq.~15!, yields boundary condition
~6!. SinceD1 andD2 are related toE3 through the tensor, the
extra singularities2«13

1 /«33
1 P3

SdS and2«23
1 /«33

1 P3
SdS are, re-

spectively, inherited by them. This feature inevitably resu
in essential differences in the rest of the boundary conditio
compared to Eqs.~7! and~8!. Indeed, taking into account th
regular and singular terms of Eq.~3a!, we arrive at

$curlH%2†@H#S ,N‡dS52 ivS$D%2 ivS~P1
S ,P2

S,0!dS

1 ivS~«13
1 /«33

1 ,«23
1 /«33

1 ,1!P3
SdS ,

which leads to the boundary conditions for the tangen
components ofH:

H1
12H1

252 ivS~P2
S2«23

1 /«33
1 P3

S!,

H2
12H2

25 ivS~P1
S2«13

1 /«33
1 P3

S!. ~16!

This is clearly different from the previous condition@Eq.
~7!#. Likewise, Eq.~3b! transforms into
01443
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$curlE%2†@E#S ,N‡dS2~«0«33
1 !21curl~0,0,P3

SdS!

5 ivSm0$H%

yielding the boundary conditions for the tangential comp
nents ofE:

E1
12E1

252~«0«33
1 !21]P3

S/]x1 ,

E2
12E2

252~«0«33
1 !21]P3

S/]x2 . ~17!

Again, this is different from Eq.~8!. On the basis of the
assumption, stated in the beginning of this section, bound
conditions ~4!, ~6!, ~16!, and ~17! have been derived~in
Gaussian units! in the classical way.13 Furthermore, they
have been used to develop a phenomenological mode
second harmonic magneto-optical Kerr effects for se
infinite media.23

The surface polarizationPS, naturally going together with
definition ~14!, is Pi

S5«0h i jk
S1(mS)Ej

1Ek
1 , where the suscep

tibility tensor h i jk
S1 is different fromx i jk

S1 in Eq. ~10!. If the
tensor«̂ were defined at the surface as«̂2, instead of«̂1, the
components« i j

1 would need to be replaced by« i j
2 in Eqs.

~16! and ~17!. Consequently, we have another set of boun
ary conditions,

H1
12H1

252 ivS~P2
S2«23

2 /«33
2 P3

S!,

H2
12H2

25 ivS~P1
S2«13

2 /«33
2 P3

S!,

E1
12E1

252~«0«33
2 !21]P3

S/]x1 ,

E2
12E2

252~«0«33
2 !21]P3

S/]x2 ,

that involves the surface polarization defined through the s
face susceptibility tensorh i jk

S2 as Pi
S5«0h i jk

S2(mS)Ej
2Ek

2 . In
contrast with Eq.~2!, definition ~14! results in a dichotomy
which might have caused an ambiguity about the bound
conditions in question. The rescaling procedure forh i jk

S2 and

h i jk
S1 is similar to that considered in Sec. III, forx i jk

S2 and

x i jk
S1 . Moreover, the relationship, for instance, betweenx i jk

S1

andx i jk
S1 ,

x1 jk
S15h1 jk

S12h3 jk
S1«13

1 /«33
1 ,

x2 jk
S15h2 jk

S12h3 jk
S1«23

1 /«33
1 ,

x3 jk
S15h3 jk

S1/«33
1 ,

coming from the two sets of boundary conditions mak
these sets totally equivalent.

V. BOUNDARY VALUE PROBLEM AND SYMMETRY
OF THE MULTILAYERS

The two versions of boundary conditions and associa
conventions on the involved surface polarization are a fo
dation allowing us to set up, unambiguously, a bound
value problem for analyzing second harmonic magne
optical effects in ferromagnetically ordered multilayers@Fig.
1~a!#.
2-6
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It follows from Eqs.~3! that in each layer characterize
by its own permittivity tensor, as well as in the transpare
medium, the electric fieldE must obey the wave equation

¹ div E2¹2E5k0S
2 ~ «̂E1«0

21PNV!, ~18!

where all the quantities, including the wave numberk0S
5vS /c, are defined at the frequencyvS . The corresponding
magnetic fields in the layers are available through Eq.~3b!.
At the interfaces between adjacent layers, or between
outer layers and transparent medium, the fieldsE andH must
also obey boundary conditions~7! and ~8!. The rest of
boundary conditions, i.e., Eqs.~4! and ~6!, are then met au-
tomatically. A solution of this linear boundary value proble
allowing us to obtain the fieldE in the transparent medium
is quite straightforward, and most simple within the plan
wave approximation. This faciliates a modified formalism
characteristic matrices to be used, which ultimately leads
required expression forE involving all the permittivity ten-
sors and volume polarizations of the layers as well as sur
polarizations of the interfaces. An adequate consideratio
these quantities is only possible within microscop
theory,3,20 which is beyond the scope of his paper. Howev
the symmetry of the tensors is macroscopic,1–3,25,26and will
be considered concisely below.

Let the multilayer exhibit, exclusively, ferromagnetic o
dering and each of its magnetic layers be homogeneo
magnetized. The internal magnetization is determined by
arbitrarily directed unit vectorm. Normally, the magneto-
optical effects, being linear in magnetization, are of sign
cance. In this approximation, the susceptibility tensor of a
layer can be represented asx i j

V(m)5x̃ i j 1x̃ i jkmk , wherex̃ i j

and x̃ i jk are i tensors, the former being polar and the lat
axial, sincemi is an axialc tensor.24 The notations we use ar
as follows. The tilde~;!, or a letter (V,S! above thex ten-
sors, means their definition in the physical coordinate sys
@axesX1 , X2 , andX3 ; see Fig. 1~b!#, which is transformed
into the crystallographic coordinate system~axesX1

C , X2
C ,

and X3
C5X3) by a clockwise rotation aboutX3 ~in viewing

against this axis! through an anglec, the axis X1 being
chosen as a reference for the angle. A lack of th
symbols refers to a definition of the tensors in the crysta
graphic coordinate system. A simplification ofx̃ i j and x̃ i jk
comes from their intrinsic symmetry:x̃ i j 5x̃ j i , x̃ i jk
52x̃ j ik .2,24,25 In accordance with Neumann’s principle
they must also be invariant under the ordinary point gro
that describes the crystallographic symmetry of the layer.24,26

The invariance implies a matrix representation of a particu
point group—an isomorphic group of 333 matrices. For any
matrix Ĉ belonging to the group, the equationsx i j

5CikCjl xkl andx i jk5(detĈ)CilCjmCknxlmn are held and sig-
nify transformations of the tensors into themselves. S
equations constitute the direct inspection method for sim
fying tensors, i.e., for revealing their zero and independ
components. To ensure maximum simplification it is su
cient to engage consecutively all the generating matrice
the group.24 If the layers are optically isotropic and are d
scribed by one of the groupsm3m, m3, or the Curie group
``m, each possessing inversion symmetry, then it is eas
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show thatx i j 5x11d i j and x i jk5x123ei jk , whereei jk is the
Levi-Civita tensor~permutation symbol!. Sinced i j and ei jk

are invariant under rotation, we havex i j
V(m)5x11d i j

1x123ei jkmk . Hence, for any optically isotropic layer with
magnetization along the unit vectorm, the permittivity ten-
sor is

« i j 5n2~d i j 2 iQei jkmk!, ~19!

wheren is the complex refractive index@n2511x11; Im n
.0, since the time-dependent factor exp(2ivSt) is used#, and
Q5 in22x123 is the complex magneto-optical paramet
which is small,uQu!1.

Often, if the linear approximation with respect to magn
tization is ignored, a symmetry analysis of the tensors ha
be carried out on the basis of their invariance under magn
point groups~identical to black-and-white point groups be
cause time inversion and color changing are equiva
operations!.19,24 Such an analysis shows that the number
independent tensor components depends dramatically on
magnetization direction. This complexity is obviously exce
sive unless magneto-optical effects of higher order in m
netization have to be considered.

Since we have been pursuing the linear approximati
for any interface, which is magnetized in an arbitrary dire
tion of the unit vectormS, the surface susceptibility tenso
introduced in accordance with convention~9! can be decom-
posed asx i jk

S (mS)5x̃ i jk1x̃ i jkl ml
S . The polar and axiali ten-

sor in this expression possesses an apparent intrinsic sym
try: x̃ i jk5x̃ ik j , x̃ i jkl 5x̃ ik j l . Hence the number o
independent components is reduced, respectively, to 18
54. Further simplification may be due to the invariance
x i jk and x i jkl under an ordinary point group of th
interface.15,24–26The direct inspection method implies a m
trix representation of the group and a consecutive invol
ment of associated matrices in the equationsx i jk

5Cil CjmCknx lmn , x i jkl 5(detĈ)CimCjnCkpClqxmnpq. The
generating matrices should necessarily be involved for
vealing utmost simplification bestowed by symmetry.24 It is
convenient to rewrite Eq.~9! in a matrix form,

F P1
S

P2
S

P3
S
G5«0~Â1m1

SB̂12m2
SB̂21m3

SB̂3!F F1
2

F2
2

F3
2

2F2F3

2F1F3

2F1F2

G ,

~20!

where the four 336 matrices on the RHS are to be defin
in the physical coordinate system, i.e., they are sensitive
the anglec, unless the interface is isotropic. MatrixÂ, cor-
responding tox̃ i jk and governing second harmonic optic
effects, is well known for all point groups.27 This is not so
for the other three matrices, which are associated, res
tively, with the transverse, longitudinal, and polar surfac
sensitive second harmonic magneto-optical effects. It is
portant to see that the numbered configurations are defi
with reference to the plane of incidencex150 @Fig. 1~a!#.
2-7
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The matrices will be given below for often encountered po
groups, and are particularly relevant, as an example, to
interface that separates fcc layers.

Group 4mm. The generating matrices are:

F 21 0 0

0 1 0

0 0 1
G , F 0 1 0

21 0 0

0 0 1
G , ~001! interface,

Â5F 0 0 0 0 x113 0

0 0 0 x113 0 0

x311 x311 x333 0 0 0
G ,

B̂15F x̃1111 2x̃1111 0 0 0 x̃1121

x̃2111 x̃2221 x2331 0 0 2x̃1111

0 0 0 x3231 0 0
G ,

B̂25F x̃2221 x̃2111 x2331 0 0 x̃1111

x̃1111 2x̃1111 0 0 0 x̃1121

0 0 0 0 x3231 0
G ,

B̂35F 0 0 0 x1233 0 0

0 0 0 0 2x1233 0

0 0 0 0 0 0
G ,

where x̃11115
1
4 D sin 4c, x̃11215x11212

1
2 D sin2 2c, x̃2111

5x21112
1
2 D sin2 2c, x̃22215x22211

1
2 D sin2 2c, and D

5x21112x222112x1121. There are nine independent param
eters: three optical and six magneto-optical.28 The interface
is optically isotropic,29 for the optical parameters do not d
pend onc, but magneto-optically anisotropic. The state
polarization and intensity of second harmonic light wou
exhibit a fourfold rotational anisotropy. The effect observ
in Bi-substituted iron-garnet films16 is an excellent experi-
mental confirmation. If the linear approximation with respe
to magnetization is not used, then particularly for the
plane magnetizationmSi@110# invariance of the tenso
x i jk

S (mS) under the magnetic point groupmm2 has to be
considered. This leaves ten independent parameters t
dealt with.19

The obtained tensor can readily be used now to show
stated in Sec. III, that the rescaling procedures@Eq. ~12!#
may not always be carried out. Let both adjacent layers
characterized by tensor~19!, so that, for arbitrary directions
of their magnetizations, «31

6 52 im2
6(n6)2Q6, «32

6

5 im1
6(n6)2Q6, and«33

6 5(n6)2. The vectormS may also
have any direction. In the linear approximation, with resp
to magnetization, procedure~12a! particularly leads to the
equations

m1
Sx̃2111

2 2m2
Sx̃1111

2 5m1
Sx̃2111

1 2m2
Sx̃1111

1 ,

m1
Sx̃1111

2 1m2
Sx̃2111

2 5m1
Sx̃1111

1 1m2
Sx̃2111

1 ,
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m1
Sx̃1111

2 2m2
Sx̃2221

2 5m1
Sx̃1111

1 2m2
Sx̃2221

1 12ix113
1 @m2

1Q1

2m2
2~n2/n1!2Q2#,

m1
Sx̃2221

2 1m2
Sx̃1111

2 5m1
Sx̃2221

1 1m2
Sx̃1111

1 22ix113
1 @m1

1Q1

2m1
2~n2/n1!2Q2#,

m1
Sx3231

2 5$m1
Sx3231

1 2 ix333
1 @m1

1Q12m1
2~n2/n1!2Q2!%

3~n2/n1!2,

m2
Sx3231

2 5$m2
Sx3231

1 2 ix333
1 @m2

1Q12m2
2~n2/n1!2Q2#%

3~n2/n1!2,

which are seen to become contradictory unless direction
magnetization both in the layers and at the interface is
same (m15m25mS). This is even more obvious for th
tensors defined in the crystallographic coordinate syst
sincec50 entails the disappearance ofx̃1111.

Group`m. The interface described by this Curie group
isotropic in its plane. The matrices derived for the gro
4mm are applicable, provided thatD50. Therefore, eight
independent parameters~three optical and five magneto
optical! characterize such an interface. It obviously exhib
no rotational anisotropy. According to Eq.~20!, the nonlinear
surface polarization can now be written

«0
21PS52x113~N,F!F1x311~F,F!N

1~x3332x31122x113!~N,F!2N

12x1121~@N,mS#,F!F1x2111~F,F!@N,mS#

22x1233~N,F!@mS,F#

2~x21112x233112x1233!~N,F!2@N,mS#

12~x32311x12332x1121!~N,F!~@N,mS#,F!N.

The axial vectormS is seen to form only those combination
with the polar vectorsN5(0,0,1) andF, which insure that
PS remains a polar vector. A similar, though slightly diffe
ent, expression was already given.11,23 However, it may only
be valid in the linear approximation with a small parame
associated withN.

Group mm2. The generating matrices are

F 21 0 0

0 1 0

0 0 1
G , F 21 0 0

0 21 0

0 0 1
G , ~110! interface.

To avoid cumbersome expressions we give tensorsx i jk
and x i jkl in the crystallographic coordinate system, i.
for c50. It is then fairly straightforward to carry ou
their transformations x̃ i jk5Cil CjmCknx lmn and x̃ i jkl
5CimCjnCkpClqxmnpq, with the matrix

Ĉ5F cosc sinc 0

2sinc cosc 0

0 0 1
G .
2-8
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Concerning the fcc layers, the directions@ 1̄10#, @001#, and
@110# are now along the axesX1 , X2 , andX3 . The matrices
comprising Eq.~20! are

Â5F 0 0 0 0 x113 0

0 0 0 x223 0 0

x311 x322 x333 0 0 0
G ,

B̂15F 0 0 0 0 0 x1121

x2111 x2221 x2331 0 0 0

0 0 0 x3231 0 0
G ,

B̂252F x1112 x1222 x1332 0 0 0

0 0 0 0 0 x2122

0 0 0 0 x3132 0
G ,

B̂35F 0 0 0 x1233 0 0

0 0 0 0 x2133 0

0 0 0 0 0 x3123

G .
y
e

n
.
b

t
a
m
pa
a

m

er
ic-

01443
The number of independent parameters is 18~five optical
and 13 magneto-optical!.28,30 The in-plane magnetization
mSiX1 allows ten of them to survive. The same configurati
is described by the magnetic point group 2I , which yields 18
independent parameters31 of the tensorx i jk

S (mS). Magneto-
optical effects coming from such an interface can be sho
to exhibit a twofold rotational anisotropy.16

Group 3m. The generating matrices are

F 1 0 0

0 21 0

0 0 1
G , F 21/2 )/2 0

2)/2 21/2 0

0 0 1
G , ~111! interface.

The directions@21̄1̄#, @011̄#, and @111# are along the axes
X1

C , X2
C , andX3 , a vertical plane of symmetry being norm

to X2
C . In this case there are 12 independent parameters~four

optical and eight magneto-optical!28 in the matrices
Â5F x̃111 2x̃111 0 0 x113 x̃112

x̃112 2x̃112 0 x113 0 2x̃111

x311 x311 x333 0 0 0
G , B̂15F 0 0 0 x̃1231 x̃1131 x1121

x2111 x2221 x2331 2x̃1131 x̃1231 0

x̃3111 2x̃3111 0 x3231 0 x̃3121

G ,

B̂25F x2221 x2111 x2331 x̃1131 2x̃1231 0

0 0 0 x̃1231 x̃1131 x1121

2x̃3121 x̃3121 0 0 x3231 x̃3111

G , B̂35F x̃1113 2x̃1113 0 x1233 0 x̃1123

x̃1123 2x̃1123 0 0 2x1233 2x̃1113

0 0 0 0 0 0
G ,
e
to

up

he

any
m-
where x̃1115x111cos 3c, x̃11252x111sin 3c, x̃1231
5x1231cos 3c, x̃11315x1231sin 3c, x̃31215x3121cos 3c,
x̃31115x3121sin 3c, x̃11235x1123cos 3c, and x̃1113
5x1123sin 3c, and the relationx21112x222112x112150 oc-
curs. This result suggests a threefold rotational anisotrop
surface-sensitive magneto-optical effects, and this has
perimental evidence.16 The importance of the approximatio
used can be illustrated formS being normal to the interface
Hence two of the magneto-optical parameters have to
taken into consideration. The same result19 also follows from
invariance of the tensorx i jk

S (mS) under the magnetic poin
group 3mI . However, this group turns into the trivial one if
direction ofmS becomes arbitrary. Such a reduction in sy
metry inevitably entails 18 independent magneto-optical
rameters, in contrast to the eight we have owing to the
proximation.

Along with the surface polarizationPS comprising the
boundary conditions, it is necessary to consider the volu
polarizationPNV in wave equation~18!. We confine this con-
sideration to a layer possessing inversion symmetry. Th
fore, PNV has to be taken into account in the electr
quadrupole approximation1,6,7,21,29,32
of
x-

e

-
-

p-

e

e-

Pi
NV5«0x i jkl

V ~m!Ej

]

]xk
El , ~21!

whereE is the electric field~at the fundamental frequency!
in the layer. In the decomposition of the nonlinear volum
susceptibility tensor only terms linear in magnetization are
be retained:x i jkl

V (m)5x̃ i jkl 1x̃ i jklnmn , where no intrinsic
symmetry is assumed for the polar and axiali tensor.

Let symmetry of the layer be described by the point gro
m3m. Symmetry of the tensorsx i jkl and x i jkln can be re-
vealed in a very similar way as we have outlined above. T
generating matrices are

F 0 1 0

21 0 0

0 0 1
G , F 0 1 0

0 0 1

1 0 0
G , and F 21 0 0

0 21 0

0 0 21
G .

The last matrix represents inversion and does not lead to
simplification of either tensor. There are 21 surviving co
ponents ofx i jkl , four of them being independent.27,32 In the
physical coordinate system the nonzero components are
2-9
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x̃11115x̃22225x11112
1
2d sin2 2c, x33335x1111,

~22!
x̃22125x̃12225x̃22215x̃212252x̃111252x̃121152x̃2111

52x̃11215
1
4d sin 4c,

x̃12125x̃21215x12121
1
2d sin2 2c,

x̃21125c̃12215x21121
1
2d sin2 2c,

x̃22115x̃11225x11221
1
2d sin2 2c,

x13135x23235x32325x31315x1212,

x31135x32235x13315x23325x2112,

x33115x33225x22335x11335x1122,

whered5x11112x11222x12122x2112. This result allows us
to observe how volume anisotropic optical contributions
fluence rotational anisotropy of magneto-optical effects.

If the layer is isotropic, the Curie group̀`m describes
its symmetry. Relations~22! hold valid, provided thatd50.
Consequently, there are three independent optical par
eters, and the nonmagnetic part ofPNV, as follows from Eq.
~21!, is

«0
21Pnonmagn

NV 5x2112~E,¹!E1x1122E divE1 1
2x1212¹~E,E!,

~23!

which is known,31 although for a different combination o
the involved parameters.7,21,29,33

Contributions due to the axial fifth-rank tensor must
fairly small. Nevertheless, to see their symmetry, the inva
ance ofx i jkln under``m is worth considering as the sim
plest example. Only 60 of the 243 components are nonz
six of them being independent.28 On carrying out a symmetry
analysis, the magnetic part ofPNV can be written down in
vector form:

«0
21Pmagn

NV 5x12131†@q,¹#,E‡1x31121~E,¹!q1~x12131

1x32111!q divE1x11321E div q1x12311~q,¹!E
1 1

2 x31211@m,¹#~E,E!, ~24!

whereq5@m,E#. The fieldE in Eq. ~24!, which we believe
to be a new result, must be taken as unperturbed, i.e., i
pendent of magneto-optical parameters.

At this stage the boundary value problem to look at s
ond harmonic magneto-optical effects is unambiguously
up. It should also be clear that the simplest phenomenol
cal model for dealing with linear surface magneto-opti
effects follows a very similar formulation to the bounda
value problem that has been given for the second harm
case.

VI. SUMMARY

An analysis has been given of fundamental aspects rel
exclusively to a formulation of the boundary value proble
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for looking at optical and magneto-optical effects that ori
nate within surfaces and interfaces of multilayered magn
media. A particular and currently important example of su
effects arises in the generation of second harmonic magn
optical effects in ferromagnetically ordered multilayers th
possess inversion symmetry. Another example is the po
bility of specific surface contributions to the first-order line
magneto-optical effects.

Concerning second harmonic magneto-optical effects
has been assumed that the response of the medium is
equately described in terms of surface and volume elec
polarizations and that all the interfaces are ideal~infinitely
thin!. The polarizations are related, respectively~within
electric-dipole and -quadrupole approximations!, to the fun-
damental field through the surface and volume susceptib
tensors, which might be available from adequate microsco
theory or experiment. A cursory perusal of the literature
lated to this topic reveals considerable confusion in the ma
ematical treatment of surface-sensitive magneto-optical
fects, particularly with respect to fundamental issues.

Here we have attempted to highlight some of the pro
lems and provide a reasonably self-consistent analysis
central issue concerns an elegant way of deriving two v
sions of the relevant boundary conditions: Eqs.~4! and~6!–
~8!, and alternatively a less simple set of equations~4!, ~6!,
~16!, and ~17!. We have shown how this derivation can b
carried out through validity of the differential form of Max
well’s equations in the space of generalized functions. Eit
version forms a crucial part of the boundary value probl
for the wave equation~18!. Its solution ultimately allows the
state of polarization and intensity of light~generated solely
from the surfaces and interfaces! to become known in the
transparent medium, usually air, where these quantities
termine the magneto-optical effects. We purposefully lea
out quite straightforward solution of the boundary val
problem.

For completeness, the relevant problem of revealing
symmetry of the form of the susceptibility tensors has be
outlined in the linear approximation with respect to magn
tization. This approximation, apart from being naturally re
sonable~magneto-optical effects are normally small!, has
been shown to be advantageous, because it is sufficien
analyze the invariance of the corresponding tensors me
under ordinary crystallographic point groups. This leads t
significantly lower number of nonzero tensor compone
than would be delivered by the often-used invariance un
magnetic point groups. To illustrate this, we have given c
responding expressions of the surface polarization@Eq. ~20!#
for the four typical point groups:̀ m, 4mm, mm2, and 3m.
The volume polarization has been considered thoroughly
the Curie group̀ `m, its nonmagnetic part also form3m.
Expression~24!, believed to be a new result, illustrates th
role of the magnetic part of the volume polarization in
isotropic layer. The tensors have been defined in the phys
coordinate system, and this allows the results to be used
analysing rotational anisotropy of second harmonic magn
optical effects.

An additional and particularly important issue has a
been discussed in relation to uncertainty in the definition
2-10
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the surface polarization in terms of susceptibility tensor a
fundamental electric field. An ambiguity arises because
the discontinuity of its normal component across an id
interface. We have considered the implications of differ
conventions on such a definition and shown that, in the g
eral case of anisotropic adjacent layers, unless certain c
ponents of their dielectric tensors are zero, there may be
relationship between the conventions. An example has b
given to illustrate why this occurs within the linear approx
mation with respect to magnetization. If the condition is m
the relationships are simple and imply a rescaling proced
of some tensor components in accordance with Eqs.~13!.
Since the issue of convention is an inevitable feature of
s
ow

s

. B

e

l

m

-

01443
d
f
l
t
-
-

o
en

,
re

e

simplest model described in this paper, we emphasize
need to state clearly the choice, which must be commo
both theoretical and experimental treatments of magn
optical effects.
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