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Boundary conditions in the simplest model of linear and second harmonic magneto-optical effects
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This paper is concerned with linear and nonlinear magneto-optical effects in multilayered magnetic systems
when treated by the simplest phenomenological model that allows their response to be represented in terms of
electric polarization. The problem is addressed by formulating a set of boundary conditions at infinitely thin
interfaces, taking into account the existence of surface polarizations. Essential details are given that describe
how the formalism of distributiongyeneralized functionsllows these conditions to be derived directly from
the differential form of Maxwell’s equations. Using the same formalism we show the origin of alternative
boundary conditions that exist in the literature. The boundary value problem for the wave equation is formu-
lated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically
ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear
surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through
surface susceptibility tensors is discussed. A problem of self-consistency of the model is highlighted, relating
to the existence of rescaling procedures connecting the different conventions. The linear approximation with
respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily
analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups.
Required representations of the tensors are given for the groops4amm, mm2, and 3n. With regard to
centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given
for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group
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[. INTRODUCTION nitely thin) on the basis that their thicknesses are much
smaller than the wavelength of the radiation. The linear prob-
The boundary conditions to be discussed in this paper arem is solved in an iterative way. In the first instance, any
essential to the development of the simplest theoretical modsurface polarizations are neglected. The electromagnetic field
els of surface linear and second harmonic magneto-opticdn all space is obtained from Maxwell's equations subject to
effects in ferromagnetically ordered multilayers. Any the conventional boundary conditions. The magnitude and
multilayer can be visualized as a set of alternating layerstate of polarizatiorithe Kerr angle and elllipticityof these
composed of different materia[§ig. 1(a)]. Each homoge- fields in the transparent mediufig. 1(a)] contain informa-
neous region or layer transforms into the neighboring ondion about volume-sensitive magneto-optical effects. The
within an interface that is very narrow and inhomogeneoushext procedure concerns the surface susceptibility tensors
When excited by monochromatic light of high intensity, the that determine the surface polarizations driven by the unper-
multilayer may exhibit magneto-optical Kerr effects at bothturbed field. It should be noted that the normal component of
the fundamental frequencw and second harmonic fre-
guencyws=2w. If the multilayer is transparent enough, the
Faraday effect, at both frequencies, may also be observed.
Normally, the response of the multilayer generating the ef-
fects is completely described by means of elediftective
polarization'= Since optical nonlinearity is assumed to be
small, a consideration of the effects is carried out iteratively,
i.e., within a simple perturbation procedure. Consequently,
there are two separate parts of the phenomenological solu-
tion to the problent.

In the first part, the influence of the nonlinearity on the X=X, X,
response is neglected. Volume and surface linear polariza-
tions, induced by incident light in the layers and interfaces v
(transition regiong are related to the primary electric field x¢
through linear susceptibility tensors. The tensors may depend XIC X, 2

respectively on volume and surface magnetization, thereby
introducing linear volume- and surface-sensitive magneto-
optical effects. Since the influence of surface polarizations is FIG. 1. (a) Multilayer configuration for the model of magneto-
small, they can be considered as perturbations. Moreover, thtical effects.(b) Orientation of the physical and crystallographic
interfaces themselves are thought of as ideal surfdofis  coordinate systems.
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this field, across ideal interfaces, is discontinuous, and thboundary conditions and a driving field, has relationships
conseguences of this requires careful consideration. The suwith the others. This problem is considered in Sec. lll, to
face polarizations become sourd@sstead of incident light  provide general rescaling procedures linking the tensors re-
radiating waves at the fundamental frequency. The correlated to often-encountered conventions. Unfortunately, such
sponding electric field, carrying information about surface@ rescaling is not always possible in the case of anisotropic
contributions to linear magneto-optical effects, can be obadjacent layers. To illustrate this feature of the phenomeno-
tained from Maxwell's equations, which now need to be ac-ogical model, an example will be giveSec. V. In Sec. I,
companied by the unconventional boundary conditions tha{e give a rather elegant and quick method for deriving either

take into account singular polarizations that are assumed t§ersion of the boundary conditions directly from the differ-
be localized exactly at the ideal interfaces. ential form of Maxwell's equations, valid in the space of

The second part of the solution is similar to the ﬁrst_distributi(_)ns_(generalized functior_)sAIthough_ the validity
Primarily this concerns the state of the polarization and in/l@y be intuitively clear, we outline why this is so, for to
tensity of second harmonic waves in the transpatemd- ~ 2CcCept it merely as a postulate, as suggested béfeeems
deny medium. Instead of incident light, nonlinear Suncace|nsuff|C|ent. The version of boundary cond|t|on§ we prefer is
and volume polarizations play the role of sources. Thecons_ldered thoroug_hly. For the case of no_rmal |nC|d§nce thls
boundary conditions for the second harmonic fields obyi-VerSion was also given elsewhere, but without details of its
ously remain the same as those for the linear perturbatioff€rivation:" If it had been shown how the boundary condi-
fields, involving a nonlinear surface polarization in place of aloNS relevant to magneto-optics came about, there would
linear surface polarization. The wave equation for the elechave been no need to seek an analogy W'th. electrosf.étllcs.
tric field in each layer may be inhomogeneous because of th® S€c- IV, the same method is used to describe the origin of
nonlinear volume polarization. How both kinds of polariza- 2" alternative and less simple set of boundary conditidis.
tions are related to the fundamental unperturbed field is &1 View of the similarities in considering linear and second
matter of approximation. If each layer possesses a center QR/MoNic magneto-optical effects, we confine ourselves to
inversion, then, within the electric-dipole approximation, the formulation of a boundary value problem for looking at
there exist no volume polarizations because a polar thirdth® latter. Section V is devoted to this problem, with an em-
rank tensor is identically zero. For this reason, volumePhasis on the effects in centrosymmetric, ferromagnetically

sensitive second harmonic magneto-optical effects are rérdered, multilayers. An auxiliary analysis revealing the
ferred to as forbidden in centrosymmetric media. HoweverSYMmetry of the associated susceptibility tensors will also be
they are not forbidden within the electric-quadrupole ap-caried out, pursuing the linear approximation with respect to
proximation that takes into account the nonlocality of themag.netlz.atlorjr. In this respect it is advantaggousto examine
response(spatial dispersion through a polar fourth-rank the_mvananc_:e of the relevant polar and axial tensors u_n_der
tensort® While considering surfaces and interfaces, it is al-ordinary point groups. In the case of surface-sensitive
ways sufficient to take the electric-dipole approximation intoagneto-optical effects, this will be done for the often en-
account. Since inversion symmetry is broken at surfaces arfgPuntered groupsmm, mmz, and 3n, and the Curie group
interfaces, surface-sensitive second harmonic magnet§2™M governing the symmetry of an isotropic surface. The
optical effects are never forbidden by symmetry. Irrespectivé€nSors will be given in a 3 6 matrix form, and with refer-

of these points the above-mentioned problem concerning thgnce to a physical rather than a crystallographic coordinate
convention related to the driving field remains. For noncenSystem[Fig. 1(b)], so that it will be most convenient to use
tosymmetric multilayers the electric-dipole approximationthe results while looking at the rotational anisotrpyf
does allow volume-sensitive second harmonic magnetomagneto—opncal effects: To observe quadrupole contributions
optical effects. If the volume polarizations dominate over thel® Surface magneto-optical effects, along with the known re-
surface ones, the latter are disregarded, and the conventiorilt for the nonmagnetic part of volume polarizatigssit-
boundary conditions may be us&d. able for_ cubic ar_wd |sot_rop|c Iaye)_rsa representation for thg

Following this approach, an interesting treatment of theMagnetic part will be given, provided that the corresponding
surface-sensitive transverse Kerr effect was given for a sem@Xial fifth-rank susceptibility tensor is invariant under the
infinite medium showing that it is possible to use linear Curie group=em. Finally, we shall summarize the essential
magneto-optics for probing surface magnetfsrimilar features of the model in an attempt to clarify the arguments.
ideas also apply to the development of simple models of the
s_econd harmon!c magneto—optical' effects in centrosymmet- || \uay OF DERIVING THE BOUNDARY CONDITIONS
ric, ferromagnetically ordered multilayets.

Although such phenomenological solutions are common, The boundary conditions involving a surface polarization
our return to the basic principles has been influenced byave the same form in all situations where the idealizations,
subtleties that often cause ambiguities in the literature. Thesagescribed in Sec. |, are applicable. However, since second
are due to the fact that boundary conditions involving surfacénarmonic magneto-optical effects are of particular signifi-
polarization at an ideal interface exist in two versiofis*as  cance, we shall derive the boundary conditions relevant to
well as due to a variety of conventions for the surface polarthis case. Obviously, it is sufficient to consider a plane sur-
ization itself in terms of its driving field. A relevant question face S between semi-infinite, anisotropic, not necessarily
emerges as to whether or not it is always true that a particulamagnetic, medigFig. 2@)].
convention, which should include both a preferred set of The assumed idealization implies that Maxwell's equa-
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referred to as a single layer @8 where ds is the surface
delta function, and f]s=f*—f~ stands for the jump of
acrossS The signs* are linked to a chosen positive direc-
tion of the unit normaN to S718

The optical and magneto-optical response of the whole
medium is governed by the constitutive relatigm SI units)

@ D=goE+PV+PSsg, 2

where all the fields are at the frequeney and belong to
D'(R3). The relationB=uyH assumes that the medium
does not respond to the magnetic figldat optical frequen-
cies. The fieldH is a regular distribution, and so are the
magnetic inductio and the bulk polarizatioRV. The latter

is unambiguously defined through the linear susceptibility

transition
region

® tensors as
Y eoXVTE+PYY, x>0,
P=y "y_
soxV E+PNY, x3<0,
vacuum . . .
gap and comprises the already known nonlinear volume contri-

bution PNV originating from the quadrupole or/and dipole
approximation. We do not defire” at the surface itself, for
doing so would be meaningless. The polarizatifisand
PNV can be related to the fundamental electric field through a
FIG. 2. (a) Ideal interface between semi-infinite homogeneouslySurface and volume susceptibility tensor respectively. The
magnetized medidb) Corresponding transition region used for de- RHS of Eq.(2) includes a singular distributioR®ss (single

riving the boundary conditions in the classical wéy. llustration ~ 1ayen. Consequently, the electric displacemeénts a linear
concerned with the convention defining the surface polarizatioreombination of the regular and singular distributions.

through Eq.(9). In®’(R%), Maxwell's equations relevant to the problem
are

tions hold in the space of distributio®’ (R®). This asser- .

. . ; curH=—-iwgD, (33

tion unequivocally follows from a procedure that introduces

theT |d(_aallzat!on corrgctly. The procedurg begl_ns with the_ po- CUE=i wapugH, (3b)

larization being continuous in all space including a transition

region of finite widthh. A test function ¢, belonging to divH=0 (30)

D(R®), is then taken in order to obtain the purely regular '

distributions from the corresponding classical Maxwell equa- divD=0. (3d)

tions in the usual way/'*8Let f,, be a certain component of _ _
any of the fields, which obviously depends lonFor differ- ~ Their forms are exactly the same as we understand them in
ent values ofh there is a sequence of actioif,,e). In the classical sense, i.e., for regions where all the fields are
D'(R3), the weak convergencéf,,e)—(f,¢) as h—0  continuous. However, a significant difference is that Egp.
may result in a singular distribution along with the regularare valid in all spac&®, provided they are understood in the
one, both having a physical sense. A remarkable propertgense of distributions. Consequently, the differential opera-
asserted by the theorethis that for any multi-indexx of the ~ tors in Egs.(3) lead to classical Maxwell equations and cor-
differential operatorD* the following is always true: responding boundary conditions. Indeed, taking into account
(D*f,,, 0)—(D*f,¢) ash—0. This means that, on undergo- Ed. (1), a calculation of diH in Eq. (3¢) leads to diH

ing the weak limit procedure, the classical Maxwell equa-={divH}+([H]s,N)ds. Here{divH} is a regular distribu-
tions apply to the spac®’ (R3), where they have exactly the tion corresponding to the classical divergeriosiere it ex-
same form, except that the densities of sources are defined 9. The next term is defined as a simple layer of surface
distributions. With regard to the corresponding differentialdensity (Hls,N), where[H]s=H"—H" is the hypotheti-
operators the following result will be often used below. If a cal jump ofH acrossS. The sign+ corresponds to a chosen

regular distributionf has a discontinuity of the first kind ata Positive direction of the unit normall to S[Fig. 2@]. On

smooth surface, then the other hand, the equation div=0 should be valid every-
where inRR3. Therefore, we havédivH}=0, which is the
9t 19x;={af19x;} +[F]sN; Ss. (1) classical Maxwell equation, plus the conventional boundary

condition (H]s,N)=0 revealing the continuity of the nor-
Here the derivative in the curly brackets is a function definednal component of the magnetic field acr&s
almost everywheréin the classical sengeThe next term on N B
the right-hand sidéRHS) of Eq. (1) is a singular distribution H; —H; =0. (4)
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Equation(3d), where the displacement defined by E2), is  face has to be replaced with a transition region of wildth

more subtle. To cope with this the identitgiv(PSds),¢)  with continuous polarizatio®"2" within it [Fig. 2(b)]. The

=—[4(P5,V¢)dS, involving a test functionp e ©(R3), has  surface polarization appears then almost in the sense of the

to be used. Leaving the calculation of @wuntil later, we  weak limit: "2 ,P"dx;—PS ash—0. In contrast to the

arrive at the equation method described above, it necessary however to assume that
rl’ﬁ,zDg,dx?,—>0 as h—0, when applying Stoke’s theorem

and integrating the componet= ¢, 'D;— P§*"*across the

s _ transition region.

+ 6(P399)/ %3 =0, ® Whichever way of deriving the boundary conditions is
where, in addition to a linear combination of the simple lay-used, the assumption of ideal interfaces is only justified by
ers, a different kind of singularity—a double layi¢he last  the condition that thickness of the real interface is much less
term on the left-hand sidéLHS)] has appeared. Conse- than the wavelength. The corresponding surface polarization
quently, Eq.(5) can be satisfied only if the electric fiel  PS, in fact, has to be defined from a nonlocal polarization
comprises the singular term 851(0,0,P§5S). Hence the within the “smooth” interface, and this can only be done
constitutive relatiofEq. (2)] suggests that the normal com- correctly using microscopic theo?y?° How PS is related to
ponent of D must possess no singularity. This singularity the fundamental fiel& at the ideal interface is, however, a
must therefore be attached to the normal componekt &n  matter of convention.
substituting the representation div={divE}+[E3]sdg

— &g d(P355)/9x3 into Eq. (5), there follows the classical | coNVENTIONS ON THE SURFACE POLARIZATION
Maxwell equation{div D} =0, plus the boundary condition

g0 diVE+{div PV} +[PY]s8s+ (9P dx, + dP5I 9X;) Os

In the ideal model of second harmonic magneto-optical
D3 —D3 = — Py dx,— P35l X, . (6)  effects, the surface polarizatid® is induced by the funda-
mental electric field€ at the surface, and is related to the
latter through a nonlinear surface susceptibility
tensort~#1%2 However, an ambiguity occurs in setting up
such a relationship, since the normal compongnbof the
field is discontinuous across the ideal surface. This inevitably
leads to an uncertainty in choosing the most suitable field to
drive the polarization. Actually the driving field may be cho-

It is now clear that the three singular componentsPdfg
belong, respectively, t®,, D,, andE;. This simplifies the
procedure for dealing with the rest of the equations. It fol-
lows from Eq.(1) that the LHS of Eq(3a) is represented as
curlH={curlH}—[[H]s,N]8s. Since the singular term of
D is (P3,P3,0)ds, Eq. (3a becomes

_ sen according to a clearly defined convention, and such a
feurlH + (= [Hzls [Hils 005 solution does not ultimately lead to any logical
=—iwg{D}—iwg(P?,P3,0) s, inconsistencie$
: . . . . To visualize how the most convenient convention comes
which instantly yields the classical I\/Iaxv_vels! equation gpout, the following expedient is pertinent. The anisotropic
{curH} = —iws{D}, being valid everywhere iR” except media can imaginatively be offset by pushing the layers
the surffacéi plus the linked boundary porydmons for the two slightly off the ideal interface ats=0 [Fig. 2c)]. As a con-
tangential components of the magnetic field: sequence, a vacuum gap appears, while the position of the

surface carryind®® remains unchanged. To return to the ini-
tial configuration, it is necessary to collapse the vacuum gap,
Since the fieldE possesses the above-mentioned singularity.€., the coordinates ad andb of the surfaces between the

Hi—H{=—i0gP;, Hj—H,=i0gP]. @)

and the fieldH does not possess any, E8b) becomes anisotropic media and vacuum must go to zero. In the first
instance, the conventional boundary conditions for the dis-
{curlE} - [[E]s,N]65— sglcurI(0,0,Pgés) =iwguo{H}, placementD (at the fundamental frequenclyave to be writ-

: -
and leads immediately to the classical Maxwell equationtian down. They areDs(a)=zof5(a) and eols(b)
{curlE}=iwgue{H} and the boundary conditions for the two =Dy(b), where a dependence on only the Z;ésgnnal coordi-
tangential components of the electric field: nate is shown explicitly. At the surfac_e, Wh IS qual-
ized, all the components of the electric fiegfdare continu-
Ef —E;=—gqaP3dx;, Ej—E,=—gg P53 dx,. ous, and, in particulag; (0)=&; (0)=E&;(0). It is thefield

(8) £(0) that is related to the surface polarization through a
surface susceptibility tensor. If the vacuum gap is collapsed,
'both a andb tend to zero, and we ha\@ngg,(a):g;(a)
—&5(0) ande, 'D4(b) =&; (b)—&5(0). Hence the normal
component of the driving field can be defined exactly at the
surface asS3(O)=851D3(O). This justifies the particular
convention$' avoiding the discontinuity of the driving field
across the ideal surface:

It is worth noting that if the surface polarization vanishes
boundary conditiong6)—(8) turn into conventional ones.
Moreover, if certain components &° vanish or do not de-
pend on eithek; or x,, then some of the tangential compo-
nents ofH andE may be continuous as in the conventional
case.
The unconventional boundary conditiof@—(8) can also

be derived from the integral form of Maxwell’s equations. s s . s
However, if this classical method is pursued, the ideal sur- PP=eoxij(mM?)F;Fy, 9)
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whereF,=¢4, F2—£2, andFy=¢, 'D;. The surface sus- X=X — Xos(ea1— €3 €35— Xaa(E9— £32) €43
ceptibility tensor)(I « in Eq. (9) depends on the surface mag-
netization whose dlrectlon is indicated by the unit veetor +X%§(8;1_ 851)(.3;2— 852)/(8;3)2_
Alternatively, for the same surface polarization two other
conventions are possible and equally acceptable: Alternatively, to invert these expressio® have x5 in
terms of xyS7), it is necessary merely to change all the su-
PP=eoxin (MHE &L, (108 perscripts “+” for “ —” and vice versa. A similar rescaling
procedure can be derived for the conventions defined by Egs.
PP=eoxin (M)E & . (10p  (9) and(108:
Here& andg; are components of the fieflat the positive X=Xt 2X 3891t Xaa(€3D) %
and negative sides of the interface, respectively, as defined
by a positive direction of the earlier introduced unit normal Xi22= Xiz2 2X 23832 Xi33(£32)°,
N [Fig. 2@)].
It is wholly immaterial which convention is preferred. The S xSa(e2)?
form (symmetry of the corresponding susceptibility tensor Xizs™ Xissl€33)
remains the same, i.e., all the relevant tensors have coincid- st s +..s + 4+ (120
ing indices for their zero components. However, a difference Xi23= Xi238337F Xi33€ 32833,
occurs but is solely in the values of the nonzero components s s 4+ s 4 4
that are linked to the third component of the driving field. Xi13= Xi138331 Xi33831833,
The form of the tensors is determined by their intrinsic sym-
metry as well as by specific magnetic symmetry of the inter- X=X ot X 23E 91T X1aB a2t X 33E 1€ 30

face. The former is universal and apparently consists in in-

variance of the tensor under the permutation of its last twd=quations(12) constitute the most general rescaling proce-
indices. SincePS must not depend on a choice of any pos-dures, which are undoubtedly correct if all the 18 compo-
sible conventions, the three quadratic equations, concernin@ents of the surface susceptibility tensor, related to a particu-

the relationship between Eqd.0a and (10b), lar convention, are different. However, if there exist zero
components along with independent ones, serious doubts
X+ X+ Xoa(E3) 2+ 2X sErln arise about the validity of such rescaling. In other words, the
inevitable arbitrariness in choosing the driving field not al-
+2x156163 T 2X71261Es ways maintains the identity of symmetry propertiesyf, ,

s S— 2 o2 S o o xr andX After these properties have been considered
= XET+ Ximaat Xiaa(E3 )2+ 2X 538285 mllgec v, alnkexample of such an inconsistency will be given.
+2Xi81_3515§+2)(i51_25152 (11)  This rather bewildering feature of the ideal phenomenologi-
cal model vanishes if all the off-diagonal components
(wherei=1, 2, or 3 that involve the four field components ande,, in Egs.(12) are zero. For instance, an optically iso-
must be met along with the essential requirement for theropic multilayer in the polar configuratiofmagnetization is
tensorsxuk and X”k to have the same form. The boundary normal to the interfageobeys this restriction. Thus, the three

condition forDs, conventions become equivalent in the sense that, as follows

. . e - e from Egs.(12), the tensorsyj)y , xi » andxi are simply
e3181 T €3p8p T E3383 =831 E1F €355 33 related to one another:

where the signs labelling the components of the permittivity S .

tensor refer to the layers above and below the interface ac- Xik=Xik =Xk 1 k#3,

cording to the direction oN, allows Egs.(11) to become a s S+ s, .

system of three homogeneous equations with respect to three Xiis= Xijal€33= Xijal €33, ]#3, (13

field components. Since the system must be satisfied for ar-

bitrary field components, the following relationships between X 35= X ol (839 %= X153l (£39)%.

the two conventions come about: ) ] ) N
The rescaling procedure defined by E(E3) is also legiti-

Xoa=xSh—2xSh(em— ez et Xl (e~ 3 e 33)%, mate when the off-diagonal components are so small that the
contributions to the driving field they cause can be neglected.
2 If they are related exclusively to magnetizati@s normally
Xize= Xize ™ 2Xiza ez o) e3at xizal (e32 ean)leaal’, occurs in linear magneto-optigshen that is the case.
S—_ St/ —/.t)2 Whether or not any possible convention, associated with
Xiza= Xiza2ad 839" the choice of the driving field, is related to the others through
S-St -, 4+ s+ -+ _ 2 (123 rescaling procedures, the components of the associated sur-
Xiza= Xi2s€3d €337 Xizat el €32 €32)/ (£33, face susceptibility tensor are entirely material parameters.
Their values(normally unknown can only be obtained from
Xi31_3:Xi81+38§3/83T3_ Xis3+38373(8§1_ 30/ (832)%, experimental data on the state of polarization of second har-
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monic light* To avoid ambjguity, it is absolutely essgr)tial to {curlE} — [[E]s,N]6s— (sosgg‘lcurl(0,0,Piﬁs)
state clearly the convention preferred when obtaining and _
presenting such data. =iwspo{H}
yielding the boundary conditions for the tangential compo-
IV. ALTERNATIVE BOUNDARY CONDITIONS nents ofE:
Another set of bounda_ry (_:onditiorlls.can arise if _the re- EI—EI=—(808§3)‘1aP§/ax1,
sponse of the whole mediuffig. 1(a)] is interpreted differ-
ently to that outline_d in Sec. Il. This certai'nly occurs when Es—E, =—(goeas) *dP3Xs. 17
the displacement, in contrast with E¢R), is represented ) o )
through the permittivity tensor as Again, this is different from Eq(8). On the basis of the
assumption, stated in the beginning of this section, boundary
D= g8 E+PNV+ PSsq (14) conditions (4), (6), (16), and (17) have been derivedin

Gaussian unitsin the classical way® Furthermore, they

and, in addition to this, the tensor itself is artificially defined have been used to develop a phenomenological model of
at the surface to make this representation meanmgful Foyecond harmomc magneto-optical Kerr effects for semi-
instance, lete;) = &+ x)/" if x3=0, ande;; 5|,+X., if ~ infinite media’® R . _
x3<0. Clearly, the incorporation of the permitivity tensor in The surface polarizatioR™, ngtuially going together with
this way is actually equivalent to imposing some singularitydefinition (14), is PP=eqni (M°) /"€, , where the suscep-

on the bulk polarization, which should realistically be unre-tibility tensor 5 is different fromxS+ in Eq. (10). If the
lated to any singularity at all. Nevertheless, it is necessary téensore were defined at the surface & &s, instead of ", the

find out the consequences of such incorporation, and theomponents«sJ would need to be replaced hy; in Egs.
method described in Sec. Il can readily be applied for thig16) and(17). Consequently, we have another set of bound-

purpose. ary conditions,
In this case boundary conditio@) for the normal com- . _ s -, __s
ponent ofH obviously remains the same. By virtue of Eq. Hi —H; = —lws(P;—e5de33P3),

(14), Eq. (3¢) is transformed into
H; —H; =iwg(Pi—ede5P3),

g0 div(EE+PNV) + (9P dx, + dP59x,) g+ (P38s) 9x5
=0, (19

E —E;=—(go839) *dP3/xq,

E; —E; =~ (80839 "9P3/0xy,
where the double layer can be annihilated if the figldE
comprises the simple layer &, *(0,0P35s). Since the me-
dium in the upper half-spac-ig. 2(a@)] may be optically
isotropic, i.e..e] = &35 , the singularity—(eoe39) P55
must be associated witlE;. Therefore, tlhe (Sexpression
div 8E = {div(eE+ P"V)} + ([8E]s,N) 85— g4 (P385)/ 9x e , . k
on being{sub(stituted ir)j[o éq15),syiel)dssboSndérygccs))nditi%n Wﬁ: is similar to that considered in Sec. Ill, for}, and
(6). SinceD, andD,, are related td 5 through the tensor, the X|,k Moreover the relationship, for instance, betwaé\ﬁ
extra singularities- e 15/ e 33P55s and — e /e 3,P53s are, re-  andy;), ,
spectively, inherited by them. This feature inevitably results

that involves the surface polarization defined through the sur-
face susceptibility tenso¢7Ilk as Piszaonﬁ;(ms)gj’glz. In
contrast with Eq(2), definition (14) results in a dichotomy
which might have caused an ambiguity about the boundary
conditions in question. The rescaling procedureiﬁﬁf and

in essential differences in the rest of the boundary conditions, Xl]k 77le 773]k813/833*

compared to Eq€7) and(8). Indeed, taking into account the ot

regular and singular terms of E¢Ba), we arrive at X2]k M2jk — 773Jk823/8331
{curH}—[[H]s,N]ds= —i ws{D} —i wg(P$,P5,0) 85 X3ik= 73kl £ 3a.

coming from the two sets of boundary conditions makes

; Fat gt S
Tlog(e1de53,8598331)P3ds, these sets totally equivalent.

which leads to the boundary conditions for the tangential
components of: V. BOUNDARY VALUE PROBLEM AND SYMMETRY

OF THE MULTILAYERS

—+ - S + +pS . e .
Hi —H; =—iwg(P;—25d£33P3), The two versions of boundary conditions and associated
conventions on the involved surface polarization are a foun-
Hy —H, =iog(Pi— & /e5P3). (16)  dation allowing us to set up, unambiguously, a boundary

value problem for analyzing second harmonic magneto-
This is clearly different from the previous conditidieq.  optical effects in ferromagnetically ordered multilaygfég.
(7)]. Likewise, Eq.(3b) transforms into 1(@].
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It follows from Egs.(3) that in each layer characterized show thaty;; = x116;; and xijx= x12€ijx » Wheree;;, is the
by its own permittivity tensor, as well as in the transparentLevi-Civita tensor(permutation symbol Since &;; and e;j,
medium, the electric fieldE must obey the wave equation are invariant under rotation, we havgi‘]((m):xllﬁij

] B + x12€iikM. Hence, for any optically isotropic layer with
212 (4 1pNV KK : o
VdivE—V E=kps(eE+eo P, (18 magnetization along the unit vector, the permittivity ten-
g g

where all the quantities, including the wave numiigg SO 'S

= wg/c, are defined at the frequenay. The corresponding —n2(S —i0e.
magsnetic fields in the layers are available through @4). 8ij =01 ~1Q8j M, (19
At the interfaces between adjacent layers, or between theheren is the complex refractive indepn?=1+ y;,; Imn
outer layers and transparent medium, the fi@ldsnxdH must >0, since the time-dependent factor expo4) is used, and
also obey boundary condition§) and (8). The rest of Q=in 2y;,3 is the complex magneto-optical parameter,
boundary conditions, i.e., Eq&4) and(6), are then met au- which is small,|Q|<1.
tomatically. A solution of this linear boundary value problem,  Often, if the linear approximation with respect to magne-
allowing us to obtain the field in the transparent medium, tization is ignored, a symmetry analysis of the tensors has to
is quite straightforward, and most simple within the plane-be carried out on the basis of their invariance under magnetic
wave approximation. This faciliates a modified formalism of point groups(identical to black-and-white point groups be-
characteristic matrices to be used, which ultimately leads to aause time inversion and color changing are equivalent
required expression fdE involving all the permittivity ten-  operations®?* Such an analysis shows that the number of
sors and volume polarizations of the layers as well as surfac@dependent tensor components depends dramatically on the
polarizations of the interfaces. An adequate consideration ahagnetization direction. This complexity is obviously exces-
these quantities is only possible within microscopicsive unless magneto-optical effects of higher order in mag-
theory>?° which is beyond the scope of his paper. However,netization have to be considered.
the symmetry of the tensors is macroscapic?>2%and will Since we have been pursuing the linear approximation,
be considered concisely below. for any interface, which is magnetized in an arbitrary direc-
Let the multilayer exhibit, exclusively, ferromagnetic or- tion of the unit vectorm®, the surface susceptibility tensor
dering and each of its magnetic layers be homogeneousliyntroduced in accordance with conventit®) can be decom-
magnetized. The internal magnetization is determined by thgosed aa(ﬁk(ms)zj(ijk+7(ijk,m,5. The polar and axidlten-
arbitrarily directed unit vectom. Normally, the magneto- sor in this expression possesses an apparent intrinsic symme-
optical effects, being linear in magnetization, are of signifi-try: Xik=Xikj» Xijki=Xikji - Hence the number of
cance. In this approximation, the susceptibility tensor of anyindependent components is reduced, respectively, to 18 and
layer can be represented Jéi#(m)=7(ij +XijMk, wherey;;  54. Further simplification may be due to the invariance of
and’y;;x arei tensors, the former being polar and the lattery;; and y;;, under an ordinary point group of the
axial, sincem; is an axialc tensor** The notations we use are interface'>?*~?°The direct inspection method implies a ma-
as follows. The tildg~), or a letter {/,S above they ten-  trix representation of the group and a consecutive involve-
sors, means their definition in the physical coordinate systerment of associated matrices in the equationgy
_[axesxl, X5, andXs; see Fig. _I.b)], which is trancsforrged =Cii CimChnXimn» Xijkl:(deté)cimcjnckpclq)(mnpq- The
into the crystallographic coordinate systéaxesXy, X3,  generating matrices should necessarily be involved for re-
and X§=Xs) by a clockwise rotation about; (in viewing  vealing utmost simplification bestowed by symmétyt is
against this axijsthrough an angley, the axisX; being  convenient to rewrite Eq9) in a matrix form,
chosen as a reference for the angle. A lack of these

symbols refers to a definition of the tensors in the crystallo- m FZ T

graphic coordinate system. A simplification gf; and ;;x pS F2

comes from their intrinsic symmetry;;=X;i, Xij s R i o o F2

= —YXjik->*** In accordance with Neumann's principle, P3| =&o(A+miB; —m5B,+m3B3) orEa |

they must also be invariant under the ordinary point group P§ 23

that describes the crystallographic symmetry of the 1a%/&t. 2F1F3

The invariance implies a matrix representation of a particular | 2F;F;

point group—an isomorphic group o#33 matrices. For any (20
matrix C belonging to the group, the equationg;; where the four X6 matrices on the RHS are to be defined

= CiCji Xk andXijk:(deté)cilcjmckn)(lmn are held and sig- in the physical coordinate system, i.e., they are §enS|t|ve to
nify transformations of the tensors into themselves. Suclthe angley, unless the interface is isotropic. Matux cor-
equations constitute the direct inspection method for simpliresponding tdy;;c and governing second harmonic optical
fying tensors, i.e., for revealing their zero and independeneffects, is well known for all point groupg.This is not so
components. To ensure maximum simplification it is suffi-for the other three matrices, which are associated, respec-
cient to engage consecutively all the generating matrices dfvely, with the transverse, longitudinal, and polar surface-
the group?® If the layers are optically isotropic and are de- sensitive second harmonic magneto-optical effects. It is im-
scribed by one of the groupa3m, m3, or the Curie group portant to see that the numbered configurations are defined
cccom, each possessing inversion symmetry, then it is easy twith reference to the plane of incidengg=0 [Fig. 1(a)].
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The matrices will be given below for often encountered point .S - ST- ST+ ST+ ot ImTO"
4 m —m =m —m +2i m

groups, and are particularly relevant, as an example, to an X111 2X22207 X X 2221 T SIX 1d M Q

interface that separates fcc layers. —m, (n"/n")2Q7],
Group4mm. The generating matrices are:

S ST - _ sy STt o ot
MYX 2221 M2X 11117 MiX 2200 Max 1111~ 2iX12d My Q

-1 0 O 0O 1 0
0 1 0|, | -1 0 0f, (00D interface, —my(n"/n")?Q"1],
0o 0! o 01 MX3231= {MEX 3231~  Xaad M Q= my (n"/n*)*Q ")}
0 0 0 0 xus O X(n~/n%)?,
Al O 0 0 xus O Of, M5X3231= {M5X 3231~ 1 X334 M; Q" —m, (n~/n*)?Q ™1}
Xai1 Xa1 Xz O 0 0 < (n-In*)2,

which are seen to become contradictory unless direction of
~ - - _ magnetization both in the layers and at the interface is the
Bi=| x2111 X221 Xezar O 0 —xaipa|, same (m™=m~=m°5). This is even more obvious for the

0 0 0  Xap O 0 tensors defined in the crystallographic coordinate system,

sincey=0 entails the disappearancefi1;.

~ ~ o o0 = Groupeem. The interface described by this Curie group is

X221 X211 X2331 X111 isotropic in its plane. The matrices derived for the group
Bo=| Y1111 —x1112 O O 0 Yiml 4mm are applicable, provided that=0. Therefore, eight
independent parametershree optical and five magneto-

}1111 _}1111 0 0 0 }1121

0 0 0 0 Xszax O optica) characterize such an interface. It obviously exhibits
no rotational anisotropy. According to E@O), the nonlinear
0 0 0 Xizss 0 0 surface polarization can now be written
B;=|{0 0 0 0 —xpa3 O], ~1ps
gq P>=2 N,F)F+ F,F)N
00 0 0 0 0 0 X114 )F+ x314( )

- . - i - + (X333~ X311~ 2x119 (N,F)*N
where Y1117= 3A SiN4y, X1121= X112~ 3A sin? 2, X2111

= X2111— %A Sln2 21//, ’)?2221: X2221+ %A Slr']2 21,0, and A + 2X112l([N! mS] ’ F) F+ Xlel( F, F)[ N’ mS]

= X2111— X2221F 2X1121- There are nine independent param- 5 {N,F)[MSF]

eters: three optical and six magneto-optféaThe interface X1233 N ’

is optically isotropic?® for the.optical parameters do not de- —(X2111— X2331+ 2X 1239 (N,F)2[N,mS]
pend ony, but magneto-optically anisotropic. The state of

polarization and intensity of second harmonic light would +2( X328t X1235~ X1120 (N,F)([N,m®],F)N.

exhibit a fourfold rotational anisotropy. The effect observedrhea axial vectomsS is seen to form only those combinations
in Bi-substituted iron-garnet film§ is an excellent experi- it the polar vectorsi=(0,0,1) andF, which insure that
mental confirmation. If the linear approximation with respectps remains a polar vector, A,similar, t,hough slightly differ-
to magnetization is not used, then particularly for the in'ent, expression was already giveri® However, it may only

. B S . B
plsane Smagnenzatlorm I[110] invariance of the tensor pe yalid in the linear approximation with a small parameter
Xijk(m®) under the magnetic point groumm2 has to be ;55ociated with.

considered. This leaves ten independent parameters to be Group mn2. The generating matrices are
dealt with™®

The obtained tensor can readily be used now to show,as [ =1 0 0 -1 0 O
stated in Sec. lll, that the rescaling procedufEs. (12)] _ :
may not always be carried out. Let both adjacent layers be 0 10 0 10}, (110 interface.

characterized by tens@t9), so that, for arbitrary directions 0 01 0o 0 1

of t+he|£ mfgnet|za¢+t|ons,+s§1=—|m2i(ni)2Qi, €32  To avoid cumbersome expressions we give tenseyg
=im; (n*)?Q", andez;=(n")% The vectorm® may also  ang xij in the crystallographic coordinate system, i.e.,
have any direction. In the linear approximation, with respector =0. It is then fairly straightforward to carry out
to magnetization, procedur@d2a particularly leads to the their transformations %iik=CiCimCinXimn  @nd  Xijia

equations = CimCjnCipCigXmnpg: With the matrix
S - S~ 54 S+ ;
MiX2111~ MaX 1111~ MiX2111~ MoX 11110 . cosy  sing 0
C=| —sing cosy O],
ST - ST -  _ ST+ ST+
M1X 1110 MoX 2111~ MIX 1113 MoX 2111, 0 0o 1

014432-8
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Concening the fcc layers, the directiofis10], [001], and ~ The number of independent parameters is(fig optical
[110] are now along the axe%,, X,, andXs. The matrices and 13 magneto-opticed®*® The in-plane magnetization

comprising Eq(20) are mSIX, allows ten of them to survive. The same configuration
is described by the magnetic point groupwghich yields 18
0 0 0 0 Xxus O independent parametétof the tensory;, (mS). Magneto-
A=| O 0 0 xms 0 O optical effects coming from such an interface can be shown
' to exhibit a twofold rotational anisotrop$.
X311 Xsz2 Xszz O 0 0 Group 3m. The generating matrices are

0 0 0 0 0 X121
él= X2111 X2221 X2331 0 0 0 |,

0 0 0 xas O 0 1 0 O -1/2 V32 0
-1 0}, —v3/2 —1/2 0|, (111) interface.
X1112 X1222 X1332 O 0 0 0O 0 1 0 0 1
B,=—| O 0 0 0 0 x|,

0 0 O 0 X3132 0
The directiong 211], [011], and[111] are along the axes

0 0 0 X1233 0 0 c c ) )
s _lo oo o 0 X7, X5, andX3, a vertical plane of symmetry being normal
Bs= X2133 to X5 . In this case there are 12 independent paraméiaus
0 00 O 0  Xxs2 optical and eight magneto-optig&l in the matrices
Xi1 —Xxum 0 0 Xxuz X 0 0 0 Xis1 Xxus Xua
A=Y =Xz O xus O —Xiu|, Bi=| Xxou1 Xzza1 Xzsst —x11s1 X2 O |,
X311 X3 X3z O 0 0 }3111 _;(3111 0 X3231 0 ;(3121
X2221  X2111 X2331 X1131 —X1231 O Y1113 — X111z O X1233 0 Y1123
By= 0 0 O Xiza1 Xua1 Xuz|, Bs= ~);1123 _;(1123 0 0 ~ X1233 —}1113 ,
—X3121 Xaizn O 0 X3231 X311l 0 0 0 0 0 0

where X113 x111€08 3, X112= — X111SIN 3, X1231 NV v d

=X1231€08 3, Y1131~ X12318IN 3/, X3121= X3121C0S 3, P =eoxiju(ME7 - &, (22)
X3111= X31218IN 34, Y1123 X1123C0S 3/, and X113 K

= x11238IN 3, and the relationy,111— x20011+ 2x1129=0 0C-  where € is the electric fieldat the fundamental frequency
curs. This result suggests a threefold rotational anisotropy df the layer. In the decomposition of the nonlinear volume
surface-sensitive magneto-optical effects, and this has exusceptibility tensor only terms linear in magnetization are to
perimental ev_ldench.The |rsr;1po_rtance of the approximation pe YEtaiHEdi)(i\fm(m):?(ijm+7(ijk|nmn, where no intrinsic
used can be illustrated fon> being normal to the interface. symmetry is assumed for the polar and axignsor.

Hekncg two of Fge m.agneao—optical parame;elrls ha]ye 10 b&" | ot symmetry of the layer be described by the point group
taken into consideration. The same retatso follows from o Symmetry of the tensorgy and xyun can be re-

. . S S . .
mvanagq(;e of the te“i%ik(m ) under thehmagn,e':'c po!?t vealed in a very similar way as we have outlined above. The
group 3n. However, this group tums into the trivial one if @ gonerating matrices are

direction ofm®S becomes arbitrary. Such a reduction in sym-

metry inevitably entails 18 independent magneto-optical paf g 1 0 01 0 -1 0 0

rameters, in contrast to the eight we have owing to the ap,

proximation. -1.0 0], |0 0 1}, and 0 -1 0
Along with the surface polarizatioP® comprising the 0O 0 1 1 0 O 0 0o -1

boundary conditions, it is necessary to consider the volume

polarizationPNV in wave equatiorf18). We confine this con- The last matrix represents inversion and does not lead to any
sideration to a layer possessing inversion symmetry. Theresimplification of either tensor. There are 21 surviving com-
fore, PNV has to be taken into account in the electric- ponents ofy;j , four of them being independefft®* In the
quadrupole approximatiof 212932 physical coordinate system the nonzero components are
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for looking at optical and magneto-optical effects that origi-
nate within surfaces and interfaces of multilayered magnetic
media. A particular and currently important example of such
effects arises in the generation of second harmonic magneto-
= —XY1121= 28sin 4y, optical effects in ferromagnetically ordered multilayers that
possess inversion symmetry. Another example is the possi-
bility of specific surface contributions to the first-order linear
magneto-optical effects.

Concerning second harmonic magneto-optical effects, it
has been assumed that the response of the medium is ad-
equately described in terms of surface and volume electric

X1111= X2222= X111~ 30 SIMF 246, X3335= X111,
(22

X2212= X1222= X2221= X2122— — X1112— — X1211— — X2111

X1217= X2121= X121+ 36 SI? 240,

X2117= Y1201= X2112% 38 SIrP 244,

T L
Xo211= X1120= X112+ 30 SIIT 24), polarizations and that all the interfaces are id@afinitely

_ _ _ _ thin). The polarizations are related, respectivélyithin
X1813~ X223~ X323z~ X3131™ X1212 electric-dipole and -quadrupole approximatiprs the fun-

damental field through the surface and volume susceptibility
tensors, which might be available from adequate microscopic
theory or experiment. A cursory perusal of the literature re-
lated to this topic reveals considerable confusion in the math-
where 6= x1111— X1120— X1212— X2112- This result allows us ematical treatment of surface-sensitive magneto-optical ef-
to observe how volume anisotropic optical contributions in-fects, particularly with respect to fundamental issues.
fluence rotational anisotropy of magneto-optical effects. Here we have attempted to highlight some of the prob-
If the layer is isotropic, the Curie groupem describes lems and provide a reasonably self-consistent analysis. A
its symmetry. Relation§22) hold valid, provided tha=0.  central issue concerns an elegant way of deriving two ver-
Consequently, there are three independent optical paransions of the relevant boundary conditions: E@s.and (6)—
eters, and the nonmagnetic partR®Y’, as follows from Eq.  (8), and alternatively a less simple set of equatiths (6),

X3113~ X3223~ X1331~ X 2332~ X2112;

X33117 X3322~ X2233~ X1133~ X1122

(21, is (16), and (17). We have shown how this derivation can be
Y _ ) carried out through validity of the differential form of Max-
€0 Pronmagi= X2114 €, V) E+ x112:£ diV E+3x121V (E,E),  well’s equations in the space of generalized functions. Either

(23)  version forms a crucial part of the boundary value problem
which is known®! although for a different combination of for the wave equatiofl8). Its solution ultimately allows the
the involved parametefe129.33 state of polarization and intensity of lighgenerated solely

Contributions due to the axial fifth-rank tensor must befrom the surfaces and interfage become known in the
fairly small. Nevertheless, to see their symmetry, the invari{ransparent medium, usually air, where these quantities de-
ance of y;jqn Underecsom is worth considering as the sim- termine the m_agneto-optlcal effects. We purposefully leave
plest example. Only 60 of the 243 components are nonzer®ut quite straightforward solution of the boundary value

six of them being independeftOn carrying out a symmetry Problem. _
analysis, the magnetic part &V can be written down in For completeness, the relevant problem of revealing the
vector form: symmetry of the form of the susceptibility tensors has been

outlined in the linear approximation with respect to magne-
851ngn: 12131 V], ETH+ x31124 £, V) G+ (X10131 tization. This approximation, apart from being naturally rea-
sonable (magneto-optical effects are normally smalhas
+ X321100 diV E+ x1132£ diva+ x1231{0,V)E  been shown to be advantageous, because it is sufficient to
1 analyze the invariance of the corresponding tensors merely
+2xa12dM.VI(E,E), (24) under ordinary crystallographic point groups. This leads to a
whereq=[m,&]. The field€ in Eq. (24), which we believe significantly lower number of nonzero tensor components
to be a new result, must be taken as unperturbed, i.e., indéhan would be delivered by the often-used invariance under
pendent of magneto-optical parameters. magnetic point groups. To illustrate this, we have given cor-
At this stage the boundary value problem to look at secresponding expressions of the surface polarizdtiem (20)]
ond harmonic magneto-optical effects is unambiguously sefor the four typical point groupsem, 4mm, mm2, and 3n.
up. It should also be clear that the simplest phenomenologithe volume polarization has been considered thoroughly for
cal model for dealing with linear surface magneto-opticalthe Curie groupeoem, its nonmagnetic part also fan3m.
effects follows a very similar formulation to the boundary Expression(24), believed to be a new result, illustrates the

value problem that has been given for the second harmonile of the magnetic part of the volume polarization in an
case. isotropic layer. The tensors have been defined in the physical

coordinate system, and this allows the results to be used for
analysing rotational anisotropy of second harmonic magneto-
optical effects.

An analysis has been given of fundamental aspects related An additional and particularly important issue has also
exclusively to a formulation of the boundary value problembeen discussed in relation to uncertainty in the definition of

VI. SUMMARY
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the surface polarization in terms of susceptibility tensor andgsimplest model described in this paper, we emphasize the
fundamental electric field. An ambiguity arises because oheed to state clearly the choice, which must be common to
the discontinuity of its normal component across an ideaboth theoretical and experimental treatments of magneto-
interface. We have considered the implications of differentoptical effects.
conventions on such a definition and shown that, in the gen-

eral case of anisotropic adjacent layers, unless certain com-

ponents of their dielectric tensors are zero, there may be no

relationship between the conventions. An example has been

given to illustrate why this occurs within the linear approxi-  The authors appreciate a helpful influence on this paper
mation with respect to magnetization. If the condition is met,obtained from their participation in the Nonlinear Magneto-

the relationships are simple and imply a rescaling procedur®ptical Network coordinated by Professor A. D. Boardman.

of some tensor components in accordance with Ef3). This work was supported by the Royal Society and the
Since the issue of convention is an inevitable feature of th&€PSRC under Grant Nos. GR/M45566 and GR/N35045.
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