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Square kagome quantum antiferromagnet and the eight-vertex model
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We introduce a two-dimensional network of corner-sharing triangles with square-lattice symmetry. Proper-
ties of magnetic systems here should be similar to those on a kagome lattice. Focusing on the spin-1/2
Heisenberg quantum antiferromagnet, we generalize the spin symmetry group from SU~2! to SU(N). In the
large-N limit, we map the model exactly to the eight-vertex model solved by Baxter. We predict an exponential
number of low-lying singlet states, a triplet gap, and a two-peak specific heat. In addition, the large-N limit
suggests a finite temperature phase transition into a phase with ordered ‘‘resonance loops’’ and broken trans-
lational symmetry.
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Frustrated magnetic systems have been attracting a lo
attention in recent years. One of the more interesting
amples is the spin-1/2 Heisenberg quantum antiferroma
~QAF! on the kagome lattice, a two-dimensional network
corner-sharing triangles with hexagonal voids. From num
cal studies1 it is known that this model has a gap to magne
excitations, but this gap is filled with a continuum of sing
excitations. The number of these excitations is estimate
scale exponentially in the number of lattice sitesNs , as
1.15Ns, and therefore there is a significant low-temperat
entropy in the thermodynamic limit. It is believed that th
low-temperature physics would be well described by a re
nating valence bond~RVB! picture.

Some insight into this has been gained by generalizing
symmetry group to SU(N), and going to the large-N limit
with a particle-hole symmetric fermion representation of
spins. It was proved by Rokhsar2 that for most common lat-
tices, any ‘‘fully dimerized’’ state~in which every site is part
of a dimer pair with another site! is a ground state of theN
5` model. The ground state is thus macroscopically deg
erate in this limit.3 Marston and Zeng4 applied this picture to
the kagome lattice. For a physical SU~2! system, superposi
tions of all such states, with dimers being interpreted as
glet pairings between the respective spins, would be g
candidates for the low-lying singlet states. However, it
clear that a further selection of states occurs when go
from N5` to N52, since the number of dimer covering
rises with the system size as 1.26Ns,5 rather than the observe
1.15Ns.

In this paper we introduce a lattice6 ~Fig. 1! with square
lattice symmetry, on which, we believe, magnetic propert
should be similar to those of the kagome lattice. This, too
a two-dimensional network of corner-sharing triangles,
the voids in between are alternately squares and octag
rather than hexagons. We therefore call it a ‘‘square kagom
lattice. Using the large-N limit as a guide, we are able t
make precise statements on the Heisenberg QAF on this
tice. At N5`, the ground state is again exponentially dege
erate, corresponding to dimer coverings. We demonst
that, to next order in the 1/N expansion, anexact mapping
can be made to the classical eight-vertex model on the sq
lattice, with an additional twofold degeneracy per vertex.
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a result, a finite-temperature phase transition is found co
sponding to the breaking of a discrete symmetry and to
dominance of specific dimer patterns in the low-temperat
phase. The ground-state degeneracy is partially lifted to
order, leading to exponentially many excited singlet sta
below the triplet gap. A further lifting of the ground-sta
degeneracy is expected to occur at higher orders in theN
expansion. We fully expect that at least some of these
tures will persist in the SU~2! model, which will thus have an
exponential number of low-lying singlet excitations, a tripl
gap, and RVB-like low temperature states, just as in
kagome lattice. Whether a finite-temperature phase trans
also applies to the SU~2! case is an intriguing possibility
which deserves further investigation.

As in the kagome lattice, an attempted ‘‘full dimeriza
tion’’ leaves~as we show! 1/4 of triangles without dimerized
sides, which suggests, even without large-N arguments, that
the RVB picture is equally valid here. The approach of Ma
brini and Mila,11 who decoupled the kagome lattice into di
joint sets of isolated upward- and downward-pointing t
angles, is also applicable to the square kagome lattice, w
also can be decoupled into two disjoint sets of isolated
angles.~Note in passing that the well-known features of t
classical kagome Heisenberg antiferromagnet—macrosc

FIG. 1. The ‘‘square kagome’’ lattice introduced in this paper.
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degeneracy of planar ground states, with additionally sev
nonplanar ground states obtained by rotating groups of s
without an energy cost—also persist in the square kago
lattice.!

As in Refs. 7 and 4 we use a particle-hole-symme
fermionic representation of SU(N) spins, corresponding to
the local constraint(a f ia

† f ia5N/2 at each lattice site. The
Hamiltonian reads

H5
J

N (̂
i j &

f ia
† f ia8 f j a8

† f j a , ~1!

wherea and a8 range from 1 toN, and summations ove
repeated indices are implied. Introducing a Hubba
Stratonovich field Qi j (t) on each bond, conjugate t
(a f ia

† f j a , and implementing the constraint using a Lagran
multiplier l i(t) on each site, leads to the followin
imaginary-time effective action, after integrating out t
fermions:7

Seff /N5E
0

b

dtF1

J (̂
i j &

uQi j u22(
i

l i

2Tr ln~]td i j 1l id i j 1Qi j !G . ~2!

At N5`, one has to search for saddle points of this effect
action. There are exponentially many saddle points with
lowest energy~as in Refs. 2 and 4!, given by all ‘‘dimer
coverings’’ in which every site is paired uniquely with one
its nearest neighbors, andQi j 5Q (5J/2 atT50) on dimer
bonds and zero otherwise. Thel i ’s are zero at the saddl
point. The physical interpretation of a dimer is the formati
of a singlet bond between the two sites.

When studying dimer coverings on the square kago
lattice, it is useful to look at individual plaquettes of fou
triangles enclosing a square. The entire lattice can be vie
as a network of such plaquettes joined at corners. One
convince oneself that if each corner of the internal squar
to be part of a dimer, then the number of external corn
which are parts of dimers in this plaquette will always
even. Moreover, in two such plaquettes joined at a cor
that corner must be part of a dimer in one plaquette and
another plaquette. A consistent scheme for representing
is to draw an arrow pointing out of the plaquette when t
corner is part of a dimer, and into the plaquette when
corner is not part of a dimer. It turns out that there are exa
16 allowed configurations per plaquette, as illustrated in F
2.

The remarkable fact is that when we picture the syst
thus in terms of arrows,what we have is precisely the eigh
vertex model on the square latticewhich was solved exactly
by Baxter in the 1970s, and discussed in detail in his boo8

There are, however, two possible dimer configurations
vertex, which introduces an extra twofold degeneracy for
original model. In the infinite-N limit ~zeroth order in the
large-N expansion!, all vertices have equal weight; the e
ergy is of orderNJ, and so is the ‘‘triplet gap.’’ We now
consider first-order corrections to this infiniteN picture,
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which we expect to lift the degeneracy between differe
vertices. Read and Sachdev7 showed that the first correctio
beyondN5` lowers the energy of configurations in whic
two dimers sit on the same square plaquette. This leads
example, to a columnar dimer order on the square lattice
the square kagome lattice, we find that the same reaso
leads to a lowering of the energy of vertex 8 compared to
others~Fig. 2!. To reach this conclusion, we follow Ref.
and expand around a dimerized saddle point:Qi j 5QDi j
1dQi j . Di j specifies the dimer pattern@51 if bond (i j ) has
a dimer,50 otherwise# and d Qi j (t) is a fluctuation. Ex-
panding the effective action to quadratic order in the fluct
tions, one finds two types of terms: bond-diagonal terms
volving Q2Di j

2 dQi j
2 , and off-diagonal terms of the form

Q2dQi j D jkdQklDli . The latter can be nonzero only on
square-plaquette configuration where a pair of opposite s
has dimer bonds and the other two bonds have fluctuati
This first-order correction is of order 1 in energy, and can
thought of as a ‘‘resonance’’ of the two possible dimer co
figurations on a square. Only the off-diagonal contributio
change the relative energies in our vertex model, hence
lowering of vertex 8 associated with square patterns.

To second and higher orders, too, the only off-diago
contributions come from loops. Thus the hexagonal dim
configurations in vertices 1–6 will also have a lowering
energy, of orderJ/N, as pointed out by Marston and Zeng4

for the kagome lattice. The resonance of an octagonal loo
vertex 7 is at still higher order. So both of these can
ignored in the first-order approximation. In addition, secon
order corrections will lift the degeneracy between the t
dimer configurations on a square plaquette, favoring a re
nating combination. The comparison to the SU~2! case is
instructive: for a loop with an even number of sites, the tw
possible dimerized states are not eigenstates, but super
tions of such states have lower-energy expectation va
than the pure dimerized states; the energy gain decre
exponentially with increasing loop length. This is the id
behind the ‘‘quantum dimer’’ approach.9,10 The 1/N expan-
sion is another approach to an expansion in the size of
creasingly long resonance loops.

So we have an eight-vertex model with vertex 8 having
energy, of say22e, and all other vertices having zero en
ergy. But with periodic boundary conditions, vertices 7 and
must occur in equal numbers~because they are respective

FIG. 2. The 16 configurations of an individual plaquette, whi
map onto the eight allowed vertices in the eight-vertex model, w
a degeneracy of 2 per vertex.
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SQUARE KAGOME QUANTUM ANTIFERROMAGNET AND . . . PHYSICAL REVIEW B65 014417
‘‘sources’’ and ‘‘sinks’’!; thus it causes no error to assig
them equal energies of2e each. In this way we have
mapped our system to an eight-vertex model, with weight
unity for all vertices satisfying the ‘‘ice rule’’ and highe
weights for the remaining two vertices, and with an ad
tional ‘‘internal’’ degeneracy of 2 per vertex. Since vertices
and 8 occur in pairs and together contain two defective
angles in eight, and all other vertices contain exactly o
defective triangle in four, the total number of defective t
angles is always14 , the total number of triangles—just as
the kagome case.5

We now draw some conclusions on the physics of
square kagome QAF, using the mapping on the eight ve
model. Three propertiesof the vertex modelplay an impor-
tant role in the following. First, its ground state is twofo
degenerate, with the configuration consisting of an alter
tion of vertices 7 and 8. Second, there are no gapless ex
tions, but there is a minimum gap of ordere between any
two levels. Excited levels are, in general, degenerate. Th
the vertex model undergoes a phase transition from an
dered state to a disordered, ‘‘paramagnetic’’ state. Since e
vertex configuration can correspond to two plaquette dim
configurations, the degeneracy of the ground state, an
every other vertex configuration, is in fact of order 2Np

whereNp is the number of plaquettes. If we assume that
low-lying singlet states in the SU~2! case originate from a
mixing of dimer configurations which correspond to t
~nonmacroscopic number of! low-lying states of the vertex
model, then we expect these low-lying singlets to be mac
scopic in number, of order 2Np51.12Ns whereNs56Np is
the number of sites. This compares well with the commo
accepted picture of the Heisenberg antiferromagnet on
kagome lattice, where the number of singlet states is of
order of 1.15Ns. In the kagome case, the total number
dimerized states is 1.26Ns; the largeN approach suggests
reason why not all of these states contribute to the low-ly
singlets.12

Using our mapping and Baxter’s results,8 we can approxi-
mate the thermodynamics of the square kagome QAF at
temperatures~below the triplet gap!. Figure 3 displays the
calculated correlation length and specific heat as function
temperature. The latter displays a sharp peak near the tr
tion, which takes place on a scalee much smaller than the
triplet gap. This is reminiscent of the lowest specific-he
peak reported in quantum dimer-model-based studies of
kagome antiferromagnet.10 In addition, the triplet excitations
will contribute a peak at higher energy. A two-peak featu
was earlier suggested for the kagome QAF.5

An intriguing feature of our results is a hidden ordering
the ground state. At first order beyondN5`, this ordering
corresponds to a staggered pattern in which every o
plaquette is in one of the two configurations corresponding
vertex 7, and its neighbors in one of the two configuratio
corresponding to vertex 8. At higher order, the picture of t
equal-energy configurations per vertex will not persist: su
configurations will mix, leading to a splitting of energies.
the ordering still exists, it would then correspond to a st
gered ordering of plaquettes in which the resonating dim
live on the squares on alternate plaquettes, and on the
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shaped boundary on the remaining plaquettes~Fig. 4!. It is
not clear whether this ordering would actually persist in
SU~2! system, or be washed out by further 1/N corrections;
in any case, such states are not a true SU~2! groundstate
~GS!, but may dominate a true RVB-type GS. For instan
in Fig. 4, one can think of having a strong coupling (J1)
along the gray lines and a weak coupling (J2) along the
black lines; forJ1.J2 such an ordering is quite reasonab
and if the ground state has a breaking of the translatio
symmetry~driven by the desire to maximize the number
resonating square plaquettes!, this order may persist up to th
J15J2 point.

A possible order parameter could be the quantity (S1
1S21S31S4)2, where these are the four spins on t

FIG. 3. The specific heat, and correlation length, of the eig
vertex model approximation to the lattice~temperature in units of
e).

FIG. 4. The ground-state ordering seen in the large-N limit may
possibly manifest itself in the physical system by an increased e
tron density along the thick gray lines here.
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RAHUL SIDDHARTHAN AND ANTOINE GEORGES PHYSICAL REVIEW B65 014417
square; this is minimized when two opposite sides are pa
as singlets. Such an ordering in a real system may man
itself as an additional electron density along the reson
squares~and octagon stars!, much as happens with the he
agonal ring in benzene. This may be detectable via scan
tunneling microscopy experiments. Whether the largeN
phase transition will persist is hard to say, but such order
is not ruled out at finite temperatures by the Mermin-Wag
theorem since it originates from the breaking of adiscrete
translational symmetry. So the intriguing possibility of su
a phase transition in a two-dimensional Heisenberg sys
exists.

The obvious question at this point is whether such a st
can also be made of the kagome lattice. This lattice can
decomposed into star-shaped plaquettes of hexagons
dered by triangles, which sit at the sites of a triangular latt
~Fig. 5!. In each such plaquette, again, the requirement
each internal site must be part of a dimer pair implies tha
the six external sites, an even number must be parts
dimers. But to progress beyond that is difficult, for seve
reasons. First, the underlying lattice is a triangular latti
with a high coordination number. Second, each vertex has
~rather than four! arms, and the even-number restriction s
leads us to 32 kinds of vertices—each being again twof
degenerate. There is thus no hope of an exact solution.
mating vertex weights is possible in principle, but requires

FIG. 5. The kagome lattice divided into star-shaped plaque
which form a triangular lattice, by analogy with our treatment of t
square kagome lattice.
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in this case to go tosecond orderin the 1/N expansion. As
noted before,4 hexagons with three dimerized sides will b
preferred~also see Ref. 13!. This only fixes the weight of one
of the 32 vertices, and since every vertex is now a sourc
a sink, it is impossible to use this statement to fix the wei
of any other vertex. Nevertheless, if we assume that s
‘‘perfect hexagons’’ will dominate, one should be able
maximize their number by forming a regular lattice of the
and they can be detected by an order parameter which is
total spin on the six sites of the hexagon, in analogy to
square plaquette order parameter above. Note that the
still a hidden degeneracy of 2 per plaquette which gives
to 2Np'1.08Ns states, since in this case the number of si
Ns59Np . The observed number of low-energy single
1.15Ns, suggests a significant additional degeneracy from
number of allowed vertex configurations. So, even in a lar
N limit, the kagome ground state may not be as highly
dered as the square kagome.

If a hidden ordering does exist in the kagome case, it m
correspond to a pattern of hexagon-shaped resonances. H
ever, as described above, our other conclusions about
square kagome lattice are very well corroborated by wha
known about the kagome lattice, and in general we exp
these systems to behave very similarly.

In conclusion, we have displayed a lattice, which we c
the square kagome lattice, which is conceptually very sim
to the kagome lattice, but with square-lattice symmetry.
have argued that physical properties of spin systems sh
be very similar on this lattice to properties on the usu
kagome lattice. We have shown that, to next to leading or
in a 1/N expansion, an exact mapping exists between
SU(N) QAF on this lattice and the classical eight-vert
model. This allows to draw several conclusions on the ph
ics of this QAF at largeN, some of which are likely to extend
to the physical SU~2! case. In particular, we point out th
intriguing possibility of a finite-temperature long-range o
dering of the resonance loops. Perhaps most notably,
have connected the field of frustrated quantum systems
classic exactly solved problem of statistical mechanics.

We acknowledge useful discussions with C. Lhuillier,
Moessner, and D. Sen. The LPT-ENS is ‘‘Unite´ Mixte de
Recherche CNRS UMR-8549, associe´e à l’Ecole Normale
Supérieure.’’ The LPS-Orsay is ‘‘Unite´ Mixte de Recherche
CNRS UMR-8501, associe´e à l’Université Paris-Sud.’’
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