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Square kagome quantum antiferromagnet and the eight-vertex model
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We introduce a two-dimensional network of corner-sharing triangles with square-lattice symmetry. Proper-
ties of magnetic systems here should be similar to those on a kagome lattice. Focusing on the spin-1/2
Heisenberg quantum antiferromagnet, we generalize the spin symmetry group fr@dnt&$U(N). In the
largeN limit, we map the model exactly to the eight-vertex model solved by Baxter. We predict an exponential
number of low-lying singlet states, a triplet gap, and a two-peak specific heat. In addition, th&\ langie-
suggests a finite temperature phase transition into a phase with ordered “resonance loops” and broken trans-
lational symmetry.
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Frustrated magnetic systems have been attracting a lot @f result, a finite-temperature phase transition is found corre-
attention in recent years. One of the more interesting exsponding to the breaking of a discrete symmetry and to the
amples is the spin-1/2 Heisenberg quantum antiferromagnetominance of specific dimer patterns in the low-temperature
(QAF) on the kagome lattice, a two-dimensional network ofphase. The ground-state degeneracy is partially lifted to this
corner-sharing triangles with hexagonal voids. From numeriorder, leading to exponentially many excited singlet states
cal studieit is known that this model has a gap to magneticbelow the triplet gap. A further lifting of the ground-state
excitations, but this gap is filled with a continuum of singlet degeneracy is expected to occur at higher orders in tRe 1/
excitations. The number of these excitations is estimated tgXPansion. We fully expect that at least some of these fea-
scale exponentially in the number of lattice sitds, as tures will persist in the S(2) model, which will thus have an

1.18%, and therefore there is a significant Iow—temperaturee)(ponemia1I num_ber of low-lying singlet excitat_ions, a t_riplet
entropy in the thermodynamic limit. It is believed that the gap, and RVB-like low temperature states, just as in the

low-temperature physics would be well described by a resol_<agome lattice. Whether a finite-temperature phase transition

) X also applies to the S@) case is an intriguing possibility
hating va_len_ce b_on(RV_B) picture. . . which deserves further investigation.

Some insight into this has been_galned by genera!|2|.ng the As in the kagome lattice, an attempted “full dimeriza-
symmetry group to SW), and going to the largdk limit ;0 04ves(as we show1/4 of triangles without dimerized

with a particle-hole symmetric fermion representation of the_; ; :
; sides, which suggests, even without laijerguments, that
spins. It was proved by Rokhgahat for most common lat- 99 hyarg

! . X o . . o the RVB picture is equally valid here. The approach of Mam-
tices, any “fully dimerized” statetin which every site is part i 24 Milal! who decoupled the kagome lattice into dis-
of a dimer pair with another sités a ground state of thi !

_ del. Th q s th callv d joint sets of isolated upward- and downward-pointing tri-
= model. The ground state Is thus macroscopically dege angles, is also applicable to the square kagome lattice, which
erate in this limi® Marston and Zerttapplied this picture to

the K lattice. E hvsical ¢ . also can be decoupled into two disjoint sets of isolated tri-
i € agf]0r|r|1e ahIC?t or a'tF;] é’.s'ca Gé)l_sys .ertn, sup:e(rjposr_ angles.(Note in passing that the well-known features of the
lons of all such states, with dimers being interpreted as SInSlassical kagome Heisenberg antiferromagnet—macroscopic
glet pairings between the respective spins, would be goo

candidates for the low-lying singlet states. However, it is
clear that a further selection of states occurs when going
from N=« to N=2, since the number of dimer coverings
rises with the system size as 1"28 rather than the observed
1.15%,

In this paper we introduce a lattftéFig. 1) with square
lattice symmetry, on which, we believe, magnetic properties Q
should be similar to those of the kagome lattice. This, too, is
a two-dimensional network of corner-sharing triangles, but
the voids in between are alternately squares and octagons,
rather than hexagons. We therefore call it a “square kagome”
lattice. Using the larg®N limit as a guide, we are able to
make precise statements on the Heisenberg QAF on this lat-
tice. AtN=o, the ground state is again exponentially degen-
erate, corresponding to dimer coverings. We demonstrate
that, to next order in the W expansion, arexact mapping
can be made to the classical eight-vertex model on the square
lattice, with an additional twofold degeneracy per vertex. As  FIG. 1. The “square kagome” lattice introduced in this paper.

0163-1829/2001/68)/0144174)/$20.00 65014417-1 ©2001 The American Physical Society



RAHUL SIDDHARTHAN AND ANTOINE GEORGES PHYSICAL REVIEW B65 014417

degeneracy of planar ground states, with additionally several .
nonplanar ground states obtained by rotating groups of spins - 3

without an energy cost—also persist in the square kagome

lattice) 2 @> @> <l <
As in Refs. 7 and 4 we use a particle-hole-symmetric

fermionic representation of S spins, corresponding to

the local constramEaflaf,a N/2 at each lattice site. The 3 @ <@> —— 7

Hamiltonian reads

) T R
H= Zfo,f o (1)

N (ij)

@@@@
@@@@

FIG. 2. The 16 configurations of an individual plaquette, which
wherea and ' range from 1 toN, and summations over map onto the eight allowed vertices in the eight-vertex model, with
repeated indices are implied. Introducing a Hubbard- degeneracy of 2 per vertex.
Stratonovich field Q;;(7) on each bond, conjugate to
Eaffafm, and implementing the constraint using a Lagrangewvhich we expect to lift the degeneracy between different
multiplier \;(7) on each site, leads to the following vertices. Read and Sachdeshowed that the first correction
imaginary-time effective action, after integrating out thebeyondN=<x lowers the energy of configurations in which
fermions’ two dimers sit on the same square plaquette. This leads, for
example, to a columnar dimer order on the square lattice. In
B 1 ) the square kagome lattice, we find that the same reasoning
Set/N= f 7 <2 | Qs E Ai leads to a lowering of the energy of vertex 8 compared to the
others(Fig. 2). To reach this conclusion, we follow Ref. 7
and expand around a dimerized saddle pof@f=QD;;
—TrIn(9,6i; + N 6+ Qy) | @ +5Q, . D; specifies the dimer pattefr=1 if bond (j) has
a dimer,=0 otherwisg¢ and 6 Q;;(7) is a fluctuation. Ex-
At N=, one has to search for saddle points of this effectivgpanding the effective action to quadratic order in the fluctua-
action. There are exponentially many saddle points with théions, one finds two types of terms: bond-diagonal terms in-
lowest energy(as in Refs. 2 and )4 given by all “dimer  volving Q? DjﬁQI , and off-diagonal terms of the form
coverings” in which every S|te is paired uniquely with one of QZaQ,J ik0QuDyi . The latter can be nonzero only on a
its nearest neighbors, ai@;=Q (=J/2atT=0) on dimer square-plaquette configuration where a pair of opposite sides
bonds and zero otherwise. The's are zero at the saddle has dimer bonds and the other two bonds have fluctuations.
point. The physical interpretation of a dimer is the formationThis first-order correction is of order 1 in energy, and can be
of a singlet bond between the two sites. thought of as a “resonance” of the two possible dimer con-
When studying dimer coverings on the square kagomédigurations on a square. Only the off-diagonal contributions
lattice, it is useful to look at individual plaquettes of four change the relative energies in our vertex model, hence the
triangles enclosing a square. The entire lattice can be viewedwering of vertex 8 associated with square patterns.
as a network of such plaguettes joined at corners. One can To second and higher orders, too, the only off-diagonal
convince oneself that if each corner of the internal square isontributions come from loops. Thus the hexagonal dimer
to be part of a dimer, then the number of external cornergonfigurations in vertices 1—-6 will also have a lowering of
which are parts of dimers in this plaquette will always beenergy, of orded/N, as pointed out by Marston and Zéng
even. Moreover, in two such plaquettes joined at a corneffor the kagome lattice. The resonance of an octagonal loop in
that corner must be part of a dimer in one plaquette and notertex 7 is at still higher order. So both of these can be
another plaquette. A consistent scheme for representing thignored in the first-order approximation. In addition, second-
is to draw an arrow pointing out of the plaquette when thatorder corrections will lift the degeneracy between the two
corner is part of a dimer, and into the plagquette when thelimer configurations on a square plaquette, favoring a reso-
corner is not part of a dimer. It turns out that there are exactlynating combination. The comparison to the (8JUcase is
16 allowed configurations per plaquette, as illustrated in Figinstructive: for a loop with an even number of sites, the two
2. possible dimerized states are not eigenstates, but superposi-
The remarkable fact is that when we picture the systemions of such states have lower-energy expectation values
thus in terms of arrowsyhat we have is precisely the eight- than the pure dimerized states; the energy gain decreases
vertex model on the square lattigéhich was solved exactly exponentially with increasing loop length. This is the idea
by Baxter in the 1970s, and discussed in detail in his Bbok.behind the “quantum dimer” approach® The 1N expan-
There are, however, two possible dimer configurations pesion is another approach to an expansion in the size of in-
vertex, which introduces an extra twofold degeneracy for thereasingly long resonance loops.
original model. In the infiniteN limit (zeroth order in the So we have an eight-vertex model with vertex 8 having an
largeN expansion, all vertices have equal weight; the en- energy, of say—2e¢, and all other vertices having zero en-
ergy is of orderNJ, and so is the “triplet gap.” We now ergy. But with periodic boundary conditions, vertices 7 and 8
consider first-order corrections to this infinité picture, must occur in equal numbeftbecause they are respectively
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“sources” and “sinks”); thus it causes no error to assign 30 . - - -
them equal energies of-e each. In this way we have
mapped our system to an eight-vertex model, with weights of
unity for all vertices satisfying the “ice rule” and higher
weights for the remaining two vertices, and with an addi-
tional “internal” degeneracy of 2 per vertex. Since vertices 7 5, |
and 8 occur in pairs and together contain two defective tri- --- - Specific heat
angles in eight, and all other vertices contain exactly one —— Correlation length
defective triangle in four, the total number of defective tri-
angles is alwayg, the total number of triangles—just as in
the kagome case.

We now draw some conclusions on the physics of the'
square kagome QAF, using the mapping on the eight verte»
model. Three propertiesf the vertex modgblay an impor-
tant role in the following. First, its ground state is twofold
degenerate, with the configuration consisting of an alterna-
tion of vertices 7 and 8. Second, there are no gapless excite g . .
tions, but there is a minimum gap of orderbetween any 0.4 05 06 Temp(g'ature 08 0.9 1
two levels. Excited levels are, in general, degenerate. Third,
the vertex model undergoes a phase transition from an or- F|G. 3. The specific heat, and correlation length, of the eight-
dered state to a disordered, “paramagnetic” state. Since eacfertex model approximation to the latti¢@mperature in units of
vertex configuration can correspond to two plaquette dimeg).
configurations, the degeneracy of the ground state, and of
every other vertex configuration, is in fact of ordefr2 shaped boundary on the remaining plaquettég. 4). It is
whereN,, is the number of plaquettes. If we assume that thenot clear whether this ordering would actually persist in a
low-lying singlet states in the S@) case originate from a SU(2) system, or be washed out by furtheNl¢orrections;
mixing of dimer configurations which correspond to thein any case, such states are not a trugZs\groundstate
(nonmacroscopic number Jofow-lying states of the vertex (GS), but may dominate a true RVB-type GS. For instance,
model, then we expect these low-lying singlets to be macroin Fig. 4, one can think of having a strong couplind)
scopic in number, of order"2=1.12's whereN;=6N, is along the gray lines and a weak coupling, along the
the number of sites. This compares well with the commonlypjack lines; forJ;>J, such an ordering is quite reasonable,
accepted picture of the Heisenberg antiferromagnet on thgnd if the ground state has a breaking of the translational
kagome lattice, where the number of singlet states is of th@ymmetry(driven by the desire to maximize the number of
order of 1.18s. In the kagome case, the total number of resonating square plaquettethis order may persist up to the
dimerized states is 1.2§ the largeN approach suggests a J,;=J, point.
reason why not all of these states contribute to the low-lying A possible order parameter could be the quanti§ (

Si”9|9t51-2 _ . +S,+S;+S,)% where these are the four spins on the
Using our mapping and Baxter's resufteie can approxi-

mate the thermodynamics of the square kagome QAF at low
temperaturegbelow the triplet gap Figure 3 displays the /\
N I
\//

calculated correlation length and specific heat as functions of
temperature. The latter displays a sharp peak near the transi
tion, which takes place on a scatemuch smaller than the
triplet gap. This is reminiscent of the lowest specific-heat

peak reported in quantum dimer-model-based studies of the
kagome antiferromagnél.In addition, the triplet excitations

will contribute a peak at higher energy. A two-peak feature
was earlier suggested for the kagome GAF.

An intriguing feature of our results is a hidden ordering in \/
the ground state. At first order beyomt=, this ordering
corresponds to a staggered pattern in which every other /\
plaquette is in one of the two configurations corresponding to { ~ —
vertex 7, and its neighbors in one of the two configurations < / | | < >

corresponding to vertex 8. At higher order, the picture of two
equal-energy configurations per vertex will not persist: such
configurations will mix, leading to a splitting of energies. If
the ordering still exists, it would then correspond to a stag- FIG. 4. The ground-state ordering seen in the la¥giémit may
gered ordering of plaquettes in which the resonating dimergossibly manifest itself in the physical system by an increased elec-
live on the squares on alternate plaquettes, and on the staren density along the thick gray lines here.
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in this case to go t@econd ordeiin the 1N expansion. As
noted beforé, hexagons with three dimerized sides will be
preferredalso see Ref. 13This only fixes the weight of one
of the 32 vertices, and since every vertex is now a source or
a sink, it is impossible to use this statement to fix the weight
of any other vertex. Nevertheless, if we assume that such
“perfect hexagons” will dominate, one should be able to
maximize their number by forming a regular lattice of them,
and they can be detected by an order parameter which is the
total spin on the six sites of the hexagon, in analogy to the
square plaquette order parameter above. Note that there is
still a hidden degeneracy of 2 per plaguette which gives rise
to 2Ne~1.08's states, since in this case the number of sites
Ns=9N,. The observed number of low-energy singlets,
1.18'%, suggests a significant additional degeneracy from the
FIG. 5. The kagome lattice divided into star-shaped plaquetteiumber of allowed vertex configurations. So, even in a large-
which form a triangular lattice, by analogy with our treatment of the N limit, the kagome ground state may not be as highly or-
square kagome lattice. dered as the square kagome.

o L _ If a hidden ordering does exist in the kagome case, it may
square; this is minimized when two opposite sides are pairedsrespond to a pattern of hexagon-shaped resonances. How-

as singlets. Such an ordering in a real system may manifegl,er as described above, our other conclusions about the
itself as an additional electron density along _the resonargqu&re kagome lattice are very well corroborated by what is
squaregand octagon starsmuch as happens with the hex-  nown about the kagome lattice, and in general we expect
agonal ring in benzene. This may be detectable via scanningoqe systems to behave very similarly.

tunneling microscopy experiments. Whether the laXge- 5 conclusion, we have displayed a lattice, which we call
phase transition will persist is hard to say, but such orderinge square kagome lattice, which is conceptually very similar
is not ruled out at finite temperatures by the Mermin-Wagnet, the kagome lattice, but with square-lattice symmetry. We
theorem since it originates from the breaking otliacrete  haye argued that physical properties of spin systems should
translational symmetry. So the intriguing possibility of suchyq very similar on this lattice to properties on the usual
a phase fransition in a two-dimensional Heisenberg systemiagome Jattice. We have shown that, to next to leading order

exists. _ o in a 1N expansion, an exact mapping exists between the
The obvious question at this point is whether such a stud U(N) QAF on this lattice and the classical eight-vertex

can also be made of the kagome lattice. This lattice can bg,qe| This allows to draw several conclusions on the phys-
decomposed into star-shaped plaquettes of hexagons DGEs of this QAF at largd\, some of which are likely to extend
dered by triangles, which sit at the sites of a triangular latticq, e physical S(2) case. In particular, we point out the
(Fig. 5. In each such plaquette, again, the requirement thghriqing possibility of a finite-temperature long-range or-
each internal site must be part of a dimer pair implies that OHering of the resonance loops. Perhaps most notably, we

the six external sites, an even number must be parts Qfyye connected the field of frustrated quantum systems to a
dimers. But to progress beyond that is difficult, for severalg|qqic exactly solved problem of statistical mechanics.
reasons. First, the underlying lattice is a triangular lattice,

with a high coordination number. Second, each vertex has six We acknowledge useful discussions with C. Lhuillier, R.
(rather than fourarms, and the even-number restriction still Moessner, and D. Sen. The LPT-ENS is “Unitdixte de
leads us to 32 kinds of vertices—each being again twofoldRecherche CNRS UMR-8549, assaxia 'Ecole Normale
degenerate. There is thus no hope of an exact solution. Estsupeieure.” The LPS-Orsay is “UniteMixte de Recherche
mating vertex weights is possible in principle, but requires uUCNRS UMR-8501, assoaeal’Universite Paris-Sud.”
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