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Electron spin resonance in high-field critical phase of gapped spin chains
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Motivated by recent experiments on Ni&€N,),Ni(CN), (commonly known as NENC we study the
electron spin resonance in the critical high-field phase of the antiferroma@seficchain with strong planar
anisotropy and show that the ESR spectra exhibit several peculiarities in the critical phase. Possible relevance
of those results for other gapped spin systems is discussed.
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I. INTRODUCTION Il. PLANAR S=1 CHAIN: EFFECTIVE MODEL

L . We start from the model of strongly anisotropic antiferro-
Recently, there has been a growing interest in the proper- gy b

. . . . . magneticS=1 chain described by the Hamiltonian
ties of low-dimensional spin systems subject to strong exter-

nal magnetic field"%1%12|n gapped spin systems, when

the external magnetic field exceeds a critical valul, it A=3> S, Sy 1+ DY (S2+HEY {(SH%2— ()%
closes the gap and drives the system into a new critical phase n n n

with finite magnetization and gapless excitations. When the

field is further increased, the system may stay in this critical —hz S (1)
phase up to the saturation figtt,, above which the system n

is in a saturated ferromagnetic state. Under certain condi- ] )
tions, however, the excitations in this high-field phase mayVvhere the planar anisotrofy is assumed to be much stron-

again acquire a gap, making the magnetization “locked” inger than the exchange constdnE <D is a weak in-plane
some field range; this phenomenon is known as magnetizanisotropy, anth=gugH, whereg is the Landeactor, ug is
tion plateaus and has been receiving much attention d§1€ Bohr magneton, artd is the external magnetic field. The
wel| 13-16 in-plane anisotropy should be included since it sp&isas

Recently, electron spin resonan@®SR experiments on goc_)d guantum n_umber .and thus allows ce_rtain transit.ions
Ni(C,HgN,),Ni(CN), (commonly abbreviated as NEN@ which are otherwise forbidden; generally, the in-plane anisot-
strong magnetic fields were conducfed@his compound is OPY constank may be comparable td.
believed to be a realization of t8=1 chain with strong Let us consider first the noninteracting cabe 0, then
planar and weak in-plane anisotrolfyThe theory describing Ed- (1) amounts to a single-ion problem. The spectrum of a
ESR response for this system outside the critical pliase smglel ion consists of three states, whose wave functions and
H<H. or H>H,) was developed by Papanicolagual® energies read as follows:

However, much of the ESR data of Ref. 7 belongs presum-

ably to the field rangél . <H<Hj, i.e., exactly to the region lv)=10), e,=0,

where the theory is lacking, which makes the interpretation
of the data rather difficult.

Motivated by those experiments, in the present paper we
study theoretically the zero-temperature ESR response in the 5
critical phase of a plana=1 chain. It is shown that the |b)=sina|+)+cosa|—), e,=D+h,
typical feature of ESR in the critical phase is the appearance
of continua with resonances being determined by power-law

|a)=cosa|+)—sina|—), e,=D-h,

singularities instead of well-defined quasiparticle peaks. We h=(E2+h?)12 sinazi(l—hlﬁ)l’z, 2)
predict that a characteristic change of the slope in the field V2

dependency of the ESR resonance frequency takes place at

the critical fieldH=H,. where|0),| =) denote the spin-1 states. Rb<D and weak

The paper is organized in the following way. In Sec. Il we field h<h., the ground state of the modél) can be de-
introduce the effective Hamiltonian for the planar chain, Secscribed, to a good approximation, as a direct produdt pf
1l is devoted to the calculation of resonance frequencies andtates of separate magnetic ions. The elementary excitations
exponents characterizing the corresponding singularitiesare propagatinga) and|b) states, the spectrum has a gap,
and, finally, in Sec. IV we discuss possible existence of simi-and the lowest excitation is a degenerate doublet. This dou-
lar features in other gapped one-dimensional spin systemsblet gets split off by the external fielth) state coming down
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with the field, andb) states going up. The low-temperature
ESR response foh<h. is determined by the transitions

from the ground state of the type)—|a) and|v)— |b).°
When the fieldh exceeds the critical value

he={(D—23)*~E?*}'?,

the system enters critical phase with a finite densitgf |a)

PHYSICAL REVIEW B 65014413

tab; {bxaxﬂanbﬁl%— H.c},

since the “interparticle” hopping amplitud,,= J(E/h)? is
very small in the critical regiorE/F1~E/D<1. Further, we
will be interested in configurations with at most dmboson,
so that the interaction betwedrparticles can be also safely

states, and a new type of ground state transitions, namely, efeglected.

the|a)— |b) type, becomes possiblaote that this transition
is allowed only in presence of the finite in-plane anisotro
E). The “old” types |v )« |a) and|v)— |b) still remain pos-
sible. As the density increases from 0 to 1, the )— |b)
signal should become weaker, while the intensity of [tie

Let us first consider the “unperturbed” Hamiltonian
PYPH,P (note that the physics described by this Hamiltonian
is nevertheless nontrivial due to the single occupancy con-
strainy. In absence ob particles N,=0) the spectrum of
the problem can be in principle obtained by mapping to non-

—|b) transition should increase. Above the saturation fieldnteracting fermions with the help of the well-known Jordan-

hs, determined by the equation

Wigner transformation, but it is more convenient to stick to

the hardcore boson language. From the Bethe-ansatz

h=D+2J3{1+(h/N)?3}, solution'® one knows that the energy spectrum is given by

the density ofa particles is equal to 1.

In order to describe this picture quantitatively, we first
introduce the hardcore boson operatafs b creating, re-
spectively, thda) and|b) states from the vacuum stdte). . .
Not more than one boson is allowed to be present on anyhere the numberk are all different and respectively half-
site, which defines the set of physical states. The effectivénteger (integej if the total number of particledN=Nj, is
Hamiltonian in terms of hardcore bosons can be written agven(odd), andL is the number of sites which will be as-

A oq=P(Ho+ H,) P, whereP is the projector onto the set of sumed even for convenience. The total momenrof a

hvsical states. The erturbed” Hamiltoni has th state defined by a certain choicgkhfdifferent numberg, _is
?oII}(/)SvIv??]gSIL(?rms © “unperturbe amiltoniaty has the P=3k . The ground statég.s) is given by a symmetrical

dense distribution of, around zero:

E({kih = (a4+cosk), !

Ho:; (Aaagan‘FAbbgbn)'l'; (taa;ganJrl'l'tb bganrl (6)

+H.c), ©)

where the self-energies arg, ,=e,, and the hopping am-
plitudest,=t,=t=J. The interaction part{,,; looks as fol-
lows:

describing the Fermi sea of particles with momenta in the
interval [ kg,27— kg ], where we shall define
ke=a(1—N/L). (7)

The total momentum of the ground state configuratiol is
=0(mod 27) if Nis even, and®= if N is odd. Since the
hopping amplitudes foa- andb-particles are equal, it is easy

to realize that the above picture of the distribution of wave
vectors remains true when one has the total number of par-
ticlesN=N,+ N, N, of them being of the type andN,, of
ethe b type: they form a single “large” Fermi sea.

Hine= Uaa; (alan)(aiﬁ— 18041+ Uabg {(a::an)

X(bl+1bn+l)+(blbn)(ag+lan+1)}a 4

where the interaction constants are given By,=—U,,
=J(h/h)2.

Our goal is to take into account the effects arising in th
first order in the coupling, and therefore we have neglected

the pair creation term Ill. ESR TRANSITIONS

We would like to study the ESR transitions from the
ground state, which survive in the low-temperature limit. The
ESR intensityl (w) for the ground state transitions is deter-
mined by the formul®

<I>ab§n: (anbps1+bpans 1+ H.C),

with ®,,=J(h/h), whose contribution to any energy level
arises only in the second orderdnThis simplifies the prob-
lem considerably, making the total numbéig andN,, of a
andb particles good quantum numbers. At the same level of
approximation, one can neglect the processes of exchanging
the positions of neighboring andb particles, described by whereh; are the components of the radio frequency field,
the term andf labels all possible final states.

l(w)ochf Ig he(f|Seg.5)[28(Ef—Egs— ), (8)
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A. |[v)—|b) transitions

Let us first consider thév)—|b) process withAN,=0
andAN,=1, as the most interesting orieote that it is al-
lowed even in absence of the in-plane anisotr&)y This
process is determined by the opera8yy;, which is in this

case equivalent ta/1— h/FEnbE. Let us assume for conve-

nience that the initial number of particlés= N, is even, so

PHYSICAL REVIEW B5 014413

Er=>, (A +2tcosk/)+A,+ 2t cos\, (12)
|
where\ is defined by
A=P' = k (12

thatN=2N,. Changing the total number of particles by oneand plays the role of the momentum of theparticle.

causes, according to E@6), the rearrangement of the al-

It is easy to see that the wave functibjflo|g.s), obtained

lowed wave vectors. This leads to the vanishingly small tranfrom the ground state by creatingogparticle at sitex,, can

sition matrix elements in  Eq. (8) (orthogonality

catastroph®), however, it is compensated by a diverging
number of statesf) having nearly the same energy. The
problem of calculating the ESR response in this case
amounts to that of calculating the spectral properties of a
mobile hardcore impurity suddenly created in a hardcore bo-
son system, the impurity having the same mass as the oth

particles, and the dispersion law being of the typg,

be written in a similar determinantal form

by lg.sy=ePo X f(yr, ... y0)IXoiV1s - Yn)s
Y1, YN
(13
Wwhere y;=x;—X, are again relative coordinates of

a-particles,P= 2k, is the total momentum, and the reduced

+2t cosk. A similar problem was studied in Refs. 21—24 andWaVe function
is closely related to the so-called Fermi edge singularities in

the photoemission/adsorption spedisee, e.g., Ref. 25, and

references therejn

The excited wave functionf) can be generally repre-

sented in the following form:

YN
9

wherex; denotes the position of thie particle andx; = x;
+y{,i=1,... N denote the positions of treeparticles(so
thaty; are their coordinates relative to theparticle), andP’
is the total momentum of the excited state.

H=2 0 X oy ..yl
X0

Y1V

Following Castella and Zoto$,0ne can write the reduced

wave function® in the determinantal form

’ 1 ’
1 N
<P|(y)=A|[ el = 21 ei<kéy+5n>], (10

whereA, is the normalization factor, and the phase shijft
== — /2 is independent of the state labheh our case of
noninteracting hardcore patrticles. The facter)@'z +1is
the sign of the permutation

!

YL Ya, .. YN
Yi,liyi,zn Y

N

1
(=) (v
flyr, ... yn)=(-) N defyi(y)}, (14)
is built from simple plane waves,(y) = (1/yL)e*Y, (—)*
is the sign of the permutation

Yu Y2, ... YN
YipYiy, - Yiy)’

whereyi1<yi2<- C<Yiy
Now, one can see that the matrix element entering(&q.
takes the form

<f|§ bilg.sy=L&(P,P" )My,

YN
(19

where§(P,P") is the Kronecker symbol telling us the well-
known fact that the total momentum should not change dur-
ing the ESR transitior? =P’ (mod 27). The reduced matrix
elementMy; can be represented as a determinant of the over-
lap matrix between “old” and “new” wave functions

Myi=def (¢ [¢)}. (16)
As shown in Ref. 22, the wave functiorg(y) defined in
Eq. (10) behave asymptotically as plane waves,
o1 (y)— oy (y) = (L)€ ® Y+ and the overlaps Eq16)
calculated withe, can be with the accuracy dd(InL/L)

replaced by those calculated with . Then the matrix ele-
mentMy; is asymptotically equal to the overlap between two

q-)*(y]_.YZ, s in)f(yl!yZl e

wherey;, <y; <---<yj_, which ensures that the total wave gjater-type wave functions, one describing the system with
function is symmetric under the permutation of any two par-the total momentun® =Xk, and the other corresponding to

ticles. The allowed values for the wave vectdqs of the
excited state are given by E() with integerl, . The energy
of this state is given by

the system with the momentu@==3k/ =P’ —\. It is thus
clear thatM; can be nonzero only P=Q. This gives us the
complete set of selection rules as
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P=P’, \=0. (17) Mot 2 1 2
AE.=4t Y, cos | I+ 5| —cos—(1+1)
=0
The ground state configuration is given by the following
distribution of the wave vectors: T
=2t(1+coskF)+tES|nk,:+O(1/L2). (21)
2 1 ) )
klzwiT I+ ik [=0,...(Np—1) Applying Eq. (20), one gets the correct valyg=1/2 which

coincides with that obtained through a traditional way by
calculating determinants.

The symmetric excited state configuration wigh=P is
obviously not the configuration with the lowest energy. The

momentum 7(2No+1). In order to get the momentum symmetric configuratioms, however, the configuration with
changeA P back to zero, one has to introduce some excita-the highest overlap with the ground state. Indeed, there are

tion. In the simplest way this can be achieved by creating &onfigurations with asymmetric distribution of momenta

hole atk=, i.e., one gets the symmetric excited state conaroundk=, which nevertheless satisfy the selection rules,

figuration|f.) given by e.g., the following one which we will denote &,(n)):

and has the total momentuR= 27Ny, while in the excited
state the numberf are integer, and the lowest energy con-
figuration built according to Eq(6) would have the total

21
2 ki=m+—I, I=—(Ng—n), ..., (Ng+n—1).
K=mt""(n+1), n=0,...Ny—1. (18 T (No=n). .. (No )
L (22)

The overlapM$; can be easily calculated by means of passdf we require thatQ=P+27A, whereA is an integer, the
ing to the even/odd statdge., to sines and cosines &fy  following condition onkg is obtained:

and /y+ &), respectively. The determinant then factorizes
into a product of twdin our case equalCauchy-type deter- 2m—1

=r——, m=n—A, 23
minantsM (%), F % 2n-1 @3

which gives the dense set of allowed valuekpef at which
M) = g 1 the configuration of the typ€22) will satisfy the selection
—ae a(n—n")—o| rule;‘s. The energy diﬁ?rence _from the ground state energy is
AEF(n)=Ap+2t+AE/(n), with
Determinants of this type were calculated by AndefSamd

shown to be algebraically vanishing in the thermodynamic AE/ (M) =t(2n—1 Zzsink +O(1/L2 24
limit Mol ~A=/2 with the exponent®.. = (8/m)%=1/4, a(M =t )7 sinks+ O(LLY). 24
so that

The corresponding OC exponept(n), according to Eg.

20), is given b

1
with the orthogonality catastroph@C) exponentB,= 8, Ba(n)= E(Zn—l)2 (25
+ B_=1/2. This exponent can be also calculated in a differ-
ent way, using the results of boundary conformal field theoryand is always larger than the OC exponent for the symmetric
(BCFT).*® For this purpose it is necessary to calculate theconfigurationg,=1/2 (except forn=1, which would mean
energy difference\E; between the ground state and the ex-k.= 1, i.e., the vanishing Fermi spa
cited statgf), including the 1L corrections. Then in case of  The main contribution into the ESR response is thus com-
open boundary conditionthe OC exponeng, according to  ing from the states whose energy is close to that of the sym-

BCFT, can be obtained as metric configuration. The summation over “shake-ujpe.,
particle-holé excitations around the symmetric configuration
2LAE; 2AE; leads to the singularity in the ESR intensityw) of the

25
mve  AEL (200 form

Here ve=2tsink: is the Fermi velocity, so that\E, Ho)xw=w)?  w>w (26

=mve/L is the lowest possible excitation energy, akfs is ~ with a=as=1—B,=1/2, and the threshold frequenay,

the O(1/L) part of AE; (i.e., with the bulk contribution sub- =AE$=A,+4t+2t coskg. It is remarkable that the contri-
tracted. In this last form this formula should be also valid bution from the asymmetric configuration displays no singu-
for the periodic boundary conditionghenAE;, should be |larity, since the corresponding OC exponght>1, so that
replaced by Zrvg/L. It is easy to calculatAE; for the  «,<0; this contribution yields just some scattered intensity
symmetric configuration|fs): one gets AEf=A,+2t  at frequenciess=A,+ 2t, see Fig. 1. The integrated inten-
+AE{, where sity of [v)—|a) contribution is proportional to the total num-
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() 1, case. However, one can treat the effect of interactions in a
sort of the “mean-field” approximation, i.e., replacing sim-
// |
2D+6J |y _4a>b il
\% . //
o S A=Ay (M)=A,+2U,M,
D2 { 4E Ap—>Ap(M)=Ap+2U M, (29)
v>a !
ud where the particle densityl =1 —kg /7 has to be calculated
t self-consistently from the equation
h.=D-2J h=D+4] h

o o A4(M)+2t coskg=0. (29
FIG. 1. Schematic picture of ground state transitions in the ESR
spectrum of the plana®=1 chain as functions of the field in the One can check that such an approximation, though being
critical region. For simplicity, the case of zero in-plane anisotrBpy crude, delivers correct values for the critical fields and
is shown. The dashed line corresponds to the quasiparticle pea¥ . Actually, in absence db particles one can show that the
determined bya—b processes which are forbidden in absence ofeffect of U,, is not only to change the self-energy,, but
the in-plane anisotropk. Filled areas show the continua, and solid 5isg to renormalize the hopping amplitutie [in the first
lines within the continua indicate the position of the singularities. 5 qer iNU,, one gets g—t,+ (2U .,/ 7)sink:], and botht,
Arrows on_the lines indica_lte _the direction of the intensity increase,, 4 U, are of the order of, so this correction is not neg-
when varying the magnetic field. ligible. According to the numerical studié$the OC expo-
ber L(1—-M) of empty sites, and thus decreases with thenim'g Is rather sensitive to the ratio of hopplng amphtudes
r=t,/t, [the behavior of B(r) is approximately linear

magnetic field; this contribution does not exist above the - . .
saturation fielcH, . aroundr =1], so that the corresponding OC exponents will

Taking into account the definition oke, namely A, certainly change compared to the noninteractingrdcore

+ 2t coske=0, the formula for threshold, can be rewritten case, and they wil becomg: erendent. O_ne may never-
as theless expect that at tlygialitativelevel our picture of tran-

sitions remains true, particularly, the effect of changing the
wo(v—b)=A,—A,+4t. (27)  slope of ESR lines ati =H, should survive.

One may notice the following remarkable feature: for weak
magnetic fields belovh, the [v)—|b) process leads to a
quasiparticle peak in the ESR response at the frequericy ~ The |a)—[b) processes are possible only in presence of
— Ap+2t, so thatbelow the critical fieldthe slopedw}/dh  the finite in-plane anisotrop§, which mixes|—) and|+)
of the ESR line as a function of the fieldis approximately states into|a) and |b), respectively. Those transitions are
1 (for E<D). Forh>h, the same process yields the Fermi- determined by the operat§f,, which is in this case equiva-
edge-type singularity(26) in the ESR response, with the lent to (E/ﬁ)Enbgan. One can easily see that now the wave
edge frequency, being given by Eq(27). If one makes a  functionsS,b'a,|g.s) and|f) can be both represented in the
reasonable assumption, that experimentally observed ESf3rm (9), (10) with N— (N—1). The total momentum of the
line for h>h, follows the behawo_r of the edge _s_mgu!anty, ground state can be representedPasZiNglrkiJrX, and the
we get for the slope of the ESR lirabove the crltlc_al field momentum of the excited state has a similar form,
the valued{uo/d h~2. Thus, the slope of the expgnmentally ZEiN:—llki/ +\. Through the same line of arguments as before
observed line should change abruptly at the critical field one gets the selection rules
=h., as shown schematically in Fig. 1. It is worthwhile to
note that such a behavior is reminiscent of the picture experi-
mentally seen in NENQRef. 7) in the intermediate field
regime. Since the number of particles was not changed during the
Though taking into account the effects of temperature igransition, the allowed values of wave vectéfsare now the
beyond the Scope of the pre_sen_t paper, we would like Qame a%k; and are given byr+ (2/L)I; with half-integer
remark that the singular contribution pf) — |b) processes I;. Thus, there is10 orthogonality catastropha this case,

to the ESR response should be enhanced at finite temperg- 4 o gets a well-definegliasiparticle peakat the fre-
ture, due to the presence of a finite number of holes in th uency

ground state. The density of states has a singularity at th
bottom of the Fermi sea, so that the main contribution will 0n v=Ar—A.. (30)
come at the same frequen@y). This could be important for azbmSh a
interpreting the results of experiments on NEN®here the  One can visualize this process as simply replacing one of the
temperature was of the order &f a particles in the Fermi sea of the ground state hy par-

If the interaction termg4) are taken into account, the ticle, without changing the wave vector distribution. The cor-
corresponding effective model cannot be solved exactlyesponding ESR line goes parallel to the)—|b) line,
anymore, and we cannot calculate the OC exponents in thislightly below it, as shown schematically in Fig. 1. The in-

B. |a)—|b) transitions

P=P’, A=X\.
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tensity of this line is proportional to the total numbe of  where Q=7 and Q=2kg— 7 for the contributions of the

a particles and increases with the field; this line continues tdirst and second term in E¢31), respectively. The singulari-

exist atH>H. ties are of power-law type, with the exponent being deter-
mined by the Luttinger liquid paramet&:

C. |v)«|a) transitions

Those transitions are allowed in absence of the in-plane |(w)°<—(Q),
anisotropy. The number of particles changes by one, which [0—wo(Q)]”
leads to a change in the distribution of momenta and indi-
cates absence of the quasiparticle peak. Since only two states
per site are involvedN},, remains zerp those processes can
be treated within the effective spimodel, similarly to the
way it was done for spin ladde?s?If one neglects the small
corrections of the order off/h)?, this effective model is the
easy-planeXXZ chain in an effective longitudinal magnetic
field with the Hamiltoniaf®

1 1
ﬂ(W)Zl—R, 7](2k|:—7T)=2—K—R. (34)
Thus, two lines corresponding to the singularities in the
lv)«>|a) processes atw=wy(m) and w=w(2Ks— )
should be visible in the ESR spectrum, as shown schemati-
cally in Fig. 1. Inclusion of the finite temperature would lead
to damping of the singularities.

Heﬁzg jxy(§§‘§+gflﬁ¥)+jzgﬁgﬁ_§§§, IV. DISCUSSION
In the model of a plana6=1 chain considered in the

whereS* are the spin operators of the effective spichain, previous section we have seen several features of the ESR
J,y=2J, the easy-plane anisotropy/J,,= 1/2, and the field spectrum in the high-field critical phase: appearance of low-
B=h-J-D lying and high-lying continua with power-law singularities,

: ; ounterintuitive change of the slope of ESR lines at the criti-
Calculating the low-frequency ESR response amounté:éal field H=H;, etc. One may ask oneself whether similar

then to the knowledge of the dynamical structure factorf t b + also in oth di ional spi
S*(q,w) of the effectiveXXZ chainl ()= S~ (q=0,0). eatures can be present also in other one-dimensional spin

1
The asymptotic behavior of the correlation functions for theSyStemS' e.g., strongly couple8_=5 ladders such as
XXZ crzlainpis known from the bosonization rest®’ Cup(CsHi1N,)-Cly [usually abbreviated CuHpQRef. 3]
and (GH;5N,),CuBr, [abbreviated BPCBRef. 31)] or S

=1 Haldane chain Ni(§H14N5),N3(PF;) [known as

Bty B _ Cy NDMAP (Refs. 4,5].
(ST(x1S7(00) (xz—vﬁtz)lf(“K)Cos(WX) As far as the model 08= 3 ladder with strong rung in-
teractionJg and weak leg coupling, <Jg is concerned, one
C, gl (2ke—mx can construct the effective model exactly in the same way as
(X2_v'2:t2)K+l/(4K)—l (X—vgt)? for the largeD S=1 chain. The role of vacuum stdte) will

be played by singlet stats) on a single rung, and one will

e i(2ke—m)x have three types of “particles” corresponding to the three
] i (31) triplet statedt.. ), |to). Applying a strong magnetic field will

lead to closing the gap and to a finite densitytaf) states in

HereC. , are some constants- is the Eermi velocity. ani the ground state in the critical phase. However, in absence of

. 12 : R ‘elocity, _ any additional coupling$e.g., Dzyaloshinskii-Moriya inter-

is the so-called Luttinger liquid parameter. =0 [which  action or nonuniaxial anisotropieshe only possible direct

corresponds tkg= /2, or M=1/2, or equivalently to the transitions from the ground state are determined by the pro-

physical fieldH in the middle of the critical regionH cesses of thét,)—|ty) type, which, similarly to thela)

e —
(X+l)|:t)2

=3(He+Hg)] andJ,/J, = 1/2 one ha¥ —|b) processes considered in the previous section, yield a
quasiparticle peak with the resonance frequency,=h.
ve=3J\3/2, K=3/4. (32)  Only in presence of such additional interactions providing

_ finite admixture of triplets ifv ) one could se)— |to) and
At nonzeroB (i.e., for M #1/2) the values obr andK can  |v)—|t_) lines, which should then exhibit the change of
be obtained numerically by solving the Bethe ansatzslope atH =H, with the simultaneous appearance of the con-
equations;” the corresponding solutions are presented in Figtinuum above them. Similar arguments apply also to $he

2 of Ref. 12. Forke— 7 (0), which corresponds tel—H. =1 Haldane chains: generally, in order to observe the “in-
(Hs), respectively, i.e., when the number of particleeles  teresting” lines, one needs to have some perturbations allow-
becomes smalK tends to 1 and to zero. ing the direct transitions from the ground stateHat 0.
Fourier-transforming Eq:31), one gets thgg=0 dynamic In this sense, the plana®=1 chain is a remarkable
structure factoS* ~(q=0,w) having edge-type singularities model, where features such as the slope change or the low-
at the frequencies lying continuum can be observed “generically,” without ap-
pealing to the existence of any additional interactions. How-
wo(Q)=0v:Q, (33)  ever, one may in principle hope that similar effects could be
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observed in other one-dimensional spin systems as welfeature closely resembles our conclusions for [t |b)
There are, for example, experimental indicatiribat such  processes in the planar chain: if one denotes (fiedd-

additional terms are really present in CuHpCI. dependentmagnon gaps for NDMAP a&.. andA, then at
Some of the features predicted by the present studyd <H. the abovementioned ESR branch corresponds to the
namely, the change of the slope of the ESR linélatH_, thermally excited transition within the magnon triplet, with

resemble the picture experimentally seen in NE§Ref. 7)  the frequencyw=A,—A, . At H>H_ there is a finite den-
atH=4.5 T. One might speculate that such an identificatiorsity of A, magnons in the ground state, and, if we exploit
suggests that the actual value dfis somewhat larger than the analogy with our picture dfa)— |b) processes for the
one adopted in Ref. 7, and is about 7.2 K, and thas  planar chainidentifying theS*= + 1 magnon witha and the
respectively smaller, about 0.25 K. However, a quantitatives?’=0 magnon withb), one can expect the presence of a
comparison of our predictions with the experimental data igjuasiparticle peak at exactly the same frequency, in agree-
hindered by several factors: first of all, we have studied onlyment with the experiment.
T=0 case, while the experimental da@re given for the Finally, some words of caution are here in order. In the
temperatureT=4.2 K, which is large compared to the ex- present paper, we have studied only greund state transi-
change constart Second, since the local anisotropy axes intions in other words the ESR response at zero temperature,
adjacent nickel chains in NENC are slightly tilted with re- and only in purely one-dimensionélD) model. When inter-
spect to the crystallographic axis, one actually has to in- preting the experimental data, one should have in mind that,
clude a finite transversal field component into the Hamil-because of the gapless nature of the ground state in the criti-
tonian (1), which would lead to considerable difficulties in cal phase of the 1D system, the effects of temperature be-
the further analysige.g., the necessity to handle unequalcome important, as well as those of weak 3D coupling; par-
hopping amplitudes, andt, along with a finite exchange ticularly, the system should be 3D ordered under certain
amplitudet,p). Our analysis includes also certain oversim-critical temperature. Thus, the results presented here should
plifying approximations(such as neglecting interaction be- only be taken as a guide displaying features of the purely 1D
tween the hardcore bosgndg-inally, as one can conclude behavior. Further work is required to analyze the possibility
from the disagreement between the results of fitting the sussf observation of those phenomena in realistic systems.
ceptibility data for different field directionsat present there
is no reliable data on the Hamiltonian parameters for NENC,
which makes a conclusive quantitative comparison rather
difficult. A.K. gratefully acknowledges the hospitality of Hannover
In recent experimenton the S=1 Haldane chain com- Institute for Theoretical Physics. This work was supported by
pound NDMAP it was observed, that one of the ESRthe German Federal Ministry for Research and Technology
branches was just continuing into the critical region, without(BMBFT) under Contract No. 03MI5SHANS5 and by the Volk-
any noticeable features Ht=H, . It is worth noting that this swagen Foundation through Grant No. 1/75895.
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