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Electron spin resonance in high-field critical phase of gapped spin chains
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Motivated by recent experiments on Ni(C2H8N2)2Ni(CN)4 ~commonly known as NENC!, we study the
electron spin resonance in the critical high-field phase of the antiferromagneticS51 chain with strong planar
anisotropy and show that the ESR spectra exhibit several peculiarities in the critical phase. Possible relevance
of those results for other gapped spin systems is discussed.
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I. INTRODUCTION

Recently, there has been a growing interest in the pro
ties of low-dimensional spin systems subject to strong ex
nal magnetic field.1–9,10,11,12In gapped spin systems, whe
the external magnetic fieldH exceeds a critical valueHc , it
closes the gap and drives the system into a new critical ph
with finite magnetization and gapless excitations. When
field is further increased, the system may stay in this criti
phase up to the saturation fieldHs , above which the system
is in a saturated ferromagnetic state. Under certain co
tions, however, the excitations in this high-field phase m
again acquire a gap, making the magnetization ‘‘locked’’
some field range; this phenomenon is known as magne
tion plateaus and has been receiving much attention
well.13–16

Recently, electron spin resonance~ESR! experiments on
Ni(C2H8N2)2Ni(CN)4 ~commonly abbreviated as NENC! in
strong magnetic fields were conducted.7 This compound is
believed to be a realization of theS51 chain with strong
planar and weak in-plane anisotropy.17 The theory describing
ESR response for this system outside the critical phase~i.e.,
H,Hc or H.Hs) was developed by Papanicolaouet al.6

However, much of the ESR data of Ref. 7 belongs presu
ably to the field rangeHc,H,Hs , i.e., exactly to the region
where the theory is lacking, which makes the interpretat
of the data rather difficult.

Motivated by those experiments, in the present paper
study theoretically the zero-temperature ESR response in
critical phase of a planarS51 chain. It is shown that the
typical feature of ESR in the critical phase is the appeara
of continua with resonances being determined by power-
singularities instead of well-defined quasiparticle peaks.
predict that a characteristic change of the slope in the fi
dependency of the ESR resonance frequency takes pla
the critical fieldH5Hc .

The paper is organized in the following way. In Sec. II w
introduce the effective Hamiltonian for the planar chain, S
III is devoted to the calculation of resonance frequencies
exponents characterizing the corresponding singularit
and, finally, in Sec. IV we discuss possible existence of si
lar features in other gapped one-dimensional spin system
0163-1829/2001/65~1!/014413~8!/$20.00 65 0144
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II. PLANAR SÄ1 CHAIN: EFFECTIVE MODEL

We start from the model of strongly anisotropic antiferr
magneticS51 chain described by the Hamiltonian

Ĥ5J(
n

Sn•Sn111D(
n

~Sn
z!21E(

n
$~Sn

x!22~Sn
y!2%

2h(
n

Sn
z , ~1!

where the planar anisotropyD is assumed to be much stron
ger than the exchange constantJ, E!D is a weak in-plane
anisotropy, andh5gmBH, whereg is the Lande´ factor,mB is
the Bohr magneton, andH is the external magnetic field. Th
in-plane anisotropy should be included since it spoilsSz as
good quantum number and thus allows certain transiti
which are otherwise forbidden; generally, the in-plane anis
ropy constantE may be comparable toJ.

Let us consider first the noninteracting caseJ50, then
Eq. ~1! amounts to a single-ion problem. The spectrum o
single ion consists of three states, whose wave functions
energies read as follows:

uv&5u0&, ev50,

ua&5cosau1&2sinau2&, ea5D2h̃,

ub&5sinau1&1cosau2&, eb5D1h̃,

h̃[~E21h2!1/2, sina[
1

A2
~12h/h̃!1/2, ~2!

whereu0&,u6& denote the spin-1 states. ForJ!D and weak
field h,hc , the ground state of the model~1! can be de-
scribed, to a good approximation, as a direct product ofuv&
states of separate magnetic ions. The elementary excita
are propagatingua& and ub& states, the spectrum has a ga
and the lowest excitation is a degenerate doublet. This d
blet gets split off by the external field,ua& state coming down
©2001 The American Physical Society13-1
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with the field, andub& states going up. The low-temperatu
ESR response forh,hc is determined by the transition
from the ground state of the typeuv&→ua& and uv&→ub&.6

When the fieldh exceeds the critical value

hc5$~D22J!22E2%1/2,

the system enters critical phase with a finite densityM of ua&
states, and a new type of ground state transitions, namel
the ua&→ub& type, becomes possible~note that this transition
is allowed only in presence of the finite in-plane anisotro
E). The ‘‘old’’ types uv&↔ua& anduv&→ub& still remain pos-
sible. As the densityM increases from 0 to 1, theuv&→ub&
signal should become weaker, while the intensity of theua&
→ub& transition should increase. Above the saturation fi
hs , determined by the equation

h̃5D12J$11~h/h̃!2%,

the density ofa particles is equal to 1.
In order to describe this picture quantitatively, we fir

introduce the hardcore boson operatorsan
† , bn

† creating, re-
spectively, theua& and ub& states from the vacuum stateuv&.
Not more than one boson is allowed to be present on
site, which defines the set of physical states. The effec
Hamiltonian in terms of hardcore bosons can be written
Ĥeff5P(H01Hint)P, whereP is the projector onto the set o
physical states. The ‘‘unperturbed’’ HamiltonianH0 has the
following form:

H05(
n

~Daan
†an1Dbbn

†bn!1(
n

~ taan
†an111tb bn

†bn11

1H.c.!, ~3!

where the self-energies areDa,b5ea,b and the hopping am
plitudesta5tb[t5J. The interaction partHint looks as fol-
lows:

Hint5Uaa(
n

~an
†an!~an11

† an11!1Uab(
n

$~an
†an!

3~bn11
† bn11!1~bn

†bn!~an11
† an11!%, ~4!

where the interaction constants are given byUaa52Uab

5J(h/h̃)2.
Our goal is to take into account the effects arising in

first order in the couplingJ, and therefore we have neglecte
the pair creation term

Fab(
n

~anbn111bnan111H.c.!,

with Fab5J(h/h̃), whose contribution to any energy lev
arises only in the second order inJ. This simplifies the prob-
lem considerably, making the total numbersNa andNb of a
andb particles good quantum numbers. At the same leve
approximation, one can neglect the processes of exchan
the positions of neighboringa andb particles, described by
the term
01441
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†an11

† anbn111H.c.%,

since the ‘‘interparticle’’ hopping amplitudetab5J(E/h̃)2 is
very small in the critical region,E/h̃;E/D!1. Further, we
will be interested in configurations with at most oneb boson,
so that the interaction betweenb particles can be also safel
neglected.

Let us first consider the ‘‘unperturbed’’ Hamiltonia
PH0P ~note that the physics described by this Hamiltoni
is nevertheless nontrivial due to the single occupancy c
straint!. In absence ofb particles (Nb50) the spectrum of
the problem can be in principle obtained by mapping to n
interacting fermions with the help of the well-known Jorda
Wigner transformation, but it is more convenient to stick
the hardcore boson language. From the Bethe-an
solution18 one knows that the energy spectrum is given b

E~$kl%!5(
l

~Da1coskl !, kl5p1
2p

L
I l , ~5!

where the numbersI l are all different and respectively half
integer ~integer! if the total number of particlesN5Na is
even ~odd!, andL is the number of sites which will be as
sumed even for convenience. The total momentumP of a
state defined by a certain choice ofN different numbersI l is
P5( lkl . The ground stateug.s.& is given by a symmetrica
dense distribution ofI l around zero:

I l52
N21

2
,2

N23

2
, . . . ,

N21

2
, ~6!

describing the Fermi sea of particles with momenta in
interval @kF,2p2kF#, where we shall define

kF5p~12N/L !. ~7!

The total momentum of the ground state configuration isP
50(mod 2p) if N is even, andP5p if N is odd. Since the
hopping amplitudes fora- andb-particles are equal, it is eas
to realize that the above picture of the distribution of wa
vectors remains true when one has the total number of
ticlesN5Na1Nb , Na of them being of thea type andNb of
the b type: they form a single ‘‘large’’ Fermi sea.

III. ESR TRANSITIONS

We would like to study the ESR transitions from th
ground state, which survive in the low-temperature limit. T
ESR intensityI (v) for the ground state transitions is dete
mined by the formula19

I ~v!}v(
f

u(
a

hr
a^ f uStot

a ug.s.&u2d~Ef2Eg.s.2v!, ~8!

wherehr
a are the components of the radio frequency fie

and f labels all possible final states.
3-2
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A. zv‹¾zb‹ transitions

Let us first consider theuv&°ub& process withDNa50
and DNb51, as the most interesting one~note that it is al-
lowed even in absence of the in-plane anisotropyE). This
process is determined by the operatorStot

2 , which is in this

case equivalent toA12h/h̃(nbn
† . Let us assume for conve

nience that the initial number of particlesN5Na is even, so
that N52N0. Changing the total number of particles by o
causes, according to Eq.~6!, the rearrangement of the a
lowed wave vectors. This leads to the vanishingly small tr
sition matrix elements in Eq. ~8! ~orthogonality
catastrophe20!, however, it is compensated by a divergin
number of statesu f & having nearly the same energy. Th
problem of calculating the ESR response in this c
amounts to that of calculating the spectral properties o
mobile hardcore impurity suddenly created in a hardcore
son system, the impurity having the same mass as the o
particles, and the dispersion law being of the typeDa,b
12t cosk. A similar problem was studied in Refs. 21–24 a
is closely related to the so-called Fermi edge singularitie
the photoemission/adsorption spectra~see, e.g., Ref. 25, an
references therein!.

The excited wave functionu f & can be generally repre
sented in the following form:

u f &5(
x08

eiP8x08 (
y18 . . . yN8

F~y18 , . . . ,yN8 !ux08 ;y18 , . . . ,yN8 &,

~9!

wherex08 denotes the position of theb particle andxi85x08
1yi8 , i 51, . . . ,N denote the positions of thea particles~so
thatyi8 are their coordinates relative to theb particle!, andP8
is the total momentum of the excited state.

Following Castella and Zotos,22 one can write the reduce
wave functionF in the determinantal form

F~y18 , . . . ,yN8 !5~2 !S8
1

ALN!
det$w i~yj8!%,

w l~y!5Al H ei (kl8y1d l )2
1

N (
n51

N

ei (kn8y1dn)J , ~10!

whereAl is the normalization factor, and the phase shiftd l
[d52p/2 is independent of the state labell in our case of
noninteracting hardcore particles. The factor (2)S8561 is
the sign of the permutation

S y18,

yi 1
8 ,

y28

yi 2
8

, . . . ,
, . . . ,

yN8

yi N
8 D ,

whereyi 1
8 ,yi 2

8 ,•••,yi N
8 , which ensures that the total wav

function is symmetric under the permutation of any two p
ticles. The allowed values for the wave vectorskl8 of the
excited state are given by Eq.~5! with integerI l . The energy
of this state is given by
01441
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Ef5(
l

~Da12t coskl8!1Db12t cosl, ~11!

wherel is defined by

l5P82(
l

kl8 ~12!

and plays the role of the momentum of theb particle.
It is easy to see that the wave functionbx0

† ug.s.&, obtained

from the ground state by creating ab particle at sitex0, can
be written in a similar determinantal form

bx0

† ug.s.&5eiPx0 (
y1 , . . . ,yN

f ~y1 , . . . ,yN!ux0 ;y1 , . . . ,yN&,

~13!

where yi5xi2x0 are again relative coordinates o
a-particles,P5( lkl is the total momentum, and the reduce
wave function

f ~y1 , . . . ,yN!5~2 !S
1

AN!
det$c i~yj !%, ~14!

is built from simple plane wavesc l(y)5(1/AL)eikly, (2)S

is the sign of the permutation

S y1,
yi 1

,
y2

yi 2

, . . . ,
, . . . ,

yN

yi N
D ,

whereyi 1
,yi 2

,•••,yi N
.

Now, one can see that the matrix element entering Eq.~8!
takes the form

^ f u(
n

bn
†ug.s.&5ALd~P,P8!M f i ,

M f i5 (
y1 ,y2 , . . . ,yN

F* ~y1 ,y2 , . . . ,yN! f ~y1 ,y2 , . . . ,yN!,

~15!

whered(P,P8) is the Kronecker symbol telling us the wel
known fact that the total momentum should not change d
ing the ESR transition,P5P8(mod 2p). The reduced matrix
elementM f i can be represented as a determinant of the o
lap matrix between ‘‘old’’ and ‘‘new’’ wave functions

M f i5det$^w l 8uc l&%. ~16!

As shown in Ref. 22, the wave functionsw l(y) defined in
Eq. ~10! behave asymptotically as plane wave

w l(y)°w̃ l(y)5(1/AL)ei (kl8y1d l ), and the overlaps Eq.~16!
calculated withw l can be with the accuracy ofO(ln L/L)
replaced by those calculated withw̃ l . Then the matrix ele-
mentM f i is asymptotically equal to the overlap between tw
Slater-type wave functions, one describing the system w
the total momentumP5( lkl and the other corresponding t
the system with the momentumQ5( lkl8[P82l. It is thus
clear thatM f i can be nonzero only ifP5Q. This gives us the
complete set of selection rules as
3-3
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P5P8, l50. ~17!

The ground state configuration is given by the followi
distribution of the wave vectors:

kl5p6
2p

L S l 1
1

2D , l 50, . . . ,~N021!

and has the total momentumP52pN0, while in the excited
state the numbersI l are integer, and the lowest energy co
figuration built according to Eq.~6! would have the total
momentum p(2N011). In order to get the momentum
changeDP back to zero, one has to introduce some exc
tion. In the simplest way this can be achieved by creatin
hole atk5p, i.e., one gets the symmetric excited state c
figuration u f s& given by

kn85p6
2p

L
~n11!, n50, . . . ,N021. ~18!

The overlapM f i
s can be easily calculated by means of pa

ing to the even/odd states@i.e., to sines and cosines ofkly
and (kl8y1d), respectively#. The determinant then factorize
into a product of two~in our case equal! Cauchy-type deter-
minantsM (6),

M (6)5detH 1

p~n2n8!2d
J .

Determinants of this type were calculated by Anderson20 and
shown to be algebraically vanishing in the thermodynam
limit M (6)}L2b6/2, with the exponentsb65(d/p)251/4,
so that

uM f i
s u2}L2bs ~19!

with the orthogonality catastrophe~OC! exponentbs5b1

1b251/2. This exponent can be also calculated in a diff
ent way, using the results of boundary conformal field the
~BCFT!.26 For this purpose it is necessary to calculate
energy differenceDEf between the ground state and the e
cited stateu f &, including the 1/L corrections. Then in case o
open boundary conditionsthe OC exponentb, according to
BCFT, can be obtained as

b5
2LDẼf

pvF
[

2DẼf

DEmin
. ~20!

Here vF52t sinkF is the Fermi velocity, so thatDEmin

5pvF /L is the lowest possible excitation energy, andDẼf is
theO(1/L) part ofDEf ~i.e., with the bulk contribution sub
tracted!. In this last form this formula should be also val
for the periodic boundary conditions, thenDEmin should be
replaced by 2pvF /L. It is easy to calculateDEf for the
symmetric configuration u f s&: one gets DEf

s5Db12t
1DEs8 , where
01441
-

-
a
-

-

c

-
y
e
-

DEs854t (
l 50

N021 H cos
2p

L S l 1
1

2D2cos
2p

L
~ l 11!J

52t~11coskF!1t
p

L
sinkF1O~1/L2!. ~21!

Applying Eq. ~20!, one gets the correct valueb51/2 which
coincides with that obtained through a traditional way
calculating determinants.

The symmetric excited state configuration withQ5P is
obviouslynot the configuration with the lowest energy. Th
symmetric configurationis, however, the configuration with
the highest overlap with the ground state. Indeed, there
configurations with asymmetric distribution of momen
aroundk5p, which nevertheless satisfy the selection rul
e.g., the following one which we will denote asu f a(n)&:

kl85p1
2p

L
l , l 52~N02n!, . . . ,~N01n21!.

~22!

If we require thatQ5P12pL, whereL is an integer, the
following condition onkF is obtained:

kF5p
2m21

2n21
, m[n2L, ~23!

which gives the dense set of allowed values ofkF , at which
the configuration of the type~22! will satisfy the selection
rules. The energy difference from the ground state energ
DEf

a(n)5Db12t1DEa8(n), with

DEa8~n!5t~2n21!2
p

L
sinkf1O~1/L2!. ~24!

The corresponding OC exponentba(n), according to Eq.
~20!, is given by

ba~n!5
1

2
~2n21!2 ~25!

and is always larger than the OC exponent for the symme
configurationbs51/2 ~except forn51, which would mean
kF5p, i.e., the vanishing Fermi sea!.

The main contribution into the ESR response is thus co
ing from the states whose energy is close to that of the s
metric configuration. The summation over ‘‘shake-up’’~i.e.,
particle-hole! excitations around the symmetric configuratio
leads to the singularity in the ESR intensityI (v) of the
form25

I ~v!}1/~v2v0!a, v.v0 ~26!

with a5as512bs51/2, and the threshold frequencyv0

5DEf
s5Db14t12t coskF . It is remarkable that the contri

bution from the asymmetric configuration displays no sing
larity, since the corresponding OC exponentba.1, so that
aa,0; this contribution yields just some scattered intens
at frequenciesv>Db12t, see Fig. 1. The integrated inten
sity of uv&→ua& contribution is proportional to the total num
3-4
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ELECTRON SPIN RESONANCE IN HIGH-FIELD . . . PHYSICAL REVIEW B65 014413
ber L(12M ) of empty sites, and thus decreases with
magnetic field; this contribution does not exist above
saturation fieldHs .

Taking into account the definition ofkF , namely Da
12t coskF50, the formula for thresholdv0 can be rewritten
as

v0~v→b!5Db2Da14t. ~27!

One may notice the following remarkable feature: for we
magnetic fields belowhc the uv&°ub& process leads to a
quasiparticle peak in the ESR response at the frequencyv08
5Db12t, so thatbelow the critical fieldthe slopedv08/dh
of the ESR line as a function of the fieldh is approximately
1 ~for E!D). For h.hc the same process yields the Ferm
edge-type singularity~26! in the ESR response, with th
edge frequencyv0 being given by Eq.~27!. If one makes a
reasonable assumption, that experimentally observed
line for h.hc follows the behavior of the edge singularit
we get for the slope of the ESR lineabove the critical field
the valuedv0 /dh'2. Thus, the slope of the experimental
observed line should change abruptly at the critical fieldh
5hc , as shown schematically in Fig. 1. It is worthwhile
note that such a behavior is reminiscent of the picture exp
mentally seen in NENC~Ref. 7! in the intermediate field
regime.

Though taking into account the effects of temperature
beyond the scope of the present paper, we would like
remark that the singular contribution ofuv&→ub& processes
to the ESR response should be enhanced at finite temp
ture, due to the presence of a finite number of holes in
ground state. The density of states has a singularity at
bottom of the Fermi sea, so that the main contribution w
come at the same frequency~27!. This could be important for
interpreting the results of experiments on NENC,7 where the
temperature was of the order ofJ.

If the interaction terms~4! are taken into account, th
corresponding effective model cannot be solved exa
anymore, and we cannot calculate the OC exponents in

FIG. 1. Schematic picture of ground state transitions in the E
spectrum of the planarS51 chain as functions of the field in th
critical region. For simplicity, the case of zero in-plane anisotropE
is shown. The dashed line corresponds to the quasiparticle
determined bya→b processes which are forbidden in absence
the in-plane anisotropyE. Filled areas show the continua, and so
lines within the continua indicate the position of the singulariti
Arrows on the lines indicate the direction of the intensity increa
when varying the magnetic field.
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case. However, one can treat the effect of interactions
sort of the ‘‘mean-field’’ approximation, i.e., replacing sim
ply

Da°Da~M !5Da12UaaM ,

Db°Db~M !5Db12UabM , ~28!

where the particle densityM512kF /p has to be calculated
self-consistently from the equation

Da~M !12t coskF50. ~29!

One can check that such an approximation, though be
crude, delivers correct values for the critical fieldsHc and
Hs . Actually, in absence ofb particles one can show that th
effect of Uaa is not only to change the self-energyDa , but
also to renormalize the hopping amplitudeta @in the first
order inUaa one getsta°ta1(2Uaa /p)sinkF#, and bothta
andUaa are of the order ofJ, so this correction is not neg
ligible. According to the numerical studies,27 the OC expo-
nentb is rather sensitive to the ratio of hopping amplitud
r 5tb /ta @the behavior of b(r ) is approximately linear
aroundr 51#, so that the corresponding OC exponents w
certainly change compared to the noninteracting~hardcore!
case, and they will becomekF dependent. One may neve
theless expect that at thequalitativelevel our picture of tran-
sitions remains true, particularly, the effect of changing
slope of ESR lines atH5Hc should survive.

B. za‹¾zb‹ transitions

The ua&°ub& processes are possible only in presence
the finite in-plane anisotropyE, which mixesu2& and u1&
states intoua& and ub&, respectively. Those transitions a
determined by the operatorStot

z , which is in this case equiva

lent to (E/h̃)(nbn
†an . One can easily see that now the wa

functions(nbn
†anug.s.& andu f & can be both represented in th

form ~9!, ~10! with N→(N21). The total momentum of the
ground state can be represented asP5( i 51

N21k̃i1l̃, and the
momentum of the excited state has a similar form,P8
5( i 51

N21ki81l. Through the same line of arguments as befo
one gets the selection rules

P5P8, l5l̃.

Since the number of particles was not changed during
transition, the allowed values of wave vectorski8 are now the

same ask̃i and are given byp1(2p/L)I i with half-integer
I i . Thus, there isno orthogonality catastrophein this case,
and one gets a well-definedquasiparticle peakat the fre-
quency

va→b5Db2Da . ~30!

One can visualize this process as simply replacing one of
a particles in the Fermi sea of the ground state by ab par-
ticle, without changing the wave vector distribution. The co
responding ESR line goes parallel to theuv&→ub& line,
slightly below it, as shown schematically in Fig. 1. The i

R
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f

.
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A. K. KOLEZHUK AND H.-J. MIKESKA PHYSICAL REVIEW B 65 014413
tensity of this line is proportional to the total numberLM of
a particles and increases with the field; this line continues
exist atH.Hs .

C. zv‹^za‹ transitions

Those transitions are allowed in absence of the in-pl
anisotropy. The number of particles changes by one, wh
leads to a change in the distribution of momenta and in
cates absence of the quasiparticle peak. Since only two s
per site are involved (Nb remains zero!, those processes ca
be treated within the effective spin-1

2 model, similarly to the
way it was done for spin ladders.8,14 If one neglects the smal
corrections of the order of (E/h)2, this effective model is the
easy-planeXXZ chain in an effective longitudinal magnet
field with the Hamiltonian28

Heff5(
n

J̃xy~S̃n
xS̃n

x1S̃n
yS̃n

y!1 J̃zS̃n
zS̃n

z2B̃S̃n
z ,

whereS̃m are the spin operators of the effective spin-1
2 chain,

Jxy52J, the easy-plane anisotropyJz /Jxy51/2, and the field
B̃5h2J2D.

Calculating the low-frequency ESR response amou
then to the knowledge of the dynamical structure fac
S12(q,v) of the effectiveXXZ chain I (v)}S12(q50,v).
The asymptotic behavior of the correlation functions for t
XXZ chain is known from the bosonization results11,29

^S̃1~x,t !S̃2~0,0!&5
C1

~x22vF
2 t2!1/(4K)

cos~px!

1
C2

~x22vF
2 t2!K11/(4K)21 H ei (2kF2p)x

~x2vFt !2

1
e2 i (2kF2p)x

~x1vFt !2 J . ~31!

HereC1,2 are some constants,vF is the Fermi velocity, andK
is the so-called Luttinger liquid parameter. ForB̃50 @which
corresponds tokF5p/2, or M51/2, or equivalently to the
physical field H in the middle of the critical region,H
5 1

2 (Hc1Hs)# andJz /Jxy51/2 one has12

vF53JA3/2, K53/4. ~32!

At nonzeroB̃ ~i.e., for MÞ1/2) the values ofvF andK can
be obtained numerically by solving the Bethe ans
equations;30 the corresponding solutions are presented in F
2 of Ref. 12. ForkF→p ~0!, which corresponds toH→Hc
(Hs), respectively, i.e., when the number of particles~holes!
becomes small,K tends to 1 andvF to zero.

Fourier-transforming Eq.~31!, one gets theq50 dynamic
structure factorS12(q50,v) having edge-type singularitie
at the frequencies

v0~Q!5v fQ, ~33!
01441
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z
.

where Q5p and Q52kF2p for the contributions of the
first and second term in Eq.~31!, respectively. The singulari
ties are of power-law type, with the exponent being det
mined by the Luttinger liquid parameterK:

I ~v!}
1

@v2v0~Q!#h(Q)
,

h~p!512
1

4K
, h~2kF2p!522K2

1

4K
. ~34!

Thus, two lines corresponding to the singularities in t
uv&↔ua& processes atv5v0(p) and v5v0(2kF2p)
should be visible in the ESR spectrum, as shown schem
cally in Fig. 1. Inclusion of the finite temperature would lea
to damping of the singularities.9

IV. DISCUSSION

In the model of a planarS51 chain considered in the
previous section we have seen several features of the
spectrum in the high-field critical phase: appearance of lo
lying and high-lying continua with power-law singularitie
counterintuitive change of the slope of ESR lines at the cr
cal field H5Hc , etc. One may ask oneself whether simil
features can be present also in other one-dimensional
systems, e.g., strongly coupledS5 1

2 ladders such as
Cu2(C5H12N2)2Cl4 @usually abbreviated CuHpCl~Ref. 3!#
and (C5H12N2)2CuBr4 @abbreviated BPCB~Ref. 31!# or S
51 Haldane chain Ni(C5H14N2)2N3(PF6) @known as
NDMAP ~Refs. 4,5!#.

As far as the model ofS5 1
2 ladder with strong rung in-

teractionJR and weak leg couplingJL!JR is concerned, one
can construct the effective model exactly in the same way
for the large-D S51 chain. The role of vacuum stateuv& will
be played by singlet stateus& on a single rung, and one wil
have three types of ‘‘particles’’ corresponding to the thr
triplet statesut6&, ut0&. Applying a strong magnetic field will
lead to closing the gap and to a finite density ofut1& states in
the ground state in the critical phase. However, in absenc
any additional couplings~e.g., Dzyaloshinskii-Moriya inter-
action or nonuniaxial anisotropies! the only possible direct
transitions from the ground state are determined by the p
cesses of theut1&→ut0& type, which, similarly to theua&
→ub& processes considered in the previous section, yie
quasiparticle peak with the resonance frequencyv105h.
Only in presence of such additional interactions providi
finite admixture of triplets inuv& one could seeuv&→ut0& and
uv&→ut2& lines, which should then exhibit the change
slope atH5Hc with the simultaneous appearance of the co
tinuum above them. Similar arguments apply also to theS
51 Haldane chains: generally, in order to observe the ‘‘
teresting’’ lines, one needs to have some perturbations all
ing the direct transitions from the ground state atH50.

In this sense, the planarS51 chain is a remarkable
model, where features such as the slope change or the
lying continuum can be observed ‘‘generically,’’ without ap
pealing to the existence of any additional interactions. Ho
ever, one may in principle hope that similar effects could
3-6
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observed in other one-dimensional spin systems as w
There are, for example, experimental indications32 that such
additional terms are really present in CuHpCl.

Some of the features predicted by the present stu
namely, the change of the slope of the ESR line atH5Hc ,
resemble the picture experimentally seen in NENC~Ref. 7!
at H.4.5 T. One might speculate that such an identificat
suggests that the actual value ofD is somewhat larger than
one adopted in Ref. 7, and is about 7.2 K, and thatJ is
respectively smaller, about 0.25 K. However, a quantitat
comparison of our predictions with the experimental data
hindered by several factors: first of all, we have studied o
T50 case, while the experimental data7 are given for the
temperatureT54.2 K, which is large compared to the ex
change constantJ. Second, since the local anisotropy axes
adjacent nickel chains in NENC are slightly tilted with r
spect to the crystallographicc axis, one actually has to in
clude a finite transversal field component into the Ham
tonian ~1!, which would lead to considerable difficulties i
the further analysis~e.g., the necessity to handle unequ
hopping amplitudesta and tb along with a finite exchange
amplitudetab). Our analysis includes also certain oversim
plifying approximations~such as neglecting interaction be
tween the hardcore bosons!. Finally, as one can conclud
from the disagreement between the results of fitting the s
ceptibility data for different field directions,7 at present there
is no reliable data on the Hamiltonian parameters for NEN
which makes a conclusive quantitative comparison rat
difficult.

In recent experiment5 on the S51 Haldane chain com-
pound NDMAP it was observed, that one of the ES
branches was just continuing into the critical region, witho
any noticeable features atH5Hc . It is worth noting that this
ki
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feature closely resembles our conclusions for theua&→ub&
processes in the planar chain: if one denotes the~field-
dependent! magnon gaps for NDMAP asD6 andD0, then at
H,Hc the abovementioned ESR branch corresponds to
thermally excited transition within the magnon triplet, wi
the frequencyv5D02D1 . At H.Hc there is a finite den-
sity of D1 magnons in the ground state, and, if we expl
the analogy with our picture ofua&→ub& processes for the
planar chain~identifying theSz511 magnon witha and the
Sz50 magnon withb), one can expect the presence of
quasiparticle peak at exactly the same frequency, in ag
ment with the experiment.

Finally, some words of caution are here in order. In t
present paper, we have studied only theground state transi-
tions, in other words the ESR response at zero temperat
and only in purely one-dimensional~1D! model. When inter-
preting the experimental data, one should have in mind t
because of the gapless nature of the ground state in the
cal phase of the 1D system, the effects of temperature
come important, as well as those of weak 3D coupling; p
ticularly, the system should be 3D ordered under cert
critical temperature. Thus, the results presented here sh
only be taken as a guide displaying features of the purely
behavior. Further work is required to analyze the possibi
of observation of those phenomena in realistic systems.
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A. Feher, P.J.C. Signore, M.W. Meisel, S. Merah, and M. V
daguer, Phys. Rev. B52, 3435~1995!.

18M. Gaudin,La Fonction d’onde de Bethe~Masson, Paris, 1983!.
19C.P. Slichter,Principles of Magnetic Resonance~Springer-Verlag,

Berlin, 1978!.
20P.W. Anderson, Phys. Rev. Lett.18, 1049~1967!; Phys. Rev.164,

352 ~1967!.
21T. Ogawa, A. Furusaki, and N. Nagaosa, Phys. Rev. Lett.68, 3638

~1992!.
22H. Castella and X. Zotos, Phys. Rev. B47, 16 186~1993!.
23Y.-Q. Li and Z.-S. Ma, Phys. Rev. B52, R13 071~1995!.
24Y. Tsukamoto, T. Fujii, and N. Kawakami, Phys. Rev. B58, 3633

~1998!.
3-7



.
v,

ett.

a,
J.

A. K. KOLEZHUK AND H.-J. MIKESKA PHYSICAL REVIEW B 65 014413
25K. Ohtaka and Y. Tanabe, Rev. Mod. Phys.62, 929 ~1990!.
26I. Affleck and A.W.W. Ludwig, J. Phys. A27, 5375~1994!; A.M.

Zagoskin and I. Affleck,ibid. 30, 5743~1997!.
27H. Castella, Phys. Rev. B54, 17 422~1996!.
28M. Krohn, Diploma thesis, University of Hannover, 2000.
29A. Luther and I. Peschel, Phys. Rev. B12, 3908~1975!.
30V.E. Korepin, N. M. Bogoliubov, and A.G. Izergin,Quantum

Inverse Scattering Method and Correlation Functions~Cam-
01441
bridge University Press, Cambridge, 1993!.
31B.C. Watson, V.N. Kotov, M.W. Meisel, D.W. Hall, G.E

Granroth, W.T. Montfrooij, S.E. Nagler, D.A. Jensen, R. Backo
M.A. Petruska, G.E. Fanucci, and D.R. Talham, Phys. Rev. L
86, 5168~2001!.

32H. Ohta, Y. Oshima, T. Sakurai, S. Okubo, T. Tanaka, K. Koyam
M. Motokawa, H. Kikuchi, H. Nagasawa, and J.P. Boucher,
Magn. Magn. Mater.226, 439 ~2001!.
3-8


