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The Heisenberg model for the fcc type-1 configuration with various types of interactions is studied with use
of the noninteracting spin-wave theory. It is shown that local anisotropy, four-spin exchange interactions, and
biguadratic interactions can lift the continuous degeneracy of the ground state through the stabilization of a
noncollinear magnetic state. Moreover, in the particular case of a pyrite structure, a Dzyaloshinsky-Moriya
term or a symmetric anisotropic exchange stabilizes the dduldenfiguration. The singlé- state is also
discussed. We prove, in particular, that quantum fluctuations favor such a case. Consequences for the magnetic
moment reduction and for the spin-wave spectra of the presence of such stabilizing terms are calculated and
compared with data. Experiments seem to indicate that the minimal model built from the nearest-neighbor
Heisenberg interaction and a stabilizing term is not satisfactory.
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[. INTRODUCTION antiferromagnet with both nearest-neighbor and next-nearest
neighbor interactions.

Physically realizabfe type-I fcc antiferromagnets are a ~ Concerning the terms to be added to the isotropic Heisen-
typical example of three-dimensional frustrated spin systemdierg model to lift the degeneracy, the great number of studies
The most general spin configuration for this kind of magneticand the fact that, nevertheless, nothing is well established
order can be written as a superposition of the three waveeflect the difficulty of the problem. First of all, an isotropic
vectors K, =(27/a)(1,0,0), K,=(27/a)(0,1,0), andK;  next-nearest-neighbor interaction does not classically induce
=(2w/a)(0,0,1), wherea is the fcc lattice constant. This any angular dependence, since it connects two sublattices of
structure can then be in singke-doublek, or triplek states. the same species. Such a contribution was already considered
The triplek structure is an extension of the 120° spin struc-in Ref. 6, where it was shown that a “strip” state with col-
ture on the triangular lattice to the three-dimensional case. Iinear spin ordering is stabilized by zero-point spin-wave
the noncollinear doubl&-state, shown on Fig. 1, the spin fluctuations. Now let us discuss the early work of Heinila
moments are along a diagonal of two planes. In the collineagnd Oja’ They studied the general form of an anisotropic
singlek structure the spins of the doubkestructure align nearest-neighbor spin-spin exchange consistent with a pyrite
themselves antiferromagnetically in the planes. Finally, thestructure. In this structure, which has a cubic symmetry, the
canonical antiferromagnetic state is realized when the spimagnetic ions are cast in a fcc lattice. The symmetry around
moments are antiferromagnetically aligned following one€ach magnetic ion in the unit cell is trigonal. The suggestion
axis of the crystal.

Since the number of internal degrees of freedom for the : ”D
ground state for a cluster g@f,n component spins is known
to beng=p(n—1)—2n, the ground state given by the sim- @
plest isotropic Heisenberg model including only nearest-
neighbor interactions has a two-dimensional infinite degen-
eracy. This extensive degeneracy must be lifted by additional : q
unknown terms in the Hamiltonian. No simple general prin-
ciples are available to select these terms. For a recent review
on this subject, see the work of Oja and Lounasfhaa.

The selection of the ground state by quantum fluctuations
for isotropic interactions was already studied in the spin-
wave calculation of Oguctét al® They showed numerically
that quantum fluctuations favor a sindtestructure. How-
ever this approach is questionable since it yields a unique
spin-wave dispersion relation, whereas a true calculation
would exhibit spin-wave dispersion relations containing, as
they should as many branches in the spin-wave spectrum as
there are magnetic sublattices in the unit cell. The present
work confirms and gives an analytical proof that the zero-
point oscillations of the spin waves stabilize the state with a @
collinear ordering corresponding to the sin§lestate. This
proof is borrowed from the paper of Kubo and Kfshssum- FIG. 1. The doublée magnetic structure in the fcc compound
ing ordering due to quantum fluctuations in the HeisenbergvinTe,.
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of Ref. 7 is that the Dzyaloshinskii-Moriya(DM) the magnetizations on sublattices 1,2,3,4 located on the
interactio® can stabilize the triplé- structure observed in unit cell ats,, as @,3,y), (—a,8,—7), (—a,—B,7), and
MnTe, (Ref. 10 when the temperatur€ is slightly below  (a,—fB,—vy), respectively. Here a=sindcose, B
the Neel temperaturd . First we determine the kind of DM =sindsing, andy=cos® are polar directional cosines sat-
interaction compatible with the pyrite structure, and thenisfying a?+ 8%+ y>=1. The triplek state is given bya
show that this form is unable to stabilize a tridestate at =g=y=1/\/3, and corresponds to the antiferromagnetic
T=0, in contradiction with the antiferromagnetic order de-state observed in the MnJecompound® Fixing, for in-
termined through Mssbauer investigations as well as neu-stance,#=7/2, in order to obtain coplanar structure, the
tron experiment2® But this term remains a candidate to ex- doublek model is recovered by putting= /4. Finally the
plain doublek ordering, as well as anisotropic nearest-singlek model is obtained fron9=0.
neighbor coupling. The Hamiltonian we start from reads
Effects due to biquadratic and four-spin exchange interac-
tions in fcc spin lattices were first discussed, to our knowl-
edge, by Yoshimori and Inagakiand Yosida and Inaga¥i Hnn:‘]GZ S-S, @
) : . LS . )
in a classical treatment of the Heisenberg Hamiltonian with
particular reference to the compound MiShe same model with J>0, and whereS represents a spin located at ttike
was used by Hirdf to explain the systematic change of mag- site. The summatiofii,j) is taken over all nearest-neighbor
netic structures among the intermetallic compounds MnS pairs. Let us recall the crystal structure of fcc. Each site has
MnSe, and MnTe. These effects are studied here by em-12 nearest-neighbor sites which belong four by four to the
ploying the spin-wave theory. other three sublattices. Following Ref. 5 we denote the inter-
Finally we discuss the alternative possibilities given byaction betweem andb sites by theab bond. The total num-
the anisotropy energies. The problem of dipolar anisotropyer of bonds is 8l, whereN is the total number of sites.
was considered by Jensen and Bkyho employed spin- Sometimes this structure is called a tetrahedral arrangement.
wave theory to study the USb compoufidranium anti- ThusH,, can be written as
monide. In Ref. 15 some particular anisotropy energy of the
form 5H=Ei:1,4(SV~d,,)2 was considered in a mean-field

framework. The magnetic iorS, being located ab, in the H””:JUZ,% (S1- S+ S1- St S1- S

unit cell 8,=(0,0,0), 8,=(0,1/2,1/2), 8= (1/2,0,1/2), and

5,=(1/2,1/2,0), we define the unit vectods along the di- +S2- S5+ S22 Sat+S3 Sa).

rection of the trigonal axis as;=(1/y3)(1,1,1), d, ) o i
:(1/\/5)(_1’1’_1), d3=(1/\/§)(—1,— 1,1), and d, We follow the standard calculation within the linear

_ o : . - _spin-wave theory based on the Holstein-Primakoff
(1//3)(1,-1,~1). Again corresponding spin-wave theo _representatioh® First we rewrite the Hamiltonian in the lo-

ries are developed, and the role of these contributions | coordinate svstem. Taking a particular sfinwe denote
order to stabilize noncollinear structures is clarified. y ' gap o

This paper is organized as follows. In Sec. Il we give a'LS. equglbglum Q|r§ct|on k()jyg“k,] th(ra].dén;.ctloq pet;pendr:cular to
general formalism for this kind of frustrated magnet to study;[j '?. an tl ezalms Xf and the thir |rect|ohn Y)- Tf uhs V\Ile
the dynamical quantities 8t=0. This formulation is used in ti((:aem'(la'h&slanm\i\ia C;(ﬁ(gg;ii;ﬁ;ﬁ?g a'ltﬁzarﬁiltosr:tignoirf tgrrits- of
Sec. Il to show that quantum fluctuations select the sikgle- th " amin P ¢ by i tg duci f Kind f
configuration. We conside(Sec. V) anisotropic nearest- € sSpin-wave operators Dy -introducing four xinds o

. . . . - Holstein-Primakoff operators, b, ¢, andd for sublattices 1,
neighbor exchange interactions in the pyrite structure. Onl)é 3 and 4 respectiv%ly Neglecting terms of more than sec-
the anticollinear doublé&- state can be stabilized. Section V 7' 7’ ’

is dedicated to a study of the four-spin exchange interaction nd orde_r of operators, we obtain the f(_)llowmg expression of

and biquadratic couplings. In Sec. VI we treat the case o e Hamiltonian in terms of the Fourier transforms of the

local single-ion anisotropy. To discuss neutron-scattering ex- 0se operators:

periments, in Sec. VIl we calculate the magnetic moment 1

reduction in the ground state, and compare our numerica‘i:_ZNs+Z (ng+ ”EJF ng-+ nﬂ)

results with experiment. In Sec. VIII the general characteris- k

tics of the spin-wave spectra are calculated and discussed. A

rough comparison with experimental magnetic spectra is +2 [Ay,C,C,(ab_y+cyd_y) + A, CyC,y

given. We compare also our results with the theoretical work k

of Jensen and Bak Finally Sec. IX gives a summary of the
= . LD X (bc_+ad_y)+A4,,C.C(ac_+bd_)+H.c

present work and some insight for future investigations. (BC it ad 1)+ ALxCo A1t i) ]

+ ZK [B,,C,C,(alb+cldy) + By, CCy(blc, +ajdy)
II. LINEAR SPIN-WAVE THEORY

A. Hamiltonian — B,.CxCo(ale +bldy) +H.c, (2

In order to consider single; doublek, and triplek states where A, ,= 1(1—2 cogdsirfe+cos 2p)+i cosdsin 2p,
simultaneously, we choose in full generality the direction of A, = 2(1—2 cog6coge—cos 2p)—i coshsin 2p, Ay
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=sirte, B,,=sirf0sire, B,,=sitdcode, B,,=coss, C;  operatorsVy =(abjcldia yb_,c_,d ). To ensure the
=codak/2)] (i=x,y,2), andnék‘=aiak_ The summation of conservation of Bose commutation relations, we have to di-
the wave vectok is done over the first Brillouin zone of fcc. agonalize the matrigM, whereg is the diagonal matrix
Note that we have neglected the linear terms of the operators,
since they will disappear automatically when the classical '
spin orientations are in equilibrium. -1/’
| being the 44 unit matrix, and where the matrix1 is
B. Exact spectrum

To actually calculate the spin wave spectrum we have to My My
find a transformation of Bose operators that would diagonal- = M M)
ize Hamiltonian(2). This transformation is a Bogoliubov- 2 !
Valatin transformation involving a column vector of eight The expression of the real matrix, is

1 B,C,C, -—-B.C.C, B5,C,Cy
Mo B,C,C, 1 B,CiCy, —B,LC\C,
Y| =B CiC,  ByCiCy 1 B,.C,C, |’
B,,CCy —B,CC, B,C,C, 1
|
whereas the complex matri¥1, looks like The energies are measured in units of the spin-wave ve-
. . locity, i.e., the prefactov =4JSis understood. As expected
0 AVCC, AGCC,  ALCKCy from the original classical spin configuration, it is satisfac-
A’y*ZCyCZ 0 Ainny A,C,C, tory that this set of spin waves display_s the fuII_ symmetry
My= . N . between x,y, and z in the triplek direction
AlxCz A CiCy 0 AyLyC, (1/y/3,1//3,1//3). Obviously, the above energies obey the
Ai’nyCy A,C,C, A;‘szCz 0 usual invariance under the chandes> —k; .

Around the pointl’, k=(0,0,0), located at the center of

The eigenvalues are doubly degenerate solutions of a vekpe Brillouin zone, the explicit expressions of the magnon
messy fourth-order equation. Nevertheless, and although Wenergies above are

were unable to calculate the exact form of the Bogoliubov

transformation, the explicit expressions of the solutions are 1

obtained analytically through theapPLE mathematical ma- i 2 2 2

nipulation languag¥ for the three structures. They are quite (k) 4\/(akxky) *(Blyka)™ (k)™

simple, nicely reflecting the symmetry of the problem. In-

deed, our calculation yields to spin-wave dispersion relations = J(ak) %+ (vky)2

containing four branches for the two noncollinear states and 02(K) =Vl aky) ™ (vky)%,

two branches for the singlestate—as it should, since there

are as many branches in the spin-wave spectrum as there arevs(k)= Viak)?+(Bky)?2,  wa(k)= \/(,ka)2+(yky)2.

magnetic sublattices. The eigenvalue which is symmetric

with respect to permutations of the cosines can be written ahese results show the presence of both ferromagnetic and
antiferromagnetic aspects in the present system, the qua-

w1(K)=Q(Cy,Cy,Cr) dratic behavior with wave vectde indicating the ferromag-

=(72[(1—CXCZ)2—C§(CX—Cz)z] netic character of the(k) mode.

+a’[(1- CXCy)z_ C2(Cx— Cy)z] C. Analytical way
+,82[(1—CyCZ)z—Ci(Cy—CZ)Z])l’Z. 3 Now, based on these results, we develop an analytical
proach in order to tackle more complicated expressions of
e Hamiltonian. The starting approximatfois to take the
sublattices to be identical. Although we have four magnetic
ions in the basic cell, we do not distinguish them when we

The other spectrum branches are straightforwardly deduc
from the expression above by changing the sign€,ofC, ,
andC, respectively:

K)=Q(-C,.Cy.C,), K)=Q(C,,—Cy.C,). make the Fourier transformation. The resulting effective
02(K) == Cx,Cy o) w3l =02(Cx, = Cy . C) spin-wave Hamiltoniam 4 is expressed in term of the Fou-
w4(K)=Q(Cy,Cy,—C,). (4) rier transforms of two Bose operatosig and al as
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Heff=—2JS°+4SJ provides us with a systematic way to build up the spin-wave
theory when more complicated Heisenberg Hamiltonians

1 having the general expression of are considered.
sz Pkalak-l-EQkaka,k—l— EQlalatk s g g p Ea)

(5) D. Self-consistency of the calculation

where In general, the integrand occuring in a spin-wave calcula-
tion based on the framework described before depends on the
P=B,,C,C,+ B,C,Cy— B,,C,C,+1 (6) integration variables through the cosir@sin a very specific
way. Indeed, the spin-wave dispersidigs.(3) and(4)] as
well as the parameters of the Bogoliubov transformation
Q= A4,,C,Cy+ A, CxCy+ A, C,C, . (7)  [Egs.(6) and(7)] are invariant with respect to the changes
C,=—-C,, i=x,y,z. This invariance, which we now assume
The spin-wave operatogg andgl are defined through the to be displayed by the integrarf¢C,,C,,C,), has two im-
Bogoliubov transformations portant consequences: first a considerable simplification of
the integration on the Brillouin zone; and, second, a very
1 + g _ satisfactory self-consistent description of the spin-wave
ak:E[Ck(gk'i' ) S(E—ELplexp(—idy), k>0,  physics. Indeed, the main applications of a spin-wave calcu-
lation are to calculate the reduction of the spontaneous mag-
1 netization by quantum fluctuations &&= 0, to determine the
o =——[C &= £ )+ S+ £ ) Jexp—idy), k>0, temperature dependence of the spontaneous magnetization
J2 and to estimate the critical temperature as the temperature at
which this magnetization vanishes. In general, when, as in
a0=(CO§0+SO§$)exp(—i<DO), our case, there are several sublattices, different equations
whereC, = cosh®, andS, = sinh®,, and Lﬁg?kt%géﬁiﬁgilzﬁ)lutlons, thus rendering the overall frame
tq_ Cret et Now we proceed to prove that, within the method of cal-
L& ]=dcies Léiotie] =18 801=0. culation we have adopted here, these solutions are in fact
The coefficient’,,S,, and®, are chosen so that the off- identical, a very nice characteristic of this framework. Let us
diagonal terms vanish: state the problem very precisely. In fact, we have as many
possibilities as the number of sublattices to manage the cal-

and

2 1( Py +1> g2 1( P\ 1) culatié)n. Indeed, we hha\f/e justbpl)resented z sodlution forrec;
K=5| T/ ) 5| T 1> sponding assuming the four sublattices to be identical, an
2\ JPi-lQd? 21 JPi=lQd? which leads to thaw;(k) spin-wave dispersion and the Bo-
goliubov parameterfEgs. (6) and (7)]. However it is also
COSZ(I)k:E 1i_Rer sir?QDk:E( 15 Rer)_ possible to work with one of the three remaining dispersions,
2 1Qul / 2 |Qul say w,(k), the corresponding Bogoliubov parameters being
. o deduced from Egg6) and(7) by the same changes allowing
The diagonal Hamiltonian reads us to obtainw,(k) from ws(k). Then the expression of a
1 ' given integral on the Brillouin zone, when the dispersion
Ho=20 | = 5Pict VP [Qul*+VPi- |Qk|2§:§k). chosen isw;(K), looks like

The spin-wave dispersion can then be evaluated to give I(wz)=f f f dkdk dof(—Cy.C,,Cy),
BZ

03(K)=0(Cy,~Cy,C) ={¥?[(1-C,C,)*~Cy
X (Cy—C,)?]+ a’[(1+C,Cy)?— CA(C,+C,)?] knowing that the choice,(k) gives

+B%(1+C,C,)?>~C4(C,+C2J}*2 (8)

T = dk.dk,dk,f(C,,C,,C,).
We note that the solution of the approximated method coin- (@1) fffsz Ak die(Cy.Cy.Co)

cides withwz(k). Thus by this method we can recover the

exact result when it is realized that, from the underlying  he gyillouin zone of the fcc lattice is described in gen-
(three-dimensionalsymmetry, the complete set of solutions g5 1y 5 set of ten integrals. The invariance of the integrand,

can be obtained from a particular solution by some substitu;, 4o the usual changks= — k; allows us to reduce this set
tions of the cosine€; . Indeed, to obtainv;(k) one has to (1 ihe three integrals '

substituteCy= — C, in the expression above, whereag(k)

andw,(k) are deduced fronw;(k) by changing the signs of i (m/2) K ola

C, andC, respectively. Thus the complete set of solutions is ll(f):j dk f ‘dk j dk,f(—C,,C,,C,)
obtained from the approximate result straightforwardly. This o “Jo “Jo Y oy e

014411-4



MAGNETIC ORDER IN THE FRUSTRATED HEISENBERG . ..

2mla 3mla—ky—k,
2(f)—J dkf f
wla)—k,

xdk,f(—C,,C,,C,),

2mla (3m/a)—k, (8mla)—ky—k,
|3(f)=f dsz dkxf
0 0

wla
Xdkyf(_CX!Cy!CZ)y
and the final expression is
Lwz)=8[11(F)+1(f)+15(F)].
Using the invariance of the integrand,
f(CX,Cy,CZ)Ef(—CX,_ T Z)

it is possible to rewrite these integrals as

2mla
I,(f)= f dk J
(mla)+k,

12(f)

(ﬂ-/a)+k (mla)+ky—
f f f dkyf(CX,Cy,Cz),

mla (mla)+k, 27la
|3(f):f dsz dkxf dk,f(Cy.,Cy.,C,).
0 0 (mla) +ky—k,

Consequently the full integration reads

mla 2mla 2mla
Twp=8| "k, [ ak [ aktic,c.c0.
0 0 0

(10)
=3, the integration on the Brillouin

9)

2mla
Xfo dk,f(Cy.Cy,Cy),

Now for the choicei
zone is

I(ws):fffBdeXdkydsz(cX,—Cy,Cz)

=8[11(f)+1(F) +15(f)].

Again, using Eq.(9) we rewrite the first two integrals by
changingC,= —C,.. The third integral is modified by the
changeLC,=—C, andC,= —C,, and the overall result is
identical to Eq(10). Using the same tools it is easy to obtain

L(wq1)=

wla 27la 27la
=8f dsz dkxf dk,f(C,.C,.C,).
0 0 0

(11)

() =T(w3)=T(w4)

PHYSICAL REVIEW 65 014411

E. C-parity invariance

There is a set of transformations on the boson operators
leaving Hamiltonian2) unchanged. Indeed, let us consider a
pair of sublatticega,b). The transformations

CaC t=—-d,, (bl l=-c,

amount to interchanging pairs of sublattidesb) and(d,c)
while making asr rotation of the ion spins about theaxis.
The invariance properties of the cell unit under rotations of
the crystal axis allow us to obtain two other transformations
of the same kind. By exchanging the sublatti¢ash) for
(c,d) and making ar rotation of the spins about theaxis,
we obtain

Ca,C

71:Ck, Cbkcil:dk,

whereas

CaC t=—-by, Ccl t=-d,

corresponds to changin@,c) to (b,d) and to executing a
rotation of the spins about theaxis. These laws are straight-
forwardly readable in the expressions for the sublattices in
the local coordinate systegn{. They allow us to discard
eventual terms which would be incompatible with the rota-
tional symmetry of the unit cell of the crystal. For instance,
in a general way, they forbid a spin Hamiltonian which
would not be sign invariant under these transformations.
They cease to be good selection rules when the environment
of each metal atom is not compatible with the assumed in-
variant interchanges. This is the case of the mineral pyrite
structure, which can be considered as a fcc grouping of metal
atoms and anion pairs. The important changes in the cou-
pling between the magnetic ions brought by the presence of
these four anion pairs were analyzed in Ref. 7. Thearity
invariance was already introduced in the context of double
perovskite material¥ Such compounds, the physics of
which are governed by electrons which hop among or are
localized on metal ions, are described by a Hamiltonian com-
bining both antiferromagnetic exchange and double ex-
change. In order to take all of these effects into account at
the same time¢-parity invariance seems a very useful tool.
We think that this invariance is a first-step toward a first-
principles calculation for selecting terms in the Hamiltonian.

Ill. ORDERING DUE TO QUANTUM FLUCTUATIONS

Taking into account the four branches of spin waves, the
shift of the energyAE of the ground state due to quantum
effects is given by

4SJ_ Y 2

1514

- —PL+ (PO?=1Qk? ).

This proves the self-consistency claimed at the beginning of
this subsection. Moreover, in the present framework, we can
replace the cumbersome numerical integration on the fcdhel index refers to the branch of spin waves. The expres-
Brillouin zone by a simple cubic integration. Thus we finally sions ofP} andQ; are given in Eq5(6) and(7). As noted in
obtain a powerful tool to build the interacting spin-wave Sec. I, the other quantltlel's‘I andQ}, for =2 and 4, are
theory of such spin systems. deduced from:’3 anko by changing the sign of, andC,
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respectively, Wherealéﬁ and Q& are obtained from Eqs6) ¢= /4 in the calculations. Obviously the actual conclusion
and(7) by changing the sign of, . The shiftAE becomes is confirmed, the zero-point energy favoring the angle of
magnetizatiord=0, an already known resuit.
AE >
4S) <
IV. PYRITE STRUCTURE, DM TERM, AND SYMMETRIC
Let us point out that the strength of the interaction and the ANISOTROPIC EXCHANGES
spin of the metallic ions involved appear as a prefactor. We
now show that this contribution stabilizes the state with a
collinear ordering, i.e., the single-state. The calculation In this section we consider that the spin-spin interaction
parallels that of Kubo and Kishi on quantum fluctuations inHamiltonian contains, in addition to a nearest-neighbor ex-
the frustrated Heisenberg model with next-nearest-neighbdihange interaction, an antisymmmetric part, i.e., the DM ex-
interaction® We first define two independent variables change
=(a?+ B?)12 ando=(a?— B?)/2. Then by exchanging the
summing variableg, andk,, we keep a formally invariant
whereaso becomes— . It follows readily that SH :(E) Di,j (SXS),
i

-2+ > w|(k)>. (12
1=1,4

A. Pyrite structure

Ek w3(k,0',7')=; w3(k,—o,7).

where the components of tlliéj vectors(18 constant param-
eters introduce@b initio) are restricted by the symmetry of

It is then straightforward to deduce . .
the crystal. The most general forms compatible with the sym-

J metry transformations allowed under the pyrite structure

gy ; w3(k)<0. were studied in Ref. 7. Each bom is characterized by an

orthonormal basis §; ,t;; ,u;;) such that the basis for the

for a#0. bondqr is (sq,tqr,Uqr) = (RS ,RE; ,RU;j), where the ma-
In the same way, we easily see that trix R transforms the two nearest-neighbor bonds into one

another. This basis is locally well defined through the geom-
_ etry of the pyrite structure given by the environment of Te
; wl(k’U’T)_; wy(k,=0,7), atoms which are grouped in pairs with the magnetic ions in
the center. In general, the magnetic ions have six nearest
neighbors that form an octahedron with the metal atom at its
> [wa(k,o,7) + wa(k,o,7)] center.
X For instance let us discuss the case of the bond 12. In the
general frame the two nearby anion pairs of the’?Mions 1
= ; [wa(k, =0, 7) + w4(K,— 0o, 7)]. and 2 have the locationsHu,¥u,1¥u) and (+u,1*+u,
Fu) respectively. This induces the local frame
Finally we have

aZAE<0 1(o 1,1, t;,=(—1,0,0) 1(011)
0-_ - S = 1_ 1 1 = - L 1 L u —— ’ L .
Jdo . 12 \/5 12 12 \/E

This means thafAE takes its minimum at the minimum or

maximum Ofaz—ﬁz for a fixed value 0fa2+ ﬁz. From the At the end we obtain the parametriza’[ion

overall symmetry of the set of energy spectra, the same result

holds if we consider g2,7?) or (¥?,a?) as independent

variables instead ofd?,3%). Thus the minimum ofAE can ATM= (1 u[D1(ujj S — S u;j)

occur only at @?,8%,v%)=(1,0,0) or (0,1,0) or (0,0,1). ) )

These three states correspond to three equivalent two- +Do(ujjti; —tijui) + Da(sijti; — ti;sij) 1,

sublattice structures with collinear ordering, i.e., the canoni-
cal antiferromagnetic states. For instance the choice (0,0,1)here
leads to the following spectra

©a(K)=(1-C,C)*~ C}(C,—C)?, cfih
e =]
] |

wp(K)=\(1+C,C,)?~ CJ(C+C,)% (13

This quantum effect can also be estimated numerically by; (r;), being the positions of the ionsandj respectively.
computing the shift in energy of the ground state, as a func- Finally, the resulting DM vectors associated with the set
tion of the anglef. For the sake of simplicity, we have set of bonds are
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D, D3 -D, Cy=—(S7+SJ+SI+S))cosfsing+ (S5 + S5+ S5+ S5)
D= =D2|, Dy=| “Di|, Dyu=| Ds [, X cos 29 cose— (S{—SJ+SI—S))
D D D
3 2 ! (14) X (sin 6 cos 2p+ cosf cose) — (Si+S5—S5—S5)
X (c0s 20 sing+sin 26 sing cose),
D, _p, b, Co=—(Si+ S+ S5+ S))cose+ (S+ 5 -5~ )
Dy;=| Ds |, Dy=| D1 |, Da=| D2 |, Xsing+(S{+SJ+ S+ S])cosfsing
-D; —D> D3 / (15 +(S]—SJ—S7+ S7)(sin 8+ cosh cose),
Cy= —(S7+ S+ S+ S])cosh cosp— (S{+ S5+ S5+ Sj)
where D,=(D4+D%)/\/2 and D3=(D5—D4)/\/2. These Xcos 2 sing+(S{—S7+S{-8])
vectors can be gathered by paii3;§,D3,), (D13,D54), and X (sin @ cos 2p— cosé cos<p)+(§+ %‘%‘55)
(D14,D,3). Each member of the pair is deduced from the
other by letting componert, x, ory, respectively, remain X (€c0s 20 cosg+ sin 20 sing cose).

fixed and changing the signs of the two other COMPONeNtSrha choicesd= /2 and = /4 give Cy=—Cy=— \/E(Sé

Tfhlt?] is th_et pa:tiCL{[Iar formulation required by the symmetry+8§) andC,= — \2(S+ %)+ S7— SJ— SI+ ] . They cor-

orthe pyrite structure. respond to the doublk-state, which is stabilized iD;
=D,;=D andD,=0. Expression$6) and(7) are now com-
pleted by

B. Spin-wave analysis
Linear terms in the boson operators appear in the Hamil- 5DMPk:E(CyCz_ C,Cy),

tonian when it is written in the Holstein-Primakoff represen- 2J

tation. The spin configurations which are kept in balance by D

this Hamiltonian have to annihilate the coefficients of these  5;,,,Q,=5=[C,C,—C,C,+i\2(C,C,+C,C))],

linear terms. With the parametrization above, these coeffi- 2J

cients are of the forn€,D;+C,D,+C3D3, where and the excitation enerd¥qg. (8)] becomes

w3(k)=(1-C,C,+rC,C,—rC,C,)(1+C,C,+C,C,+C,C,),

where the ratior =D/2J is constrained to obeyr|<1. A and P; completely specify the nearest-neighbor coupling.
careful examination of the resulting full spectrum shows that-rom the linear terms of the spin-wave theory, we conclude

the set of excitation energies is an even functiom.of that neitherP,+P3 nor P, lifts the degeneracy of the
ground state, whereas the extrema of the contribution given
C. Symmetric anisotropic exchanges by P;—P3 are determined by

There are other ways which have been proposed to stabi-
lize the pyrite structuré,in particular the Hamiltonian sing( S5+ S5+ S5+ S5) — cose( S+ S5— S5— S§) —sin6(S?

_Q7_q7 7 7 7 7 7)
5H=<Z>S'Aij'5j, (16) S]—S]+S]) +cosf cose(S/+S]+SJ+S))
1]
where the symmetric interaction matrix of the nearest-
neighbor interaction is

+cosfsing(S/+S]—SI—-S])=0.

Obviously this kind of contribution has nothing to do with
the fcc type-I configuration.
Aij = P1Sij - sij + Patij - tj + Paujj - Ui + Spa st + £ 85) Concerning the anisotropic syn:/metric interactid®s,
I o the termsS;; and S{7)=(S;,—S,3)/\/2 lead to conditions
7 Soal(Uij iy 83 Uiy ) Saal(Sy Uiy + Uy Sy)- which alsosf:annot be fulfilled by ?)his configuration. The con-
The isotropic nearest-neighbor coupling constdrtan be  dition given by the contributiors™) = (S;,+ S,3)/\/2 looks
defined as)=P,/3=P,/3=P4/3. In fcc systemsP,, P,, like
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(sin @ cos 2p— cosh sing)(S]— SJ+S7—S7) Then the mapping$;— Szexf +i(w/2)] and S — S/,exp
[*i(«/2)], together with Eq(17), transform the Hamiltonian
—C056005¢(S]7_7+S£7_S§7_SZ17)+(§_%—'—%_Si) Hnn+Hdm to

X[(sing+cose)cos 20+ sin 20 sing cose =0,

J
— + o~ — ot + o— — ot
showing that this kind of interaction selects a doublstate Hant Hdm_§ 021') (S1Sj5+ S1S5t S2S4+ S25)
with the choice cog=0 and sinp=—cos¢. Expressiong6) '

and(7) now possess the adding terms |J] o o
5 GED (S j2+315j+2+3+1 j4+3151+4

SsP 1+ CXCZ)
=r , o o
STkTs 2 +S+2513+32 j+3+3+35j4+33 j+4)-
rs _ This anisotropy is different from the symmetric anisotropy
0sQu=75 [~ CiCo i V2(C,C,+C,Cy)1, interaction studied Sec. IV C, which also leads to a dolble-

state.
wherer g is the ratio between the antiferromagnetic coupling
constant and the strength of the stabilizing term. The explicit
expressions of the corresponding magnons energies are
rather messy, and we omit them here.

V. FOUR-SPIN EXCHANGE INTERACTIONS AND
BIQUADRATIC COUPLINGS

Effects of the fourth-order interactions among localized
D. Mapping the DM interaction into an anisotropic exchange ~ SPins have been considered in a fcc single-band Hubbard
coupling model near the insulator limft. This kind of interaction was
shown to lift the degeneracy of the structure with equivalent
wave numbers to make them noncollinear.
The fourth-order perturbation theory gives rise to two-
d four-spin interactions and also biquadratic and three-spin

It was argued by Kapldf and by Shekhtman, Entin-
Wohlman, and Aharorfy that, in the case of two sublattice
magnetizations, the DM interaction can be eliminated by a4,
gauge transformation of the spin variables. In fact the DMiyioractions fors larger than one-half. The four-spin interac-
interaction is mapped into an anisotropic exchange coupling;, - '1as the form
This anisotropy is canceled by the superexchange anisotropy
under some assumptiofi§indeed, as a concrete example, let (7)_ . . . .
us consider the following Hamiltonian which couples two oMy =KI(S1S)(S5: S +(S1-5) (S S)
spins with a DM interaction pointing in thedirection: F(S-$)(S- ST, (18)

and gives the conditions

H2=JZ S1 St DZ (S48~ S1S)-
(.J) (.j) . . .

sin 26[ — 1+ 2 sirf4(sin* o+ cos )
+cos 20](S{— S5+ 85— §) =0

By a rotation about the axis by an alternating angle,

- + Ja T . @
31—>Slexp( *is) sz*SJzGXF{ tiz], @D Sin?0 sin 4 (S — SJ+ S7—S7)=0.
where tarw=D/J, this Hamiltonian is transformed to The solutions of this system can be divided into four classes:
L (1) sin#=0, (2) cosh#=0 and siRp=coSe, (3) sirfe
Ho—= fo sS4 ] s =cose and codh+cos ¥=0, and (4) sife=cose and
272 <.E,> NICICTARICH) @En S1S2 —cogh+cos $=0. The two first solutions are common to

SH) and 6H{,). They correspond to the singke-and
The extension of this kind qf result to three-di_mensionalf[j.OUb lek state_z, (rjesbpect;\ﬁly. -gh;;?_'r)d and fout_rthlpo_srsr,:bnr
frustrated systems is not possible in full generality. Indeed' > @ré provide WHiy" and 6Hy ", respectively. The
when the DM interaction does not point in a definite direc-third case corresponds to a trifiestate. The(ﬂ)nal configu-
tion, it is impossible to write this interaction under a form ration is again a single-state. Thereforeg?y " stabilizes
which does not display imaginary terms. However, an excepthe three fcc states potentially, wherexs(,,) cannot put the
tion to this is the classical version of the DM interaction triplek state into equilibrium. The classical energies given
stabilizing the doublée structure, found in Sec. IV B above. by 8’ areK/2, K, andK/3 for the single-, double-, and
Indeed, by taking Eqs(14) and (15) with the conditions triple-k states, respectively. Therefore, a positive coupling

whereS*=S+iS and 7=J+iD.

D;=D3;=D andD,=0, we obtain constantk favors a triplek structure, whereas a negatike
stabilizes a doublé- state. The other Hamiltoniaa#,’

H. =D y _ X X ) givesK (§|nglek) and—_K (dou_blek) as cla§S|caI energies, -

dm <.§,:> (S252~ 152+ $15a~ 1S thus putting the canonical antiferromagnetic state into equi-

C ox librium with a negative coupling and the douliestate into
—S§553+ 5,553+ S35, F4S3)- equilibrium with a positive coupling.
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The spin-wave energies are easily obtained from the exis plausible that the magnetic structure corresponding to

pressions MnTe, is also stabilized by the biquadratic term.
2 2
—1_ 4KS _ 2KS VI. EFFECT OF THE LOCAL ANISOTROPY
P=1 97 +11 33
In this section we consider the case of local single-ion
X (B, ,C,C,+ By, CiCy— B,,C,C,), (19 anisotropy, and use a Hamiltonidnvhich has to be added to
Ho,
2KS?
Q= 1_T (A, CyC,+ Ay C,Cy+ A C,C)). 4 ,
(20) 8Han=Dan, (§-d)?, (22

Introducing the parameter whereD,,, is the anisotropy coupling. The resulting equilib-

2K S? rium conditions given by the linear terms do not depend on
( — ) the particular sublattice=1, . . . ,4considered. They read

B 3J
- 4KS?\ Dan
J— 7] =
(1 o3 ) \/Ea(beJrcS) 0,
we obtain where
w1(K)={y?[(1-BC,C,)?~ B2C3(Cx—C,)?] a=(sin¢+ cose)sin 6+ cosé,

+a’[(1- BCny)Z_BZC§(Cx_ Cy)z] b=(sinp+cosp)cosfd—sinf, c=cose—Ssine.
+p%(1-BC,C,)?—B2CZ(C,—C,)*|}*2 Thus the stable structure is the one that fulfdls 0 (1) or
1) b=c=0 (ll). The first condition is satisfied by a doukke-
structure with sinp=—cos¢ and co¥=0. The second con-
The three other energies are obtained as explained abowdition is fulfilled with the choices sig=cos¢ and tan 2
From this spectrum we conclude that, in order to ensure that —2+/2, and corresponds to a tripkestructure. The classi-
the argument in the square root is always positive in thecal energy given by such a contribution &,,=4D,,S*
whole Brillouin zone, the parameté has to obey to &3  whereasd&,,=8D,,S*3 in the doublek case. Thus the
=<1. Itis easy to verify that this condition is satisfied by thetriple-k state is stabilized by the anisotropy energy with a
ratio K/J if 0 <K/J<3/25%. negative coupling.
The suppression of the linear terms given by the biqua- Accordingly, expressioii3d) is modified as
dratic term

A 2
w1 (k)= 72 1+ P Cxcz> - Ci(cx_cz)z}
SHpiq=1 2, (S-S)°
(1) A 2
requires the same conditions as those corresponding to the +a?|| 1+ f—cxcy) —Ci(cx—cy)z}
four-spin interactiorﬁHfJ). However the classical energies
are now §, 2j, and 3/3 for the single-, double-, and triple- ) A 2, L[\
k states, respectively. Again a positive constafavors the +B |1 E_CVCZ —Cu(Cy=C)
triple-k structure, whereas the singtestructure is stabilized
by a negative contribution. The dispersion energies are given (23
by the same expressions as those given for the four-spiwhere A=—D,,S%*/J (triplek cas@¢ or —2D,,S%3J
interaction, with a trivial change of coupling: (doublek case. The four branches of the spectrum are
i gapped antiferromagnetic modes with a common dap
ﬁ :2_1 given by
9 3 P
The antiferromagnetic substance MnO is known to have a A:A(Z+1)'

critical temperature Ty=116 K), a Curie temperatured&

—610 K), a transverse susceptibility, and a temperature ddn order that the spectrum deduced from E23) be well
pendence on the sublattice magnetization consistent with thgefined in the whole Brillouin zone, it is necessary that the
idea of biquadratic exchangéThe compound MnTeshows  coupling has to remain positive. Interestingly enough, this
similar behaviors Ty=86 K and §=—528 K). Moreover, constraint discards the possibility of putting a trijlestate

in both compounds, the variation of the magnetic moment amto equilibrium.

a function of the temperature is sharper than the Brillouin Expression(22) is not the only possible form of the an-
functionBs;, expected in a mean-field approximation. Thus itisotropy energy; it might in general also include terms with
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spin projections on vectors not necessarily identical to the
spin directions. For instance, we can consider a cyclic per-
mutation of the indices 12 1

SH =D [(Sy-dp)2+ (S;- dg) 2+ (Ss-dg) 2+ (Sy-dy)?].

>
=3
o

However, let us point out that this kind of contribution is 9
discarded by the symmetry criterion formulated by the
C-parity operator(see Sec. )l

0.6
04 4
0.2

VIl. MAGNETIC MOMENT REDUCTION IN THE
GROUND STATE 0.0

The interpretation of a magnetic moment value measured ]
on an antiferromagnetic compound is faced with the task of
Separating Cova|ency reduction from Zero_point quantum FIG. 2. Calculated spin-reduction curve given by a DM term for
fluctuation effects. According to the spin-wave analysis dethe doublek state.
veloped here, the quantum reducti¢aS) in the ground

state can be formulated as V J Py
BZ

VPe—1Qu?

(49)= 2(2m)°

(AS)=(AS);=(AS),=(AS)3=(AS),
A |Qul?
1 Pl X(l—A—l—2 2)—1.
:ﬁlzmz (x/(pk)2_|Qk|2_1)' 0 Pu(Pi—1Qul?)

(25

Since we know from Eq(11) that the integral is definite

where positive, a careful examination of the signs of the constants
A; leads to the conclusion that the stabilizing contribution
| increasegdecreaseghe spin reductiofA Sy with a negative
:i k _ (positive Cs. In fact, as we now discuss, a numerical study
(AS)=5- 2> 1 (24) : . al stuc
2N % NG extends this conclusion to every value of the coupling ratio.

In Figs. 2—4 we plot some spin reductions given by dif-

: : . ferent stabilizing terms as a function of the ratis C5/J .
These expressions are independent of both the Spimd The curve given by the local anisotropic term for the triple-

the antiferromagnetic coupling and give identical results as k state is nearly identical to the result shown for the double-

?Afguéslegnaebg\éféiEsegl?;zc%;gi %fjr;:br?ggcb%gnygittssof?g'iﬁestate. These plots reveal very pertinent general trends of all
thei? no’minal valusS at T=0. Assumin g_ 2% where) is mstabilizing terms of noncollinear states. Indeed, as expected,
R gr=a, (AS) shrinks for positiver as this ratio begans to increase.

the volume of the portion of crystal used in defining the . : .

o Moreover, with the exception of the DM term, the spin re-
boundary conditions, we have foudd S);, =1.016ug and : . . i
(AS)y =0.794ug for the double- and triplé- configura- duction continuously decreases up to the regime of an ex

tions, respectively. Such large spin reductions are expected |,
from frustration effects.

Now we discuss the eventual modifications coming from
the various types of anisotropy and interactions likely to sta- 08
bilize these configurations. First we present an analytical ar-
gument predicting the effect of these interactions following
the sign of the ratio of the antiferromagnetic couplihgnd
the strengthCg of the stabilizing term. Indeed, it follows
from Egs.(19) and(20) that the parameters defining the Bo- 0.4
goliubov transformation diagonalizirifd,,,+ Hs (Hs being a
biquadratic, four-spin, or anisotropic contributjazan be ex-
pressed in full generality asPy=A,+AP, and Qp
= A(Qy, where we recall thaP, andQ, are the parameters
which diagonalizé,,,. Let us assume that the coupling con- 0.0
stant of the stabilizing contributiok g is small compared to
J. Consequently we can take the constAntas a perturba-
tive parameter and expand E@&4) to first order. This results FIG. 3. Calculated spin-reduction curve given by the local an-
in (keeping one branch of the spectrum isotropic term for the doubl&-state.

A
2]
v

r
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1.0 VIIl. STABILIZING EXCHANGES AND SPIN DYNAMICS

A. Theoretical predictions on the spectrum

0.8 . . . .
In general a magnetic excitation spectrum consisting of

branches with longitudinal and transverse polarizations is a
06 - characteristic of noncollinear systeffsindeed, in a collin-

ear structure all the excitations are transverse. Below we give
both kinds of spin-wave dispersions along various directions
of high symmetry in the Brillouin zone. Our main interest is
twofold. First, from the results given by the simplest Hamil-
0.2 tonian[Eq. (1)], we extract the essential theoretical predic-
tions, then, investigating the effects of stabilizing terms, we
show that these predictions remain essentially unaffected.
0.0 02 04 06 08 10 Second, these predictions are compared following the type of

; noncollinear structurédoublek or triple k) considered.
The spin-wave energid€qgs. (3) and (4)] have the fol-

FIG. 4. Calculated spin-reduction curve given by the biquadratiqowing expressions a|0ng the Symmetry direction (Q’O'
term for the triplek state.

<S>

04 4

0.0

®1(0,00) = w4(0,09)=0,

tremely strong stabilizing term. This suggests that this quan- 02(0,00) = w3(0,00) =2a1-0q?, (26)
tity_ vani§hes §mppth|y in the rl#o. limit, rat.her than where q=coska/2), whereas for the direction{({,0) we
maintaining a limiting value or becoming negative. Also we obtain[now denoting co$&/242) by ]

have observed that, at fixedthe spin reduction sizes given

by the blqugdratlc anpl anls_otro_plc terms are ne_arly the same, 01(9,9,0)= w4(— 9, —,0)
when the triplek configuration is considered. Finally, let us

emphasize that for the anisotropic contribution the ratias =J(1-q)(1-g?)(1—q+2qa?),
to remain positive for both noncollinear states, whereas, with

regard to the biquadratic term, a positivés again required  w,(q,q,0)=w3(—q,—q,0)

by the stabilization of the tripl&-state. Thus we have shown 5 — . .
in full generality that, in this context, the existence of this XN(1-09)[1-2q(8°— »)) +a*(1-2a7)].
state results in a sizable diminution of the spin reduction, at (27)
mean. Now we briefly discuss the DM term. Let us remem-
ber that it only can stabilize the doubkestate, thatr|<1,
and that(AS(r))=(AS(—r)) Thus, again in this case a
shrinking of the spin reduction induced by the stabilizing
term is predicted. Obviously these conclusions are not true if
the spin Hamiltonian contains supplementary terms. ©2(0,0,0) = V(1 -q*)(1+ 39"~ 49"B%)

The triplek type-I structure is common to many com- where nowq=coska/2,/3). The two remaining components
pounds which sometimes display similar prope(ties. In parof the spin-wave spectras(q,q,q) and w,(q,q,q) are de-
ticular USb, NpSb, and NpBi have very similar 8ledem-  duced fromw,(q,q,q) by replacing3— y and B—a, re-
peratures(212, 199, and 192.5 K, respectively; see, forspectively. These expressions display the following remark-
instance Ref. 28and ordered magnetic moments of the able features.

Np3* ions (2.8, 2.5+0.05ug, and 2.63t5, respec- (i) For wave vectors along thEX direction (0,0{) the
tively). On the other hand, it is now well experimentally w, andws; modes are different from zero for the double- and
establishet? that the triplek magnetic structure of the triple-k states, and disappear in the collinear state. These
MnTe, compound is stable down to & with a large mo- modes are thus identified as the longitudinal branches miss-
ment reduction of 0.72g. In such fcc compounds, the unit ing in the singlek structure. This observation is corroborated
cell on which the boundary conditions are enforced is oneby the spin-wave spectrum corresponding to this structure
eight of the nuclear fcc lattice on which the Brillouin zone is [i.€., EQ.(3)] sincew,= w; andwy, can be identified withw,.
defined. Thus, in that case, the magnetic moment reduction (ii) The transverse and longitudinal contributions are in-
predicted by the canonical Heisenberg exchange Hamiltoniagdependentlyg— — g invariant. As we shall discuss next, this
[Eq. (1)] is 0.2ug when a triplek structure is assumed. For property infers very important phenomenological conse-
Mn?" jons the measure is roughly larger than three times thigluences.

prediction. Let us remember that the effect of a stabilizing (i) The longitudinal and transverse modes are degenerate
term would be to worsen this large discrepancy. For the otheat the pointl” in both the (0,&) and the ¢,,0) directions
compounds the comparison is difficult since the spins of thavith a zero value, and at the two pointt [k
uranium and neptunium are not well known. =\2(wla,w/a,0)] and [k=3(=/a,w/a,mla)], where

Finally along ¢,¢,¢) the spin-wave energies become

wl(q!Q!q):(l_qz)v
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their common value is 1. These results do not depend upoconsequence we see that these dispersions are isotropic near
the specific noncollinear state chosen. the " point whena=pB=1vy, i.e., for the triplek state. This

(iv) At the pointsI" and X the longitudinal modes reach difference of behavior between the double- and triple-
their minima or maxima. It is also worthwhile to underline states is a way to distinguish them in compounds where they
that these modes are alone to survive in the direction  would be both potentially present. This is a consequence of

(009. _ o the fact that, unlike the two other structures, the triple-
(v) The dispersions of the longitudinal modésgs.(26)]  structure does not violate cubic symmetry.
aroundk=0 arew,=w3=(ak/\2)+ o(k®), whereas for the When the model is completed by a local anisotropy inter-

same value in the directiorf(£,0) from Eq.(27) we obtain  action (4) or biquadratic termsf), using Eqs(23) and(21)
wy=(yk/ \/§)+o(k3) and ws=(Bk/ \/§)+o(k3) when the the expressions of the spin-wave energies are found as fol-
points in this direction are plotted in\2x/a units. As a lows: (i) In the direction (0,&),

A 2
®1(0,00) = 04(0,0,-0q) = \/(5) +A(1-a®)(1-q),

2
+A(1+a?)+ Ag(y*- B2,

A
©0,(0,09) = w3(0,0-q)= \/4a2(1— %)+ ( >

01(0,00) = w4(0,0,-q) = y1-BY1+B-2qB8—2a°B(1-q),

w5(0,09)=w3(0,0—q)=\a?(1+B—2qB)(1+ B+2qB)+ (1— B)[ B2(1+ B+29B8) + y*(1+ B—2qB)];
(i) in the direction ¢,,0),

©01(0,9,00= 04(—q,—9,0=(1-q)(1-g>)(1—q+2ga?) + (A2)*+ A(1—q)(1+ e°q),

©2(0,0,0)=w3(—0,—9,00=V(1-g°)[1-2q(B°— ¥)) + 4*(1—2a°) ]+ (A2)*+ A[1+ &’q*— q(B*— )],

®1(9,0,0) = w4(—0,—0,0)= V1 - Bg?V1+Bg’ - 2qB+2a°Bg(1-q),

®,(9,9,0)=w3(—q,—q,0)
={a?(1+ Bg?>—2qB)(1+ Bg?+2qB) + (1— Bg?)[ B(1+ Ba?—2qB) + y*(1+ Bg?>+ 2qB) |} V2
and (iii) in the direction ¢,Z,{),

A 2
1(9,9.9) =1+ 5 ¢,

w5(0,0,9) = (1—g%)(1+309%—49°B%) + (A2)*+ A(1+q*—29°B?),

®1(9,9,9)=1-Bg?,

@,(9,9,0)=(1-Bg?)(1+3Bg>—489°B?).

The two other components of the spin-wave spectra B. Comparison with observed magnetic excitations
®3(0,9,9) andw,(q,q,q) are obtained fromw,(q,q,q) by These parametrizations are now compared with some ex-
replacing8— y and 8— a, respectively. From these expres- perimental spectra from compounds where the dispersion
sions it is easy to state that the stabilizing terms added teurves and the intensities of the phonons are well known,
Hamiltonian (1) break the degeneracy between longitudinalthus insuring a precise identification of the magnetic scatter-
and transverse modes at the poiXtandI'. However, these ing. We first discuss the results for U3 In fact there is a
modes remain separately equal at these points. qualitative feature of the data which the conventional spin-
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wave theory presented here is not able to capture. This is the \/E(Tr/a,rr/a,O) where E, =E;=.A4+2. Moreover the
striking fact that the energy of the longitudinal mode ob-model predicts the same value of the energies of the trans-
served at thd' point is about four times higher than at the  yerse mode at=(0,0,7/a) and atk=(0,0,0), a fact which
point. Spin-wave theory predicts that the two frequencies ofs, on the whole, experimentally verified. The most serious
the longitudinal modes at these points should be equal. It igrawback of this parametrization, prohibiting us from doing
worthwhile to emphasize that this strong disagreement withy more refined analysis, is the impossibility to explain the
the observed dispersions is actually a consequence of thgyue of the longitudinal energy &t=(0,0,2x/a) which is
symmetry of the unit cell of this kind of crystal. Therefore, it predicted the same than thosekat (0,0,0), in clear contra-

should survive any peculiar parametrization and all highergiction with the data. The biquadratic contribution gives very
order corrections. Moreover, the theory presented hergimilar results

should produce a splitting of the spin wave into different
modes along {,{,{) which is not experimentally observed.
Note that, whatever the model used or the noncollinear state
considered, the longitudinal and transverse modes remain de- The multik magnetic ordering is also encountered fre-
generate at thé points in both the {,£,0) and the ¢,¢,¢) quently in they-Mn alloys together with some lattice distor-
directions, in agreement with the spin-wave data on USb. tion. Whereas moderately doped alloys become fct with

Jensen and Bak calculated the excitation spectrum of <a, the more heavily doped compounds remain cubic with
USb by using a Hamiltonian including, in addition to the c=a. For a given impurity range 17%x<22%, MnNi al-
antiferromagnetic exchange coupling between nearest neighteys become fct at low temperature witt>a. These three
bors, the pseudodipolar interactipiq. (16)] with the pa-  crystal structures may be identified with single-, triple-, and
rametersP,=P5; and P,=S,,=S,3=S;;=0, and a crystal- doublek magnetic phases, respectivélgr a recent work on
field term with cubic symmetry. Written in the operator this subject, see Ref. 26lt is quite simple to understand in
framework introduced by SteveR¥this last term is classi- the present framework why the magnetic phases which vio-
cally Hcr~3§1+ $+g In spite of some criticismb,this  late cubic symmetry cannot be in the trijestate. Indeed,
model reproduces quite well the excitations observed in théhe breaking of the cubic symmetry induces a stronger cou-
compound USb with crystal-field parameters, in rough agreePling of bonds(13) and(24), resulting in a small anisotropy
ment with experiment and with a very large anisotropic cou-0f nearest neighbor Heisenberg Hamiltonj&u. (1)],
pling, twice as larger as the antiferromagnetic coupling.

Howevgr, as explained in qu. VI, the cho_sen pseudodipolar Hnn:JZ (S1-Si2+S1-SiatS2 SiatSsSi)
interaction is unable to stabilize a noncollinear state. More- in

over, performing a spin-wave calculationlgf, , it is easy to

cqnvince oneself that the reSL_JIting e>_<pre_ssion does not con- +J,2 (S1-SiatSz2-Sa)

tain linear terms. Thus the spin Hamiltonian used by Jensen on

and Bak cannot be selected by our analysis. Finally, these
authors were able to reproduce the excitation spectrum
USb because their formulation contained only one branch
that spectrum, thus breaking the» —q invariance and con-
sequently the degeneracy of the longitudinal modes at the
points X andI".

NpBi is a compound which orders antiferromagnetically The degeneracy is only partially lifted. It remains to add a
below T=192.5 K in a triplek type-l structuré® At T  term to stabilize the angle. For instance, the anisotropy
=10 K, dispersions along (04), of the longitudinal and energy considered in Sec. VIII would select the double-
transverse modes were meas@rdsy inelastic neutron- state.
scattering experiments. They are completely different from
that of USb, since the energy of the transverse mode ob- IX. CONCLUSION
served afl” is about? times higher than that of the longitu-
dinal mode at the same ordering wave vector. These two We have investigated the noncollinear magnetic structures
branches remain distinct in the range dhbetween 0 and Of type I on a fcc lattice, trying to learn how the continuous

C. A peculiar case: They-Mn alloys

here the constant couplinl is larger thanl. It is easy to
opee that the condition to eliminate the linear terms of the
linear spin wave formulation is

sin 260=0.

approximately 0.4. The measurements along the,0) di-  degeneracy, which is present in the c_IassicaI thgory, is re-
rection exhibit roughly the same behavior, with a degeneracynoved. We selected according to the kind of contribution the
of the two modes beginning &t-0.3. most stable state. Summarizing our results, the four spin in-

The observed marked difference between the dispersiorigractionss# () and the biquadratic term put the tripke-

of the two compounds can be predicted by the spin-wavétate into equilibrium when the sign of their coupling
theory if the multik antiferromagnetic structure of NpBi at strength is positive. Since the spin reduction is diminished by
low temperature is assumed to be a doublstructure. In- the stabilizing term, we arrive at the general result that, in
deed, first consider the effect of a local anisotropy term wherhis case, the stabilizing procedure increases the value of the
the statee=0 andB%=y?*=1 is selected. The longitudinal magnetic moment. The doublestate is selected byH fJ)

(L) and transverse modé¥) are then degenerate at the pointand §H{,’, and we have local single-ion anisotropies with

k=(0,0;7/a) sinceE, =E;=A%+4A and at the poink negative and positive couplings, respectively. When the

014411-13
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structure of the crystal is pyritelike, the doulMeantiferro- ~ mentally. It would be an all-important progress to know to
magnetic order is also given by a DM term or a symmetricWhat extentlthe discrepancies we have just pointed out would
anisotropic exchange. be deleted in a more rigorous treatment. .

Concerning the spin-wave spectra, the two results depend In fact, although it is obvious that no clear signal emerges
neither on the particular choice of the phenomenologicaf/®m the data, we believe the way is now open to very re-
Hamiltonian describing the spin state nor on the peculiafin®d comparisons. The magnetic moment reduction of the
parametrization used to describe the data. They are ratherd@nganese measured in the compound Mrisein clear

consequence of the overall symmetry of the framework incontradlcuon with the simplest model proposed here. On the

which the spin-wave theory is formulated. First, the Iargeother hand, in the theoretical explanation of the compound
' Usb the crystal-field effect seems to play an important role.

difference observed at low temperature between the Iongitu.l-_h o BxamDl how the n itV of taking more term
dinal and transverse energieS{(/E, ~5), at theX pointin . €se Wo examples Sho € necessity of taking more terms
in the spin Hamiltonian into account than the minimal model

USh, is in strong disagreement with the prediction of the_ . ) Lo S
spin-wave calculation. One might also emphasize a commoﬁu”t from the nearest-neighbor contribution and a stabilizing
feature of spin-wave data which is of great phenomenologi-erm' Moreover, these supplementary terms are gventually
cal importance. This is the fact that the energies of spirf’lpt t.q remove the gtrong Qbstacle raised _by' the Sign of the
waves almost reach their maximum values at the pdinis stabilizing contribution, which leads to a diminishing of the
strong contradiction with the Heisenberg antiferromagneti
Hamiltonian[Eq. (1)] which predicts zero values. Thus the " o
data on the en?argies at thespe points would settle the order Wth _data_l (at least _for the compound_Mng)e An additive
magnitude of the stabilizing terms. If this is true, they couIdContrIbUtlon breal'qng the energy hierarchy between the
not be considered perturbative terms, since their couplin&oume' and the triplé- states would be welcome.
would be at least of the same order as the stredgththe
assumed leading contribution. This is in contrast to the ma-
jority of spontaneous magnetized materials displaying canted This work was supported by the ESF “Vortex” Program
spin arrangements, where a weak perturbation superimposeahd the CEA(Accord-Cadre N°12M). | am particularly in-
on the dominant antiferromagnetic interaction producesiebted to H. Kachkachi for generously introducing me to the
weak ferromagnetism. subject. | am also very glad to acknowledge F. Biet for his
However, this straightforward comparison between theoparticipation at the early stage of this work. | have also ben-
retical spin-wave spectra and results of neutron-scatteringfitted from patient explanations and pertinent suggestions
experiments is perhaps misleading and has to be considerefdom A. Vediayev. | would like to thank A. I. Buzdin, D.
at best, as an indicator. Indeed, when several sublattices entéoerster, and C. Lacroix for valuable discussions. Finally it
the game one has to perform an exact calculation of thés a great pleasure to thank J. P. Sanchez for introducing me
dynamical correlation functions which are observed experito the experimental aspect of this subject.

spin reduction given by the basic Hamiltonian when the
Ctriple—k states are considered. This fact is in contradiction
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