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Magnetic order in the frustrated Heisenberg model for the fcc type-I configuration

J.-P. Ader*
CPMOH UMR CNRS 5798, Universite´ de Bordeaux I, 351 cours de la Libe´ration, 33405 Talence Cedex, France
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The Heisenberg model for the fcc type-I configuration with various types of interactions is studied with use
of the noninteracting spin-wave theory. It is shown that local anisotropy, four-spin exchange interactions, and
biquadratic interactions can lift the continuous degeneracy of the ground state through the stabilization of a
noncollinear magnetic state. Moreover, in the particular case of a pyrite structure, a Dzyaloshinsky-Moriya
term or a symmetric anisotropic exchange stabilizes the double-k configuration. The single-k state is also
discussed. We prove, in particular, that quantum fluctuations favor such a case. Consequences for the magnetic
moment reduction and for the spin-wave spectra of the presence of such stabilizing terms are calculated and
compared with data. Experiments seem to indicate that the minimal model built from the nearest-neighbor
Heisenberg interaction and a stabilizing term is not satisfactory.
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I. INTRODUCTION

Physically realizable1–3 type-I fcc antiferromagnets are
typical example of three-dimensional frustrated spin syste
The most general spin configuration for this kind of magne
order can be written as a superposition of the three w
vectors K15(2p/a)(1,0,0), K25(2p/a)(0,1,0), andK3
5(2p/a)(0,0,1), wherea is the fcc lattice constant. Thi
structure can then be in single-k, double-k, or triple-k states.
The triple-k structure is an extension of the 120° spin stru
ture on the triangular lattice to the three-dimensional case
the noncollinear double-k state, shown on Fig. 1, the spi
moments are along a diagonal of two planes. In the collin
single-k structure the spins of the double-k structure align
themselves antiferromagnetically in the planes. Finally,
canonical antiferromagnetic state is realized when the s
moments are antiferromagnetically aligned following o
axis of the crystal.

Since the number of internal degrees of freedom for
ground state for a cluster ofp,n component spins is known
to ben05p(n21)22n, the ground state given by the sim
plest isotropic Heisenberg model including only neare
neighbor interactions has a two-dimensional infinite deg
eracy. This extensive degeneracy must be lifted by additio
unknown terms in the Hamiltonian. No simple general pr
ciples are available to select these terms. For a recent re
on this subject, see the work of Oja and Lounasmaa.4

The selection of the ground state by quantum fluctuati
for isotropic interactions was already studied in the sp
wave calculation of Oguchiet al.5 They showed numerically
that quantum fluctuations favor a single-k structure. How-
ever this approach is questionable since it yields a uni
spin-wave dispersion relation, whereas a true calcula
would exhibit spin-wave dispersion relations containing,
they should as many branches in the spin-wave spectrum
there are magnetic sublattices in the unit cell. The pres
work confirms and gives an analytical proof that the ze
point oscillations of the spin waves stabilize the state wit
collinear ordering corresponding to the single-k state. This
proof is borrowed from the paper of Kubo and Kishi6 assum-
ing ordering due to quantum fluctuations in the Heisenb
0163-1829/2001/65~1!/014411~14!/$20.00 65 0144
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antiferromagnet with both nearest-neighbor and next-nea
neighbor interactions.

Concerning the terms to be added to the isotropic Heis
berg model to lift the degeneracy, the great number of stud
and the fact that, nevertheless, nothing is well establis
reflect the difficulty of the problem. First of all, an isotrop
next-nearest-neighbor interaction does not classically ind
any angular dependence, since it connects two sublattice
the same species. Such a contribution was already consid
in Ref. 6, where it was shown that a ‘‘strip’’ state with co
linear spin ordering is stabilized by zero-point spin-wa
fluctuations. Now let us discuss the early work of Hein¨
and Oja.7 They studied the general form of an anisotrop
nearest-neighbor spin-spin exchange consistent with a p
structure. In this structure, which has a cubic symmetry,
magnetic ions are cast in a fcc lattice. The symmetry aro
each magnetic ion in the unit cell is trigonal. The suggest

FIG. 1. The double-k magnetic structure in the fcc compoun
MnTe2.
©2001 The American Physical Society11-1
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of Ref. 7 is that the Dzyaloshinskii-Moriya~DM!
interaction8,9 can stabilize the triple-k structure observed in
MnTe2 ~Ref. 10! when the temperatureT is slightly below
the Néel temperatureTN . First we determine the kind of DM
interaction compatible with the pyrite structure, and th
show that this form is unable to stabilize a triple-k state at
T50, in contradiction with the antiferromagnetic order d
termined through Mo¨ssbauer investigations as well as ne
tron experiments.10 But this term remains a candidate to e
plain double-k ordering, as well as anisotropic neare
neighbor coupling.

Effects due to biquadratic and four-spin exchange inter
tions in fcc spin lattices were first discussed, to our kno
edge, by Yoshimori and Inagaki11 and Yosida and Inagaki12

in a classical treatment of the Heisenberg Hamiltonian w
particular reference to the compound NiS2. The same mode
was used by Hirai13 to explain the systematic change of ma
netic structures among the intermetallic compounds Mn2,
MnSe2 and MnTe2. These effects are studied here by e
ploying the spin-wave theory.

Finally we discuss the alternative possibilities given
the anisotropy energies. The problem of dipolar anisotro
was considered by Jensen and Bak,14 who employed spin-
wave theory to study the USb compound~uranium anti-
monide!. In Ref. 15 some particular anisotropy energy of t
form dH5( i 51,4(Sn•dn)2 was considered in a mean-fie
framework. The magnetic ionsSn being located atdy in the
unit cell d15(0,0,0), d25(0,1/2,1/2),d35(1/2,0,1/2), and
d45(1/2,1/2,0), we define the unit vectorsdn along the di-
rection of the trigonal axis asd15(1/A3)(1,1,1), d2

5(1/A3)(21,1,21), d35(1/A3)(21,21,1), and d4

5(1/A3)(1,21,21). Again corresponding spin-wave the
ries are developed, and the role of these contributions
order to stabilize noncollinear structures is clarified.

This paper is organized as follows. In Sec. II we give
general formalism for this kind of frustrated magnet to stu
the dynamical quantities atT50. This formulation is used in
Sec. III to show that quantum fluctuations select the singlk
configuration. We consider~Sec. IV! anisotropic nearest
neighbor exchange interactions in the pyrite structure. O
the anticollinear double-k state can be stabilized. Section
is dedicated to a study of the four-spin exchange interact
and biquadratic couplings. In Sec. VI we treat the case
local single-ion anisotropy. To discuss neutron-scattering
periments, in Sec. VII we calculate the magnetic mom
reduction in the ground state, and compare our numer
results with experiment. In Sec. VIII the general characte
tics of the spin-wave spectra are calculated and discusse
rough comparison with experimental magnetic spectra
given. We compare also our results with the theoretical w
of Jensen and Bak.14 Finally Sec. IX gives a summary of th
present work and some insight for future investigations.

II. LINEAR SPIN-WAVE THEORY

A. Hamiltonian

In order to consider single-k, double-k, and triple-k states
simultaneously, we choose in full generality the direction
01441
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the magnetizations on sublatticesl 51,2,3,4 located on the
unit cell atd l , as (a,b,g), (2a,b,2g), (2a,2b,g), and
(a,2b,2g), respectively. Here a5sinq cosw, b
5sinq sinw, andg5cosq are polar directional cosines sa
isfying a21b21g251. The triple-k state is given bya
5b5g51/A3, and corresponds to the antiferromagne
state observed in the MnTe2 compound.10 Fixing, for in-
stance,u[p/2, in order to obtain coplanar structure, th
double-k model is recovered by puttingw5p/4. Finally the
single-k model is obtained fromu50.

The Hamiltonian we start from reads

Hnn5J(
^ i , j &

Si•Sj , ~1!

with J.0, and whereSi represents a spin located at thei th
site. The summation̂i , j & is taken over all nearest-neighbo
pairs. Let us recall the crystal structure of fcc. Each site
12 nearest-neighbor sites which belong four by four to
other three sublattices. Following Ref. 5 we denote the in
action betweena andb sites by theab bond. The total num-
ber of bonds is 6N, whereN is the total number of sites
Sometimes this structure is called a tetrahedral arrangem
ThusHnn can be written as

Hnn5J(
^ i , j &

~Si1•Sj 21Si1•Sj 31Si1•Sj 4

1Si2•Sj 31Si2•Sj 41Si3•Sj 4!.

We follow the standard calculation within the linea
spin-wave theory based on the Holstein-Primak
representation.16 First we rewrite the Hamiltonian in the lo
cal coordinate system. Taking a particular spinSl , we denote
its equilibrium direction byz, the direction perpendicular to
this and thez axis byj, and the third direction byh. Thus we
define a local coordinate systemjhz at each site of the lat-
tice. Then we express the resulting Hamiltonian in terms
the spin-wave operators by introducing four kinds
Holstein-Primakoff operatorsa, b, c, andd for sublattices 1,
2, 3, and 4 respectively. Neglecting terms of more than s
ond order of operators, we obtain the following expression
the Hamiltonian in terms of the Fourier transforms of t
Bose operators:

H

JS
522NS1

1

4 (
k

~nk
a1nk

b1nk
c1nk

d!

1(
k

@AyzCyCz~akb2k1ckd2k!1AxyCxCy

3~bkc2k1akd2k!1AxzCxCz~akc2k1bkd2k!1H.c#

1(
k

@ByzCyCz~ak
†bk1ck

†dk!1BxyCxCy~bk
†ck1ak

†dk!

2BxzCxCz~ak
†ck1bk

†dk!1H.c.#, ~2!

where Ayz5
1
2 (122 cos2u sin2w1cos 2w)1i cosu sin 2w,

Axy5
1
2 (122 cos2u cos2w2cos 2w)2i cosu sin 2w, Axz
1-2
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5sin2u, Byz5sin2u sin2w, Bxy5sin2u cos2w, Bxz5cos2u, Ci

5cos@a(ki/2)# ( i 5x,y,z), andnk
a5ak

†ak . The summation of
the wave vectork is done over the first Brillouin zone of fcc
Note that we have neglected the linear terms of the opera
since they will disappear automatically when the class
spin orientations are in equilibrium.

B. Exact spectrum

To actually calculate the spin wave spectrum we have
find a transformation of Bose operators that would diagon
ize Hamiltonian~2!. This transformation is a Bogoliubov
Valatin transformation involving a column vector of eig
ve
w

o
ar

te
n-
on
an
e
e
tr

c

01441
rs,
l

o
l-

operatorsVk
1[(ak

† bk
† ck

† dk
† a2k b2k c2k d2k). To ensure the

conservation of Bose commutation relations, we have to
agonalize the matrixgM , whereg is the diagonal matrix

S I

2I D ,

I being the 434 unit matrix, and where the matrixM is

M5S M1 M2

M2* M1
D .

The expression of the real matrixM1 is
M15S 1 ByzCyCz 2BxzCxCz BxyCxCy

ByzCyCz 1 BxyCxCy 2BxzCxCz

2BxzCxCz BxyCxCy 1 ByzCyCz

BxyCxCy 2BxzCxCz ByzCyCz 1
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whereas the complex matrixM2 looks like

M25S 0 Ayz* CyCz AxzCxCz Axy* CxCy

Ayz* CyCz 0 Axy* CxCy AxzCxCz

AxzCxCz Axy* CxCy 0 A yz* CyCz

Axy* CxCy AxzCxCz Ayz* CyCz 0

D .

The eigenvalues are doubly degenerate solutions of a
messy fourth-order equation. Nevertheless, and although
were unable to calculate the exact form of the Bogoliub
transformation, the explicit expressions of the solutions
obtained analytically through theMAPLE mathematical ma-
nipulation language17 for the three structures. They are qui
simple, nicely reflecting the symmetry of the problem. I
deed, our calculation yields to spin-wave dispersion relati
containing four branches for the two noncollinear states
two branches for the single-k state—as it should, since ther
are as many branches in the spin-wave spectrum as ther
magnetic sublattices. The eigenvalue which is symme
with respect to permutations of the cosines can be written

v1~k![V~Cx ,Cy ,Cz!

5~g2@~12CxCz!
22Cy

2~Cx2Cz!
2#

1a2@~12CxCy!22Cz
2~Cx2Cy!2#

1b2@~12CyCz!
22Cx

2~Cy2Cz!
2# !1/2. ~3!

The other spectrum branches are straightforwardly dedu
from the expression above by changing the signs ofCx , Cy ,
andCz respectively:

v2~k!5V~2Cx ,Cy ,Cz!, v3~k!5V~Cx ,2Cy ,Cz!,

v4~k!5V~Cx ,Cy ,2Cz!. ~4!
ry
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v
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The energies are measured in units of the spin-wave
locity, i.e., the prefactorv54JS is understood. As expecte
from the original classical spin configuration, it is satisfa
tory that this set of spin waves displays the full symme
between x, y, and z in the triple-k direction
(1/A3,1/A3,1/A3). Obviously, the above energies obey t
usual invariance under the changeski⇒2ki .

Around the pointG, k5(0,0,0), located at the center o
the Brillouin zone, the explicit expressions of the magn
energies above are

v1~k!5
1

4
A~akxky!21~bkykz!

21~gkxkz!
2,

v2~k!5A~akz!
21~gky!2,

v3~k!5A~akz!
21~bkx!

2, v4~k!5A~bkx!
21~gky!2.

These results show the presence of both ferromagnetic
antiferromagnetic aspects in the present system, the
dratic behavior with wave vectork indicating the ferromag-
netic character of thev1(k) mode.

C. Analytical way

Now, based on these results, we develop an analyt
approach in order to tackle more complicated expression
the Hamiltonian. The starting approximation5 is to take the
sublattices to be identical. Although we have four magne
ions in the basic cell, we do not distinguish them when
make the Fourier transformation. The resulting effect
spin-wave HamiltonianHe f f is expressed in term of the Fou
rier transforms of two Bose operatorsak andak

† as
1-3
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He f f522JS214SJ

3(
k

S Pkak
†ak1

1

2
Qkaka2k1

1

2
Qk

†ak
†a2k

† D ,

~5!

where

Pk5ByzCyCz1BxyCxCy2BxzCxCz11 ~6!

and

Qk5AyzCyCz1AxyCxCy1AxzCxCz . ~7!

The spin-wave operatorsjk andjk
† are defined through the

Bogoliubov transformations5

ak5
1

A2
@Ck~jk1j2k!1Sk~jk

†2j2k
† !#exp~2 iFk!, k.0,

a2k5
1

A2
@Ck~jk2j2k!1Sk~jk

†1j2k
† !#exp~2 iFk!, k.0,

a05~C0j01S0j0
†!exp~2 iF0!,

whereCk5coshQk andSk5sinhQk , and

@jk ,jk8
†

#5dk,k8 , @jk ,jk8#5@jk
† ,jk8

†
#50.

The coefficientsCk ,Sk , andFk are chosen so that the of
diagonal terms vanish:

C k
25

1

2 S Pk

APk
22uQku2

11D , S k
25

1

2 S Pk

APk
22uQku2

21D ,

cos2Fk5
1

2 S 16
ReQk

uQku
D , sin2Fk5

1

2 S 17
ReQk

uQku
D .

The diagonal Hamiltonian reads

HD5(
k

S 2
1

2
Pk1APk

22uQku21APk
22uQku2jk

1̇jkD .

The spin-wave dispersion can then be evaluated to give

v3~k![V~Cx ,2Cy ,Cz!5$g2@~12CxCz!
22Cy

2

3~Cx2Cz!
2#1a2@~11CxCy!22Cz

2~Cx1Cy!2#

1b2@~11CyCz!
22Cx

2~Cy1Cz!
2#%1/2. ~8!

We note that the solution of the approximated method co
cides withv3(k). Thus by this method we can recover th
exact result when it is realized that, from the underlyi
~three-dimensional! symmetry, the complete set of solution
can be obtained from a particular solution by some subs
tions of the cosinesCi . Indeed, to obtainv1(k) one has to
substituteCy⇒2Cy in the expression above, whereasv2(k)
andv4(k) are deduced fromv3(k) by changing the signs o
Cz andCx respectively. Thus the complete set of solutions
obtained from the approximate result straightforwardly. T
01441
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provides us with a systematic way to build up the spin-wa
theory when more complicated Heisenberg Hamiltonia
having the general expression of Eq.~5! are considered.

D. Self-consistency of the calculation

In general, the integrand occuring in a spin-wave calcu
tion based on the framework described before depends on
integration variables through the cosinesCi in a very specific
way. Indeed, the spin-wave dispersions@Eqs.~3! and ~4!# as
well as the parameters of the Bogoliubov transformat
@Eqs. ~6! and ~7!# are invariant with respect to the chang
Ci⇒2Ci , i 5x,y,z. This invariance, which we now assum
to be displayed by the integrandf (Cx ,Cy ,Cz), has two im-
portant consequences: first a considerable simplification
the integration on the Brillouin zone; and, second, a v
satisfactory self-consistent description of the spin-wa
physics. Indeed, the main applications of a spin-wave ca
lation are to calculate the reduction of the spontaneous m
netization by quantum fluctuations atT50, to determine the
temperature dependence of the spontaneous magnetiz
and to estimate the critical temperature as the temperatu
which this magnetization vanishes. In general, when, as
our case, there are several sublattices, different equat
lead to different solutions, thus rendering the overall fram
work inconclusive.

Now we proceed to prove that, within the method of c
culation we have adopted here, these solutions are in
identical, a very nice characteristic of this framework. Let
state the problem very precisely. In fact, we have as m
possibilities as the number of sublattices to manage the
culation. Indeed, we have just presented a solution co
sponding assuming the four sublattices to be identical,
which leads to thev3(k) spin-wave dispersion and the Bo
goliubov parameters@Eqs. ~6! and ~7!#. However it is also
possible to work with one of the three remaining dispersio
say v2(k), the corresponding Bogoliubov parameters be
deduced from Eqs.~6! and~7! by the same changes allowin
us to obtainv2(k) from v3(k). Then the expression of a
given integral on the Brillouin zone, when the dispersi
chosen isv2(k), looks like

I~v2!5E E E
BZ

dkxdkydkzf ~2Cx ,Cy ,Cz!,

knowing that the choicev1(k) gives

I~v1!5E E E
BZ

dkxdkydkzf ~Cx ,Cy ,Cz!.

The Brillouin zone of the fcc lattice is described in ge
eral by a set of ten integrals. The invariance of the integra
under the usual changeski⇒2ki allows us to reduce this se
to the three integrals

I 1~ f !5E
0

p/a

dkzE
0

~p/a!2kz
dkxE

0

2p/a

dkyf ~2Cx ,Cy ,Cz!,
1-4
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I 2~ f !5E
0

p/a

dkzE
~p/a!2kz

2p/a

dkxE
0

3p/a2kx2kz

3dkyf ~2Cx ,Cy ,Cz!,

I 3~ f !5E
p/a

2p/a

dkzE
0

~3p/a!2kz
dkxE

0

~3p/a!2kx2kz

3dkyf ~2Cx ,Cy ,Cz!,

and the final expression is

I~v2!58@ I 1~ f !1I 2~ f !1I 3~ f !#.

Using the invariance of the integrand,

f ~Cx ,Cy ,Cz![ f ~2Cx ,2Cy ,2Cz!, ~9!

it is possible to rewrite these integrals as

I 1~ f !5E
0

p/a

dkzE
~p/a!1kz

2p/a

dkxE
0

2p/a

dkyf ~Cx ,Cy ,Cz!,

I 2~ f !

5E
0

p/a

dkzE
0

(p/a)1kz
dkxE

0

(p/a)1kx2kz
dkyf ~Cx ,Cy ,Cz!,

I 3~ f !5E
0

p/a

dkzE
0

(p/a)1kz
dkxE

(p/a)1kx2kz

2p/a

dkyf ~Cx ,Cy ,Cz!.

Consequently the full integration reads

I~v2!58E
0

p/a

dkzE
0

2p/a

dkxE
0

2p/a

dkyf ~Cx ,Cy ,Cz!.

~10!

Now for the choicei 53, the integration on the Brillouin
zone is

I~v3!5E E E
BZ

dkxdkydkzf ~Cx ,2Cy ,Cz!

58@ I 1~ f !1I 2~ f !1I 3~ f !#.

Again, using Eq.~9! we rewrite the first two integrals by
changingCy⇒2Cy . The third integral is modified by the
changesCx⇒2Cx andCz⇒2Cz , and the overall result is
identical to Eq.~10!. Using the same tools it is easy to obta

I~v1!5I~v2!5I~v3!5I~v4!

58E
0

p/a

dkzE
0

2p/a

dkxE
0

2p/a

dkyf ~Cx ,Cy ,Cz!.

~11!

This proves the self-consistency claimed at the beginning
this subsection. Moreover, in the present framework, we
replace the cumbersome numerical integration on the
Brillouin zone by a simple cubic integration. Thus we fina
obtain a powerful tool to build the interacting spin-wa
theory of such spin systems.
01441
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E. C-parity invariance

There is a set of transformations on the boson opera
leaving Hamiltonian~2! unchanged. Indeed, let us conside
pair of sublattices~a,b!. The transformations

CakC 2152dk , CbkC 2152ck

amount to interchanging pairs of sublattices~a,b! and ~d,c!
while making ap rotation of the ion spins about thex axis.
The invariance properties of the cell unit under rotations
the crystal axis allow us to obtain two other transformatio
of the same kind. By exchanging the sublattices~a,b! for
~c,d! and making ap rotation of the spins about thez axis,
we obtain

CakC 215ck , CbkC 215dk ,

whereas

CakC 2152bk , CckC 2152dk

corresponds to changing~a,c! to ~b,d! and to executing a
rotation of the spins about they axis. These laws are straigh
forwardly readable in the expressions for the sublattices
the local coordinate systemjhz. They allow us to discard
eventual terms which would be incompatible with the ro
tional symmetry of the unit cell of the crystal. For instanc
in a general way, they forbid a spin Hamiltonian whic
would not be sign invariant under these transformatio
They cease to be good selection rules when the environm
of each metal atom is not compatible with the assumed
variant interchanges. This is the case of the mineral py
structure, which can be considered as a fcc grouping of m
atoms and anion pairs. The important changes in the c
pling between the magnetic ions brought by the presenc
these four anion pairs were analyzed in Ref. 7. TheC-parity
invariance was already introduced in the context of dou
perovskite materials.18 Such compounds, the physics o
which are governed by electrons which hop among or
localized on metal ions, are described by a Hamiltonian co
bining both antiferromagnetic exchange and double
change. In order to take all of these effects into accoun
the same time,C-parity invariance seems a very useful too
We think that this invariance is a first-step toward a fir
principles calculation for selecting terms in the Hamiltonia

III. ORDERING DUE TO QUANTUM FLUCTUATIONS

Taking into account the four branches of spin waves,
shift of the energyDE of the ground state due to quantu
effects is given by

DE

4SJ
5 (

l 51,4
(

k
S 2

1

2
Pk

l 1A~Pk
l !22uQk

l u2D .

The l index refers to the branch of spin waves. The expr
sions ofPk

3 andQk
3 are given in Eqs.~6! and~7!. As noted in

Sec. II, the other quantitiesPk
l andQk

l , for l 52 and 4, are
deduced fromPk

3 andQk
3 by changing the sign ofCz andCx
1-5
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respectively, whereasPk
1 andQk

1 are obtained from Eqs.~6!
and ~7! by changing the sign ofCy . The shiftDE becomes

DE

4SJ
5(

k
S 221 (

l 51,4
v l~k! D . ~12!

Let us point out that the strength of the interaction and
spin of the metallic ions involved appear as a prefactor.
now show that this contribution stabilizes the state with
collinear ordering, i.e., the single-k state. The calculation
parallels that of Kubo and Kishi on quantum fluctuations
the frustrated Heisenberg model with next-nearest-neigh
interactions.6 We first define two independent variablest
5(a21b2)/2 ands5(a22b2)/2. Then by exchanging the
summing variableskx andkz , we keep a formally invariantt
whereass becomes2s. It follows readily that

(
k

v3~k,s,t!5(
k

v3~k,2s,t!.

It is then straightforward to deduce

s
]

]s (
k

v3~k!,0.

for sÞ0.
In the same way, we easily see that

(
k

v1~k,s,t!5(
k

v1~k,2s,t!,

(
k

@v2~k,s,t!1v4~k,s,t!#

5(
k

@v2~k,2s,t!1v4~k,2s,t!#.

Finally we have

s
]

]s (
k

DE,0.

This means thatDE takes its minimum at the minimum o
maximum ofa22b2 for a fixed value ofa21b2. From the
overall symmetry of the set of energy spectra, the same re
holds if we consider (b2,g2) or (g2,a2) as independen
variables instead of (a2,b2). Thus the minimum ofDE can
occur only at (a2,b2,g2)5(1,0,0) or (0,1,0) or (0,0,1)
These three states correspond to three equivalent
sublattice structures with collinear ordering, i.e., the cano
cal antiferromagnetic states. For instance the choice (0,
leads to the following spectra

va~k!5A~12CxCz!
22Cy

2~Cx2Cz!
2,

vb~k!5A~11CxCz!
22Cy

2~Cx1Cz!
2. ~13!

This quantum effect can also be estimated numerically
computing the shift in energy of the ground state, as a fu
tion of the angleu. For the sake of simplicity, we have s
01441
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e
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w5p/4 in the calculations. Obviously the actual conclusi
is confirmed, the zero-point energy favoring the angle
magnetizationu50, an already known result.5

IV. PYRITE STRUCTURE, DM TERM, AND SYMMETRIC
ANISOTROPIC EXCHANGES

A. Pyrite structure

In this section we consider that the spin-spin interact
Hamiltonian contains, in addition to a nearest-neighbor
change interaction, an antisymmmetric part, i.e., the DM
change

dH5(
^ i , j &

Di j8 •~Si3Sj !,

where the components of theDi j8 vectors~18 constant param
eters introducedab initio! are restricted by the symmetry o
the crystal. The most general forms compatible with the sy
metry transformations allowed under the pyrite structu
were studied in Ref. 7. Each bondi j is characterized by an
orthonormal basis (si j ,t i j ,ui j ) such that the basis for th
bond qr is (sqr ,tqr ,uqr)5(Rsi j ,Rti j ,Rui j ), where the ma-
trix R transforms the two nearest-neighbor bonds into o
another. This basis is locally well defined through the geo
etry of the pyrite structure given by the environment of
atoms which are grouped in pairs with the magnetic ions
the center. In general, the magnetic ions have six nea
neighbors that form an octahedron with the metal atom a
center.

For instance let us discuss the case of the bond 12. In
general frame the two nearby anion pairs of the Mn21 ions 1
and 2 have the locations (6u,7u,17u) and (6u,16u,
7u) respectively. This induces the local frame

s125
1

A2
~0,21,1!, t125~21,0,0!, u125

1

A2
~0,1,1!.

At the end we obtain the parametrization

Ai j
DM5~r i j •ui j !@D18~ui j si j 2si j ui j !

1D28~ui j t i j 2t i j ui j !1D38~si j t i j 2t i j si j !#,

where

r i j 5
r j2r i

ur j2r i u
,

r i (r j ), being the positions of the ionsi and j respectively.
Finally, the resulting DM vectors associated with the s

of bonds are
1-6
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D125S D1

2D2

D3

D , D135S 2D3

2D1

D2

D , D145S 2D2

D3

D1

D ,

~14!

D235S D2

D3

2D1

D , D245S 2D3

D1

2D2

D , D345S 2D1

D2

D3

D ,

~15!

where D25(D281D38)/A2 and D35(D282D38)/A2. These
vectors can be gathered by pairs (D12,D34), (D13,D24), and
(D14,D23). Each member of the pair is deduced from t
other by letting componentz, x, or y, respectively, remain
fixed and changing the signs of the two other compone
This is the particular formulation required by the symme
of the pyrite structure.

B. Spin-wave analysis

Linear terms in the boson operators appear in the Ha
tonian when it is written in the Holstein-Primakoff represe
tation. The spin configurations which are kept in balance
this Hamiltonian have to annihilate the coefficients of the
linear terms. With the parametrization above, these coe
cients are of the formC1D11C2D21C3D3, where
ha

ta

st

01441
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C152~S1
h1S2

h1S3
h1S4

h!cosu sinw1~S1
j1S2

j1S3
j1S4

j !

3cos 2u cosw2~S1
h2S2

h1S3
h2S4

h!

3~sinu cos 2w1cosu cosw!2~S1
j1S3

j2S2
j2S4

j !

3~cos 2u sinw1sin 2u sinw cosw!,

C252~S1
j1S2

j1S3
j1S4

j !cosw1~S1
j1S4

j2S2
j2S3

j !

3sinw1~S1
h1S2

h1S3
h1S4

h!cosu sinw

1~S1
h2S2

h2S3
h1S4

h!~sinu1cosu cosw!,

C352~S1
h1S2

h1S3
h1S4

h!cosu cosw2~S1
j1S2

j1S3
j1S4

j !

3cos 2u sinw1~S1
h2S2

h1S3
h2S4

h!

3~sinu cos 2w2cosu cosw!1~S1
j1S3

j2S2
j2S4

j !

3~cos 2u cosw1sin 2u sinw cosw!.

The choicesu5p/2 andw5p/4 give C152C352A2(S2
j

1S4
j) andC252A2(S2

j1S3
j)1S1

h2S2
h2S3

h1S4
h . They cor-

respond to the double-k state, which is stabilized ifD1
5D3[D andD250. Expressions~6! and~7! are now com-
pleted by

dDMPk5
D

2J
~CyCz2CxCy!,

dDMQk5
D

2J
@CxCy2CyCz1 iA2~CyCz1CxCy!#,

and the excitation energy@Eq. ~8!# becomes
v3~k!5A~12CxCz1rCyCz2rCxCy!~11CyCz1CxCy1CxCz!,
g.
de

ven

h

n-
where the ratior 5D/2J is constrained to obeyur u<1. A
careful examination of the resulting full spectrum shows t
the set of excitation energies is an even function ofr.

C. Symmetric anisotropic exchanges

There are other ways which have been proposed to s
lize the pyrite structure,7 in particular the Hamiltonian

dH5(
^ i , j &

Si•A i j •Sj , ~16!

where the symmetric interaction matrix of the neare
neighbor interaction is

A i j 5P1si j •si j 1P2t i j •t i j 1P3ui j •ui j 1S12~si j t i j 1t i j si j !

1S23~ui j t i j 1t i j ui j !1S31~si j ui j 1ui j si j !.

The isotropic nearest-neighbor coupling constantJ can be
defined asJ5P1/35P2/35P3/3. In fcc systems,P1 , P2,
t

bi-

-

and P3 completely specify the nearest-neighbor couplin
From the linear terms of the spin-wave theory, we conclu
that neither P11P3 nor P2 lifts the degeneracy of the
ground state, whereas the extrema of the contribution gi
by P12P3 are determined by

sinw~S1
j1S2

j1S3
j1S4

j !2cosw~S1
j1S2

j2S3
j2S4

j !2sinu~S1
h

2S2
h2S3

h1S4
h!1cosu cosw~S1

h1S2
h1S3

h1S4
h!

1cosu sinw~S1
h1S2

h2S3
h2S4

h!50.

Obviously this kind of contribution has nothing to do wit
the fcc type-I configuration.

Concerning the anisotropic symmetric interactionsSi j ,
the termsS31 and S(2)5(S122S23)/A2 lead to conditions
which also cannot be fulfilled by this configuration. The co
dition given by the contributionS(1)5(S121S23)/A2 looks
like
1-7
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~sinu cos 2w2cosu sinw!~S1
h2S2

h1S3
h2S4

h!

2cosu cosw~S1
h1S2

h2S3
h2S4

h!1~S1
j2S2

j1S3
j2S4

j !

3@~sinw1cosw!cos 2u1sin 2u sinw cosw#50,

showing that this kind of interaction selects a double-k state
with the choice cosu50 and sinw52cosw. Expressions~6!
and ~7! now possess the adding terms

dSPk5r SS 11
CxCz

2 D ,

dSQk5
r S

2
@2CxCz1 iA2~CyCz1CxCy!#,

wherer S is the ratio between the antiferromagnetic coupli
constant and the strength of the stabilizing term. The exp
expressions of the corresponding magnons energies
rather messy, and we omit them here.

D. Mapping the DM interaction into an anisotropic exchange
coupling

It was argued by Kaplan19 and by Shekhtman, Entin
Wohlman, and Aharony20 that, in the case of two sublattic
magnetizations, the DM interaction can be eliminated b
gauge transformation of the spin variables. In fact the D
interaction is mapped into an anisotropic exchange coupl
This anisotropy is canceled by the superexchange anisot
under some assumptions.20 Indeed, as a concrete example,
us consider the following Hamiltonian which couples tw
spins with a DM interaction pointing in thez direction:

H25J(
^ i , j &

Si1•Sj 21D(
^ i , j &

~Si1
x Sj 2

y 2Si1
y Sj 2

x !.

By a rotation about thez axis by an alternating angle,

Si1
6→Si1

6expS 6 i
a

2 D , Sj 2
7→Sj 2

7 expS 6 i
a

2 D , ~17!

where tana5D/J, this Hamiltonian is transformed to

H25
1

2 (
^ i , j &

uJu~Si1
1Sj 2

2 1Si1
2Sj 2

1 !1J(
^ i , j &

Si1
z Sj 2

z ,

whereS65Sx6 iSy andJ5J1 iD .
The extension of this kind of result to three-dimension

frustrated systems is not possible in full generality. Inde
when the DM interaction does not point in a definite dire
tion, it is impossible to write this interaction under a for
which does not display imaginary terms. However, an exc
tion to this is the classical version of the DM interactio
stabilizing the double-k structure, found in Sec. IV B above
Indeed, by taking Eqs.~14! and ~15! with the conditions
D15D3[D andD250, we obtain

Hdm5D(
^ i , j &

~Si1
x Sj 2

y 2Si1
y Sj 2

x 1Si1
x Sj 4

y 2Si1
y Sj 4

x

2Si2
x Sj 3

y 1Si2
y Sj 3

x 1Si3
x Sj 4

y 2Si4
y Sj 3

x !.
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Then the mappingsSi3
6→Si3

6exp@6i(a/2)# and Sj 4
7→Sj 4

7 exp
@6i(a/2)#, together with Eq.~17!, transform the Hamiltonian
Hnn1Hdm to

Hnn1Hdm5
J

2 (
^ i , j &

~Si1
1Sj 3

2 1Si1
2Sj 3

1 1Si2
1Sj 4

2 1Si2
2Sj 4

1 !

1
uJu
2 (

^ i , j &
~Si1

1Sj 2
2 1Si1

2Sj 2
1 1Si1

1Sj 4
2 1Si1

2Sj 4
1

1Si2
1Sj 3

2 1Si2
2Sj 3

1 1Si3
1Sj 4

2 1Si3
2Sj 4

1 !.

This anisotropy is different from the symmetric anisotro
interaction studied Sec. IV C, which also leads to a doublk
state.

V. FOUR-SPIN EXCHANGE INTERACTIONS AND
BIQUADRATIC COUPLINGS

Effects of the fourth-order interactions among localiz
spins have been considered in a fcc single-band Hubb
model near the insulator limit.21 This kind of interaction was
shown to lift the degeneracy of the structure with equival
wave numbers to make them noncollinear.

The fourth-order perturbation theory gives rise to tw
and four-spin interactions and also biquadratic and three-
interactions forS larger than one-half. The four-spin intera
tion has the form

dHIV
(7)5K@~S1•S2!~S3•S4!1~S1•S4!~S2•S3!

7~S1•S3!~S2•S4!#, ~18!

and gives the conditions

sin 2u@2112 sin2u~sin4w1cos4w!

6cos 2u#~S1
j2S2

j1S3
j2S4

j !50

sin2u sin 4w~S1
h2S2

h1S3
h2S4

h!50.

The solutions of this system can be divided into four class
~1! sinu50, ~2! cosu50 and sin2w5cos2w, ~3! sin2w
5cos2w and cos2u1cos 2u50, and ~4! sin2w5cos2w and
2cos2u1cos 2u50. The two first solutions are common t
dHIV

(1) and dHIV
(2) . They correspond to the single-k and

double-k states, respectively. The third and fourth possib
ties are provided bydHIV

(1) and dHIV
(2) , respectively. The

third case corresponds to a triple-k state. The final configu-
ration is again a single-k state. Therefore,dHIV

(1) stabilizes
the three fcc states potentially, whereasdHIV

(2) cannot put the
triple-k state into equilibrium. The classical energies giv
by dHIV

(1) areK/2, K, andK/3 for the single-, double-, and
triple-k states, respectively. Therefore, a positive coupl
constantK favors a triple-k structure, whereas a negativeK
stabilizes a double-k state. The other HamiltoniandHIV

(2)

givesK ~single-k) and2K ~double-k) as classical energies
thus putting the canonical antiferromagnetic state into eq
librium with a negative coupling and the double-k state into
equilibrium with a positive coupling.
1-8
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The spin-wave energies are easily obtained from the
pressions

Pk512
4KS2

9J
1S 12

2KS2

3J D
3~ByzCyCz1BxyCxCy2BxzCxCz!, ~19!

Qk5S 12
2KS2

3J D ~AyzCyCz1AxyCxCy1AxzCxCz!.

~20!

Introducing the parameter

B5

S 12
2KS2

3J D
S 12

4KS2

9J D ,

we obtain

v1~k!5$g2@~12BCxCz!
22B 2Cy

2~Cx2Cz!
2#

1a2@~12BCxCy!22B 2Cz
2~Cx2Cy!2#

1b2@~12BCyCz!
22B 2Cx

2~Cy2Cz!
2#%1/2.

~21!

The three other energies are obtained as explained ab
From this spectrum we conclude that, in order to ensure
the argument in the square root is always positive in
whole Brillouin zone, the parameterB has to obey to 0<B
<1. It is easy to verify that this condition is satisfied by t
ratio K/J if 0<K/J<3/2S2.

The suppression of the linear terms given by the biq
dratic term

dHbiq5 j (
^ i , j &

~Si•Sj !
2

requires the same conditions as those corresponding to
four-spin interactiondHIV

(1) . However the classical energie
are now 6j , 2j , and 2j /3 for the single-, double-, and triple
k states, respectively. Again a positive constantj favors the
triple-k structure, whereas the single-k structure is stabilized
by a negative contribution. The dispersion energies are g
by the same expressions as those given for the four-
interaction, with a trivial change of coupling:

4K

9J
⇒ 2 j

3J
.

The antiferromagnetic substance MnO is known to hav
critical temperature (TN5116 K), a Curie temperature (u5
2610 K), a transverse susceptibility, and a temperature
pendence on the sublattice magnetization consistent with
idea of biquadratic exchange.22 The compound MnTe2 shows
similar behaviors (TN586 K and u52528 K). Moreover,
in both compounds, the variation of the magnetic momen
a function of the temperature is sharper than the Brillo
functionB5/2 expected in a mean-field approximation. Thus
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is plausible that the magnetic structure corresponding
MnTe2 is also stabilized by the biquadratic term.

VI. EFFECT OF THE LOCAL ANISOTROPY

In this section we consider the case of local single-
anisotropy, and use a Hamiltonian15 which has to be added to
H2,

dHan5Dan(
i 51

4

~Si•di !
2, ~22!

whereDan is the anisotropy coupling. The resulting equilib
rium conditions given by the linear terms do not depend
the particular sublatticel 51, . . . ,4considered. They read

Dan

A3
a~bSl

j1cSl
h!50,

where

a5~sinw1cosw!sinu1cosu,

b5~sinw1cosw!cosu2sinu, c5cosw2sinw.

Thus the stable structure is the one that fulfillsa50 ~I! or
b5c50 ~II !. The first condition is satisfied by a double-k
structure with sinw52cosw and cosu50. The second con-
dition is fulfilled with the choices sinw5cosw and tan 2u
522A2, and corresponds to a triple-k structure. The classi-
cal energy given by such a contribution isdEan54DanS

4

whereasdEan58DanS
4/3 in the double-k case. Thus the

triple-k state is stabilized by the anisotropy energy with
negative coupling.

Accordingly, expression~3! is modified as

v1~k!5S g2F S 11
A
2

2CxCzD 2

2Cy
2~Cx2Cz!

2G
1a2F S 11

A
2

2CxCyD 2

2Cz
2~Cx2Cy!2G

1b2F S 11
A
2

2CyCzD 2

2Cx
2~Cy2Cz!

2G D 1/2

~23!

where A52DanS
2/J ~triple-k case! or 22DanS

2/3J
~double-k case!. The four branches of the spectrum a
gapped antiferromagnetic modes with a common gapD
given by

D5AS A
4

11D .

In order that the spectrum deduced from Eq.~23! be well
defined in the whole Brillouin zone, it is necessary that t
coupling has to remain positive. Interestingly enough, t
constraint discards the possibility of putting a triple-k state
into equilibrium.

Expression~22! is not the only possible form of the an
isotropy energy; it might in general also include terms w
1-9
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spin projections on vectors not necessarily identical to
spin directions. For instance, we can consider a cyclic p
mutation of the indices

dH an
(1)5Dan@~S1•d2!21~S2•d3!21~S3•d4!21~S4•d1!2#.

However, let us point out that this kind of contribution
discarded by the symmetry criterion formulated by t
C-parity operator~see Sec. II!.

VII. MAGNETIC MOMENT REDUCTION IN THE
GROUND STATE

The interpretation of a magnetic moment value measu
on an antiferromagnetic compound is faced with the task
separating covalency reduction from zero-point quant
fluctuation effects. According to the spin-wave analysis
veloped here, the quantum reduction^DS& in the ground
state can be formulated as

^DS&5^DS&15^DS&25^DS&35^DS&4

5
1

8N (
l 51,4

(
k

S Pk
l

A~Pk
l !22uQk

l u2
21D ,

where

^DS& l5
1

2N (
k

S Pk
l

A~Pk
l !22uQk

l u2
21D . ~24!

These expressions are independent of both the spinS and
the antiferromagnetic couplingJ, and give identical results a
discussed above. Replacing the sum above by a Watson
integral, one obtains a deviation of magnetic moments fr
their nominal valueS at T50. AssumingV5a3, whereV is
the volume of the portion of crystal used in defining t
boundary conditions, we have found^DS& II 51.016mB and
^DS& III 50.794mB for the double- and triple-k configura-
tions, respectively. Such large spin reductions are expe
from frustration effects.

Now we discuss the eventual modifications coming fro
the various types of anisotropy and interactions likely to s
bilize these configurations. First we present an analytical
gument predicting the effect of these interactions followi
the sign of the ratio of the antiferromagnetic couplingJ and
the strengthCS of the stabilizing term. Indeed, it follows
from Eqs.~19! and~20! that the parameters defining the B
goliubov transformation diagonalizingHnn1HS (HS being a
biquadratic, four-spin, or anisotropic contribution! can be ex-
pressed in full generality asPk

S5L11L0Pk and Qk
S

5L0Qk , where we recall thatPk andQk are the parameter
which diagonalizeHnn . Let us assume that the coupling co
stant of the stabilizing contributionHS is small compared to
J. Consequently we can take the constantL1 as a perturba-
tive parameter and expand Eq.~24! to first order. This results
in ~keeping one branch of the spectrum!
01441
e
r-

d
f

-

ike

ed

-
r-

^DS&.
V

2~2p!3 EBZ
F Pk

APk
22uQku2

3S 12
L1

L0

uQku2

Pk~Pk
22uQku2!

D 21G . ~25!

Since we know from Eq.~11! that the integral is definite
positive, a careful examination of the signs of the consta
L i leads to the conclusion that the stabilizing contributi
increases~decreases! the spin reduction̂DS& with a negative
~positive! CS . In fact, as we now discuss, a numerical stu
extends this conclusion to every value of the coupling ra

In Figs. 2–4 we plot some spin reductions given by d
ferent stabilizing terms as a function of the ratior 5CS /J .
The curve given by the local anisotropic term for the trip
k state is nearly identical to the result shown for the doub
k state. These plots reveal very pertinent general trends o
stabilizing terms of noncollinear states. Indeed, as expec
^DS& shrinks for positiver as this ratio begans to increas
Moreover, with the exception of the DM term, the spin r
duction continuously decreases up to the regime of an

FIG. 2. Calculated spin-reduction curve given by a DM term
the double-k state.

FIG. 3. Calculated spin-reduction curve given by the local a
isotropic term for the double-k state.
1-10
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tremely strong stabilizing term. This suggests that this qu
tity vanishes smoothly in the 1/r⇒0 limit, rather than
maintaining a limiting value or becoming negative. Also w
have observed that, at fixedr, the spin reduction sizes give
by the biquadratic and anisotropic terms are nearly the sa
when the triple-k configuration is considered. Finally, let u
emphasize that for the anisotropic contribution the ratior has
to remain positive for both noncollinear states, whereas, w
regard to the biquadratic term, a positiver is again required
by the stabilization of the triple-k state. Thus we have show
in full generality that, in this context, the existence of th
state results in a sizable diminution of the spin reduction
mean. Now we briefly discuss the DM term. Let us reme
ber that it only can stabilize the double-k state, thatur u<1,
and that ^DS(r )&5^DS(2r )& Thus, again in this case
shrinking of the spin reduction induced by the stabilizi
term is predicted. Obviously these conclusions are not tru
the spin Hamiltonian contains supplementary terms.

The triple-k type-I structure is common to many com
pounds which sometimes display similar properties. In p
ticular USb, NpSb, and NpBi have very similar Ne´el tem-
peratures~212, 199, and 192.5 K, respectively; see, f
instance Ref. 23! and ordered magnetic moments of t
Np31 ions (2.8mB , 2.560.05mB , and 2.63mB , respec-
tively!. On the other hand, it is now well experimental
established10 that the triple-k magnetic structure of the
MnTe2 compound is stable down to 0K with a large mo-
ment reduction of 0.72mB . In such fcc compounds, the un
cell on which the boundary conditions are enforced is o
eight of the nuclear fcc lattice on which the Brillouin zone
defined. Thus, in that case, the magnetic moment reduc
predicted by the canonical Heisenberg exchange Hamilto
@Eq. ~1!# is 0.2mB when a triple-k structure is assumed. Fo
Mn21 ions the measure is roughly larger than three times
prediction. Let us remember that the effect of a stabiliz
term would be to worsen this large discrepancy. For the o
compounds the comparison is difficult since the spins of
uranium and neptunium are not well known.

FIG. 4. Calculated spin-reduction curve given by the biquadr
term for the triple-k state.
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VIII. STABILIZING EXCHANGES AND SPIN DYNAMICS

A. Theoretical predictions on the spectrum

In general a magnetic excitation spectrum consisting
branches with longitudinal and transverse polarizations
characteristic of noncollinear systems.14 Indeed, in a collin-
ear structure all the excitations are transverse. Below we g
both kinds of spin-wave dispersions along various directio
of high symmetry in the Brillouin zone. Our main interest
twofold. First, from the results given by the simplest Ham
tonian @Eq. ~1!#, we extract the essential theoretical pred
tions, then, investigating the effects of stabilizing terms,
show that these predictions remain essentially unaffec
Second, these predictions are compared following the typ
noncollinear structure~doublek or triple k) considered.

The spin-wave energies@Eqs. ~3! and ~4!# have the fol-
lowing expressions along the symmetry direction (0,0,z) :

v1~0,0,q!5v4~0,0,q!50,

v2~0,0,q!5v3~0,0,q!52aA12q2, ~26!

where q5cos(ka/2), whereas for the direction (z,z,0) we
obtain @now denoting cos(ka/2A2) by q#

v1~q,q,0!5v4~2q,2q,0!

5A~12q!~12q2!~12q12qa2!,

v2~q,q,0!5v3~2q,2q,0!

3A~12q2!@122q~b22g2!1q2~122a2!#.

~27!

Finally along (z,z,z) the spin-wave energies become

v1~q,q,q!5~12q2!,

v2~q,q,q!5A~12q2!~113q224q2b2!

where nowq5cos(ka/2A3). The two remaining component
of the spin-wave spectrav3(q,q,q) andv4(q,q,q) are de-
duced fromv2(q,q,q) by replacingb→g and b→a, re-
spectively. These expressions display the following rema
able features.

~i! For wave vectors along theGX direction (0,0,z) the
v2 andv3 modes are different from zero for the double- a
triple-k states, and disappear in the collinear state. Th
modes are thus identified as the longitudinal branches m
ing in the single-k structure. This observation is corroborate
by the spin-wave spectrum corresponding to this struct
@i.e., Eq.~3!# sinceva[v1 andvb can be identified withv4.

~ii ! The transverse and longitudinal contributions are
dependentlyq→2q invariant. As we shall discuss next, th
property infers very important phenomenological con
quences.

~iii ! The longitudinal and transverse modes are degene
at the pointG in both the (0,0,z) and the (z,z,0) directions
with a zero value, and at the two pointsL @k
5A2(p/a,p/a,0)# and @k5A3(p/a,p/a,p/a)#, where

c
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their common value is 1. These results do not depend u
the specific noncollinear state chosen.

~iv! At the pointsG and X the longitudinal modes reac
their minima or maxima. It is also worthwhile to underlin
that these modes are alone to survive in theGX direction
(0,0,z).

~v! The dispersions of the longitudinal modes@Eqs.~26!#
aroundk50 arev2[v35(ak/A2)1o(k3), whereas for the
same value in the direction (z,z,0) from Eq.~27! we obtain
v25(gk/A2)1o(k3) and v35(bk/A2)1o(k3) when the
points in this direction are plotted in 2A2p/a units. As a
tr

s-

a

01441
onconsequence we see that these dispersions are isotropic
the G point whena5b5g, i.e., for the triple-k state. This
difference of behavior between the double- and triplek
states is a way to distinguish them in compounds where t
would be both potentially present. This is a consequence
the fact that, unlike the two other structures, the triplek
structure does not violate cubic symmetry.

When the model is completed by a local anisotropy int
action (A) or biquadratic terms (B), using Eqs.~23! and~21!
the expressions of the spin-wave energies are found as
lows: ~i! In the direction (0,0,z),
v1~0,0,q!5v4~0,0,2q!5AS A
2 D 2

1A~12a2!~12q!,

v2~0,0,q!5v3~0,0,2q!5A4a2~12q2!1S A
2 D 2

1A~11a2!1Aq~g22b2!,

v1~0,0,q!5v4~0,0,2q!5A12BA11B22qB22a2B~12q!,

v2~0,0,q!5v3~0,0,2q!5Aa2~11B22qB!~11B12qB!1~12B!@b2~11B12qB!1g2~11B22qB!#;

~ii ! in the direction (z,z,0),

v1~q,q,0!5v4~2q,2q,0!5A~12q!~12q2!~12q12qa2!1~A/2!21A~12q!~11a2q!,

v2~q,q,0!5v3~2q,2q,0!5A~12q2!@122q~b22g2!1q2~122a2!#1~A/2!21A@11a2q22q~b22g2!#,

v1~q,q,0!5v4~2q,2q,0!5A12Bq2A11Bq222qB12a2Bq~12q!,

v2~q,q,0!5v3~2q,2q,0!

5$a2~11Bq222qB!~11Bq212qB!1~12Bq2!@b2~11Bq222qB!1g2~11Bq212qB!#%1/2;

and ~iii ! in the direction (z,z,z),

v1~q,q,q!511
A
2

2q2,

v2~q,q,q!5A~12q2!~113q224q2b2!1~A/2!21A~11q222q2b2!,

v1~q,q,q!512Bq2,

v2~q,q,q!5A~12Bq2!~113Bq224Bq2b2!.
ex-
ion

wn,
ter-

in-
The two other components of the spin-wave spec
v3(q,q,q) andv4(q,q,q) are obtained fromv2(q,q,q) by
replacingb→g andb→a, respectively. From these expre
sions it is easy to state that the stabilizing terms added
Hamiltonian~1! break the degeneracy between longitudin
and transverse modes at the pointsX andG. However, these
modes remain separately equal at these points.
a

to
l

B. Comparison with observed magnetic excitations

These parametrizations are now compared with some
perimental spectra from compounds where the dispers
curves and the intensities of the phonons are well kno
thus insuring a precise identification of the magnetic scat
ing. We first discuss the results for USb.1,24 In fact there is a
qualitative feature of the data which the conventional sp
1-12
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wave theory presented here is not able to capture. This is
striking fact that the energy of the longitudinal mode o
served at theG point is about four times higher than at theX
point. Spin-wave theory predicts that the two frequencies
the longitudinal modes at these points should be equal.
worthwhile to emphasize that this strong disagreement w
the observed dispersions is actually a consequence of
symmetry of the unit cell of this kind of crystal. Therefore,
should survive any peculiar parametrization and all high
order corrections. Moreover, the theory presented h
should produce a splitting of the spin wave into differe
modes along (z,z,z) which is not experimentally observed
Note that, whatever the model used or the noncollinear s
considered, the longitudinal and transverse modes remain
generate at theL points in both the (z,z,0) and the (z,z,z)
directions, in agreement with the spin-wave data on USb

Jensen and Bak14 calculated the excitation spectrum
USb by using a Hamiltonian including, in addition to th
antiferromagnetic exchange coupling between nearest ne
bors, the pseudodipolar interaction@Eq. ~16!# with the pa-
rametersP15P3 and P25S125S235S3150, and a crystal-
field term with cubic symmetry. Written in the operat
framework introduced by Stevens,25 this last term is classi-
cally Hcr;Sx

41Sy
41Sz

4 . In spite of some criticisms,1 this
model reproduces quite well the excitations observed in
compound USb with crystal-field parameters, in rough agr
ment with experiment and with a very large anisotropic co
pling, twice as larger as the antiferromagnetic coupli
However, as explained in Sec. VII, the chosen pseudodip
interaction is unable to stabilize a noncollinear state. Mo
over, performing a spin-wave calculation ofHcr , it is easy to
convince oneself that the resulting expression does not
tain linear terms. Thus the spin Hamiltonian used by Jen
and Bak cannot be selected by our analysis. Finally, th
authors were able to reproduce the excitation spectrum
USb because their formulation contained only one branch
that spectrum, thus breaking theq→2q invariance and con-
sequently the degeneracy of the longitudinal modes at
pointsX andG.

NpBi is a compound which orders antiferromagnetica
below T5192.5 K in a triple-k type-I structure.23 At T
510 K, dispersions along (0,0,z) of the longitudinal and
transverse modes were measured2 by inelastic neutron-
scattering experiments. They are completely different fr
that of USb, since the energy of the transverse mode
served atG is about3

2 times higher than that of the longitu
dinal mode at the same ordering wave vector. These
branches remain distinct in the range ofz between 0 and
approximately 0.4. The measurements along the (z,z,0) di-
rection exhibit roughly the same behavior, with a degener
of the two modes beginning atz;0.3.

The observed marked difference between the dispers
of the two compounds can be predicted by the spin-w
theory if the multi-k antiferromagnetic structure of NpBi a
low temperature is assumed to be a double-k structure. In-
deed, first consider the effect of a local anisotropy term wh
the statea50 andb25g25 1

2 is selected. The longitudina
~L! and transverse modes~T! are then degenerate at the po
k5(0,0,p/a) sinceEL5ET5AA 214A and at the pointk
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5A2(p/a,p/a,0) where EL5ET5A12. Moreover the
model predicts the same value of the energies of the tra
verse mode atk5(0,0,p/a) and atk5(0,0,0), a fact which
is, on the whole, experimentally verified. The most serio
drawback of this parametrization, prohibiting us from doi
a more refined analysis, is the impossibility to explain t
value of the longitudinal energy atk5(0,0,2p/a) which is
predicted the same than those atk5(0,0,0), in clear contra-
diction with the data. The biquadratic contribution gives ve
similar results

C. A peculiar case: Theg-Mn alloys

The multi-k magnetic ordering is also encountered fr
quently in theg-Mn alloys together with some lattice disto
tion. Whereas moderately doped alloys become fct withc
,a, the more heavily doped compounds remain cubic w
c5a. For a given impurity range 17%,x,22%, MnNi al-
loys become fct at low temperature withc.a. These three
crystal structures may be identified with single-, triple-, a
double-k magnetic phases, respectively~for a recent work on
this subject, see Ref. 26!. It is quite simple to understand in
the present framework why the magnetic phases which
late cubic symmetry cannot be in the triple-k state. Indeed,
the breaking of the cubic symmetry induces a stronger c
pling of bonds~13! and~24!, resulting in a small anisotropy
of nearest neighbor Heisenberg Hamiltonian@Eq. ~1!#,

Hnn5J(
^ i , j &

~Si1•Sj 21Si1•Sj 41Si2•Sj 31Si3•Sj 4!

1J8(
^ i , j &

~Si1•Sj 31Si2•Sj 4!

where the constant couplingJ8 is larger thanJ. It is easy to
see that the condition to eliminate the linear terms of
linear spin wave formulation is

sin 2u50.

The degeneracy is only partially lifted. It remains to add
term to stabilize the anglew. For instance, the anisotrop
energy considered in Sec. VIII would select the doublek
state.

IX. CONCLUSION

We have investigated the noncollinear magnetic structu
of type I on a fcc lattice, trying to learn how the continuo
degeneracy, which is present in the classical theory, is
moved. We selected according to the kind of contribution
most stable state. Summarizing our results, the four spin
teractionsdH IV

(1) and the biquadratic term put the triple-k
state into equilibrium when the sign of their couplin
strength is positive. Since the spin reduction is diminished
the stabilizing term, we arrive at the general result that,
this case, the stabilizing procedure increases the value o
magnetic moment. The double-k state is selected bydH IV

(1)

and dH IV
(2) , and we have local single-ion anisotropies wi

negative and positive couplings, respectively. When
1-13
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structure of the crystal is pyritelike, the double-k antiferro-
magnetic order is also given by a DM term or a symmet
anisotropic exchange.

Concerning the spin-wave spectra, the two results dep
neither on the particular choice of the phenomenologi
Hamiltonian describing the spin state nor on the pecu
parametrization used to describe the data. They are rath
consequence of the overall symmetry of the framework
which the spin-wave theory is formulated. First, the lar
difference observed at low temperature between the long
dinal and transverse energies (ET /EL;5), at theX point in
USb, is in strong disagreement with the prediction of t
spin-wave calculation. One might also emphasize a comm
feature of spin-wave data which is of great phenomenolo
cal importance. This is the fact that the energies of s
waves almost reach their maximum values at the pointsG, in
strong contradiction with the Heisenberg antiferromagne
Hamiltonian @Eq. ~1!# which predicts zero values. Thus th
data on the energies at these points would settle the ord
magnitude of the stabilizing terms. If this is true, they cou
not be considered perturbative terms, since their coup
would be at least of the same order as the strengthJ of the
assumed leading contribution. This is in contrast to the m
jority of spontaneous magnetized materials displaying can
spin arrangements, where a weak perturbation superimp
on the dominant antiferromagnetic interaction produc
weak ferromagnetism.

However, this straightforward comparison between th
retical spin-wave spectra and results of neutron-scatte
experiments is perhaps misleading and has to be consid
at best, as an indicator. Indeed, when several sublattices
the game one has to perform an exact calculation of
dynamical correlation functions which are observed exp
-

,
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mentally. It would be an all-important progress to know
what extent the discrepancies we have just pointed out w
be deleted in a more rigorous treatment.

In fact, although it is obvious that no clear signal emer
from the data, we believe the way is now open to very
fined comparisons. The magnetic moment reduction of
manganese measured in the compound MnTe2 is in clear
contradiction with the simplest model proposed here. On
other hand, in the theoretical explanation of the compo
Usb the crystal-field effect seems to play an important r
These two examples show the necessity of taking more te
in the spin Hamiltonian into account than the minimal mo
built from the nearest-neighbor contribution and a stabiliz
term. Moreover, these supplementary terms are eventu
apt to remove the strong obstacle raised by the sign of
stabilizing contribution, which leads to a diminishing of t
spin reduction given by the basic Hamiltonian when
triple-k states are considered. This fact is in contradict
with data ~at least for the compound MnTe2). An additive
contribution breaking the energy hierarchy between
double- and the triple-k states would be welcome.
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