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Magnon-phonon effects in ferromagnetic manganites
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A model is presented for the magnon-phonon interaction in three-dimensional cubic ferromagnetic systems.
The Heisenberg Hamiltonian for localized spins is used. The calculated magnon and phonon dampings are
compared with the experiments and good agreement is found. It is estimated that there is a significant broad-
ening in the magnon linewidth at the end of the zone and that the phonon linewidth is not affected by this
mechanism. The modified magnon spectrum is also evaluated and compared to experimental measurements. It
is found that the model predicts softening of the magnon mode at the end of the zone consistent with the
experiments. The contribution from both Mn and O atoms is included. The developed model can be applied to
systems with reduced dimensions and systems with different than cubic symmetry.
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I. INTRODUCTION

Spin waves have been studied extensively in magn
systems. The theory is designed to investigate the gro
state and the low-lying excitation states of a system w
localized coupled spins.1 In insulating ferromagnets the spi
waves ~or magnons! are usually well defined through th
entire Brillouin zone and studying the magnon dispers
relations can provide useful information about the mater
A suitable description is the Heisenberg Hamiltonian w
nearest-neighbor exchange coupling constant.

Ferromagnets of the typeA12xBxMnO3 ~manganite per-
ovskites!, whereA is a rare earth andB is an alkaline earth,
can reach different states by varyingA andB.2 The theoret-
ical basis for understanding the manganites is the so-ca
double-exchange~DE! model. This is a Kondo lattice mode
with an exchange constantJ in the limit of infinite J.3 Some
inelastic neutron scattering measurements suggest tha
spin waves can be mapped with a nearest-neighbor Hei
berg Hamiltonian.4 An approximate spin-wave theory foun
that the DE model in the infinite-J limit and the nearest-
neighbor Heisenberg model are equivalent, and that the la
model is independent of the concentration and the spin of
carriers.5 The dispersions can be reproduced very well
those manganites that have relatively highTC and relatively
low residual resistivityr.

Recent inelastic neutron scattering measurements s
that new effects are seen in manganites with lowerTC and
higher resistivity r.6,7 The result is that a large magno
broadening and softening are observed at the end of the
at low temperatures. The large magnon linewidth canno
reproduced by the single DE model, which means that a
tional contributions have to be considered. The experime
suggest that the onset of the linewidth broadening and s
ening of the mode appear when the magnon disper
crosses the longitudinal optical branch of the phonons. Th
the most probable cause of the anomalous broadening
lattice character and the interaction between the magn
excitations and the lattice excitations needs to be consid
explicitly.

In this paper we will describe a model that governs
0163-1829/2001/65~1!/014409~7!/$20.00 65 0144
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interaction between magnons and phonons. A generic m
was proposed in Ref. 8, but no explicit form of the Ham
tonian was given and no specific calculations were presen
In principle, the coupling between magnetic moments a
lattice can modify the spin waves in two different ways. O
way is that the anisotropy of the spin waves can be affec
through mixing with the phonons. The other way is wh
there is a significant magnetoelastic interaction or magn
phonon coupling. The latter way is the subject of this wo
We try to answer the question if the coupling between s
and lattice degrees of freedom are responsible for the
served effects7 by presenting a simple model and evaluati
the damping and the energy dispersion of the magnons.

The paper is organized as follows. In Sec. II the Ham
tonian and the explicit matrix elements are written. We a
discuss different limits. In Sec. III the magnon and phon
broadenings are estimated and a comparison with the ex
mental results for the ferromagnetic manganites is given
Sec. IV the renormalized magnon dispersion is estimated
compared with experimental findings. Section V is left f
conclusions, where we discuss the model and its poss
generalizations.

II. FORMALISM FOR THE MAGNON-PHONON
COUPLING

Studying the spin dynamics of materials is very importa
because it gives insight into the underlying physics of
compounds. It has been measured that for several manga
at dopingsx5@0.15,0.5# the spin dynamics throughout th
Brillouin zone is equivalent to a nearest-neighbor Heisenb
ferromagnet.4 In this doping regime the compounds are fe
romagnetic metals and are described by the double-exch
model, which accounts for the strong ferromagnetic coupl
between the itineranteg and localized t2g carriers.
Furukawa5 argued that the result is consistent with t
double-exchange model. He showed that starting from
DE model the material behaves like a nearest-neigh
Heisenberg ferromagnet and the stiffness constant reflect
itinerant nature of the carriers. According to Ref. 5 in t
limit of infinite double-exchange constantJH , the stiffness
©2001 The American Physical Society09-1
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constant is found to beD5t(Ri2Rj )a
2/(2S)(k f k coskxa,

where f k is the Fermi occupation number andt(Ri2Rj ) is
the hopping integral in a singleeg band. This suggests that i
order to study the problem of coupling between magne
and lattice excitations for this doping regime, it is corre
to assume that there are ‘‘effective’’ magnetic moments
cated on sitesi,j coupled by a ferromagnetic Heisenberg i
teraction. Also the interaction constantJ(Ri2Rj ) can be
taken to be proportional to the hopping integralt.9 Therefore,
the Hamiltonian is

H52(
i , j

J~Ri2Rj !Si•Sj . ~1!

HereRi , j stands for the positions of the Mn magnetic ion
Si , j is the ‘‘effective’’ localized spin, andJ(Ri2Rj );t(Ri
2Rj ) is the exchange interaction constant. The direct ov
lap integralt between nearest-neighbor Mn sites in the m
ganites is zero since due to the perovskite lattice the
atoms are bridged by an O atom. Therefore,t(Ri2Rj ) is
estimated by a second-order perturbation with respect to
electron transfer between Mn 3d and O 2p orbitals:Vpd .10

Thus, t5Vpd
2 /D whereVpd is the overlap integral in Slater

Koster terms11 andD5uep2edu is the energy difference be
tween the occupied O 2p and unoccupied 3d levels. It is
estimated by photoemission experiments that for the man
nites t;0.72 eV.12 Furthermore, the charge transfer ener
D is measured to be about 4 eV.13 Thus, one finds for thepd
transfer integralVpd;1.7 eV.

There are two types of magnon-phonon interactions. O
type is to consider a form of Hamiltonian that is bilinear
the magnon and phonon operators.14,15 This kind is respon-
sible for the mixing~or hybridization! of the magnon and
phonon modes and it does not cause the broadening. If
bridization were significant, this would affect both magn
and phonon dispersions through mixing of the excitatio
The experiments7 show that the phonon linewidth hardl
changes and the magnon and phonon excitations exist s
rately through the whole zone. The effect of hybridizati
was calculated in the 1970s and 1980s for many rare-e
materials.14,15

Another way of looking at the problem is when the sc
tering of a magnon is done with an emission or absorption
a phonon. In this case the coupling manifests itself throu
the distortion of the lattice. Indeed, studies show the imp
tance of the fact that conduction electrons strongly coupl
lattice distortions in the manganites.16 To introduce the
phonons in the picture the magnetic ions are allowed to
brate around their equilibrium position:

Ri5Ri
01ui , ~2!

ui5(
Q

XQĥ i ,QeiQ•Ri
0
AQ , ~3!

XQ5A \

2NMvQ
, ~4!
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AQ5b2Q
† 1bQ , ~5!

whereRi
0 is the equilibrium positions of the ions on lattic

sites i, ui is a small displacement,ĥQ is the polarization
vector,N is the number of ions,M is the mass of one ion, an
b2Q

† and bQ are the phonon creation and anihilation ope
tors, respectively. The phonon operator is denoted byAQ .
The next step is to expand the exchange coupling cons
J(Ri2Rj )5bVpd

2 /D around the equilibrium positions.b de-
notes the numerical factor(k f k coskxa/4S2. In this way one
obtains up to first order in the displacements and for a u
volume

H5H01H8, ~6!

H052(
i j

J~Ri
02Rj

0!Si•Sj , ~7!

H852b
Vpd

D (
i j ,Q

$XQ
Mnĥ i ,Q•¹Vpd~Ri2Rl !e

iQ•Ri
0

2XQ
Mnĥ j ,Q•¹Vpd~Rl2Rj !2XQ

Oĥ l ,Q•@¹Vpd~Ri2Rl !

1¹Vpd~Rl2Rj !#e
iQ•Rl

0
%AQSi•Sj , ~8!

where the two nearest-neighbor Mn atoms at sitei and sitej
are taken to be inequivalent and the O atom is in the mid
between them atRl . The gradient ofV is evaluated at equi-
librium. The O ion appears because the overlap integralVpd
depends on the relative distance between the Mn and O
sitions.

The unperturbed Hamiltonian can be diagonalized by d
ferent approaches.1 The Dyson-Maleev transformatio
is chosen here:Si , j

† 5A2Sai , j , Si , j
2 5A2Sai , j

† , Si , j
z 5S

2ai , j
† ai , j . Considering only nearest neighbors,d5Ri

02Rj
0 ,

the HamiltonianH0 and the energy of the magnetic excit
tions after a Fourier transformation are obtained to be

H05(
k

ekak
†ak , ~9!

ek52S(
d

J~d!@12gk~d!#, ~10!

whereak denotes the magnon operator andgk(d)5eik•d. For
a cubic crystal in the nearest-neighbor approximationJ(d) is
replaced by an overall constantJ0.1 In the limit of small
wave vectors the energy dispersion is quadratic with a s
ness constantD52SJ0a2. Thus, the excitations are isotrop
and gapless. In further estimates we take the experime
values cited in Ref. 7:D50.165 eV Å2, stiffness constant
anda53.86 Å lattice parameter.

Next, we considerH8 which describes the interaction be
tween the localized spins and the phonons. Both type of i
Mn and O contribute to the magnon-phonon coupling. S
cial attention should be given to the gradient of thepd over-
lap integral. Using the expression forVpd in Ref. 11 the
symmetry of thep andd functions is such that the derivativ
of the exchange constant points along the lattice axis:
9-2
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¹Vpd~Ri2Rl !5q0Ṽ~d!d̂ ~11!

Here q0 is the Slater coefficient describing the exponen
decrease of the functions andd̂5(Ri

02Rj
0)/uRi

02Rj
0u. q0 is

of the order of 1 Å21. Ṽ(d) is of the order of the origina
integralV(d) and for the purposes of these calcuations th
will be taken to be equal.

The interaction Hamiltonian conserves the spin quant
number. The form in Eq.~8! was obtained for a cubic sym
metry and can be written explicitly

H85(
k,Q

@M k,Q
Mnak1Q

† ak1M k,Q
O ak1Q/2

† ak#AQ , ~12!

M k,Q
Mn52ib

Vpd
2

D (
k,Q

XQ
Mn~ ĥQ

Mn11ĥQ
Mn2!d̂@sin~k1Q!•a

2sink•a2sinQ•a#, ~13!

M k,Q
O 524ib

Vpd
2

D (
k,Q

XQ
OĥQ

O
• d̂@sin~k1Q/2!•a2sink•a

2sinQ/2•a#. ~14!

The lattice constanta and the unit vectord̂ change only in
the positive direction of thex, y, andz axes.

III. DAMPING OF THE MAGNONS AND PHONONS

Since the form of the interaction Hamiltonian has be
determined, one can analyze it by using Green’s functi
technique. It is evident that there is an analogy between
type of coupling and the usual electron-phonon coupling
the electron operators which are fermions are substitu
with boson operators for the magnons. The difference is
here one takes into account the magnetic ordering of
system. Thus, the bosonic operatorsak for the elementary
l

y

n
s
is

d
at
e

magnetic excitation are introduced, and the coupling is
tween two bosonic fields. While in the case of electro
phonon interaction, the coupling is between fermionic a
bosonic fields.

The following Green’s functions for the magnons can
defined:

G~k,t!52^Tt ak~t!ak
†~0!&, ~15!

G̃~k,t!52^Tt ak
†~t!ak~0!&, ~16!

D~Q,t!52^Tt AQ~t!A2Q~0!&. ~17!

The lowest-order perturbation theory is applied to determ
the damping of the magnetic excitations. The unperturb
Green’s functions are

G0~k,t!5
1

ik2ek
, ~18!

G̃0~k,t!52
1

ik1ek
, ~19!

D0~Q,t!52
2vQ

v21vQ
2

, ~20!

whereD0(Q,t) is the one for the phonons. The self-ener
diagrams for the magnons and phonons are given in Fig
The imaginary part of the self-energy of the magnons i
measure of the damping:2Im S(k)5\/2t. The lowest-
order perturbation expansion reads

FIG. 1. Self-energy diagrams of the first-order magnon-phon
coupling for ~a! magnons, and~b! phonons.
2Im S~k!5p(
Q

uM k,Q
Mn u2$~NvQ

2Nek1Q
!@d~ek1\vQ2ek1Q!2d~ek2\vQ1ek1Q!#1~11NvQ

2Nek1Q
!@d~ek2\vQ

2ek1Q!2d~ek1\vQ1ek1Q!#%1uM k,Q
O u2@~NvQ

2Nek1Q/2
!#@d~ek1\vQ2ek1Q/2!2d~ek2\vQ1ek1Q/2!#

1~11NvQ
2Nek1Q/2!@d~ek2\vQ2ek1Q/2!2d~ek1\vQ1ek1Q/2!#, ~21!

NvQ
5

1

eb\vQ21
, ~22!

Nek
5

1

ebek21
, ~23!

014409-3
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whereM k,Q stands for the matrix elements in Eqs.~13! and
~14!.

Now let’s look at the different limits. It is instructive to
consider the small-wave-vector limit first, because one
able to obtain simple expressions. In this caseek5Dk2 and
the longitudinal acoustic phonons withvQ5sQ are taken.
Thed functions give the limits of the integration. The matr
elements are expanded with respect to small wave vecto

M k,Q
Mn528Sib

Vpd
2

D
XQ

MnĥQ
Mn

• d̂@~k•a!2~Q•a!1~k•a!

3~Q•a!2#, ~24!

M k,Q
O 58Sib

Vpd
2

D
XQ

OĥQ
O
• d̂@~k•a!2~Q•a/2!1~k•a!

3~Q•a/2!2#. ~25!

Now the imaginary part of the magnon self-energy is eva
ated. Since we are interested in the low-temperature reg
the only significant term is the one that has no occupa
numbers, since they do not contribute atT→0. Thus,

2Im S~k!5p(
Q

@ uM k,Q
Mn u2d~ek2\vQ2ek1Q!

1uM k,Q
O u2d~ek2\vQ2ek1Q/2!#. ~26!

To the lowest limit ofk one calculates

2Im S~k!5 f J0@ka#6, ~27!

wheref ;(\J0a6/s)(1/M Mn11/MO) for the casek5kẑ and
a similar expression fork5(kx̂,kŷ,0). The following should
be noticed here. First, the effect of the magnon-phonon c
pling on the damping of the magnons is proportional tok6.
This means that the damping is very small since the limit
small wave vectors is considered. If one takesk50.1kD ,
wherekD is at the end of the zone, then the imaginary par
the self-energy is proportional to 1026. Second, since the Mn
ion is heavier than the O ion, the contribution from the O
the magnon-phonon coupling is actually more signific
than the contribution to from the Mn. The ratio of th
masses,M Mn /MO , shows that the contribution from the O
ion is about 1.6 more. Third, thek6 behavior suggests tha
the magnon-phonon damping increases significantly with
creasing the value of the wave vector.

Indeed, experiments indicate that at the end of the z
for the magnons there is an anomalous increase in
damping.7 This happens when the longitudinal optical ph
non dispersion crosses the magnon dispersion. The de
oped Hamiltonian allows us to calculate the effect—the g
eral expressions from Eqs.~12!–~14! should be used and th
energy for the longitudinal optical phonons,\v5const,
should be taken.

Again, we calculate the most significant term from E
~21!, the one that has no occupation numbers. The energ
the longitudinal optical phonons is\vQ5const525 meV.
01440
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In Fig. 2 the damping is plotted as a function of the para
eterka/2p for both cases:k is along thez axis andk is in the
xy plane. The linewidth of the magnons rises relative
steeply after a certain value of the wave vector, which s
gests that the effect becomes more important. When c
pared with the data from Ref. 7 it is evident that the char
teristic behavior of the damping is relatively we
reproduced. For energies of the magnons smaller than
optical phonon frequencyv0 the damping of the magnons i
small. When the crossing in the dispersions occurs,
broadening becomes large, which means that the process
magnetic excitation scattered into a new one according to
conservation energy expressed in thed function becomes
significant.

The phonon linewidth can also be calculated by evalu
ing the self-energy diagram from Fig. 1~b!. Since the cou-
pling conserves the spin quantum number, the only relev
term here is

FIG. 2. Magnon damping as a function of the parameterka/2p
~a! along thez axis and~b! in the xy plane.
9-4
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2Im P~Q!5p(
k

@ uM k,Q
Mn u2~Nek

2Nek1Q
!d~ek1\vQ

2ek1Q!1uM k,Q
O u2~Nek

2Nek1Q/2
!

3d~ek1\vQ2ek1QÕ2!#. ~28!

For the case ofT→0, the occupation numbers are negligib
Thus, the phonon damping is zero. Therefore, even tho
the magnon-phonon interaction can be significant, no bro
ening in the phonons is shown. This is consistent with
experiments where no significant change in the phonon l
width was measured.6,7

IV. RENORMALIZATION OF THE MAGNON SPECTRUM

In the previous section we evaluated the damping of
magnons to the first approximation in the perturbation ser
We now study the propagation of the magnetic excitatio
At low temperatures the dynamics of the spin waves is
scribed by the single-magnon dispersion. The import
question which arises is to which extent the magnon sp
trum is affected by the magnon-phonon coupling. To ans
qualitatively one needs to express the full spectrum in te
of the magnon self-energy

ek5e0,k1ReS~k!, ~29!

where the unperturbed magnon dispersione0,k was defined in
Eq. ~10!. Again we look at the lowest-order interaction an
one obtains for the real part of the magnon self-energy

ReS~k!5(
Q

uM k,Q
Mn u2F ~NvQ

2Nek1Q
!S 1

ek2ek1Q1\vQ

2
1

ek1ek1Q2\vQ
D1~11NvQ

2Nek1Q
!

3S 1

ek2ek1Q2\vQ
2

1

ek1ek1Q1\vQ
D G

1uM k,Q
O u2F ~NvQ

2Nek1Q/2
!S 1

ek2ek1Q/21\vQ

2
1

ek1ek1Q/22\vQ
D1~11NvQ

2Nek1Q/2
!

3S 1

ek2ek1Q/22\vQ
2

1

ek1ek1Q/21\vQ
D G .

~30!

At low temperatures the terms multiplied by the occupat
factor NvQ

or Nek
are neglected. Consider the case of sm

magnon wave vectors and longitudinal acoustic phono
The matrix elements are given in Eqs.~24! and ~25!. To
lowest order of the magnon wave vector whenk is along the
z axis it is easy to obtain

ReS~k!52Dgk2, ~31!
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g5
\~QDa!4

7p4sa
F 1

M Mn
1

1

MO
G . ~32!

Note that a Debye cutoffQD is introduced in the integration
over the Q variable. For three-dimensional~3D! systems
QD5(6p2)1/3/a. If typical constants for the manganites a
used,g is estimated in the range of 0.01. Whenk is in thexy
plane, a similar expression for the ReS(k) is found, al-
though the formula forg is more cumbersome, but the nu
merical value is still in the order of 0.01. Thus, in this lim
the magnon-phonon coupling introduces only a small ne
tive correction to the stiffness constant and it is not imp
tant.

Now we examine the limit of large magnon wave vecto
with longitudinally polarized phonons. In this case the in
grals are evaluated numerically. In Fig. 3 we plot the magn

FIG. 3. Magnon dispersion as a function ofka/2p ~a! along the
z axis and~b! in thexy plane. The solid line represents the neare
neighbor Heisenberg Hamiltonian and the dashed line represent
renormalized dispersion due to the magnon-phonon interaction
9-5
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L. M. WOODS PHYSICAL REVIEW B 65 014409
dispersion with and without the coupling. It is evident th
for small k the correction to the magnon energy is not si
nificant. But at largerk the effect of the interaction is much
more pronounced. According to the reported data in Ref
the magnon mode experiences softening and its dispersio
very close to the LO phonons after the crossing point
aboutka/2p50.3. Indeed, the estimated values for the co
rection to the magnon spectra is always negative and it
comes large whenk is large. Figure 3 shows that the beha
ior of the calculated magnon energy is very similar to t
measured one. Thus, the presented model favors the a
ment that such behavior should be attribured to a chan
related to the coupling between magnons and phonons.

V. DISCUSSION

One of the most interesting features of the mangan
perovskites is the existence of colossal magnetoresista
~CMR!. Investigating the mechanisms for the magnon dam
ing and softening is very important in order to understa
their magnetic and electronic properties. It is claimed that
describe the magnon dispersion properly one needs to
clude orbital fluctuations and phonons via Jahn-Tel
distortion.17 The Jahn-Teller-based electron-lattice coupli
is known to be important at temperatures near and aboveTC .
The experiments, discussed in this paper, were performe
very low temperatures where the Jahn-Teller effect is v
small. They show that the magnons are heavily damped
the end of the zone.7 One possibility considered was that
strong spin-orbit exchange interaction is the reason.18 An-
other possibility is that this is due to strong magnetoelas
effects or the interaction between magnons and phonon
important. In this paper we focused on the role of the lat
kind of coupling.

The interaction between the lattice and the ferromagn
cally ordered carriers is obtained by allowing a modulati
of the exchange coupling constant with respect to the lat
displacements and that the spin quantum number is c
served. The performed calculations are for phonons with l
gitudinal polarization in the acoustic and optical regimes.
was shown that the long-wavelength magnons would not
affected, but the damping in the short-wavelength limit b
comes large. We also find that the phonon linewidth is n
changed. This is consistent with the experiments.

Another feature is the effect on the phonons could
more significant with elevating the temperature. The reas
is that the damping is proportional to the boson occupat
number, which becomes more important at higher tempe
tures. This would require more experiments. Finally, we a
calculated how the magnon dispersion changes if one ta
into account the magnon-phonon coupling. It was found t
the effect is really small at small wave vectors and it
significant near the zone boundary. Thus, the conclusion
D.
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that with this simple model one is able to describe the
served effects of broadening and softening in those man
ites in which the nearest-neighbor Heisenberg model is va
Indeed, the role of the interplay between spin and latt
degrees of freedom needs to be included in the analysis
more complete understanding of the physics in these c
pounds.

The present model also allows for the Mn and O ions
be treated explicitly. Because the direct overlap between
ions is zero, the exchange coupling constant is the sec
perturbation order of the hopping from Mn to O site. The
fore, the interaction Hamiltonian contains the positions a
masses of both types of sites: Eqs.~12!–~14!. Since the O ion
is lighter, one concludes that its contribution to the effect i
few times more significant than the contribution from t
Mn. This is consistent with experiments reported in Ref.
which show that at temperatures as low as 50 K the displa
ments of the O ions is about 2 times larger than the displa
ments of the Mn ions. The model also allows for differe
types of phonon polarization to be evaluated.

Dimensionality has been shown to be an important c
sideration in the behavior of many materials. The propo
model can be generalized to ferromagnets that have red
dimensions. In fact, we calculated the magnon damping
the 2D case using the expression for the magnon dam
from Eq.~20! with the same values of the exchange const
and lattice parameters as used earlier in the paper and
obtained that the broadening becomes even larger at the
of the zone. This means that the effect of the magnon-pho
coupling could be more pronounced in materials that con
of quasi-2D planes. More experiments for ferromagnetic l
ered compounds in this direction are necessary.

In summary, two things are accomplished in this pap
First, a model for treating the interaction between magn
and phonons in systems with localized spins is establish
which can be applied to materials with symmetry differe
than cubic and different types of phonon polarization. T
explicit form of the matrix elements is obtained, and thus o
can look into different limits. Second, the calculations for t
magnon and phonon dampings and magnon softening a
agreement with the experimental findings: namely, that th
is an anomalous broadening of the magnon linewidth
softening of the energy dispersion near the zone end and
the phonon linewidth is hardly changed.
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