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Phase diagram of the Shastry-Sutherland antiferromagnet

Weihong Zheng,* J. Oitmaa,† and C. J. Hamer‡
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~Received 3 July 2001; published 30 November 2001!

The Shastry-Sutherland model, which provides a representation of the magnetic properties of SrCu2(BO3)2,
has been studied by series-expansion methods atT50. Our results support the existence of an intermediate
phase between the Ne´el long-range ordered phase and the short-range dimer phase. They provide strong
evidence against the existence of helical order in the intermediate phase, and somewhat less strong evidence
against a plaquette-singlet phase. The nature of the intermediate phase thus remains elusive. It appears to be
gapless, or nearly so.
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I. INTRODUCTION

The recent discovery of the two-dimensional~2D! spin
gap system SrCu2(BO3)2,1 and its representation as an an
ferromagneticS5 1

2 Heisenberg spin model2 equivalent to a
model previously introduced by Shastry and Sutherland,3 has
led to many recent studies of this model.

The Shastry-Sutherland model is a nearest-neigh
square-lattice antiferromagnet, with additional diagonal
teractions, in a staggered pattern, on alternate squares
Hamiltonian is written as

H5J(
diag

Si•Sj1J8(
axial

Si•Sj . ~1!

This convention is adopted because in SrCu2(BO3)2the di-
agonal bonds are, in fact, the shortest and the exchange
stants are estimated to beJ.100K, J8.68K. The model is
illustrated in Fig. 1

It is clear that the system will exhibit Ne´el order forJ/J8
small, and will form a gapped spin-singlet state forJ/J8
large, withS50 dimers on the diagonal bonds. Shastry a
Sutherland showed that this dimer state is an exact eigen
of the Hamiltonian for anyJ,J8 and that it is rigorously the
ground state forJ/J8.2.3

The main controversial and challenging question
whether the system has an intermediate phase, and
kind of phase it is, if it exists. In the classical limit, whe
S→`, the ground state is Ne´el ordered ifJ/J8<1 and is
helically ordered~see Fig. 1! otherwise, where the twis
between one spin and its nearest neighbor is given bq
5arccos(2J8/J). For theS5 1

2 system, Albrecht and Mila4

used a Schwinger boson mean-field theory and found an
termediate phase with helical long-range order~LRO! for
1.1,J/J8,1.65, but with q differing from its classical
value. In our previous series study,5 we were unaware of this
work, and did not consider the possibility of a helical LR
intermediate phase. We computed series for the Ne´el-ordered
phase and for the dimer phase atT50, and located a transi
tion point atJ/J851.45(1), which appeared to be first orde

Subsequently Koga and Kawakami6 calculated series ex
pansions about disconnected plaquettes, and claimed to
identified two transition points: a second-order transit
from Néel order to a plaquette singlet phase atJ/J8.1.16,
followed by a first-order transition to the dimer phase
0163-1829/2001/65~1!/014408~12!/$20.00 65 0144
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J/J8.1.48. We find this interpretation unconvincing, part
because of uncertainty in the analysis of rather short se
and partly because such an intermediate phase is totally
ferent from the helical-ordered phase presented in Ref
Another recent development is the field-theoretical study o
generalized model withSp(2N) symmetry by Chung, Mar-
ston, and Sachdev.7 For S5 1

2 , they suggest a Ne´el to helical
LRO phase transition atJ/J8.1.02, and a helical LRO to
dimer short-range ordered~SRO! phase transition atJ/J8
.2.7. This is similar to the scenario in Ref. 4, but with th
helical phase extending over a much larger range. The qu
titative accuracy of this approach forS5 1

2 is problematic.
Both our previous work5 and the plaquette series of Kog
and Kawakami6 provide strong evidence for the dimer pha
setting in at aroundJ/J8.1.4521.48. It is also interesting to
note that for 1/S.5 (S is a continuous variable in this
theory! a phase with plaquette SRO is predicted.7 If finite N
fluctuations change the phase diagram significantly then
conceivable, according to this theory, that there are f
stable phases.

Knetter et al.8 subsequently performed a new seri
analysis of the dimer phase. They find that the lowest sing
triplet excitation vanishes atJ8/J50.69 (or J/J851.45),
very close to the transition point mentioned above; but t
an S51 two-triplet excitation energy vanishes even earli
at J8/J50.63 ~or J/J851.59). This would seem to indicat
important binding between the triplets, possibly leading to
condensate of triplets at or even belowJ8/J50.63. An exact-
diagonalization study of Ce´pas et al.9 finds S50 bound
states also vanish earlier than the one-particle gap. E
more recently, Totsuka, Miyahara, and Ueda10 have dis-
cussed two-triplet binding effects in this model using bo
perturbation theory and exact diagonalization, and h
shown that binding occurs even in the quintet channel of t
triplets.

All the above studies show that the quantum system
Néel ordered up to and beyondJ/J851, i.e., beyond the
regime for the classical system: this is also consistent w
the general phenomenon of quantum order by disorder.11 The
transition to dimer order is located atJ/J8.1.4521.58, so if
there is an intermediate phase, it must exist within the reg
1,J/J8&1.5. Our aim, in the present paper, is to explo
these issues through extended series expansions. We
obtained extended series expansions about isol
plaquettes, both with and without diagonal bonds, followi
©2001 The American Physical Society08-1
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WEIHONG ZHENG, J. OITMAA, AND C. J. HAMER PHYSICAL REVIEW B65 014408
Koga and Kawakami.6 Second, we have extended our pre
ous series about the Ne´el ordered state and the dimer sing
state.5 Finally, we present series expansions about states
helical LRO and columnar dimer order. The next sect
presents technical details of the calculations, with analysi
series and discussion of results given in Sec. III. In the
section we present our conclusions.

We conclude that an intermediate phase between the´el
phase and the dimer phase very likely exists, in the reg
1.2&J/J8&1.5. The nature of this phase is much less certa
however. It does not appear to be plaquette ordered or h
cally ordered. It could perhaps possess weak columnar-d
order; or it could possess some other type of order, not c
sidered here. In any case, this intermediate phase appea
be gapless, or nearly so.

II. SERIES EXPANSIONS

We use the linked-cluster expansion method to derive p
turbation expansions for various choices of the unpertur
reference Hamiltonian. The technical details are discusse
many papers, and we refer the reader who is unfamiliar w
these to a recent review.12 The following is a brief summary

A. Dimer expansions

The first term in the Hamiltonian~1!, which represents
disconnected dimers, is taken as the unperturbed Ha
tonian. The unperturbed ground state is then a product s
of S50 singlets on these dimers. As mentioned above,
state remains an exact eigenstate of the system for allJ,J8,
but is not the true ground state forJ8/J.(J8/J)c . The per-
turbation, being the second term in Eq.~1!, mixes this state
with states in which triplet excitations occur on the dimer

Dimer expansions can be developed for both ground-s
properties and for excitations. Here because the dimer sta

FIG. 1. The Shastry-Sutherland lattice. The exchangeJ8 acts
between sites separated by horizontal and vertical links, while
exchangeJ acts across the diagonal dashed links. The spin orie
tion at each site for helical order is also given~near the sites!, where
q5arccos(2J8/J).
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the exact ground state, we focus on the triplet excitat
spectrum D(k). We have computed expansions to ord
(J8/J)21, extending our previous calculation5 by six terms.
This calculation involves 185 332 linked clusters up to
sites. The resulting series coefficients are available on
quest. The minimum gap is atk50, where the series is

D~k50!/J512x22
x3

2
2

x4

8
1

5x5

32
2

7x6

384
2

2051x7

4608

2
39091x8

55 296
2

268 849x9

663 552
1

964 411x10

6 635 520

1
6 597 973x11

58 982 400
2

183 919 894 867x12

191 102 976 000

22.180 975 296x1321.938 901 500x14

20.071 485 040x1510.820 962 395x16

22.236 236 507x1727.855 506 946x18

29.452 785 582x1922.833 667 089x20

14.38 7303 805x211O~x22! ~2!

where x5J8/J. A standard Dlog Pade´ approximant
analysis13 gives the gap vanishing atJ8/J50.6965(15), or
J/J851.436(3) with the estimated critical indexn
.0.45(2). Different Dlog Pade´ approximants show remark
able consistency with this exponent value, which might a
pear to suggest that this transition could belong to a n
universality class, rather than the usualO(n) universality
class. These results are in agreement with Mu¨ller-Hartmann
et al.,14 who used shorter series. Since there are no fluc
tions in the exact dimer ground state, we again do not exp
this transition to belong to the universality class of theO(n)
nonlinears model. But we recall that Knetteret al.8 found
that a two-tripletS51 bound-state energy vanishes even b
fore J8/J50.70, at around 0.63, which would entirely alt
the position and the nature of this transition. We have
computed series for the two-particle states in this mode
would be very interesting to explore this transition furth
using series or other methods.

We also computed a new series, to order (J8/J)17, for the
susceptibilityx corresponding to this momentumk50. The
resulting series is

x~k50!511
x2

2
1

x3

8
1

41x4

96
1

281x5

1152
1

6461x6

13 824

1
65 953x7

165 888
1

186 863x8

311 040
1

374 542 669x9

597 196 800

1
24 573 240 371x10

28 665 446 400
1

2 138 459 511 091x11

2 149 908 480 000

11.308 076 648x1211.604 414 343x13

12.086 275 141x1412.638 378 225x15

13.431 256 777x1614.419 063 264x171O~x18!.

~3!

e
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PHASE DIAGRAM OF THE SHASTRY-SUTHERLAND . . . PHYSICAL REVIEW B65 014408
FIG. 2. ~a! The first plaquette
structure ~PE1!: The bold solid,
the thin solid, and the dashed line
represent the coupling constan
J8, lJ8, andlJ, respectively.~b!
The second plaquette structur
~PE2!: The bold solid, bold
dashed, the thin solid, and the thi
dashed lines represent the co
pling constantsJ8, J, lJ8, and
lJ, respectively.
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site,
A standard Dlog Pade´ analysis of this series indicates a pr
ferred critical point aroundJ8/J50.71. Biasingxc at 0.6965,
the critical exponent is found to be very small, around 0.
which is completely different from that of the classical 3
Heisenberg model. It might even be compatible with a lo
rithmic divergence. A critical pointJ8/J50.71 would be
barely compatible with the upper boundJ8/J,0.705 found
by Löw and Müller-Hartmann15 by means of a variationa
ansatz on finite clusters. A critical point atJ8/J50.63 would
lie comfortably within the rigorous bounds 0.59,(J8/J)c
,0.705 found by Lo¨w and Müller-Hartmann.15

B. Plaquette expansions

Instead of perturbing about isolated dimers, any set
disconnected units can be used. Using a plaquette basi
lows the investigation of plaquette type order. Because e
plaquette has 16 rather than four states it is not possibl
derive series of the same length as with dimer expansio

Following Koga and Kawakami,6 we have computed two
kinds of plaquette expansions~PE1 and PE2!, which, respec-
tively, take the set of plaquettes without the diagonalJ bonds
and the set with diagonalJ bonds as the unperturbed Ham
tonian. To make the expansion possible it is necessar
introduce an expansion parameterl<1, which modifies the
interactions not included inH0. This is illustrated in Fig. 2.
The series are then computed in powers ofl. The analysis
evaluates these atl51, corresponding to the original Hami
tonian.

For PE1 we have computed series to orderl8,l7,l6 for
the ground-state energy, triplet excitation energiesD(k) and
staggered susceptibilityxAF , respectively. This is one add
tional term forE0 and two additional terms forD(k) andxAF
over Ref. 6. The calculation is computationally demandi
even with our efficient program. For example, the compu
tion of D(k) to orderl7 took about 10 days and required 1
GB memory on an SGI Origin 2400 system with a 400 MH
R12000 CPU. The effort for each additional term requi
factors of approximate 50 and 15 increase in CPU time
memory, respectively. For the second expansion~PE2! the
series have been computed to orderl7 for the ground-state
energy and the singlet excitation spectrum, and to orderl6

for the triplet excitationD(k) and staggered susceptibilit
xAF . In Tables I and II we present the series for the grou
state energy, the triplet gapD at k50 and staggered susce
01440
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tibility xAF for J/J851.25 and 1.4. Other series are availab
on request. The analysis is left for the next section.

C. Columnar-dimer expansions

A plausible candidate for the intermediate phase is
columnar dimer phase, as shown in Fig. 3. For both the s
1
2 J12J2 Heisenberg model16 and the spin-12 Heisenberg
model on an anisotropic triangular lattice,17 there appears to
be a columnar-dimer-ordered phase adjacent to the Ne´el or-
dered phase. To make the expansion possible it is neces
to introduce an expansion parameterl<1 that modifies the
interactions not included inH0. This is illustrated in Fig. 3.
The series are then computed in powers ofl. The analysis
evaluates these atl51, corresponding to the original Hamil
tonian.

We have computed series to orderl10,l9,l9 for the
ground-state energy, the antiferromagnetic susceptib
xAF , and the triplet excitation energiesD(k) respectively.
This calculation involves 290 215 linked clusters up to t
sites. In Table I we present the series for the ground-s
energyxAF for J/J851.25 and 1.4. Other series are availab
on request. The analysis is left for the next section.

D. Ising expansions for Ne´el order

For smallJ/J8, the model will have a Ne´el-ordered phase
with long-range antiferromagnetic order~in the z direction!.
To construct an Ising expansion, we introduce an excha
anisotropy parameterl, and write the Hamiltonian as

H5H01lV, ~4!

where

H05J(
diag

Si
zSj

z1J8(
axial

Si
zSj

z ,

V5J(
diag

~Si
xSj

x1Si
ySj

y!1J8(
axial

~Si
xSj

x1Si
ySj

y!. ~5!

The unperturbed ground state is the classical Ne´el state with
energyE0 /N52J8/21J/8. The perturbationV flips pairs of
neighboring spins. Series are developed in powers ofl and
evaluated atl51, which recovers the original Hamiltonian
We have obtained series for the ground-state energy per
8-3
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TABLE I. Series coefficients for the ground-state energy per siteE0 /(NJ8) obtained from the Ising expansion about Ne´el order~Néel!,
the helical-order~Helical! expansion, the columnar-dimer expansion, and from the plaquette expansion without diagonal bonds~PE1!, and
with diagonal bonds~PE2! for J/J851.25,1.4. Series coefficients ofl i are listed.

i PE1 PE2 Helical Ne´el Columnar dimer

J/J851.25
0 25.00000000000031021 24.21875000000031021 23.56250000000031021 23.43750000000031021 23.75000000000031021

1 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 23.57530381944431022 21.57768744926931021 22.05471131859831021 22.85714285714331021 21.90429687500031021

3 29.49887876157431023 2.40384182592131022 4.16353732897131022 1.02040816326531021 7.14111328125031023

4 26.52037714827931023 22.78561916951731023 24.66914234328231022 29.27336895113531022 9.90581512451231023

5 23.11019256768431023 1.33355445661931023 2.83204465327431022 1.57555177277231021 29.49988762537631023

6 22.05145375669031023 29.33026374865031023 23.36348691244431022 22.47389435682931021 21.78071684721431022

7 21.13448170616031023 9.79307105707431023 3.69333676511431022 4.09768114099031021 1.49406925446331022

8 27.19610735024031024 25.31867144797031022 28.16233408202531021 23.80382089919731024

9 7.56743441870131022 1.693646904376 9.72969046228431024

10 21.13865755713631021 23.494392524807 22.66613744290931023

11 1.72668082443331021 7.456679516027
12 21.6464084879503101

J/J851.40
0 25.00000000000031021 24.12500000000031021 23.53571428571431021 23.25000000000031021 23.75000000000031021

1 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 23.39236111111131022 21.67856570512831021 21.94316602316631021 23.12500000000031021 21.95000000000031021

3 28.05844907407431023 2.95295193106731022 3.62986538662231022 1.36718750000031021 1.65937500000031022

4 25.43137786404831023 21.14569103873631023 24.21872138157531022 21.66422732234631021 1.70476562500031022

5 22.53651087603731023 2.72473191737531023 2.27617084263631022 3.30297272206331021 21.33858268229231022

6 21.75498280691231023 21.31579210889031022 23.20209347564131022 26.32011145881131021 21.87025838758731022

7 21.01731079590531023 1.28227933168931022 2.99539069879631022 1.313875979565 1.66976414714731022

8 27.03378820900731024 24.31139006688531022 23.190631154651 21.13422076618831023

9 5.83441492513531022 8.019181935184 26.54775505972331023

10 28.79728699257231022 22.0441532247393101 21.63736977536231023

11 1.34153522473831021 5.3836663062763101

12 21.4573314284643102
e
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and
E0 /N, and the staggered magnetization~order parameter! M
to order l12, extending our previous calculation by thre
terms. We have also computed a series, to orderl12 for the
perpendicular susceptibilityx' . The resulting series for the
ground-state energy and the staggered magnetization~order
parameter! M for J/J851.25 and 1.4 are listed in Tables
and III; the series for other values ofJ/J8 are available on
request. For details of the analysis we refer to our previ
paper.5 Results of the analysis are presented in the next
tion.

E. Ising expansions for helical order

As discussed by Albrecht and Mila,4 the classical system
has planar helical order forJ/J8.1. Starting from a refer-
ence spin in thez direction, each neighboring spin is rotate
by an angleq, as shown in Fig. 1. The twist is determined b
minimization of the energy and yields

q5H p, J<J8,

arccos~2J8/J!, J.J8.
~6!
01440
s
c-

To develop an Ising expansion about such a helically orde
state we transform the Hamiltonian by rotating the spin a
at each site. The transformed Hamiltonian is

H5H11l~H21H3!, ~7!

where

H15Jcos~2q!(
diag

Si
zSn

z1J8cos~q!(
axial

Si
zSj

z ,

H25J(
diag

@Si
ySn

y1cos~2q!Si
xSn

x1sin~2q!~Si
zSn

x2Si
xSn

z!#,

~8!

H35J8(
axial

@Si
ySj

y1cos~q!Si
xSj

x1sin~q!~Si
zSj

x2Si
xSj

z!#.

and where exchange anisotropy is introduced through
perturbation parameterl.

We have computed series for the ground-state energy
the order parameter to orderl12, for various choices ofq and
8-4
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TABLE II. Series coefficients for the triplet gapD/J8 at k50 and staggered susceptibilityxAF obtained from the plaquette expansio
without diagonal bonds~PE1!, and with diagonal bonds~PE2! for J/J851.25,1.4. Series coefficients ofl i are listed.

PE1 PE2
i J/J851.25 J/J851.4 J/J851.25 J/J851.4

Triplet gapD/J8 at k50
0 1.000000000000 1.000000000000 1.000000000000 1.000000000000
1 25.00000000000031021 24.00000000000031021 29.16666666666731021 28.66666666666731021

2 21.94950810185231021 21.55879629629631021 5.84810155122231024 21.75373931623931022

3 21.21554778927131022 6.27906378600831023 3.91926965483231021 7.80910617767231021

4 24.26207308844331022 23.06359507900331022 21.209759818705 22.966617086045
5 21.16957549689331022 24.83785444933831023 2.808227188528 1.1658938645203101

6 22.08709015634731022 21.75277661025031022 27.118402535782 25.3967277276063101

7 29.64062732615731023 28.06762626018131023

Staggered susceptibilityxAF

0 1.333333333333 1.333333333333 1.333333333333 1.333333333333
1 1.333333333333 1.066666666667 2.444444444444 2.311111111111
2 1.250353652263 7.57209362139931021 2.323016302459 1.684709846149
3 1.201753927683 5.53987682184531021 2.280972931735 1.010069843149
4 1.113460517630 3.80924626777131021 2.075318140109 3.05654349112131021

5 1.044513939707 2.74737039859231021 2.415891359693 6.618315713507131021

6 9.70765053428131021 1.96473057149131021 2.233378054361 4.15766467033831021
n
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the ratioJ/J8. The resulting series for the ground-state e
ergy and the staggered magnetization~order parameter! M
for J/J851.25 and 1.4 are listed in Tables I and III; oth
series can be supplied on request. We are not aware of
vious series of this type for this model.

III. RESULTS AND DISCUSSION

In this section we present a variety of results obtain
from analysis of the various series expansions. The ana
has been carried out using integrated first-order inhomo
neous differential approximants and Pade´ approximants13 to
extrapolate each series to thephysicalvaluel51.

FIG. 3. Columnar-dimerization pattern. The bold solid, the th
solid, and the dashed lines represent the coupling constantsJ8, lJ8,
andlJ, respectively.
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A. Ground-state energy

The nature of the ground state for any particularJ/J8 can
be determined by comparing the energies of various ca
date states. Our analysis shows that, among all the se
expansions we have calculated, the ground-state energy
the Ising expansion about Ne´el order has the lowest energ
for couplingJ/J8,1.45, while the ground-state energies o
tained from the columnar-dimer expansion and from
Néel-order Ising expansion remain nearly equal throu
J/J8*1.2. For example, we estimate the ground-state ene
at J/J851.25 as

E0 /NJ855
20.5628~15!, Néel order,

20.5586~10!, helical order,

20.5599~3!, PE1,

20.5584~8!, PE2,

20.563~1!, columnar dimer,

~9!

and atJ/J851.40 as

E0 /NJ855
20.561~3!, Néel order,

20.554~1!, helical order,

20.5548~5!, PE1,

20.5525~10!, PE2,

20.557~2!, columnar dimer,

~10!

where we have used the classical-q value in Eq.~6! in the
calculation of helical order. In Table IV we show details
the analysis from the latter caseJ/J851.4 for both the Ising
expansion about Ne´el order and the plaquette expansio
~PE1!, from which we estimate the values in Eq.~10!. The
8-5
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TABLE III. Series coefficients for the staggered magnetizationM obtained from the Ising expansion about Ne´el order~Néel!, and the
helical-order~Helical! expansion forJ/J851.25,1.4. Series coefficients ofl i are listed.

Helical Néel
i J/J851.25 J/J851.4 J/J851.25 J/J851.4

0 5.00000000000031021 5.00000000000031021 5.00000000000031021 5.00000000000031021

1 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 21.97686262885331021 21.78753542731931021 23.26530612244931021 23.90625000000031021

3 8.01574589248931022 6.69638520916831022 2.33236151603531021 3.41796875000031021

4 22.02093845106131021 21.70364872813931021 26.24967254057031021 21.188130158850
5 1.59508905763631021 1.18662267335331021 1.247039703760 2.891792139388
6 22.85627016050531021 22.38798849311031021 22.564444941065 27.392698990572
7 3.50964662449031021 2.55033385482531021 5.414869562182 1.9609270548373101

8 26.15992362686431021 24.54105498976331021 21.3000427014323101 25.7779731129813101

9 9.50601022559431021 6.63567564844431021 3.1003113436443101 1.6883829215123102

10 21.636489163183 21.143031741464 27.3356607909583101 24.9579906147383102

11 2.726180882130 1.887668026020 1.7693400043493102 1.4787746281353103

12 24.3471208020183102 24.4712904040913103
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series approximants, unfortunately, do not converge u
formly; but we form an estimate by averaging the results
a group of the approximants of highest order. The result
error estimates are inevitably somewhat subjective.

The ground-state energies obtained from various exp
sions versusJ/J8 are given in Fig. 4. Since the energy fro
the second plaquette expansion is slightly higher than
from the first plaquette expansion, we do not show the res
of the second plaquette expansion. Our results are thu
disagreement with Ref. 6, which claimed that the plaque
phase has the lowest energy. Of course these energies a
very close to each other and the estimated errors are su
tive confidence limits. However, inspection of the data
Table IV shows that the Ising expansion about Ne´el order
consistently gives lower energy estimates.

Our results also argue against helical order being a st
ground state. In Fig. 5 we show estimates of the ground-s
energy from Ising expansions about helical order, as a fu
tion of angleq, for the two coupling ratiosJ/J851.25, 1.40.
In each case the curve shows no indication of a minimum
someqc , but rather decreases monotonically towardsq5p,
corresponding to Ne´el order. Over the region 1.2&J/J8
&1.45, the ground-state energies obtained from the N´el-
ordered Ising expansion and from the columnar-dimer
pansion have some overlap after considering the error b
so they are both good candidates for the ground state o
Shastry-Sutherland model.

B. Staggered magnetization and perpendicular susceptibility

The staggered magnetization and perpendicular susc
bility will be nonzero in a phase with long-range antiferr
magnetic order, and are expected to vanish at a trans
point to a magnetically disordered or spin-liquid phase.
fective Lagrangian theory predicts a relationshiprs5v2x'

wherers is the spin stiffness andv the spin-wave velocity. In
Fig. 6 we show estimates ofM and x' vs J/J8, from the
01440
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Ising expansion about Ne´el order. It can be seen that bot
quantities behave similarly, decreasing from their values
J50 and vanishing at aroundJ/J851.260.1. The error bars
are large and the vanishing point cannot be obtained to h
precision. However, our extended series shows a m
sharper dropoff inM than given in our previous work.5 Thus
it is possible that the true transition point is at or below 1.2

For the Ising expansion about helical order the magn
zation M at l51 ~for the classicalq value! is zero, within
error bars, for allJ/J8. This strengthens our conclusion, fro
the ground-state energy results, that a helical phase is
present.

C. Energy gap and susceptibility in the plaquette expansion

The main argument of Koga and Kawakami6 for the ex-
istence of a plaquette intermediate phase in the system
based on analysis of the triplet gap atk50 and the staggered
susceptibility series. In their series analysis, they assum
that the minimum triplet gap is atk50, and the transition
lies in the same universality class as the classical 3D Heis
berg model~i.e., critical exponentsg.1.4,n.0.71). Using
standard Dlog Pade´ approximants, they found an appare
critical singularity atl.1 for J/J8>1.16. This would imply
a nonzero spin gap forJ/J8>1.16 for the original Hamil-
tonian~1!. The above assumption is valid for the transition
Néel order, but if there was an intermediate phase, the tr
sition from the plaquette phase to this intermediate ph
might not lie in the same universality class as the class
3D Heisenberg model, and the minimum triplet gap mig
not be atk50. In the analysis with our longer series, we fin
indeed that the minimum triplet gap is not atk50 for J/J8
*1.25, and also that the transition does not lie in the cla
cal 3D Heisenberg universality class.

First, let us discuss the first plaquette expansion~PE1!.
Here forJ/J8&1.25, or for larger values ofJ/J8 with small
8-6
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TABLE IV. The results of$m/n/ l % integrated differential approximants to the series for the ground-state energy per siteE0 /NJ8 for
J/J851.4 from the Ne´el-ordered Ising expansion and the plaquette expansion without diagonal bonds~PE1!. An asterisk denotes a defectiv
approximant.

n $(n23)/n/ l % $(n22)/n/ l % $(n21)/n/ l % $n/n/ l % $(n11)/n/ l % $(n12)/n/ l % $(n13)/n/ l %

Néel-ordered Ising expansion
l 50

n53 20.52170 20.55795 20.54979 20.57974 20.55498 20.57207
n54 * 20.55178 20.55573 20.56195 20.56468 20.56026 20.55991
n55 20.56212 20.57002 20.56907 20.56264 20.55989
n56 20.56912 * 20.56121
n57 20.56405

l 51
n53 20.55300 20.55127 20.55765 20.57441 20.56242 20.55104
n54 20.55139 * 20.55545 20.56380 * 20.56002
n55 20.56139 20.56960 20.56066 20.56100
n56 20.56503 20.56097

l 52
n52 20.56352 * 20.55148 20.55131 20.60526 20.57327
n53 20.55123 20.55086 20.55252 * 20.56628 20.54598 20.55427
n54 20.55270 * 20.55923 20.55915 *
n55 20.56600 20.55917 20.56079
n56 20.56213

l 53
n51 20.56410 20.55914 20.55010 20.56012 20.57599
n52 20.56089 * 20.55363 * 20.56992 *
n53 20.55104 20.55440 20.55944 20.55918 20.56186 20.56198
n54 * 20.55918 20.55923 20.56196
n55 20.56143 20.56258

Plaquette expansion without diagonal bond~PE1!
l 50

n51 20.55534 20.55281 20.55647
n52 20.55246 20.55301 20.55390 20.55473 20.55482
n53 20.55297 * 20.55492 20.55484
n54 20.55425 20.55448 20.55484
n55 *

l 51
n51 * 20.55243 * 20.55344
n52 20.55316 20.55574 20.55595 20.55499
n53 * 20.55587 20.55467
n54 20.55458 20.55513

l 52
n51 * 20.55270 * * *
n52 20.55347 20.55481 * 20.55488
n53 * 20.55496 20.55487
n54 20.55492
e

values ofl, we find the minimum triplet gap is atk50; but
for J/J8*1.25 andl;1, it is no longer atk50. For ex-
ample forJ/J851.40, the dispersion for variousl along the
line connectingk5(0,0) andk5(p/4,3p/16) is shown in
Fig. 7, where we can see that forl&0.75, the minimum gap
is located atk50, while for largerl, the minimum gap is
located at aboutk5(p/4,3p/16), and the dispersion near th
minimum is quite flat. The series for the triplet gap atk
5(p/4,3p/16) is
01440
D~p/4,3p/16!/J85120.3 077 152 787l

20.2 293 662 299l2

20.0 346 064 996l3

20.0 741 227 651l4

20.0 176 489 659l5

20.0 400 694 385l6

20.0 030 161 628l71O~l8!. ~11!
8-7
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Table V shows estimates of the critical pointlc and critical
index from both the spin gap and susceptibility series for
coupling ratiosJ/J851.25 and 1.40, using unbiased Dlo
Padéapproximants, where forJ/J851.40, we show the re
sults for the spin gap at bothk50 and k5(p/4,3p/16).
Apart from the spin gapD(p/4,3p/16) atJ/J851.40, there
is considerable scatter in the results, but several feature
apparent. The spin-gap series show decreasing estimat

FIG. 4. The ground-state energy versusJ/J8 obtained from the
Néel-ordered Ising expansion (N), columnar-dimer expansion (C),
plaquette expansion (P), and helical-order Ising expansion (H).
The energy of the exact dimer state is also presented (D).

FIG. 5. The ground-state energyq for helical order.
01440
e

are
of

lc with increasing order for bothJ/J8 ratios. The data are
more consistent with the conclusionlc<1, rather thanlc
.1. For the spin gapD(p/4,3p/16) atJ/J851.40, the un-
biased Dlog Pade´ approximants give very convergent resul
with the critical pointlc50.988 and critical indexn50.43.
This indicates instability of the plaquette phase atl51, at
least for this coupling ratio. This also indicates that there
indeed an intermediate phase. Note that the critical inden
obtained here is about the same as that obtained from
dimer series, which might suggest that this transition belo
to the same new universality class—but recall that the form
transition is ‘‘pre-empted’’ by a vanishing two-particle gap8

at smaller coupling. The multiparticle excitation spectru
deserves further investigation in this whole class of mod
In any case, our analysis shows that the transition proba
does not belong in the classical 3D Heisenberg universa
class forJ/J8*1.1. Because the critical indexn for the mini-
mum gap is much smaller than 1, we have obtained the
persion results shown in Fig. 7 by performing the series
trapolation in a new variable

d512~12l/lc!
n, ~12!

in order to take the singular behavior into account.
Finally, we consider the second plaquette expans

~PE2!. The minimum triplet gap is no longer atk50, at least
for small to moderatel. This can be seen from the first few
terms of the series

D~kx ,ky!/J8512
4l

6
~coskx1cosky!1

Jl

3J8
cos~kx1ky!,

~13!

which gives the minimum gap atkx5ky5arccos(J8/J). It
seems likely that the minimum triplet gap will remain atk
Þ0, even forl.1, although the series in this region are to
erratic to confirm this. For this choice of unperturbed Ham
tonian we are also able to compute the excitation spect
for the singlet excitation and we have obtained series to
der l7. The minimum singlet gap is atk50 and appears to
be smaller than the triplet gap. An attempt to locate the cr
cal point lc by Dlog Pade´ approximants to this series wa
hampered by poor convergence. We have attempted o
analysis procedures, but without great success. But since
ground-state energy from the second plaquette expan
~PE2! is higher than that obtained from both the fir
plaquette expansion and the Ne´el-ordered Ising expansion
the probability of having the second plaquette configurat
as the intermediate phase is remote.

D. The energy gap in the columnar-dimer expansion

Finally, we discuss the triplet dispersion obtained from t
columnar-dimer expansion. Here forJ/J8&1.15, we find the
minimum gap is located at momentumk5(0,p), as ex-
pected, since we expect to have a transition to the Ne´el or-
dered phase for smallJ/J8. Figure 8 shows the gap atk
5(0,0), (p,0), and (0,p) for J/J850.875 vsl obtained
from the integrated differential approximants13 to the series.
8-8
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FIG. 6. The staggered magnetizationM and the perpendicular susceptibilityx' vs J/J8. The solid points with error bars are the estimat
from the Ising expansion about Ne´el order.
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We can see that the minimum gap vanishes at a critical v
lc,1. We also expect this transition~to Neél order! to lie in
the same universality class as the classical 3D Heisen
model. To determine the phase boundary of columnar-di
order, we can use Dlog Pade´ approximants to both the serie
for the minimum gap and for the antiferromagnetic susc
tibility. To get more reliable estimates for the critical poin
we assume the critical exponents to beg.1.4,n.0.71. The
results are shown in the phase diagram Fig. 9, where we
see thatlc50.514(6) for J50, and thatlc increases for
increasingJ. For J/J851.15, we estimatelc50.97(5), but

FIG. 7. The triplet dispersion for variousl and J/J851.40
along the line connectingk5(0,0) andk5(p/4,3p/16) obtained
from the first plaquette expansion~PE1!.
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unfortunately the biased Dlog Pade´ results here are not ac
curate enough to tell whetherlc is larger than 1.

For J/J8*1.75, we find that the minimum gap is locate
at k5(0,0). Figure 8 also shows the gap atk
5(0,0), (p,0), and (0,p) for J/J852 vsl. Once again, one
can locate the phase boundary by using the Dlog Pade´ ap-
proximants to the series for the minimum gap, and the res
are also shown in Fig. 9. We see that asJ/J8 decreases,lc
increases, but again, the analysis is not accurate enoug
tell whetherlc is larger than 1 in the intermediate region.

In the analysis, we also note that the gap atk5(p,0)
shows some peculiar features, as shown in Fig. 8. For
values of J/J8, the majority of integrated differential ap
proximants to the series show that the gap increases for s
l, then decreases dramatically to zero forl;0.5. The ma-
jority of Dlog Padéapproximants to the series also show th
the series has a critical point atl;0.5 with very small criti-
cal index (;0.2). But we believe this peculiar behavior is a
artifact of the short series.

For the most interesting region 1.15&J/J8&1.75, the
situation is quite complicated: the location of the minimu
gap depends on bothJ/J8 andl. We take the midpoint for
the presumed intermediate phase,J/J854/3, as example. Fo
l near 1, we find the minimum gap forJ/J854/3 is at k
5(0.47,2.80), slightly away from (0,p). The standard Dlog
Padéapproximants to the series for the minimum gap give
critical point lc51.0(1), with critical index n;0.4. This
seems to be consistent with the indices obtained from
dimer and plaquette expansions. Since the standard D
Padéapproximants cannot tell whetherlc is larger than 1,
we examine the extrapolations for the gap itself obtain
from integrated differential approximants. The results for t
gap atk5(0.47,2.80), (0,0) and (0,p) are shown in Fig. 10.
The gap atl51 for k5(0.47,2.80) is very small (;0.1J8)
8-9
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TABLE V. @n/m# Dlog Pade´ approximants to the series for the triplet gapD(k) and antiferromagnetic susceptibilityxAF for the plaquette
expansion without diagonal bonds~PE1!. An asterisk denotes a defective approximant.

n @(n22)/n# @(n21)/n# @n/n# @(n11)/n# @(n12)/n#

pole ~residue! pole ~residue! pole ~residue! pole ~residue! pole ~residue!

D(0,0) for J/J851.25
n51 1.4098~1.2718! 0.8592~0.2879! 1.2001~1.0957!
n52 1.0804~0.6523! 1.0530~0.6018! 1.0305~0.5502! 1.0181~0.5170!
n53 1.0555~0.6075! 0.9247(0.2175)* 1.0074~0.4801!
n54 1.0089~0.4855!

D(0,0) for J/J851.4
n51 2.0315~1.9470! 0.8107~0.1237! 1.5546~1.6732!
n52 1.2949~0.6512! 1.2016~0.5172! 1.1075~0.3712! 1.0273~0.2532!
n53 1.2181~0.5462! 0.7442(0.0227)* 0.9352~0.1267!
n54 0.9454~0.1386!

D(p/4,3p/16) for J/J851.4
n51 1.6055~1.4266! 0.638~0.0896! 1.4385~2.3132!
n52 * 0.9883~0.4300! 0.9889~0.4307! 0.985~0.4240! 1.0203~0.5055!
n53 0.9889~0.4307! 0.9884~0.4301! 0.9885~0.4302!
n54 0.9885~0.4302!

xAF for J/J851.25
n51 0.9830(20.8461) 1.2245(21.6351) 0.9962(20.7165)
n52 1.0003(20.8898) 1.0739(21.0477) 1.1011(21.1273) 1.0825(21.0510)
n53 1.1033(21.1367) 1.0910(21.0902)
n-

the
e
-
me
urve
FIG. 8. The triplet gapD(k)/J8 vs l for k5(0,0), (p,0), and

(0,p) andJ/J850.875 and 2. Several different integrated differe
tial approximants to the series are shown.
01440
FIG. 9. The phase diagram for columnar-dimer order, where
curve in the smallJ/(J1J8) region is determined by the Dlog Pad´
approximants to the gap atk5(0,p) and the antiferromagnetic sus
ceptibility xAF , and we assume the transition lies in at the sa
universality class as the classical 3D Heisenberg model. The c
in the largeJ/(J1J8) region is determined by the Dlog Pade´ ap-
proximants to the gap atk5(0,0).
8-10
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when estimated from the directl series. When analyzed i
terms of variabled @Eq. 12# the gap is compatible with zero
If the gap vanishes at or beforel51, the columnar-dimer
phase would also be ruled out as intermediate phase fo
Shastry-Sutherland model.

IV. CONCLUSIONS

We have attempted to further elucidate the nature of
phase diagram of the Shastry-Sutherland spin model aT
50, by series-expansion methods. We have significantly
tended previous series, computed by ourselves5 and others6

and we have also derived a number of new series. The an
sis of the various series allows us to draw some fairly fi
conclusions, as well as others which are more tentative.

The first question is whether an intermediate phase
tween the Ne´el-ordered phase and the dimer phase exist
all. It seems rather clear that the singlet-dimer phase, wi
simple singlet-product ground state, persists from largeJ/J8
down to J/J8.1.521.6. In our previous work5 we argued
that there is a direct first-order transition from the dim
phase to Ne´el order at this point. Our present results sho
the staggered magnetization and perpendicular susceptib
in the Néel phase vanishing atJ/J8.1.2, with large uncer-
tainty 60.1. This appears more consistent with the N´el
phase terminating at a second-order phase transition, so
there may indeed be an intermediate phase stretching ov
very small range of coupling constants 1.20&J/J8&1.5, in
agreement with the suggestion of Koga and Kawakami.6

Carpentier and Balents18 have recently discussed an effe

FIG. 10. The triplet gap D(k)/J8 vs l for k5(0,0),
(10.47,2.80), and (0,p) andJ/J854/3. Several different integrate
differential approximants to the series are shown.
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tive mean-field theory approach to the generalized Shas
Sutherland model. They argue that a direct continuous tr
sition from the Ne´el phase to the dimer phase is not possib
If this argument is accepted, it means that the vanishing
the order parameter and susceptibility in the Ne´el phase
cannot be associated with a second-order transition dire
to the dimer phase. It follows that an intermediate pha
must exist, over at least a small range of couplings.

The next question is the nature of the transitions from
Néel and dimer phases, respectively, into the intermed
phase. The vanishing staggered magnetization and per
dicular susceptibility in the Ne´el phase indicate a second
order transition; but we are unable to estimate the criti
exponents, since we do not have explicit series coefficie
for an expansion inJ/J8. The vanishing energy gap woul
indicate that the transition from the dimer phase is also s
ond order; but the result of Knetteret al.8 showing that the
two-particle bound-state energy vanishes before the sin
triplet gap indicates that more work needs to be done
characterize this transition also. It is interesting that o
particle gaps appear to vanish with a similar exponent in
dimer expansion, the plaquette expansion, and also
columnar-dimer expansion.

A further question concerns the nature of the intermed
phase. None of the suggested phases exhibit a ground-
energy that is distinctly lower than the Ne´el energy in the
relevant coupling regime. Our results do not support
suggestion6 that the intermediate phase is plaquette order
The extrapolated ground-state energy from the Ne´el expan-
sion consistently lies below that from the plaquette exp
sion; and the triplet gap from the plaquette expansion
pears to vanish at or before the physical valuel51 is
reached, indicating instability in this phase. Our longer se
thus appear to contradict the conclusions of Koga a
Kawakami.6 Equally, our results do not support the sugge
tion that the intermediate phase is helically ordered.4,7 The
extrapolated ground-state energy from the Ne´el expansion
consistently lies below that of the helically ordered state,
any value of the spin orientationq other thanp. We note that
the mean-field approach of Albrecht and Mila4 is strictly only
valid for d.2; while the 1/N expansion approach of Chung
Marston, and Sachdev7 is certainly not quantitatively accu
rate for the spin-12 case.

We have also explored the possibility that the interme
ate phase is a columnar-dimer phase, as in theJ12J2
Heisenberg model,16 or the spin-12 Heisenberg model on an
anisotropic triangular lattice.17 The extrapolated ground-stat
energy for this state is comparable with that of the Ne´el state,
within error bars, and the triplet gap from this expansi
shows a window 1.15&J/J8&1.5 in which it may remain
finite, though very small, at the physical valuel51. This
remains a possible candidate for the intermediate phase
though our data are not sufficiently accurate to allow a
finitive conclusion.

The nature of an intermediate state in this model th
remains an open question. It could, for example, be a st
tureless spin liquid, in which case a signature of this phas
elusive. Carpentier and Balents18 have also discussed pos
sible intermediate phases in the generalized model, includ
8-11
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a weakly incommensurate spin-density wave ordered stat
i.e., a periodic modulation of the expectation value of t
total spin on each dimer—and a ‘‘fractionalized’’ state, wi
topological order and deconfined spin-1

2 excitations
~‘‘spinons’’!. Chung et al. have also discussed a helica
(q,p) short-range-ordered phase that lies near the lo
range-ordered phase in their large-N phase diagram in cou-
pling space. We currently have no information to offer r
garding these candidate intermediate states. It is likely to
a very difficult problem, numerically, to distinguish whethe
or not such a phase occurs. The fact that the energy
drops to zero before or near the physical valuel51 in every
expansion we have tried appears to suggest that the inte
diate phase is gapless, or near to it. Further support for
idea is given by the strong finite-size dependence of the
act diagonalization results of Miyahara and Ueda2 in this
region.

The material SrCu2(BO3)2 appears to lie within the dimer
phase of the Shastry-Sutherland model. Original estima
J/J851.47,2,5 put the material close to the phase-transiti
point, and it was argued that some of the unusual proper
of the material were due to this closeness. A more rec
estimate,8 including interactions in the third direction, give
J/J8.1.66, somewhat beyond even the point at which t
K.
Y

s.

N
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two-particle gap vanishes. This puts the material clea
within the dimer phase and hence the question of interme
ate phases is primarily of theoretical interest.

It is clear that much work remains to be done on th
fascinating model. It would be interesting to confirm an
extend the results of Knetteret al.8 concerning the transition
from the dimer phase; and also to try and construct se
coefficients for an expansion inJ/J8 in the Néel phase. New
numerical methods are badly needed to explore the inter
diate phase also: the best method to employ here remai
puzzle.
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