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Phase diagram of the Shastry-Sutherland antiferromagnet
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The Shastry-Sutherland model, which provides a representation of the magnetic properties, BOgL
has been studied by series-expansion methods=dl. Our results support the existence of an intermediate
phase between the ‘Melong-range ordered phase and the short-range dimer phase. They provide strong
evidence against the existence of helical order in the intermediate phase, and somewhat less strong evidence
against a plaquette-singlet phase. The nature of the intermediate phase thus remains elusive. It appears to be
gapless, or nearly so.
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[. INTRODUCTION J/J'=1.48. We find this interpretation unconvincing, partly
because of uncertainty in the analysis of rather short series,
The recent discovery of the two-dimension@D) spin  and partly because such an intermediate phase is totally dif-
gap system SrGiiBO;),,* and its representation as an anti- ferent from the helical-ordered phase presented in Ref. 4.
ferromagneticS=1 Heisenberg spin modekquivalent to a  Another recent development is the field-theoretical study of a
model previously introduced by Shastry and Sutherfands  generalized model witls p(2N) symmetry by Chung, Mar-
led to many recent studies of this model. ston, and SachdévFor S= 3, they suggest a M to helical
The Shastry-Sutherland model is a nearest-neighbdcRO phase transition ai/J’=1.02, and a helical LRO to
square-lattice antiferromagnet, with additional diagonal in-dimer short-range ordere@SRO phase transition af/J’
teractions, in a staggered pattern, on alternate squares. The2.7. This is similar to the scenario in Ref. 4, but with the
Hamiltonian is written as helical phase extending over a much larger range. The quan-
titative accuracy of thig( approach f@= 3 is problematic.
, Both our previous workand the plaquette series of Koga
H _‘J%g S-§+J a%l S-S @ and Kawakanfi provide strong evidence for the dimer phase
setting in at around/J’ =1.45-1.48. It is also interesting to
This convention is adopted because in Si@D;),the di- note that for 15>5 (S is a continuous variable in this
agonal bonds are, in fact, the shortest and the exchange cotireory) a phase with plaquette SRO is predicfdéfinite N
stants are estimated to Je=100K, J'=68K. The model is  fluctuations change the phase diagram significantly then it is

illustrated in Fig. 1 ) conceivable, according to this theory, that there are four
It is clear that the system will exhibit ¢ order ford/J’ stable phases.
small, and will form a gapped spin-singlet state fbd’ Knetter et al® subsequently performed a new series

large, withS=0 dimers on the diagonal bonds. Shastry andanalysis of the dimer phase. They find that the lowest single-
Sutherland showed that this dimer state is an exact eigenstatiéplet excitation vanishes al’/J=0.69 (or J/J’'=1.45),
of the Hamiltonian for anyl,J’ and that it is rigorously the very close to the transition point mentioned above; but that
ground state fod/J'>23 an S=1 two-triplet excitation energy vanishes even earlier,
The main controversial and challenging question isatJ’/J=0.63(or J/J’=1.59). This would seem to indicate
whether the system has an intermediate phase, and whiatportant binding between the triplets, possibly leading to a
kind of phase it is, if it exists. In the classical limit, when condensate of triplets at or even beldWJ=0.63. An exact-
S—, the ground state is ¢ ordered ifJ/J’<1 and is  diagonalization study of Qs et al® finds S=0 bound
helically ordered(see Fig. 1 otherwise, where the twist states also vanish earlier than the one-particle gap. Even
between one spin and its nearest neighbor is givergby more recently, Totsuka, Miyahara, and UEdaave dis-
=arccos(-J'/J). For theS=3} system, Albrecht and Mifa  cussed two-triplet binding effects in this model using both
used a Schwinger boson mean-field theory and found an irperturbation theory and exact diagonalization, and have
termediate phase with helical long-range ordeRO) for shown that binding occurs even in the quintet channel of two
1.1<J/J'<1.65, but with g differing from its classical triplets.
value. In our previous series studlye were unaware of this All the above studies show that the quantum system is
work, and did not consider the possibility of a helical LRO Neel ordered up to and beyon#fJ’'=1, i.e., beyond the
intermediate phase. We computed series for thelfdedered  regime for the classical system: this is also consistent with
phase and for the dimer phaseTat 0, and located a transi- the general phenomenon of quantum order by disdfdEne
tion point atJ/J’' =1.45 1), which appeared to be first order. transition to dimer order is located &)’ =1.45-1.58, so if
Subsequently Koga and Kawakancilculated series ex- there is an intermediate phase, it must exist within the region
pansions about disconnected plaquettes, and claimed to ha¥e<J/J’<1.5. Our aim, in the present paper, is to explore
identified two transition points: a second-order transitionthese issues through extended series expansions. We have
from Neel order to a plaquette singlet phaseJAl’=1.16, obtained extended series expansions about isolated
followed by a first-order transition to the dimer phase atplaquettes, both with and without diagonal bonds, following
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the exact ground state, we focus on the triplet excitation

-2 - .
g 0 N2 39 spectrumA(k). We have computed expansions to order
g o N 2q] N N 4q (J'13)?%, extending our previous calculatidiby six terms.
[ » 4 » . 4 » This calculation involves 185332 linked clusters up to 11
3 . . . _ .
Ve q / g / sites. The resulting series coefficients are available on re-
, 4 '/ 4 ‘ ’ quest. The minimum gap is &t=0, where the series is
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FIG. 1. The Shastry-Sutherland lattice. The exchadgects
between sites separated by horizontal and vertical links, while the
exchangel acts across the diagonal dashed links. The spin orienta-
tion at each site for helical order is also givemar the sites where
g=arccos-J'/J).

—0.071 485 040°+ 0.820 962 39%'°
—2.236 236 50%*'— 7.855 506 94&'8
—9.452 785 5821°— 2.833 667 08%°°
+4.38 7303 8081+ O(x%?) 2)

Koga and Kawakanfl.Second, we have extended our previ- Where: X3:~_J'/J- A standard Dlog Padeapproximant
ous series about the eordered state and the dimer singlet 2nalysis® gives the gap vanishing at'/J=0.6965(15), or
state® Finally, we present series expansions about states witd/J’ =1.436(3) with the estimated critical index
helical LRO and columnar dimer order. The next section=0.4%2). Different Dlog Padepproximants show remark-
presents technical details of the calculations, with analysis oible consistency with this exponent value, which might ap-
series and discussion of results given in Sec. IlI. In the lasP€ar to suggest that this transition could belong to a new
section we present our conclusions. universality class, rather than the us@@{n) universality

We conclude that an intermediate phase between fle¢ Neclass. These results are in agreement withldttHartmann
phase and the dimer phase very likely exists, in the regio®t al,** who used shorter series. Since there are no fluctua-
1.2<J/J’ =1.5. The nature of this phase is much less certaintions in the exact dimer ground state, we again do not expect
however. It does not appear to be plaquette ordered or helfhis transition to belong to the universality class of ®n)
cally ordered. It could perhaps possess weak columnar-dimdtonlinearo model. But we recall that Knettest al® found
order; or it could possess some other type of order, not corthat a two-tripletS=1 bound-state energy vanishes even be-
sidered here. In any case, this intermediate phase appearsfege J'/J=0.70, at around 0.63, which would entirely alter
be gapless, or nearly so. the position and the nature of this transition. We have not
computed series for the two-particle states in this model. It
would be very interesting to explore this transition further,
using series or other methods.

i i H i 17
We use the linked-cluster expansion method to derive per- We also computed a new series, to ord&t/{) ™, for the
turbation expansions for various choices of the unperturbegusceptibilityx corresponding to this momentuk+0. The
reference Hamiltonian. The technical details are discussed #gsulting series is
many papers, and we refer the reader who is unfamiliar with 2 x3 41x* 2815 64618

these to a recent reviel®.The following is a brief summary, =0)=1+—+ —
v wing s abriet summary, - x(k=0)=1+ 7+ 5+ 55+ 115, * 13824

Il. SERIES EXPANSIONS

A. Dimer expansions . 65 95X’ . 186 8638 . 374542 669°
165888 311040 597196 800

245732403721° 2138459511 094!
T 28665446400 2 149 908 480 000

The first term in the Hamiltoniaril), which represents
disconnected dimers, is taken as the unperturbed Hamil-
tonian. The unperturbed ground state is then a product state
of S=0 singlets on these dimers. As mentioned above, this
state remains an exact eigenstate of the system fa¥, &l
but is not the true ground state faét/J>(J'/J).. The per-
turbation, being the second term in Ed), mixes this state +2.086 275 1441+ 2.638 378 225"
with states in which triplet excitations occur on the dimers.

Dimer expansions can be developed for both ground-state +3.431256 77X+ 4.419 063 264"+ O(x"?).
properties and for excitations. Here because the dimer state is ©)

+1.308 076 64812+ 1.604 414 3483
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FIG. 2. (a) The first plaquette
structure (PE1): The bold solid,
the thin solid, and the dashed lines
represent the coupling constants
J’, \J’, and\J, respectively(b)
The second plaquette structure
(PE2: The bold solid, bold
dashed, the thin solid, and the thin
dashed lines represent the cou-
pling constantsJ’, J, AJ’, and
\J, respectively.

A standard Dlog Padanalysis of this series indicates a pre- tibility yar for J/J’=1.25 and 1.4. Other series are available
ferred critical point around’/J=0.71. Biasingx; at 0.6965, on request. The analysis is left for the next section.

the critical exponent is found to be very small, around 0.03,

which is completely different from that of the classical 3D C. Columnar-dimer expansions

Heisenberg model. It might even be compatible with a loga-
rithmic divergence. A critical pointl’/J=0.71 would be
barely compatible with the upper boudd/J<0.705 found
by Low and Muler-Hartmanf® by means of a variational
ansatz on finite clusters. A critical point &t/J=0.63 would
lie comfortably within the rigorous bounds 089J'/J),
<0.705 found by Lev and Muler-Hartmann'®

A plausible candidate for the intermediate phase is the
columnar dimer phase, as shown in Fig. 3. For both the spin-
1 J,—-J, Heisenberg mod& and the spiny Heisenberg
model on an anisotropic triangular lattitethere appears to
be a columnar-dimer-ordered phase adjacent to thed ble
dered phase. To make the expansion possible it is necessary
to introduce an expansion paramekes 1 that modifies the
) interactions not included if . This is illustrated in Fig. 3.
B. Plaquette expansions The series are then computed in powers\ofThe analysis

Instead of perturbing about isolated dimers, any set ofvaluates these at=1, corresponding to the original Hamil-
disconnected units can be used. Using a plaquette basis dgnian.
lows the investigation of plaquette type order. Because each We have computed series to ordef® A\ \° for the
plaguette has 16 rather than four states it is not possible tground-state energy, the antiferromagnetic susceptibility
derive series of the same length as with dimer expansions.xar, and the triplet excitation energies(k) respectively.

Following Koga and Kawakanfiwe have computed two This calculation involves 290 215 linked clusters up to ten
kinds of plaguette expansioBE1 and PER which, respec- sites. In Table | we present the series for the ground-state
tively, take the set of plaquettes without the diagahbbnds  energyxar for J/J’=1.25 and 1.4. Other series are available
and the set with diagondlbonds as the unperturbed Hamil- on request. The analysis is left for the next section.
tonian. To make the expansion possible it is necessary to
introduce an expansion paramekes 1, which modifies the D. Ising expansions for Nel order
interactions not included ikly. This is illustrated in Fig. 2.
The series are then computed in powers\ofThe analysis
evaluates these at=1, corresponding to the original Hamil-

For smallJ/J’, the model will have a Na-ordered phase
with long-range antiferromagnetic ordén the z direction.
To construct an Ising expansion, we introduce an exchange

tonian. . . e
For PE1 we have computed series to ordém7,\® for anisotropy parametex, and write the Hamiltonian as
the ground-state energy, triplet excitation enerdi€ék) and H=Hy+\V, (4)

staggered susceptibility,r, respectively. This is one addi-
tional term forE, and two additional terms fak (k) andy,r  Where
over Ref. 6. The calculation is computationally demanding,
even with our efficient program. For example, the computa- H ZJE sz g
tion of A(k) to order\” took about 10 days and required 1.8 O e T T &
GB memory on an SGI Origin 2400 system with a 400 MHz
R12000 CPU. The effort for each additional term requires
factors of approximate 50 and 15 increase in CPU time and V:sz (SS+SH+I' D (S'S+9). (5
. iag axial
memory, respectively. For the second expangiB&2 the
series have been computed to ordérfor the ground-state The unperturbed ground state is the classicaieate with
energy and the singlet excitation spectrum, and to oxder energyE,/N=—J"/2+J/8. The perturbatioW flips pairs of
for the triplet excitationA(k) and staggered susceptibility neighboring spins. Series are developed in powers ahd
xae- In Tables | and Il we present the series for the groundevaluated ah =1, which recovers the original Hamiltonian.
state energy, the triplet gap atk=0 and staggered suscep- We have obtained series for the ground-state energy per site,

s,
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TABLE |. Series coefficients for the ground-state energy perEjt§NJ’) obtained from the Ising expansion abouteNerder(Neel),
the helical-orde(Helical) expansion, the columnar-dimer expansion, and from the plaguette expansion without diagonaPiiindsnd
with diagonal bond$PE2 for J/J’ =1.25,1.4. Series coefficients af are listed.

i PE1 PE2 Helical Nel Columnar dimer

JIJ'=1.25
0 —5.00000000000010 ' —4.218750000000 101 —3.562500000000 10 * —3.437500000000 10 —3.750000000000 10 *
1 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 —3.575303819444 10 2 —1.57768744926910 1 —2.05471131859810 1 —2.85714285714810 1 —1.904296875000 10 *
3 —9.49887876157410°% 2.40384182592%10°2 4.16353732897%10°2 1.02040816326810 ! 7.14111328125010 3
4 —6.52037714827910°% —2.78561916951% 107 % —4.66914234328210 2 —9.27336895113810 2 9.90581512451210 3
5 —3.11019256768410° 3 1.33355445661910°° 2.83204465327410 2 1.57555177277210° 1 —9.4998876253768 10 3
6 —2.05145375669R10 ° —9.33026374865010 % —3.363486912444 10 2 —2.47389435682910 1 —1.780716847214 10 2
7 —1.13448170616R10 ° 9.79307105707410°° 3.69333676511410 2 4.09768114099010 1  1.494069254468 10 2
8 —7.19610735024R10 % —5.31867144797R10° 2 —8.16233408202810 1 —3.80382089919% 104
9 7.56743441870210 % 1.693646904376 9.7296904622820 4
10 —1.1386575571368 10~ —3.494392524807 —2.66613744290910 3
11 1.72668082443810° 1  7.456679516027
12 —1.646408487958 10

J/1J'=1.40
0 —5.00000000000010° 1 —4.125000000000 101 —3.53571428571410 1 —3.250000000000 10 —3.750000000000 10~ *
1 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 —3.39236111111%10 2 —1.67856570512810 1 —1.94316602316810 1 —3.125000000000 10 1 — 1.950000000000 10 *
3 —8.05844907407410° % 2.95295193106¥10 2 3.62986538662210 > 1.36718750000010° % 1.659375000008 10 2
4 —5.43137786404810 % —1.14569103873810 % —4.21872138157810 2 —1.66422732234810 1 1.704765625000 10 2
5 —2.53651087603%10°% 2.72473191737510 % 2.27617084263810 2 3.30297272206810 ! —1.338582682292 10 2
6 —1.754982806912 10 % —1.315792108898 10 2 —3.20209347564% 10 2 —6.32011145881% 10" —1.87025838758% 10 2
7 —1.01731079590810 % 1.28227933168910 2 2.99539069879810 2 1.313875979565 1.6697641472470 2
8 —7.03378820900% 104 —4.311390066888 10 2 —3.190631154651 —1.134220766188 103
9 5.83441492513810 2 8.019181935184 —6.547755059728 103
10 —8.797286992572 10 2 —2.04415322473910' —1.63736977536210 2
11 1.34153522473810 1  5.383666306278 10"
12 —1.457331428464 107

Eo/N, and the staggered magnetizatiemder paramet¢ivl  To develop an Ising expansion about such a helically ordered
to order \'2 extending our previous calculation by three state we transform the Hamiltonian by rotating the spin axes
terms. We have also computed a series, to oxd@rfor the @t €ach site. The transformed Hamiltonian is

perpendicular susceptibility, . The resulting series for the B

ground-state energy and the staggered magnetizétiaier H=H1+MH2+Hy), @)
parameter M for J/J'=1.25 and 1.4 are listed in Tables | \here

and lll; the series for other values dfJ’ are available on

request. For details of the analysis we refer to our previous I )y

paper® Results of the analysis are presented in the next sec- H1:JCOS(ZQ)%Q SiS+J COS{Q)%I S

tion.

E. Ising expansions for helical order Ho= J%g [S/Sh+cod2q)§S,+sin(20)(S'S, — S(S;) ],

As discussed by Albrecht and Mifathe classical system ®
has planar helical order fal/J’>1. Starting from a refer-
ence spin in the direction, each neighboring spin is rotated _ 1 . XQX | ai 70X _ oXcZ
by an angleg, as shown in Fig. 1. The twist is determined by Hs=J z;iw [SS/+coda)SSj+sin(a) (S~ S'S) .

minimization of the energy and yields . o
and where exchange anisotropy is introduced through the

perturbation parametex.
©6) We have computed series for the ground-state energy and
the order parameter to ordet?, for various choices aff and

T, J<J’,

a= arccos—J'/J), J>J'.
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TABLE IlI. Series coefficients for the triplet gap/J’ atk=0 and staggered susceptibiligar obtained from the plaguette expansion
without diagonal bond$PEJ), and with diagonal bonddPE2 for J/J’ =1.25,1.4. Series coefficients af are listed.

PE1 PE2
i JIJ'=1.25 JIJ =14 JIJ'=1.25 JIJ' =14
Triplet gapA/J’ atk=0

0 1.000000000000 1.000000000000 1.000000000000 1.000000000000
1 —5.00000000000R 10~ % —4.00000000000R 10" * —9.16666666666% 10”1 —8.66666666666% 10~ *
2 —1.949508101852 10 * —1.558796296298 10 * 5.848101551222 104 —1.75373931623910 2
3 —1.21554778927% 102 6.279063786008 103 3.919269654832 10 * 7.809106177672 10 ¢
4 —4.262073088443 102 —3.063595079008 102 —1.209759818705 —2.966617086045
5 —1.169575496898 102 —4.837854449338 1073 2.808227188528 1.1658938645200"
6 —2.08709015634% 102 —1.75277661025R 102 —7.118402535782 —5.396727727608 10
7 —9.64062732615% 103 —8.06762626018% 103

Staggered susceptibility 5r
0 1.333333333333 1.333333333333 1.333333333333 1.333333333333
1 1.333333333333 1.066666666667 2444444444444 2.311111111111
2 1.250353652263 7.5720936213990 * 2.323016302459 1.684709846149
3 1.201753927683 5.5398768218450 1 2.280972931735 1.010069843149
4 1.113460517630 3.809246267%710 1 2.075318140109 3.0565434911210 ¢
5 1.044513939707 2.7473703985920 * 2.415891359693 6.61831571350710 *
6 9.707650534281 10 * 1.96473057149% 1071 2.233378054361 4.1576646703380 1

the ratioJ/J’. The resulting series for the ground-state en- A. Ground-state energy

ergy and the staggered magnetizatiender parametgrM The nature of the ground state for any particulal’ can

for _J/J’=1.25 and _1.4 are listed in Tables | and III; other o yetermined by comparing the energies of various candi-
series can be supplied on request. We are not aware of Prate states. Our analysis shows that, among all the series
vious series of this type for this model. expansions we have calculated, the ground-state energy from
the Ising expansion about Bleorder has the lowest energy
for couplingJ/J’ <1.45, while the ground-state energies ob-

) ) ) . tained from the columnar-dimer expansion and from the
In this section we present a variety of results obtained\jge|-order Ising expansion remain nearly equal through

from analysis of the various series expansions. The analysi§ 31 =1 2. For example, we estimate the ground-state energy
has been carried out using integrated first-order inhomoges; 3,3/ =1 .25 as

neous differential approximants and Paagroximants® to
extrapolate each series to thhysicalvaluex=1.

IIl. RESULTS AND DISCUSSION

—0.562815), Neel order,
—0.558610), helical order,

N N Eo/NJ' ={ —0.55993), PE1, 9)
h \ h N —0.55848), PEZ2,
._,'._‘_,,_.—,. —0.5631), columnar dimer,
/ 4 / d L d and atJ/J’'=1.40 as
AN AN —0.5613),  Neelorder,
._’_\‘_’_\._‘ —0.5541), helical order,
, / , / , e Eo/NJ' ={ —0.55485), PEL, (10
/ / / o —0.552510), PEZ2,
N N —0.5572), columnar dimer,
h N k N\ where we have used the classigalralue in Eq.(6) in the

calculation of helical order. In Table IV we show details of
FIG. 3. Columnar-dimerization pattern. The bold solid, the thinthe analysis from the latter cadél’ = 1.4 for both the Ising

solid, and the dashed lines represent the coupling constanis)’,  expansion about Mg order and the plaquette expansion

and\J, respectively. (PEY), from which we estimate the values in Ed.0). The
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TABLE IlI. Series coefficients for the staggered magnetizatibiobtained from the Ising expansion abouteNerder (Neéel), and the
helical-order(Helical) expansion ford/J’ =1.25,1.4. Series coefficients af are listed.

Helical Neel
i JIJ =1.25 JIJ =14 JIJ'=1.25 JJ' =14
0 5.00000000000010 1 5.000000000008 10~ * 5.000000000008 10 * 5.000000000000 10 *
1 0.000000000000 0.000000000000 0.000000000000 0.000000000000
2 —1.976862628858 10 * —1.78753542731910° 1 —3.26530612244910° 1 —3.906250000000 10~ *
3 8.01574589248910 2 6.696385209168 102 2.33236151603810 ¢ 3.417968750000 10 *
4 —2.02093845106% 107 ¢ —1.70364872813910 ¢ —6.24967254057010 ¢ —1.188130158850
5 1.595089057636 10 * 1.18662267335310 ¢ 1.247039703760 2.891792139388
6 —2.856270160508 10 * —2.38798849311010° ¢ —2.564444941065 —7.392698990572
7 3.50964662449010 1 2.550333854828 10 ¢ 5.414869562182 1.9609270548810"
8 —6.159923626864 10 * —4.541054989763 101 —1.300042701432 10" —5.77797311298% 10"
9 9.50601022559410 1 6.635675648444 10 * 3.100311343644 10 1.68838292151% 107
10 —1.636489163183 —1.143031741464 —7.335660790958 10" —4.957990614738 107
11 2.726180882130 1.887668026020 1.769340004348 1.478774628138 10°
12 —4.347120802018 1% —4.47129040409% 10°

series approximants, unfortunately, do not converge unitsing expansion about N order. It can be seen that both
formly; but we form an estimate by averaging the results ofquantities behave similarly, decreasing from their values at
a group of the approximants of highest order. The resultingg=0 and vanishing at arountlJ’ =1.2+0.1. The error bars
error estimates are inevitably somewhat subjective. are large and the vanishing point cannot be obtained to high
The ground-state energies obtained from various exparprecision. However, our extended series shows a much
sions versug/J’ are given in Fig. 4. Since the energy from sharper dropoff iM than given in our previous workThus
the second plaquette expansion is slightly higher than thag js possible that the true transition point is at or below 1.20.
from the first plaquette expansion, we do not show the results gq; the Ising expansion about helical order the magneti-
of the second plaquette expa_nsion._Our results are thus %tionM at \=1 (for the classicaly value is zero, within
disagreement with Ref. 6, which claimed that the plaquetiey. o hars, for all/J’. This strengthens our conclusion, from

phase has the lowest energy. Of course these energies are gll ., nd-state energy results, that a helical phase is not
very close to each other and the estimated errors are S“bleﬁfesent.

tive confidence limits. However, inspection of the data in
Table IV shows that the Ising expansion abouteNerder
consistently gives lower energy estimates. _ C. Energy gap and susceptibility in the plaquette expansion

Our results also argue against helical order being a stable _ _
ground state. In Fig. 5 we show estimates of the ground-state The main argument of Koga and Kawaké_rfnr the ex-
energy from Ising expansions about helical order, as a fundStence of a plaquette intermediate phase in the system is
tion of angleq, for the two coupling ratiog/J'=1.25, 1.40. ~based on analysis of the triplet gapkat 0 and the staggered
In each case the curve shows no indication of a minimum agusceptibility series. In their series analysis, they assumed
someq, but rather decreases monotonically towagdss, ~ that the minimum triplet gap is &=0, and the transition
corresponding to W& order. Over the region 1=2)/J'  liesin the same universality class as the classical 3D Heisen-

<1.45, the ground-state energies obtained from thelNe Perg model(i.e., critical exponentsy=1.4,,=0.71). Using
ordered Ising expansion and from the columnar-dimer ex$tandard Dlog Padapproximants, they found an apparent
pansion have some overlap after considering the error bar§fitical singularity at\>1 for J/J’=1.16. This would imply

so they are both good candidates for the ground state of trfé Nonzero spin gap fad/J’=1.16 for the original Hamil-
Shastry-Sutherland model. tonian(1). The above assumption is valid for the transition to

Neel order, but if there was an intermediate phase, the tran-

sition from the plaquette phase to this intermediate phase

might not lie in the same universality class as the classical
The staggered magnetization and perpendicular suscep8D Heisenberg model, and the minimum triplet gap might

bility will be nonzero in a phase with long-range antiferro- not be atkk=0. In the analysis with our longer series, we find

magnetic order, and are expected to vanish at a transitiomdeed that the minimum triplet gap is notkt=0 for J/J’

point to a magnetically disordered or spin-liquid phase. Ef-=1.25, and also that the transition does not lie in the classi-

fective Lagrangian theory predicts a relationspip=v2y, cal 3D Heisenberg universality class.

wherepg is the spin stiffness ang the spin-wave velocity. In First, let us discuss the first plaquette expandiB&l.

Fig. 6 we show estimates &l and y, vs J/J’, from the  Here forJ/J’'<1.25, or for larger values af/J" with small

B. Staggered magnetization and perpendicular susceptibility
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TABLE IV. The results of{m/n/l} integrated differential approximants to the series for the ground-state energy pEpAid’ for
J/J'=1.4 from the Nel-ordered Ising expansion and the plaquette expansion without diagonal (RifisAn asterisk denotes a defective
approximant.

n {(n=3)/n/1} {(n—=2)/n/1} {(n—=1)/n/1} {n/n/l} {(n+1)/n/1} {(n+2)/n/1} {(n+3)/n/1}
Neel-ordered Ising expansion

=0
n=3 —0.52170 —0.55795 —0.54979 —0.57974 —0.55498 —0.57207
n=4 * —0.55178 —0.55573 —0.56195 —0.56468 —0.56026 —0.55991
n=5 —0.56212 —0.57002 —0.56907 —0.56264 —0.55989
n=6 —0.56912 * —0.56121
n=7 —0.56405

=1
n=3 —0.55300 —0.55127 —0.55765 —0.57441 —0.56242 —0.55104
n=4 —0.55139 * —0.55545 —0.56380 * —0.56002
n=>5 —0.56139 —0.56960 —0.56066 —0.56100
n==6 —0.56503 —0.56097

=2
n=2 —0.56352 * —0.55148 —0.55131 —0.60526 —0.57327
n=3 —0.55123 —0.55086 —0.55252 * —0.56628 —0.54598 —0.55427
n=4 —0.55270 * —0.55923 —0.55915 *
n=>5 —0.56600 —0.55917 —0.56079
n==6 —0.56213

=3
n=1 —0.56410 —0.55914 —0.55010 —0.56012 —0.57599
n=2 —0.56089 * —0.55363 * —0.56992 *
n=3 —0.55104 —0.55440 —0.55944 —0.55918 —0.56186 —0.56198
n=4 * —0.55918 —0.55923 —0.56196
n=>5 —0.56143 —0.56258

Plaquette expansion without diagonal bdiREE1

=0
n=1 —0.55534 —0.55281 —0.55647
n=2 —0.55246 —0.55301 —0.55390 —0.55473 —0.55482
n=3 —0.55297 * —0.55492 —0.55484
n=4 —0.55425 —0.55448 —0.55484
n=>5 *
=1
n=1 * —0.55243 * —0.55344
n=2 —0.55316 —0.55574 —0.55595 —0.55499
n=3 * —0.55587 —0.55467
n=4 —0.55458 —0.55513
=2
n=1 * —0.55270 * * *
n=2 —0.55347 —0.55481 * —0.55488
n=3 * —0.55496 —0.55487
n=4 —0.55492
values of\, we find the minimum triplet gap is &=0; but A(m/4,3w/16)/)' =1—0.3077 152 78X
for J/J'=1.25 and\~1, it is no longer atkk=0. For ex- 2
ample forJ/J’ = 1.40, the dispersion for varions along the —0.2293662298
line connectingk=(0,0) andk= (/4,37/16) is shown in —0.0346 064 99§°
Fig. 7, where we can see that fo0.75, the minimum gap —0.0741227 6514
is located atk=0, while for larger\, the minimum gap is —0.0176 489 6585

located at about= (7/4,37/16), and the dispersion near the 6
minimum is quite flat. The series for the triplet gap lat —0.0400694 386
=(m/4,37/16) is —0.0030161628"+0(\8). (11)
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-0.55

- \¢ with increasing order for botld/J’ ratios. The data are

] more consistent with the conclusion<1, rather tham\

| >1. For the spin gap\(#/4,37/16) atJ/J’'=1.40, the un-
biased Dlog Padapproximants give very convergent results,
with the critical point\ ;=0.988 and critical index=0.43.
This indicates instability of the plaguette phasenatl, at
least for this coupling ratio. This also indicates that there is
_ indeed an intermediate phase. Note that the critical index

. obtained here is about the same as that obtained from the
— dimer series, which might suggest that this transition belongs
. to the same new universality class—but recall that the former
T transition is “pre-empted” by a vanishing two-particle dap

] at smaller coupling. The multiparticle excitation spectrum
deserves further investigation in this whole class of models.
In any case, our analysis shows that the transition probably
does not belong in the classical 3D Heisenberg universality
class forJ/J' =1.1. Because the critical indexfor the mini-
mum gap is much smaller than 1, we have obtained the dis-

-0.56

-0.58

P v+ AN RIS RIS S BT persion results shown in Fig. 7 by performing the series ex-
1 1.2 1.4 1.6 trapolation in a new variable
/7
6=1—(1—-N/N\p)", (12

FIG. 4. The ground-state energy verslig’ obtained from the
Neel-ordered Ising expansiomj, columnar-dimer expansiorCy,
plaguette expansionP(, and helical-order Ising expansion).
The energy of the exact dimer state is also preseribgd (

in order to take the singular behavior into account.
Finally, we consider the second plaquette expansion
(PE2. The minimum triplet gap is no longer k=0, at least

_ N N for small to moderate.. This can be seen from the first few
Table V shows estimates of the critical poit and critical ~ terms of the series

index from both the spin gap and susceptibility series for the
coupling ratiosJ/J’'=1.25 and 1.40, using unbiased Dlog AN IN
Padeapproximants, where fa3/J’'=1.40, we show the re-  A(k, Ky)/J'=1— —(cosk,+ cosk,) + —cogk,+Kky),
sults for the spin gap at botk=0 and k= (=/4,37/16). 6 3J

Apart from the spin gap (7/4,37/16) atJ/J’' =1.40, there (13
is considerable scatter in the results, but several features ar

- : : . ich gives the minimum gap &=k =arccos(’'/J). It
apparent. The spin-gap series show decreasing Elsnmates\;&eems likely that the minimum triplet gap will remain lat

#0, even forn=1, although the series in this region are too
erratic to confirm this. For this choice of unperturbed Hamil-
tonian we are also able to compute the excitation spectrum
-0.54 = 7 for the singlet excitation and we have obtained series to or-
I T der\’. The minimum singlet gap is &=0 and appears to
be smaller than the triplet gap. An attempt to locate the criti-
cal point\, by Dlog Padeapproximants to this series was
hampered by poor convergence. We have attempted other
analysis procedures, but without great success. But since the
ground-state energy from the second plaquette expansion
(PE2 is higher than that obtained from both the first
plaquette expansion and the &l@rdered Ising expansion,
the probability of having the second plaquette configuration
as the intermediate phase is remote.

-0.55 - .

E,/I'N

-0.56 [

D. The energy gap in the columnar-dimer expansion

Finally, we discuss the triplet dispersion obtained from the
columnar-dimer expansion. Here fdfJ’' <1.15, we find the
minimum gap is located at momentuk¥ (0,7), as ex-
pected, since we expect to have a transition to thel e
dered phase for small/J’. Figure 8 shows the gap &t
=(0,0), (w,0), and (Ogr) for J/J'=0.875 vs\ obtained
FIG. 5. The ground-state energyfor helical order. from the integrated differential approximahtso the series.

-0.57 - .

0.5 0.6 0.7 0.8 0.9 1
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0.06

0.04 - -1

X1

4 0.02 - [ —

I/8 J1/J

FIG. 6. The staggered magnetizatignand the perpendicular susceptibiljpy vsJ/J’. The solid points with error bars are the estimates
from the Ising expansion about Bleorder.

We can see that the minimum gap vanishes at a critical valuenfortunately the biased Dlog Padesults here are not ac-
Ac<1.We also expect this transitidto Neé orden to lie in  curate enough to tell whethaxr, is larger than 1.

the same universality class as the classical 3D Heisenberg For J/J’'=1.75, we find that the minimum gap is located
model. To determine the phase boundary of columnar-dimeat k=(0,0). Figure 8 also shows the gap &
order, we can use Dlog Padpproximants to both the series =(0,0), (=,0), and (0Og) for J/J’ =2 vs\. Once again, one

for the minimum gap and for the antiferromagnetic suscepean locate the phase boundary by using the Dlog Reue
tibility. To get more reliable estimates for the critical point, proximants to the series for the minimum gap, and the results
we assume the critical exponents to pe1.4,=0.71. The are also shown in Fig. 9. We see thatJ g’ decreases).
results are shown in the phase diagram Fig. 9, where we cancreases, but again, the analysis is not accurate enough to
see that\,=0.514(6) forJ=0, and that\. increases for tell whether\ is larger than 1 in the intermediate region.

increasingd. For J/J'=1.15, we estimate..=0.975), but In the analysis, we also note that the gapkat(,0)
shows some peculiar features, as shown in Fig. 8. For all
T T ] values ofJ/J’, the majority of integrated differential ap-
J/I'=1.4 K=0.75k, ] proximants to the series show that the gap increases for small
L — \, then decreases dramatically to zero %or 0.5. The ma-
0s | AR08 e s jority of Dlog Padeapproximants to the series also show that

the series has a critical point at-0.5 with very small criti-
cal index (~0.2). But we believe this peculiar behavior is an

06 Forremminn N0 e L artifact of the short series.

S N=0.85 Rt For the most interesting region 1%9/J'<1.75, the
> R A s S 1 situation is quite complicated: the location of the minimum
R I_ gap depends on botlyJ’ and\. We take the midpoint for

Rl S 41 the presumed intermediate phadk]’ =4/3, as example. For

"4, A=0.95 { I{f

] N\ near 1, we find the minimum gap fa/J’'=4/3 is atk
l =(0.47,2.80), slightly away from (&;). The standard Dlog
02 " I.,,.‘} k ] Padeapproximants to the series for the minimum gap gives a
i .. A=0.998 ] -------- ] critical point A\;=1.0(1), with critical index »~0.4. This
""-.;A,.AI_ }[ seems to be consistent with the indices obtained from the
M I B ; ; ;
dimer and plaquette expansions. Since the standard Dlog
0 0.2 04 0.6 08 1 . .
Padeapproximants cannot tell whethar, is larger than 1,
Rk, /m . . - .
we examine the extrapolations for the gap itself obtained
FIG. 7. The triplet dispersion for various and J/J’=1.40 from integrated differential approximants. The results for the
along the line connecting=(0,0) andk=(7/4,37/16) obtained gap atk=(0.47,2.80), (0,0) and (&) are shown in Fig. 10.
from the first plaquette expansi¢RED. The gap at=1 for k=(0.47,2.80) is very small£0.13")
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TABLE V. [n/m] Dlog Padeapproximants to the series for the triplet gi¢k) and antiferromagnetic susceptibilipy - for the plaquette
expansion without diagonal bondBE1). An asterisk denotes a defective approximant.

n [(n=2)/n] [(n=1)/n] [n/n] [(n+1)/n] [(n+2)/n]
pole (residug pole (residug pole (residug pole (residug pole (residug
A(0,0) forJ/J'=1.25
n=1 1.40981.2718 0.85920.2879 1.20011.0957%
n=2 1.08040.6523 1.053@0.6019 1.03050.5503 1.01810.5170Q
n=3 1.055%0.6079 0.9247(0.2175) 1.00740.4801
n=4 1.00890.4855
A(0,0) forJd/J'=1.4
n=1 2.0315%1.9470 0.81070.1237% 1.55461.6732
n=2 1.29490.6512 1.20160.5172 1.107%0.3712 1.02730.2532
n=3 1.21810.5463 0.7442(0.0227) 0.93520.126%
n=4 0.94540.1386
A(/4,3m7/16) forJ/J' =1.4
n=1 1.605%1.4266 0.6380.0896 1.43852.3132
n=2 * 0.98830.4300 0.98890.4307% 0.9850.4240 1.02030.5055
n=3 0.98890.4307% 0.98840.4301) 0.98850.4302
n=4 0.988%0.4302
XAF f0r J/J’ = 125
n=1 0.9830(- 0.8461) 1.2245(1.6351) 0.9962( 0.7165)
n=2 1.0003(0.8898) 1.0739¢ 1.0477) 1.1011£1.1273) 1.0825( 1.0510)
n=3 1.1033(1.1367) 1.0910¢ 1.0902)
T T T I T T T T T T I T T T T T T
1.5
. i
N 1 < ]
Ve | -
£
S r -
< r i
05 -
i oy :
0 —————— I»':“"E!I“:l"-\‘ I 1
1.5 - s s = 04 -
: k=(1T,O) e /// ,’__,—’—’: L i
I~ i T ] I I
R e N — I 1
D M 0.2 —
~~ L -
= L i
N’ r 1 1 1 | 1 1 1 | 1 1 1 | Il
< o5l 0 02 04 06 08 1
N J/(I+7)
- (b) J/J'=2
0 L, 1 FIG. 9. The phase diagram for columnar-dimer order, where the
0 0.2 0.4 0.6 0.8 1 curve in the small/(J+J') region is determined by the Dlog Pade
A approximants to the gap kt=(0,7) and the antiferromagnetic sus-

ceptibility yar, and we assume the transition lies in at the same
FIG. 8. The triplet gapA(k)/J" vs A for k=(0,0), (7,0), and  universality class as the classical 3D Heisenberg model. The curve
(0,m) andJ/J’ =0.875 and 2. Several different integrated differen- in the larged/(J+J’) region is determined by the Dlog Padp-
tial approximants to the series are shown. proximants to the gap &=(0,0).
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NS ST LA L L S B L B B tive mean-field theory approach to the generalized Shastry-

"""""" . Sutherland model. They argue that a direct continuous tran-
- . o . sition from the Nel phase to the dimer phase is not possible.
N, e >0) - If this argument is accepted, it means that the vanishing of
0.8 | N\ - the order parameter and susceptibility in théeNghase
cannot be associated with a second-order transition directly
to the dimer phase. It follows that an intermediate phase
must exist, over at least a small range of couplings.

The next question is the nature of the transitions from the
Neel and dimer phases, respectively, into the intermediate
phase. The vanishing staggered magnetization and perpen-
dicular susceptibility in the Na phase indicate a second-
order transition; but we are unable to estimate the critical
exponents, since we do not have explicit series coefficients
for an expansion iJ/J'. The vanishing energy gap would
indicate that the transition from the dimer phase is also sec-
ond order; but the result of Knettet al® showing that the
two-particle bound-state energy vanishes before the single
triplet gap indicates that more work needs to be done to
characterize this transition also. It is interesting that one-
particle gaps appear to vanish with a similar exponent in the
dimer expansion, the plaquette expansion, and also the
0 0.2 0.4 . . columnar-dimer expansion.

A further question concerns the nature of the intermediate
phase. None of the suggested phases exhibit a ground-state

FIG. 10. The triplet gapA(k)/J" vs A for k=(0,0), energy that is distinctly lower than the Bleenergy in the
(10.47,2.80), and (@) andJ/J’'=4/3. Several different integrated relevant coupling regime. Our results do not support the
differential approximants to the series are shown. suggestiofithat the intermediate phase is plaquette ordered.

The extrapolated ground-state energy from thelNsxpan-
when estimated from the direat series. When analyzed in sjon consistently lies below that from the plaquette expan-
terms of variables [Eq. 12 the gap is compatible with zero. sjon; and the triplet gap from the plaquette expansion ap-
If the gap vanishes at or before=1, the columnar-dimer pears to vanish at or before the physical vahe1 is
phase would also be ruled out as intermediate phase for theached, indicating instability in this phase. Our longer series

0.6 -

A(k) /T

0.4 -

0.2

L J/I=4/3

Shastry-Sutherland model. thus appear to contradict the conclusions of Koga and
Kawakami® Equally, our results do not support the sugges-
V. CONCLUSIONS tion that the intermediate phase is helically ordetédhe

extrapolated ground-state energy from theeNexpansion

We have attempted to further elucidate the nature of theonsistently lies below that of the helically ordered state, for
phase diagram of the Shastry-Sutherland spin moddl at any value of the spin orientatianother thanm. We note that
=0, by series-expansion methods. We have significantly exthe mean-field approach of Albrecht and Mila strictly only
tended previous series, computed by ourséleesl others  valid for d>2; while the 1N expansion approach of Chung,
and we have also derived a number of new series. The analjdarston, and Sachdéyvs certainly not quantitatively accu-
sis of the various series allows us to draw some fairly firmrate for the spirg case.
conclusions, as well as others which are more tentative. We have also explored the possibility that the intermedi-

The first question is whether an intermediate phase beate phase is a columnar-dimer phase, as in ipe J,
tween the Nel-ordered phase and the dimer phase exists aeisenberg modéf or the spin} Heisenberg model on an
all. It seems rather clear that the singlet-dimer phase, with anisotropic triangular lattic¥. The extrapolated ground-state
simple singlet-product ground state, persists from lavge energy for this state is comparable with that of theeNstate,
down t0J/J'=1.5-1.6. In our previous workwe argued  within error bars, and the triplet gap from this expansion
that there is a direct first-order transition from the dimershows a window 1.15J/J'<1.5 in which it may remain
phase to Nel order at this point. Our present results showfinite, though very small, at the physical valde=1. This
the staggered magnetization and perpendicular susceptibilifgmains a possible candidate for the intermediate phase, al-
in the Neel phase vanishing a/J’=1.2, with large uncer- though our data are not sufficiently accurate to allow a de-
tainty +0.1. This appears more consistent with théeNe finitive conclusion.
phase terminating at a second-order phase transition, so that The nature of an intermediate state in this model thus
there may indeed be an intermediate phase stretching overramains an open question. It could, for example, be a struc-
very small range of coupling constants 1220/J'<1.5, in  tureless spin liquid, in which case a signature of this phase is
agreement with the suggestion of Koga and Kawakami.  elusive. Carpentier and Balelishave also discussed pos-

Carpentier and Balenfshave recently discussed an effec- sible intermediate phases in the generalized model, including
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a weakly incommensurate spin-density wave ordered state-two-particle gap vanishes. This puts the material clearly
i.e., a periodic modulation of the expectation value of thewithin the dimer phase and hence the question of intermedi-
total spin on each dimer—and a “fractionalized” state, with ate phases is primarily of theoretical interest.

topological order and deconfined spin- excitations It is clear that much work remains to be done on this
(“spinons”). Chung et al. have also discussed a helical fascinating model. It would be interesting to confirm and
(q,7) short-range-ordered phase that lies near the longextend the results of Knettet al® concerning the transition
range-ordered phase in their lafyephase diagram in cou- from the dimer phase; and also to try and construct series
pling space. We currently have no information to offer re-coefficients for an expansion iiJ’ in the Neel phase. New
garding these candidate intermediate states. It is likely to be,merical methods are badly needed to explore the interme-

a very difficult problem, numerically, to distinguish whether giate phase also: the best method to employ here remains a
or not such a phase occurs. The fact that the energy gagzzle.

drops to zero before or near the physical valsel in every
expansion we have tried appears to suggest that the interme-
diate phase is gapless, or near to it. Further support for this
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