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Ground-state phase diagram of quantum Heisenberg antiferromagnets
on the anisotropic dimerized square lattice
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The S51/2 andS51 two-dimensional quantum Heisenberg antiferromagnets on the anisotropic dimerized
square lattice are investigated by the quantum Monte Carlo method. By finite-size-scaling analyses on the
correlation lengths, the ground-state phase diagram parametrized by strengths of the dimerization and of the
spatial anisotropy is determined much more accurately than the previous works. It is confirmed that the
quantum critical phenomena on the phase boundaries belong to the same universality class as that of the
classical three-dimensional Heisenberg model. Furthermore, forS51, we show that all the spin-gapped phases,
such as the Haldane and dimer phases, are adiabatically connected in the extended-parameter space, though
they are classified into different classes in terms of the string order parameter in the one-dimensional, i.e., the
zero-interchain-coupling, case.
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I. INTRODUCTION

Recently many low-dimensional antiferromagnets w
excitation modes separated from the ground state by a fi
energy gap have been synthesized, and effects of impur
or magnetic fields on those materials have been investig
experimentally in relation to the impurity-induced lon
range order~LRO! and magnetic-field-induced LRO. For ex
ample, there are theS51/2 quasi-one-dimensional~Q1D!
Heisenberg antiferromagnet~HAF! with bond dimerization,
CuGeO3,1 S51 Q1D HAF’s, NENP,2 NDMAZ,3 NDMAP,4

and PbNi2V2O8,5 S51 Q1D HAF’s with bond alternation
NTEAP,6 and NTENP.7 Those materials have attracted o
interest since they reveal various aspects of the quan
phase transition between the quantum-disordered s
gapped phase and the classical~Néel! long-range-ordered
phase.

Intrachain spin interaction with or without bond altern
tion and interchain interaction are considered to be the m
basic ingredients to understand the quantum phase transi
mentioned above. More explicitly, they are expected
be modeled effectively by the quantum HAF on the a
sotropic dimerized square lattice, which is described by
Hamiltonian,

H5(
i , j

S2i , j•S2i 11,j1a(
i , j

S2i 11,j•S2i 12,j

1J8(
i , j

Si , j•Si , j 11 . ~1!

Here Si , j is the quantum spin operator at site (i , j ) on the
square lattice. The first two terms in right-hand side repres
the one-dimensional antiferromagnetic~AF! Heisenberg
chains with alternating coupling constants, 1 anda (0<a
<1), and the last term represents the AF interchain excha
interaction (J8>0). We choose thex axis as being along the
0163-1829/2001/65~1!/014407~8!/$20.00 65 0144
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chain direction and they axis in the perpendicular direction
The bond arrangement of this model is shown in Fig. 1.

The ground state of decoupled chains, i.e.,J850, has
been well established. In particular, that of theS51/2 chain8

is the dimer state with a finite spin gap except for the u
form case (a51), which has a critical ground state. On th
other hand, for theS51 chain there exist two spin-gappe
phases: the Haldane phase9 at a.ac and the dimer phase a
a,ac .10 At the critical point a5ac between these two
phases the gap vanishes. The value ofac has been estimate
to be 0.5879~6!.10,11 In both cases, the critical point is con
sidered to belong to the Gaussian universality class.10

For the AF LRO to appear, the higher-dimensionality e
fect, i.e., the interchain interactionJ8, is indispensable. In
most of the numerical works reported so far, the effect
interchain coupling has been examined in certain appro
mated or perturbed ways. For example, Sakai a
Takahashi12 estimated the critical strengthJc8 , for the uni-
form case (a51) by the exact diagonalization method fo
the intrachain interactions combined with the mean-field
proximation for the interchain interaction, and obtain
J8c

(S51/2)50 and J8c
(S51)>0.025. More recently, Koga and

FIG. 1. Anisotropic dimerized square lattice with alternati
intrachain coupling of strength 1~thick solid line! and a ~solid
line!, and the interchain coupling of strengthJ8 ~dashed line!.
©2001 The American Physical Society07-1
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MATSUMOTO, YASUDA, TODO, AND TAKAYAMA PHYSICAL REVIEW B 65 014407
Kawakami13 investigated theS51 model by the cluster-
expansion method, and obtainedJc850.056(1) for a51.
However, there have been only a very limited number
numerical works, in which both of the interchain and intra
hain interactions are treated on an equal footing.14,15 Such
numerical analyses are certainly required, since the me
field-like approximation is not necessarily appropriate ev
in the Q1D regime.16

In the present paper, we report the results of quan
Monte Carlo ~QMC! simulations by using the continuous
imaginary-time-loop algorithm17–20 on theS51/2 andS51
HAF model described by Eq.~1!. The present paper is orga
nized as follows. In Sec. II, the method of our numeric
analyses is explained. In Secs. III and IV, the ground-s
phase diagram parametrized by the strength of the bond
ternation,a, and that of the interchain coupling,J8, is deter-
mined precisely forS51/2 and S51, respectively. Espe
cially, for the S51 system with a51, we obtain Jc8
50.043 648(8), which is consistent with 0.040(5) suggest
by the recent QMC work,15 but is much more accurate. Fu
thermore, both in theS51/2 andS51 systems, the quantum
phase transitions between the spin-gapped phases an
AF-LRO phase are confirmed to belong to the same univ
sality class as that of the 3D classical Heisenberg model:
exponent of the correlation lengths isn50.71(3) for S
51/2 andn50.70(1) forS51, which coincides fairly well
with that of the latter model,n50.7048(30).21 We also show
the results on the correlation length and the gap in the s
gapped phase. In Sec. V, the topology of the phase diagra
discussed in detail based on the result of the present Q
calculation. We show that all the spin-gapped phases, suc
the Haldane and dimer phases, are adiabatically conne
with each other in the extended-phase-parameter space.
is in a sharp constrast to the strict 1D case, in which
spin-gapped phases are classified into different classe
terms of the so-called string-order parameter.23 It is of inter-
est that the 1D spin-gap phases, which have different hid
symmetries, are connected without encountering any sin
larity in the 2D phase diagram. The final section is devo
to the concluding remarks.

II. METHOD

We consider the system described by the Hamiltonian~1!
with S51/2 andS51. The real-space size isLx3Ly and the
inverse temperature, i.e., the imaginary-time size, isb51/T.
Periodic boundary conditions are imposed in thex and y
directions. We use the continuous-imaginary-time-loop al
rithm with multicluster update.17,18 Especially, for theS51
system we adopt the subspin-representation technique,19,20 in
which theS51 system is represented by anS51/2 system
with special boundary conditions in the imaginary-time
rection. By using these techniques, we can perform the si
lation up to Lx3Ly5336348 with b5100 for the S51
case without encountering any difficulty.

The imaginary-time dynamical structure factor is defin
by
01440
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Sd~qx ,qy ,v!5
1

LxLyb
(
i , j

3E
0

b

dt dt8e2 iq•(r i2r j )2 iv(t2t8)^Si
z~ t !Sj

z~ t8!&,

~2!

whereq5(qx ,qy) is the wave-number vector,Si
z(t) is thez

component of the spin on sitei at imaginary timet, and^•
••& is the thermal average. By usingSd(qx ,qy ,v), the stag-
gered correlation length along thex direction, jx , is then
evaluated by the second-moment method,20,24

jx5
Lx

2p
A Sd~p,p,0!

Sd~p12p/Lx ,p,0!
21. ~3!

The correlation length in they direction,jy , and that in the
imaginary-time (t) direction,jt , which is related to the gap
D by D51/jt , are calculated similarly. Finally the staggere
susceptibilityxs is evaluated by

xs5Sd~p,p,0!

5
1

LxLyb
(
i , j

E
0

b

dt dt8 e2 i p•(r i2r j )^Si
z~ t !Sj

z~ t8!&. ~4!

All the structure factors are calculated by using the improv
estimators.25 The period of 102–103 Monte Carlo steps
~MCS! is used for thermalization and that of 103–105 MCS
for the evaluation of physical quantities.

Near the critical point (ac ,Jc8) of the ground-state transi
tion, the correlation lengths diverge as

jx ,jy;t2n, ~5!

jt;t2zn5t2n, ~6!

where t is the distance from the critical point andn is the
critical exponent for the correlation length. Here we have
z51 assuming the Lorenz invariance.26 Furthermore, the fol-
lowing finite-size-scaling ~FSS! formula27 holds near
(ac ,Jc8) andT50 for systems with the fixed ratioLx :Ly :b,

jx /Lx. f ~ tLx
1/n ,Lx

zT!5 f ~ tLx
1/n!, ~7!

and similar ones forjy andjt , and

xs.Lx
g/ng~ tLx

1/n ,Lx
zT!5Lx

g/ng~ tLx
1/n!. ~8!

Here f and g are scaling functions andg the exponent for
xs (;t2g). Note thatLxT is put constant in the above equ
tions. We assume a polynomial up to the second order for
scaling functions. By using least-squares fitting, we obt
the critical point (ac ,Jc8) and the associated critical expo
nentsn andg.

In addition, at some points in the spin-gapped phase,
explicitly evaluate the correlation lengths,jx andjy , and the
gap D at T50 in the thermodynamic limitLx ,Ly→`. For
this purpose we extrapolate the simulated data first to
ground stateT→0 and then to the thermodynamic lim
Lx ,Ly→`.
7-2
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GROUND-STATE PHASE DIAGRAM OF QUANTUM . . . PHYSICAL REVIEW B65 014407
III. RESULTS FOR SÄ1Õ2

A. Ground-state phase diagram

In Fig. 2 we show the ground-state phase diagram of
S51/2 system obtained by the FSS analysis explained in
previous section. As an example of the FSS analysis,
show in Fig. 3 that ofjt againsta for J851 ~dotted line in
Fig. 2!. The aspect ratio of the (211)-dimensional system is
taken asLx :Ly :b51:1:1. By theleast-squares fitting, the
exponentn and the critical couplingac are estimated as
0.71~1! and 0.314 07~5!, respectively. Here, the figure in pa
rentheses denotes the statistical error (1s) in the last digit.
We also perform the same analyses on other lines in thea-J8
plane, whose results are presented by the solid circles in
2. For example, on the linea5J8 ~dashed line in Fig. 2!, we
obtain ac5Jc850.523 37(3) andn50.71(3). In the phase
diagram we can see that the ground state of the chainJ8
50) is the dimer state with a spin gap except f
a51,12,28–30and that the region of the AF-LRO phase e
larges monotonically asJ8 increases.

Our phase diagram is qualitatively the same as tha
Katoh and Imada~KI !,14 but not quantitatively. In particular

FIG. 2. Thea-J8 phase diagram of theS51/2 system at zero
temperature. The~spin-gapped! dimer phase and the AF-LRO phas
are described byD and AF, respectively. The statistical error of ea
data point is smaller than the symbol size. The dotted and da
lines denoteJ851 anda5J8, respectively.

FIG. 3. Finite-size scaling plot of the inverse gapjt for S
51/2 with J851 andLx :Ly :b51:1:1. Thecritical couplingac

and the exponentn are estimated as to be 0.314 07~5! and 0.71~1!,
respectively. The dashed line represents the scaling function, w
is approximated by a polynomial of order two.
01440
e
e
e

ig.

f

we obtain the critical point,ac50.314 07(5), on the line
J851 ~dotted line in Fig. 2!, which is significantly smaller
than their estimateac50.398. More importantly, in the
present simulation, the critical exponentn on the transition
points is evaluated asn50.71(1), which is consistent with
n50.7048(30) for the 3D classical Heisenberg model.21 The
similar results have been obtained for the 2D 1/5-deple
HAF model.22 On the other hand, KI concludedn51. The
reason for the these discrepancies might be due to the sm
ness of the system sizes and the inverse temperature us
the study by KI.

B. Correlation lengths and the gap

We also evaluate explicitly the ground-state correlat
lengths and the gap on some points in the dimer phase
using the dynamic structure factors. Unless the points
very close to the critical line, these quantities in each sys
with L (5Lx5Ly) saturate to the ground-state values at te
peratures we have simulated. For example, theT depen-
dences of these quantities are not to be discernible aT
50.05 and 0.01 fora5J850.4 and 0.5, respectively. On th
other hand, theL dependence still remains in sizes we ha
calculated. TheL dependences of the ground-state spa
correlation lengths and the gap are shown in Fig. 4 fora
5J850.5, which is close to the critical pointac5Jc8
50.523 37(3). Their values in the thermodynamic limit ar
estimated by fittingjk(L) to jk(L)5j2b exp(2cL), where
k5x, y, or t, j is the value in the thermodynamic limit, an
b and c are fitting parameters. As a result, we obtainjx
53.0089(9), jy52.2097(6), and D50.322 61(4) for a
5J850.4 and jx511.998(9), jy59.312(10), and D
50.0913(2) fora5J850.5. As a(5J8) becomes smaller
i.e., the system becomes more distant from the critical po
D becomes larger andj smaller.

IV. RESULTS FOR SÄ1

A. Overview on the phase diagram

Before going into the QMC analysis, let us here summ
rize the ground-state phase diagram of theS51 system ar-
gued so far, which is shown in Fig. 5. For some points in

ed

ch

FIG. 4. System-size dependence of the correlation lengths
the inverse gap at zero temperature forS51/2 with a5J850.5.
The extrapolated values are denoted by solid symbols.
7-3
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MATSUMOTO, YASUDA, TODO, AND TAKAYAMA PHYSICAL REVIEW B 65 014407
phase diagram the ground state is well understood by
previous theoretical and numerical studies.

~1! (a,J8)5(0,0). The system consists of a set of t
isolated antiferromagnetically coupled spin pairs. T
ground state is a trivial tensor product of dimer singlets
ting on each bond.

~2! (a,J8)5(1,0). The system consists of isolate
x-parallel Haldane chains.

~3! (a,J8)5(1,1). The system is a uniform and isotrop
2D HAF. There exists an AF LRO in the ground state.31

~4! J85`. The system consists ofy-parallel Haldane
chains. Note that in this limit the value ofa becomes irrel-
evant~see also discussions in Sec. III!.

In their analysis by the cluster-expansion method, Ko
and Kawakami13 derived three phases in the Q1D region, a
they called the regions that include points~1!, ~2!, and~3! the
dimer phase, the Haldane phase, and the AF-LRO ph
respectively. The region near point~4! is another Haldane
phase. Therefore we call here the region that includes p
~2! the Haldane I (H-I) phase and the one that includes t
line ~4! the Haldane II (H-II) phase. For the uniform system
with a51 the (H-I) and (H-II) phases are equivalent whe
we exchange the roles of thex axis and they axis, and ofJ8
and 1/J8.

B. Haldane-AF phase transition in the nondimerized system

To demonstrate our FSS analyses, let us begin with c
cal behavior near (1,Jc8), which separates the (H-I) and AF
phases (Jc8.0.04 due to Ref. 15!. We sweepJ8 near sup-
posedJc8 with a fixed to unity. In Fig. 6,jx /Lx , jy /Ly , and
jt /b of the systems withLx5Ly5b[L (516,24, . . . ,64)
are plotted. As one sees immediately, the data suffer f
quite large corrections to scaling, i.e., the crossing poin
the scaled correlation lengths with two differentL ’s clearly
shifts to largerJ8 as the system size increases. We attrib

FIG. 5. Schematic ground-state phase diagram of theS51 sys-
tem obtained before the present QMC analysis. Filled circles are
points where the corresponding ground state is well established~1!
the dimer phase (D), ~2! x-parallel Haldane phase (H-I), ~3! the
AF-LRO phase~AF!, and~4! y-parallel Haldane phases (H-II).
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these large corrections to the strong spatial anisotropy in
coupling constants (J8!1). Indeed, the value ofjy at J8
50.0435 is 9.29(7)@see Fig. 6~b!# even for the largest sys
tem sizeL564, which is quite smaller than those in the oth
directions@jx560.4(3) andjt524.7(2)#. Among the three
correlation lengths,jx is the largest: the growth of the cor
relation is dominated only by the system size in thex direc-
tion. This indicates that we need larger lattices, especially
the x direction, in order to perform a precise FSS analysi

To simulate larger lattices with minimal costs, we ther
fore optimize the aspect ratio,Lx :Ly :b, as explained below
Expecting that the scaled correlation lengths,jx /Lx , jy /Ly ,
andjt /b, become nearly equal with each other at the criti
point, we set the aspect ratioLx :Ly :b as 7:1:2based on the
data presented in Fig. 6. With this ratio we simulate syste
with Lx5168, 224, 280, and 336 and perform the FSS ana
ses. The raw data ofjx /Lx , jy /Ly , andjt /b with this as-
pect ratio are shown in Fig. 7. Nowjy512.02(5) even for
the smallest system size (Lx5168 and Ly524) at J8

he

FIG. 6. Plot of the correlation lengths,~a! jx /Lx , ~b! jy /Ly ,
and ~c! jt /b, as a function ofJ8 for S51 with a51 and
Lx :Ly :b51:1:1.
7-4
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FIG. 8. Finite-size-scaling plot of the correlation lengthjx for
S51 with a51 andLx :Ly :b57:1:2. Thecritical couplingJc8 and
the exponentn are estimated to be 0.043 648~9! and 0.69~1!, re-
spectively, by the least-squares fitting. The dashed line repres
the scaling function, which is approximated by a polynomial
order two.

FIG. 7. Plot of the correlation lengths,~a! jx /Lx , ~b! jy /Ly ,
and ~c! jt /b, as a function ofJ8 for S51 with a51 and
Lx :Ly :b57:1:2.
01440
50.0435. The ratiosjx /Lx , jy /Ly , andjt /b in a common
range ofJ8 become nearly equal, and corrections to scal
become much smaller than in the previous ones as we
pected. The FSS plot forjx is shown in Fig. 8. The resultan
Jc8 and n are as follows: (Jc8 ,n)5„0.043 648(9),0.69(1)…
from jx , „0.043 649(8),0.71(1)… from jy , and
„0.043 648(7),0.69(1)… from jt .

Averaging these three values we conclude with

Jc850.043 648~8! ~9!

and

n50.70~1!. ~10!

Fixing the value ofJc8 andn thus determined, we next pe
form the FSS analysis on the staggered susceptibilityxs .
The raw data ofxs vs J8 are shown in Fig. 9 and the fitting
result is shown in Fig. 10. The latter yields

g51.373~3!. ~11!

The exponentsn andg we have obtained for theS51 sys-
tem again agree with those of the 3D classical Heisenb
model.21

The critical point obtained just above is consistent w
the previous result by the method involving the mean-fi

nts
f

FIG. 9. Plot of the staggered susceptibilityxs as a function ofJ8
for S51 with a51 andLx :Ly :b57:1:2.

FIG. 10. Finite-size-scaling plot of the staggered susceptibi
xs for S51 with a51 andLx :Ly :b57:1:2. Thevalues ofJc8 and
n are fixed to 0.043 648 and 0.70, respectively. The exponentg is
estimated as to be 1.373~3! by the least-squares fitting. The dash
line represents the scaling function, which is approximated b
polynomial of order two.
7-5
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MATSUMOTO, YASUDA, TODO, AND TAKAYAMA PHYSICAL REVIEW B 65 014407
approximation,Jc8>0.025,12 and also with that by the recen
QMC method, Jc850.040(5).15 On the other hand, the
present result significantly differs from that obtained by t
cluster-expansion method,Jc850.56(1).13 The present FSS
analyses on our extensive QMC results make it possible
us to obtain the critical value with much higher accura
than the other methods.

C. Ground-state phase diagram

In a similar way as described in the previous section,
obtain other critical points on thea-J8 phase diagram a
shown in Fig. 11. First, the scaled correlation lengths,jx /Lx ,
jy /Ly , andjt /b, are calculated up toLx564 with eithera
or J8 fixed. SweepingJ8 or a with sufficiently high resolu-
tion, we regard a crossing point of thesej ’s as the critical
point. Note that the optimal aspect ratio depends strongly
the value of a and J8. However, we adoptLx :Ly :b
51:1:1 for simplicity. Although the results thus obtaine
suffer from relatively larger systematic corrections than th
presented in the last section, the absolute magnitude of
systematic error in the estimates should be still sma
enough than the symbol size in Fig. 11.

For some critical points, the FSS analysis as in the pre
ous section is also carried out. We obtain the exponenn
and g that are consistent with Eqs.~10! and ~11!, respec-
tively. This supports that the quantum critical phenomena
theS51 system also belong to the same universality clas
that of the 3D classical Heisenberg model. An exception
the 1D critical point located at (ac ,Jc8)5„0.5879(6),0…,11

which separates the dimer phase from the Haldane ph
The apparent value ofn starts to deviate from Eq.~10! when
a becomes closer toac . This is attributed to the crossover t
the critical phenomena belonging to the Gaussian univer
ity class.10 We confirm that the AF-LRO phase exists b
tween the two spin-gap phases at least down toJ850.01 at
a5ac . Although in the present simulation it is quite diffi
cult to prove the existence of the AF-LRO phase at sma
J8, we believe that the point (ac,0) is tricritical: the 1D
critical point is unstable against an infinitesimal intercha
coupling and the AF LRO immediately appears the same
in the S51/2 uniform chain.12,28–30

FIG. 11. Ground-state phase diagram of theS51 system. The
J8 axis is logarithmically scaled forJ8.0.1 for convenience. The
statistical error of each data point is smaller than the symbol s
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Interestingly, theH-II and D phases are adiabatically con
nected with each other. The gapless AF-LRO phase does
touch the line ofa50 as seen in Fig. 12, where the part
the whole phase diagram~Fig. 11! neara50 is magnified.
Indeed, on thea50 line, which corresponds to theS51
two-leg ladder, it is shown that there exists no critical po
by the recent QMC study.34 Thus, theD phase can be iden
tified with the H-II phase, and there are only two distin
spin-gap phases,H-I and H-II, in Fig. 11. The closeness o
the critical line to thea50 line is due to the strong AF
fluctuations, which already exist in the two-leg ladd
system.34

D. Correlation lengths and the gap

We obtain the explicit values ofjx , jy , and D in the
ground state at (a,J8)5(1,0.04). They are calculated fo
systems with sizesLx5168, 224, 280, and 336 and with th
aspect ratioLx :Ly57:1 at T regarded as zero temperatur
Their T dependences are negligible atT50.01. We extrapo-
late the finite-size data to the thermodynamic limit in t
same way as explained for theS51/2 system. We obtain
jx539.2(1), jy55.67(1), and D50.0632(2). As J8 be-
comes smaller,jx becomes smaller andD larger to reach at
J850 the single chain valuesjx56.0153(3) and D
50.410 48(6)~Ref. 20!.

V. DISCUSSIONS

The analyses presented in the preceding section reve
that the ground-state phase diagram of theS51 system has a
rather complicated topology, i.e., theH-II and D phases are
adiabatically connected with each other, though the chan
between them is quite narrow~Fig. 11!. On the other hand, a
for the H-I and D phases, in the 1D system (J850) these
two spin-gapped phases are distinctively separated by
critical point at ac50.5879(6),10,11 and they are distin-
guished by the string-order parameter,23 which is zero in the
former phase and finite in the latter one. The transition c
be viewed as a rearrangement of the dimer-singlet pat
between the ~1,1!- and ~2,0!-valence-bond-solid~VBS!

. FIG. 12. Ground-state phase diagram ofS51 system in the
strongly dimerized region (a<0.05).
7-6
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GROUND-STATE PHASE DIAGRAM OF QUANTUM . . . PHYSICAL REVIEW B65 014407
states.32,33 We emphasize that onceJ8 is introduced, how-
ever, the string-order parameter should vanish even in
H-I phase, being similar to theS51 ladder.34 Still one may
consider that the two phases essentially differ with e
other since they are separated by the AF-LRO phase. If, h
ever, we introduce the bond alternation also in they direc-
tion, the two phases can be connected without passing
gapless state as explained below.

Let us consider the 2D HAF model defined in th
extended-parameter space,

H5JxH(
i , j

S2i , j•S2i 11,j1ax(
i , j

S2i 11,j•S2i 12,j J
1JyH(

i , j
Si ,2j•Si ,2j 111ay(

i , j
Si ,2j 11•Si ,2j 12J .

~12!

The original Hamiltonian~1! corresponds to the case wit
Jx51, ax5a, Jy5J8, anday51. The Hamiltonian~12! is
invariant under the exchange between (Jx ,ax) and (Jy ,ay).

To draw the phase diagram in this extended-param
space, it is convenient to introduce a parameterR[Jy /(Jx
1Jy). The limitsJy→0 andJy→` correspond toR50 and
1, respectively. Sinceax (ay) becomes irrelevant in the limi
Jx→0 (Jx→`), the whole phase diagram in the thre
dimensional parameter space is shaped as a tetrahedro
Fig. 13, we present the ground-state phase diagram pa
etrized byR, ax(12R), and ayR for S51/2 ~a! and S51
~b!. It should be noted that the phase diagram should
invariant under the transformation„R,ax(12R),ayR…↔„1
2R,ayR,ax(12R)… reflecting the symmetry in the Hamil
tonian explained above. In the phase diagram, the edgeAB
(CD) corresponds to isolatedx-parallel (y-parallel! decou-
pled chains, the edgeAD isolated four-spin plaquettes, an
the edgeAC (BD) the two-leg ladders in they direction (x
direction!.

FIG. 13. Schematic ground-state phase diagram in the exten
parameter space for~a! S51/2 and ~b! S51. The shaded area
denotes the AF-LRO phase on theABC andBCD planes. The cross
section on the planeR50.5 (x-y isotropic plane! is drawn based on
the numerical results.
01440
e

h
-

he

er

. In
m-

e

The faceABC ~and alsoCDB) in Fig. 13 corresponds to
the original phase diagram shown in Figs. 2 and 11, tho
the y-parallel-chain limitJ8→` in the original diagram is
represented by one vertexC ~B! in the new ones. In the
extended-phase diagram the shaded~unshaded! area repre-
sents the AF-LRO~spin-gapped! phase on theABC and
CDB faces.

It should be emphasized that on theACD andDBA faces
there is no AF-LRO phase, since the system is a o
dimensional dimerized two-leg ladder. There exist only t
1D critical points discussed already. Especially, there is
critical point on the edgeAD. Therefore, in theS51 case,
the three spin-gapped phases,H-I, D, and H-II, are con-
nected by the pathC→A→D→B. Similarly, in theS51/2
case, the two dimer phases, which correspond to the vertA
and D, respectively, are connected directly by the pathA
→D. Thus, in both cases, there are only two phases, nam
the spin-gapped phase and the AF-LRO phase.

VI. CONCLUDING REMARKS

In this paper, we have investigated the ground-state ph
diagram ofS51/2 andS51 HAF on the anisotropic dimer
ized square lattice by means of the extensive QMC simu
tion with the continuous-imaginary-time-loop algorithm an
the FSS analyses. It is confirmed that, for bothS51/2 and 1,
the quantum critical phenomena in the model belong to
same universality class as that of the 3D classical Heisen
model, except for the 1D critical points, which belong to t
same universality class as that of the Gaussian model.
have also demonstrated that the spin-gapped phases o
1D chain are connected when we introduce the interch
couplings with bond alternation. In the 2D system, only o
spin-gapped phase exists in both of theS51/2 andS51
systems.

The results obtained in the present work are considere
be the proper basis for investigation of peculiar phenom
observed in the Q1D HAF’s mentioned at the beginning
this paper. We have already reported the QMC analysis
the site-dilution-induced AF LRO in these materials based
the Hamiltonian~1!.35 In order to discuss various experime
tal results quantitatively, it is certainly necessary to take i
account other ingredients, apart from those in Eq.~1!, such
as the next-nearest-neighbor intrachain interaction and
single-ion anisotropy. They are beyond the scope of
present work. The present results, however, demonstrate
role of the higher dimensionality, which has been overlook
so far.
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