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Ground-state phase diagram of quantum Heisenberg antiferromagnets
on the anisotropic dimerized square lattice
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The S=1/2 andS=1 two-dimensional quantum Heisenberg antiferromagnets on the anisotropic dimerized
square lattice are investigated by the quantum Monte Carlo method. By finite-size-scaling analyses on the
correlation lengths, the ground-state phase diagram parametrized by strengths of the dimerization and of the
spatial anisotropy is determined much more accurately than the previous works. It is confirmed that the
quantum critical phenomena on the phase boundaries belong to the same universality class as that of the
classical three-dimensional Heisenberg model. Furthermor&=fdr, we show that all the spin-gapped phases,
such as the Haldane and dimer phases, are adiabatically connected in the extended-parameter space, though
they are classified into different classes in terms of the string order parameter in the one-dimensional, i.e., the
zero-interchain-coupling, case.
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[. INTRODUCTION chain direction and thg axis in the perpendicular direction.
The bond arrangement of this model is shown in Fig. 1.
Recently many low-dimensional antiferromagnets with The ground state of decoupled chains, i#.=0, has
excitation modes separated from the ground state by a finiteeen well established. In particular, that of e 1/2 chaiff
energy gap have been synthesized, and effects of impuritids the dimer state with a finite spin gap except for the uni-
or magnetic fields on those materials have been investigatddrm case ¢=1), which has a critical ground state. On the
experimentally in relation to the impurity-induced long- other hand, for the&s=1 chain there exist two spin-gapped
range ordefLRO) and magnetic-field-induced LRO. For ex- phases: the Haldane phase o> «. and the dimer phase at
ample, there are th&=1/2 quasi-one-dimensiondQ1D) a<ag.'° At the critical point a=a, between these two
Heisenberg antiferromagn@AF) with bond dimerization, phases the gap vanishes. The valuerghas been estimated
CuGeQ,! S=1 Q1D HAF's, NENF NDMAZ,® NDMAP,*  to be 0.58785).1>* In both cases, the critical point is con-
and PbNjV,0g,° S=1 Q1D HAF's with bond alternation, sidered to belong to the Gaussian universality cl8ss.
NTEAP? and NTENP. Those materials have attracted our  For the AF LRO to appear, the higher-dimensionality ef-
interest since they reveal various aspects of the quantuiriect, i.e., the interchain interactiod, is indispensable. In
phase transition between the quantum-disordered spimnost of the numerical works reported so far, the effect of
gapped phase and the classi¢hleel) long-range-ordered interchain coupling has been examined in certain approxi-
phase. mated or perturbed ways. For example, Sakai and
Intrachain spin interaction with or without bond alterna- TakahashH? estimated the critical strengtly,, for the uni-
tion and interchain interaction are considered to be the mogbrm case ¢=1) by the exact diagonalization method for
basic ingredients to understand the quantum phase transitioftse intrachain interactions combined with the mean-field ap-
mentioned above. More explicitly, they are expected toproximation for the interchain interaction, and obtained
be modeled effectively by the quantum HAF on the ani-\]f((:8=l/2):0 andJ’S:S=l)>0_O25_ More recently, Koga and
sotropic dimerized square lattice, which is described by the
Hamiltonian, I I I I

H=iZj SZi,j'52i+1,j+01iEj Sit1j Siva) + + + +
HI2 88 &y —————
Here S ; is the quantum spin operator at sitejj on the _H_H_

square lattice. The first two terms in right-hand side represent ' 1 ' . ' '
the one-dimensional antiferromagnetidF) Heisenberg
chains with alternating coupling constants, 1 anq0<« FIG. 1. Anisotropic dimerized square lattice with alternating

=1), and the last term represents the AF interchain exchanggtrachain coupling of strength tthick solid line and « (solid
interaction §’=0). We choose thg axis as being along the line), and the interchain coupling of strength (dashed ling
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Kawakamt® investigated theS=1 model by the cluster- 1
expansion method, and obtaingd=0.056(1) for a=1. Sd(CIx,Qy’w):mZ
However, there have been only a very limited number of e
numerical works, in which both of the interchain and intrac-
hain interactions are treated on an equal footihty.Such
numerical analyses are certainly required, since the mean-
field-like approximation is not necessarily appropriate even 2)
in the Q1D regimé?® whereq= (dy,q,) is the wave-number vectog(t) is thez
In the present paper, we report the results of quantuntgomponent of the spin on siteat imaginary timer, and(-
Monte Carlo(QMC) simulations by using the continuous- - ) is the thermal average. By usi®j(dy,a, ), the stag-
imaginary-time-loop algorithfi~?°on theS=1/2 andS=1  gered correlation length along thedirection, &,, is then
HAF model described by Ed1). The present paper is orga- evaluated by the second-moment metRotf,
nized as follows. In Sec. Il, the method of our numerical
analyses is explained. In Secs. lll and 1V, the ground-state £ :i\/ Sq(7r,7,0) 1 &)
phase diagram parametrized by the strength of the bond al- * 27 N Sy(w+2m/Ly,m,0) '

te_rnaélon,a,_anld t?atso_f ;?Ze mtzrglain COUp|In?,, IIS dEter- The correlation length in thg direction,&,, and that in the
MINed precisely Tors= and>=21, respectively. Espe- imaginary-time ¢) direction,&,, which is related to the gap

cially, for the S=1 system witha=1, we obtainJ; A pyA=1/¢  are calculated similarly. Finally the staggered

by the recent QMC work® but is much more accurate. Fur-

thermore, both in th&=1/2 andS=1 systems, the quantum Xs= Sy(,7,0)
phase transitions between the spin-gapped phases and the 1 5
AF-LRO phase are confirmed to belong to the same univer- = > | dtdt e ETI(SHE)SKL)). (4)
sality class as that of the 3D classical Heisenberg model: the LiLlyB 77 Jo '

exponent of the correlation lengths 15=0.71(3) forS ) the structure factors are calculated by using the improved
=1/2 andv=0.70(1) forS=1, which coincides fairly well  ogtimator€® The period of 18-1C* Monte Carlo steps
with that of the latter modely=0.7048(30)2! We also show (MCS) is used for thermalization and that of 1a.® MCS

the results on the correlation length and the gap in the spingy the evaluation of physical quantities.

gapped phase. In Sec. V, the topology of the phase diagram is Near the critical point & ,J.) of the ground-state transi-
discussed in detail based on the result of the present QM@on, the correlation lengths diverge as

calculation. We show that all the spin-gapped phases, such as

B ) : ’
xJ dtdt'e e (=) -let=(gx(t)SKt")),
0

the Haldane and dimer phases, are adiabatically connected £ &t (5
with each other in the extended-phase-parameter space. This
is in a sharp constrast to the strict 1D case, in which the E~t77=t"7, (6)

spin-gapped phases are classified into different classes in _ . - . .

terms of the so-called string-order param@fdt.is of inter- ~ Wheret is the distance from the critical point andis the

est that the 1D spin-gap phases, which have different hiddefyitical expo_nent for the cor_relat!on length. Here we have put
symmetries, are connected without encountering any singe— L assuming the Lorenz mvanan%%l?urthgrmore, the fol-
larity in the 2D phase diagram. The final section is devotedoWing finite-size-scaling (FSS formul&’ holds near

to the concluding remarks. (a¢,J¢) andT=0 for systems with the fixed ratio, :L,:3,
E L =F(tLYY LZT)=f(tLLY), (7)

Il. METHOD and similar ones fog, and¢,, and
We consider the system described by the Hamiltorian XS:ny/Vg(tL}(/V LIT)= LQ{’”g(tLi’”). ®)

with S=1/2 andS=1. The real-space size lis XL, and the

inverse temperature, i.e., the imaginary-time sizgg4s1/T.  Heref and g are scaling functions angt the exponent for
Periodic boundary conditions are imposed in theandy  xs (~t~”). Note that,T is put constant in the above equa-
directions. We use the continuous-imaginary-time-loop algotions. We assume a polynomial up to the second order for the
rithm with multicluster updaté’'® Especially, for theS=1  scaling functions. By using least-squares fitting, we obtain
system we adopt the subspin-representation techritfifén the critical point @,J;) and the associated critical expo-
which theS=1 system is represented by &s=1/2 system nentsv andy.

with special boundary conditions in the imaginary-time di- In addition, at some points in the spin-gapped phase, we
rection. By using these techniques, we can perform the simwexplicitly evaluate the correlation lengthé, and§, , and the
lation up toL,XL,=336x48 with =100 for the S=1 gapA at T=0 in the thermodynamic limit,,L,—c. For

case without encountering any difficulty. this purpose we extrapolate the simulated data first to the
The imaginary-time dynamical structure factor is definedground stateT—0 and then to the thermodynamic limit
by LX,Ly—>OO.
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FIG. 2. Thea-J' phase diagram of th8=1/2 system at zero FIG. 4. System-size dependence of the correlation lengths and

temperature. Théspin-gappejldimer phase and the AF-LRO phase the inverse gap at zero temperature 8# 1/2 with a=J"=0.5.
are described b and AF, respectively. The statistical error of each The extrapolated values are denoted by solid symbols.
data point is smaller than the symbol size. The dotted and dashed

lines denote)’ =1 anda=J’, respectively. we obtain the critical pointa.=0.314075), on theline
J’' =1 (dotted line in Fig. 2, which is significantly smaller
Ill. RESULTS FOR S=1/2 than their estimatex.=0.398. More importantly, in the

present simulation, the critical exponemton the transition
points is evaluated as=0.71(1), which is consistent with

In Fig. 2 we show the ground-state phase diagram of thg,=0.7048(30) for the 3D classical Heisenberg mdddihe
S=1/2 system obtained by the FSS analysis explained in thgimilar results have been obtained for the 2D 1/5-depleted
previous section. As an example of the FSS analysis, WeiAF model®? On the other hand, KI concludeg=1. The
show in Fig. 3 that of; againsta for J’=1 (dotted line in  reason for the these discrepancies might be due to the small-
Fig. 2). The aspect ratio of the (21)-dimensional system is ness of the system sizes and the inverse temperature used in
taken asL,:L,:B8=1:1:1. By theleast-squares fitting, the the study by KI.
exponentv and the critical couplinge, are estimated as
0.71(1) and 0.314 0{B), respectively. Here, the figure in pa-
rentheses denotes the statistical erros) In the last digit.
We also perform the same analyses on other lines imtié We also evaluate explicitly the ground-state correlation
plane, whose results are presented by the solid circles in Figengths and the gap on some points in the dimer phase by
2. For example, on the line=J’ (dashed line in Fig. 2we  using the dynamic structure factors. Unless the points are
obtain a,=J.=0.52337(3) andv=0.71(3). In the phase very close to the critical line, these quantities in each system
diagram we can see that the ground state of the chiin ( with L (=L,=L,) saturate to the ground-state values at tem-
=0) is the dimer state with a spin gap except forperatures we have simulated. For example, Thelepen-
a=11228-303nd that the region of the AF-LRO phase en-dences of these quantities are not to be discernibl@ at
larges monotonically ag’ increases. =0.05 and 0.01 for=J"=0.4 and 0.5, respectively. On the

Our phase diagram is qualitatively the same as that obther hand, the. dependence still remains in sizes we have
Katoh and Imad#Kl),** but not quantitatively. In particular, calculated. TheL dependences of the ground-state spatial
correlation lengths and the gap are shown in Fig. 4 dor

A. Ground-state phase diagram

B. Correlation lengths and the gap

0.56 — =J'=0.5, which is close to the critical point.=J,

054 | L=32 —=— T =0.523373). Their values in the thermodynamic limit are

052 b 48w A estimated by fittingé, (L) to & (L)=&—bexp(—cL), where

os | & s ] k=X, y, or r, £ is the value in the thermodynamic limit, and
@ 048 if’ ] b and ¢ are fitting parameters. As a result, we obtdin
& 046 | el | =3.00849), ¢,=2.20976), and A=0.32261(4) fora

0.44 | i..f" | =J'=0.4 and §=11.9989), £,=9.312(10), and A

042 | ' _ =0.0913(2) fora=J"=0.5. Asa(=J") becomes smaller,

04 | ”,_.."*’E | i.e., the system becomes more distant from the critical point,

o3g v A becomes larger angl smaller.

2 -15-1-050 05 1 15 2
LI/V(OC—(XC)

IV. RESULTS FOR S=1

FIG. 3. Finite-size scaling plot of the inverse gdp for S

. o . A. Overview on the phase diagram
=1/2 with ’=1 andL,:L,:B8=1:1:1. Thecritical coupling a,

and the exponent are estimated as to be 0.31487and 0.711), ~ Before going into the QMC analysis, let us here summa-
respectively. The dashed line represents the scaling function, whicfize the ground-state phase diagram of 8wl system ar-
is approximated by a polynomial of order two. gued so far, which is shown in Fig. 5. For some points in the
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FIG. 5. Schematic ground-state phase diagram ofSthd sys- - 0.15 -
tem obtained before the present QMC analysis. Filled circles are the ’
points where the corresponding ground state is well establighged: 0.1 §
the dimer phasel}), (2) x-parallel Haldane phaseH¢l), (3) the 0.05 . . .
AF-LRO phasegAF), and(4) y-parallel Haldane phasesi¢ll). 004 0042 0044 0046 0048
(b) S

phase diagram the ground state is well understood by the
previous theoretical and numerical studies. 0.8 - - -

(1) (a,J')=(0,0). The system consists of a set of the
isolated antiferromagnetically coupled spin pairs. The
ground state is a trivial tensor product of dimer singlets sit- 0.6

0.7

ting on each bond. i.. 0.5
(2 (a,d')=(1,0). The system consists of isolated e
x-parallel Haldane chains. 04
3) (a,3")=(1,1). The system is a uniform and isotropic 03 £oa
2D HAF. There exists an AF LRO in the ground stite. g
(4) J'=». The system consists of-parallel Haldane 0 0 0012 o004 00t 0048
chains. Note that in this limit the value of becomes irrel- © ' ' 'J, ' '

evant(see also discussions in Sec,)lll
In their analysis by the cluster-expansion method, Koga FIG. 6. Plot of the correlation length&) & /L, (b) &Ly,
and Kawakantf’ derived three phases in the Q1D region, andand (c) £.1B, as a function ofJ’ for S=1 with a=1 and
they called the regions that include poifts, (2), and(3) the  L,:L,:8=1:1:1.
dimer phase, the Haldane phase, and the AF-LRO phase,
respectively. The region near poifd) is another Haldane these large corrections to the strong spatial anisotropy in the
phase. Therefore we call here the region that includes poirtoupling constants ) <1). Indeed, the value of, at J’
(2) the Haldane | [-1) phase and the one that includes the =0.0435 is 9.29(7]see Fig. @)] even for the largest sys-
line (4) the Haldane Il H-11) phase. For the uniform systems tem sizel =64, which is quite smaller than those in the other
with a=1 the H-I) and (H-1l) phases are equivalent when directions[ §,=60.4(3) andé,=24.7(2)]. Among the three
we exchange the roles of thxeaxis and they axis, and of)’ correlation lengthsé, is the largest: the growth of the cor-
and 10’. relation is dominated only by the system size in xhdirec-
tion. This indicates that we need larger lattices, especially in
the x direction, in order to perform a precise FSS analysis.
T _ To simulate larger lattices with minimal costs, we there-
To demonstrate our FSS analyses, let us begin with critifgre optimize the aspect ratit, :L, : 8, as explained below.
cal behavior near (1,), which separates thed(l) and AF Expecting that the scaled correlation lengthg/L,, &,/L,,
phases J;=0.04 due to Ref. 16 We sweep]’ near sup- andé,/B, become nearly equal with each other at the critical
posed; with « fixed to unity. In Fig. 6&,/L,, &/Ly, and  point, we set the aspect ratig:L,:3 as 7:1:2based on the
&,1B of the systems with,,=L,=pg=L (=16,24...,64) data presented in Fig. 6. With this ratio we simulate systems
are plotted. As one sees immediately, the data suffer fromvith L,= 168, 224, 280, and 336 and perform the FSS analy-
quite large corrections to scaling, i.e., the crossing point okes. The raw data df; /Ly, &,/L,, and&,/B with this as-
the scaled correlation lengths with two differdris clearly  pect ratio are shown in Fig. 7. No#,=12.02(5) even for
shifts to larger)’ as the system size increases. We attributeahe smallest system sizel (=168 and L,=24) at J’

B. Haldane-AF phase transition in the nondimerized system
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FIG. 7. Plot of the correlation length&) ¢&,/Ly, (b) &,/Ly,
and (c) &./B, as a function ofd’ for S=1 with =1 and

0.046
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FIG. 9. Plot of the staggered susceptibilityas a function of)’
for S=1 with @=1 andL,:L,:8=7:1:2.

=0.0435. The ratiog, /Ly, §,/Ly, and§,/B in a common
range of)’ become nearly equal, and corrections to scaling
become much smaller than in the previous ones as we ex-
pected. The FSS plot faf, is shown in Fig. 8. The resultant
J. and v are as follows: J.,v)=(0.0436489),0.69(1)
from ¢, (0.0436498),0.71(1) from ¢, and
(0.0436487),0.69(1) from &..

Averaging these three values we conclude with

J.=0.0436488) 9)

and
y=0.701). (10

Fixing the value of); and v thus determined, we next per-
form the FSS analysis on the staggered susceptibylity
The raw data ofys vs J’ are shown in Fig. 9 and the fitting
result is shown in Fig. 10. The latter yields

y=1.3733). (11

The exponenty and y we have obtained for thB=1 sys-
tem again agree with those of the 3D classical Heisenberg
model?!

Ly:Ly:B=7:1:2. The critical point obtained just above is consistent with
the previous result by the method involving the mean-field
0.6 0.18 ———————————————
L,=168 —=— o
055 | = 224 sen Fw!“’?# 1 0.16 | L,= égi — . ol
280 +oereee k. e
0.5 336 o ‘p’ﬁ’“ 1 . 014 280 =e o
< - 2. 336 ——o——t A
S 045+ dﬁ@’ - < o2t e
uF & o3 3
041 L 5F . 0.1t ﬁ,,m‘x
al ng‘
035 [ & 1 008 | "
0.3 1 1 1 1 1 1 I 1 1 0‘06 1

25-2-15-1-050 05 1 1.5 2 25
LT

252-15-1-050051 15 2 25
L"T=ro)

FIG. 8. Finite-size-scaling plot of the correlation lengthfor FIG. 10. Finite-size-scaling plot of the staggered susceptibility

S=1witha=1andL,:L,:8=7:1:2. Thecritical couplingJ; and  x,for S=1 with =1 andL,:L,:8=7:1:2. Thevalues ofJ; and

the exponentr are estimated to be 0.043 698 and 0.691), re- v are fixed to 0.043 648 and 0.70, respectively. The expopest

spectively, by the least-squares fitting. The dashed line represenéstimated as to be 1.3(@ by the least-squares fitting. The dashed

the scaling function, which is approximated by a polynomial of line represents the scaling function, which is approximated by a

order two. polynomial of order two.
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FIG. 11. Ground-state phase diagram of 8wl system. The o

J’ axis is logarithmically scaled fad’ >0.1 for convenience. The ) i
statistical error of each data point is smaller than the symbol size. FIG. 1_2' G_round-sFate phase diagram®£1 system in the
strongly dimerized region¢=<0.05).
approximation,J.=0.025" and also with that by the recent _ o
QMC method, J'=0.04Q5).X* On the other hand, the Interestingly, theH-1l and D phases are adiabatically con-
»Je=0. . ; .
present result significantly differs from that obtained by theN€cted with each other. The gapless AF-LRO phase does not

cluster-expansion method,,=0.561) % The present FSS touch the line ofa=.O as seen in Fig. 12, Where the_part of
analyses on our extensive QMC results make it possible fotrhe whole phase diagraffig. 11) neara=0 is magnified.

us to obtain the critical value with much higher accuracylndeled’ Iogdtheqfo It:ne, WE'Ch rﬁ:orresp_onds to thS=|1 .
than the other methods. two-leg ladder, it is shown that there exists no critical point

by the recent QMC studf Thus, theD phase can be iden-
tified with the H-Il phase, and there are only two distinct
spin-gap phases$i-lI and H-Il, in Fig. 11. The closeness of
In a similar way as described in the previous section, wehe critical line to thea=0 line is due to the strong AF
obtain other critical points on the-J’' phase diagram as fluctuations, which already exist in the two-leg ladder
shown in Fig. 11. First, the scaled correlation lengthgl,,  systent
§y/Ly, and§,/ B, are calculated up th,= 64 with eithera
or J' fixed. Sweeping)’ or « with sufficiently high resolu-
tion, we regard a crossing point of the§s as the critical
point. Note that the optimal aspect ratio depends strongly on We obtain the explicit values of,, &,, andA in the
the value of @ and J'. However, we adoptl,:L,:3 ground state at¢,J’)=(1,0.04). They are calculated for
=1:1:1 for simplicity. Although the results thus obtained systems with sizek,= 168, 224, 280, and 336 and with the
suffer from relatively larger systematic corrections than thoseéspect ratid_,:L,=7:1 atT regarded as zero temperature.
presented in the last section, the absolute magnitude of thEheir T dependences are negligibleT# 0.01. We extrapo-
systematic error in the estimates should be still smalletate the finite-size data to the thermodynamic limit in the
enough than the symbol size in Fig. 11. same way as explained for ttg=1/2 system. We obtain
For some critical points, the FSS analysis as in the previ£,=39.21), £,=5.611), and A=0.06322). As J’ be-
ous section is also carried out. We obtain the exponents comes smalleré, becomes smaller andl larger to reach at
and y that are consistent with Eq$10) and (11), respec- J'=0 the single chain valuest,=6.0153(3) and A
tively. This supports that the quantum critical phenomena in=0.410 48(6)(Ref. 20.
the S=1 system also belong to the same universality class as
that of the 3D classical Heisenberg model. An exception is
the 1D critical point located atd(;,J.)=(0.58746),0),**
which separates the dimer phase from the Haldane phase. The analyses presented in the preceding section revealed
The apparent value of starts to deviate from Eq10) when  that the ground-state phase diagram of$hel system has a
a becomes closer ta.. . This is attributed to the crossover to rather complicated topology, i.e., ti&-1l and D phases are
the critical phenomena belonging to the Gaussian universahdiabatically connected with each other, though the channel
ity class!® We confirm that the AF-LRO phase exists be- between them is quite narrofffig. 11). On the other hand, as
tween the two spin-gap phases at least dowd'te 0.01 at  for the H-I and D phases, in the 1D systend’'(=0) these
a=a.. Although in the present simulation it is quite diffi- two spin-gapped phases are distinctively separated by the
cult to prove the existence of the AF-LRO phase at smallecritical point at a.=0.58746),}%!! and they are distin-
J’, we believe that the pointa(;,0) is tricritical: the 1D  guished by the string-order parametéwhich is zero in the
critical point is unstable against an infinitesimal interchainformer phase and finite in the latter one. The transition can
coupling and the AF LRO immediately appears the same abe viewed as a rearrangement of the dimer-singlet pattern
in the S=1/2 uniform chain">28-%° between the(1,1)- and (2,0)-valence-bond-solid(VBS)

C. Ground-state phase diagram

D. Correlation lengths and the gap

V. DISCUSSIONS
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The faceABC (and alsoCDB) in Fig. 13 corresponds to
the original phase diagram shown in Figs. 2 and 11, though
the y-parallel-chain limitJ’—« in the original diagram is
represented by one verte® (B) in the new ones. In the
extended-phase diagram the shadedshadejl area repre-
sents the AF-LRO(spin-gappel phase on theABC and
CDB faces.

It should be emphasized that on tA€ D andDBA faces
there is no AF-LRO phase, since the system is a one-
dimensional dimerized two-leg ladder. There exist only the
1D critical points discussed already. Especially, there is no
critical point on the edgéD. Therefore, in theS=1 case,
the three spin-gapped phasés;l, D, and H-II, are con-
nected by the pat—A—D—B. Similarly, in theS=1/2

FIG. 13. Schematic ground-state phase diagram in the extendedase, the two dimer phases, which correspond to the vArtex
parameter space fdia) S=1/2 and(b) S=1. The shaded areas and D, respectively, are connected directly by the path
denotes the AF-LRO phase on tA8C andBCD planes. The cross D, Thus, in both cases, there are only two phases, namely,

section on the planR=0.5 (x-y isotropic plangis drawn based on the spin-gapped phase and the AF-LRO phase.
the numerical results.

states’?33 We emphasize that oncE is introduced, how- VI, CONCLUDING REMARKS
ever, the string-order parameter should vanish even in the _ _ _
H-1 phase, being similar to th6=1 ladder** Still one may In this paper, we have investigated the ground-state phase

consider that the two phases essentially differ with eacldiagram ofS=1/2 andS=1 HAF on the anisotropic dimer-
other since they are separated by the AF-LRO phase. If, howized square lattice by means of the extensive QMC simula-
ever, we introduce the bond alternation also in yheirec-  tion with the continuous-imaginary-time-loop algorithm and
tion, the two phases can be connected without passing the FSS analyses. It is confirmed that, for b8th1/2 and 1,

gapless state as explained below. S the quantum critical phenomena in the model belong to the
Let us consider the 2D HAF model defined in the same universality class as that of the 3D classical Heisenberg
extended-parameter space, model, except for the 1D critical points, which belong to the

same universality class as that of the Gaussian model. We
have also demonstrated that the spin-gapped phases of the
H:JX[Z S2i,i‘82i+l,j+“><2 Szi+1,J'32i+2,i} 1D chain are connected when we introduce the interchain
! ! couplings with bond alternation. In the 2D system, only one
spin-gapped phase exists in both of t8e1/2 andS=1
IEJ S S+t CYyiE’j 3,2j+1'3,2j+2]- systems.

The results obtained in the present work are considered to
be the proper basis for investigation of peculiar phenomena
observed in the Q1D HAF's mentioned at the beginning of
, o , this paper. We have already reported the QMC analysis on
=1, ay=a, J,=J', anda,=1. The Hamiltonian(12) is e site_dilution-induced AF LRO in these materials based on
invariant under the eXCha?”ge bet_vvee]g; ) and 0y, ay). the Hamiltonian(1).%® In order to discuss various experimen-

To draw the phase diagram in this extended-parametgy rogits quantitatively, it is certainly necessary to take into
space, it is convenient to introduce a param@&erd,/(Jx  account other ingredients, apart from those in &4, such
+Jy). The limitsJ,—0 andJ,—c correspond tR=0 and 55 the next-nearest-neighbor intrachain interaction and the
1, respectively. Since, («,) becomes Urelevan_t in the limit single-ion anisotropy. They are beyond the scope of the
Jx—=0 (Jy—=), the whole phase diagram in the three-.eqent work. The present results, however, demonstrate the

dimensional parameter space is shaped as a tetrahedron. lfle of the higher dimensionality, which has been overlooked
Fig. 13, we present the ground-state phase diagram parangg tgr.

etrized byR, a,(1—R), and,R for S=1/2 (a) and S=1

(b). It should be noted that the phase diagram should be
invariant under the transformatiofR, a,(1—R),ayR)« (1
—R,ayR,a,(1—-R)) reflecting the symmetry in the Hamil-
tonian explained above. In the phase diagram, the édge Most of the numerical calculations in the present work
(CD) corresponds to isolatextparallel (y-paralle) decou- have been performed on the DEC Alpha, SGI ORIGIN 2000,
pled chains, the edgRD isolated four-spin plaquettes, and SGI 2800, and RANDOM at the Materials Design and Char-
the edgeAC (BD) the two-leg ladders in thg direction (x ~ acterization Laboratory, Institute for Solid State Physics,
direction. University of Tokyo and on the Hitachi SR-2201 at the

+Jy

12

The original Hamiltonian(1) corresponds to the case with
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