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Electric field dependence of charge mobility in energetically disordered materials:
Polaron aspects
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In order to understand the electric-field dependence of charge mobility in molecularly doped organic mate-
rials, we consider the one-dimensional migration of carriers between sites with Gaussian energetic disorder.
The transition rate of carriers to neighboring sites is assumed to be given by the Marcus rate equation. An exact
analytical expression is derived, and is compared to the measured data. A phenomenological Gill’s relation
occurs in the intermediate region of the S-shaped field dependence of the mobility. The recently observed
anomalous field dependence of the mobility, which shows that the mobility increases with field strength at low
fields, passes through a maximum, and then decreases with increasing field strength, is reproduced. The
increase followed by the decrease of the mobility with increasing field strength is interpreted as a result of
energetic disorder and the Marcus inverted region.
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I. INTRODUCTION

Charge transport in many doped organic materials sh
a strong response to external electric fieldsE0 and tempera-
tureT. The mobilities are very low, and the field dependen
is well described by Gill’s empirical law, logm}AE0, in a
wide range of the field strength,E0'1042106 V/cm, for
various combination of the dopant molecules and h
materials.1,2 Most of the experimental results showed a po
tive slope;1 logm increases withAE0. A negative slope was
also observed at sufficiently low concentrations of dop
molecules and high temperature.3 The origin of such a uni-
versal field dependence has been of both theoretical and
perimental interest.1 Among many theoretical studies a pa
ticularly important mechanism was proposed by Dun
et al.4 They demonstrated that Gill’s law arises natura
from the interaction of charge carriers with randomly distr
uted permanent dipoles.4 In some experiments Gill’s law is
observed at an intermediate field strength. At high fields
mobility passes through a maximum and even decrease5–8

To cast some light on such a field dependence of the mo
ity, namely, Gill’s law and the appearance of a maximum,
have developed analytical expressions for the charge mo
ity by assuming a physically plausible but simple enou
charge transport mechanism. It is generally accepted
charge transport occurs due to a hopping transition betw
adjacent donor or acceptor molecules.9 In solution, the Mar-
cus rate equation is well established for such charge-tran
processes.10 In Marcus theory the contribution to the reorg
nization energy comes from both the reorientation of dipo
in the solvent and the intramolecular vibration.10,11 In the
solid phase dipoles cannot rotate, and the reorganiza
should be governed solely by the vibrational relaxation11

Indeed, a corresponding equation exists in the descriptio
a small polaron, and the reorganization energyEr is twice
the polaron binding energy due to the coupling of the cha
with low-frequency phonon modes.12,13 The localization of
the charge required for the small polaron picture is justifi
for several reasons. As we will explain below, site energ
0163-1829/2001/65~1!/014305~13!/$20.00 65 0143
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spread with a deviation of;0.1 eV which is much larger
than the value of the transfer integral, resulting in
Anderson-Mott localization.14 Furthermore, the reorganiza
tion energy of 0.1–0.3 eV, which is typical of the low
frequency vibronic relaxation, is also large compared to
value of the transfer integral. Under such conditions a
laron is well localized, and is termed a Holstein sm
polaron.15,16A transition takes place to neighboring sites
hopping, because the bandwidth is considerably reduced
to the lattice distortion around the charge. The most imp
tant manifestation of the Marcus rate equation is the app
ance of a so-called inverted region where the transition
decreases by decreasing the free-energy change asso
with the charge transfer.10 The free-energy change can b
created by external electric fields, so that a similar effect m
be expected for the mobility. The decrease of mobility
extremely high electric fields was predicted a long time a
for polaron models.17 However, the bell-shaped dependen
of the mobility on the external electric field strength w
observed only recently,5–8and the results were interpreted o
the basis of the Marcus inverted region.5–7

The bell-shaped field dependence of the mobility suppo
the polaronic effect. On the other hand, the mobility no
mally does not obey an Arrhenius law. In many experime
the mobility scales with the reciprocal square of temperatu
which suggests the importance of energetic disorder. M
experimental results in the last decade were interpreted u
the Gaussian disorder model,18 which describes the charg
transport as a biased random walk among dopant molec
with Gaussian-distributed random site energies. Extens
numerical simulations based on the disorder model reve
that the phenomenological law of Gill’s equation occurs
an intermediate region of the S-shaped field dependenc
the mobility.1,18 The bell-shaped field dependence of the m
bility is also reported to arise due to the inclusion of po
tional disorder.8 Furthermore, pure positional disorder resu
in mobilities that decrease with increasing field strength o
the entire range of fields.19 In the disorder model energeti
disorder arises from charge-dipole or local van der Wa
©2001 The American Physical Society05-1



ie
r-
a
i-
in
a

th
di

cu
en
ts
-
e
o

es
i-

tu
sti

os

tio
la
ti
e
a
a
t
g
n
ve
ca
s
in

he
il

. I
In
s

ge
ny

u
VI

id

d
s

n,

y is

nic
cus

en

ose

be-
s.

be-
nts.
es-
.
nly

of

a

h a
ee-

KAZUHIKO SEKI AND M. TACHIYA PHYSICAL REVIEW B 65 014305
interactions.19–30 Moreover, it is assumed that charge-carr
hopping to the adjacent sites is given by the Mille
Abrahams expression rather than the Marcus r
equation.18,31 The Miller-Abrahams expression was orig
nally proposed to describe impurity hopping
semiconductors.31 On the other hand, the Marcus rate equ
tion appeared in small polaron hopping theory, in which
hopping particle is a charge associated with molecular
tortion which results from a charge-phonon interaction.17 In
this paper, we describe the hopping motion of charges
energetically disordered materials according to the Mar
rate equation. In most of experiments the mobilities dep
on temperatureT as logm}1/T2, but in some measuremen
Arrhenius behavior is observed.8,20 Both phenomena are in
herent in our model where the polaron effect is combin
with the disorder model. There are only a few examples
work done in this direction. In one example the mobiliti
are shown to obey Gill’s law in the limit of large reorgan
zation energy over a wide range of the field strength due
the long range nature of the charge-dipole interactions.4 In
another example, the origin of the compensation tempera
at which the mobility becomes field independent is inve
gated by simulation with the Marcus rate equation.32

The mobility is obtained from the time-of-flight~TOF!
measurements where photogenerated charge carriers cr
film of thicknessL under an applied fieldE0. The transit time
t tr. gives the mobility throughm5L/(E0t tr.). In order to ob-
tain analytical expressions, we consider the hopping mo
of charge carriers on one-dimensional chains and calcu
the mean first passage time. The mean first passage
corresponds to the transit time of the TOF experiments. C
tainly, the one-dimensional model is an oversimplification
weak fields, due to the appearance of many loops which
energetically favorable compared to the direct short pa
However, most of the analytical theories on transport throu
disordered media were restricted to one-dimensio
systems.33–37Since predictions from the disorder model ha
been largely made by Monte Carlo simulations, analyti
theories are still useful, especially to understand the role
the polaron effect and the energetic disorder in determin
the mobility.

The structure of the paper is as follows. In Sec. II t
formulation of the theory is presented. In Sec. III the mob
ity is formulated in terms of the mean first passage time
Sec. IV mobility in the absence of disorder is reviewed.
Sec. V an analytical expression of the mobility in the pre
ence of energetic disorder is obtained in the limit of lar
reorganization energy. In Sec. VI the mobility, without a
restrictions on the reorganization energy, is derived. O
theory is compared to the experimental results in Sec.
Section VIII is devoted to conclusions.

II. MARCUS RATE EQUATION AND ENERGETIC
DISORDER

We consider charge transport across a sample of w
L5Nl, wherel is the mean interdopant spacing andN11 is
the number of sites. The charge transport from the site
noted byi to its adjacent sitei 61 is described by the Marcu
01430
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theory ~see Fig. 1!. According to the Marcus rate equatio
the transition probability is given by10

Wi→ i 615
2p

\
J2

1

A4pErkBT

3expF2
@V~ i 61!2V~ i !7eE0l 1Er #

2

4ErkBT G ,
~2.1!

where\ represents the Planck constant divided by 2p, kB is
the Boltzmann constant,J is the transfer integral,V( i ) is the
site energy in the absence of an external electric field, andEr
is the reorganization energy. The reorganization energ
twice the polaron binding energy.Er;0.3 eV is a rough
estimate of the intramolecular relaxation in doped orga
molecules. Since the site energy appears in the Mar
theory as an energy differenceV( i 11)2V( i ), only the fluc-
tuating component contributes to the transition rate wh
^V( i 11)&5^V( i )&. Thus, without loss of generality,V( i )
denotes the fluctuating component of a site energy wh
sample average is zero:^V( i )&50.

Charge carriers in disordered organic materials are
lieved to be highly localized at the site of doped molecule1

The site energy fluctuates statistically from site to site
cause the molecules are embedded in different environme
An inhomogeneous broadening of absorption and fluor
cence spectra is a signature of such energy disorder1 A
Gaussian distribution of the density of states is commo

FIG. 1. Schematic representation of our theoretical model
one-dimensional charge transport amongN11 lattice sites. A per-
fectly reflecting boundary condition is imposed on site 0, and
perfectly absorbing boundary condition is imposed on siteN. Each
transition rate is described by the Marcus rate equation, for whic
transition takes place at the intersection of the two parabolic fr
energy curves.
5-2
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ELECTRIC FIELD DEPENDENCE OF CHARGE . . . PHYSICAL REVIEW B 65 014305
assumed, because the energy fluctuation depends on
degrees of freedom, each varying randomly. One of
sources of the local energy difference, typically of the ord
;0.1 eV, results from the electronic polarization. The loc
ized charge causes a fast electronic polarization of surrou
ing molecules. The induced dipoles in the vicinity of th
charged molecule create a local variation of the potenti1

The local energy disorder of the Gaussian energy distribu
can be characterized by

^V~ i !V~ j !&5sL
2d i j , ~2.2!

wheresL
2;0.1 eV andd i j is Kronecker’s delta. In addition

to the above local energy disorder, there is a consider
amount of evidence that the energy disorder depends on
permanent dipole moment of the dopant molecule as we
that of the host organic material.25–29The distribution of per-
manent dipoles generates fluctuations in the electrostatic
tential due to the charge-dipole interactions,

V~ i !5eE
EV

drP„r )•
r i2r

ur i2r u3
, ~2.3!

wheree is the charge of the carrier,P(r ) is the dipole mo-
ment at the positionr , and r i is the position of the charge
EV denotes that the region occupied by the charged do
molecule which is assumed to be spherical with radiusa0 is
excluded when calculating the spatial integration. Due to
long-range nature of the charge-dipole interactions, the
energy has spatial correlations. The spatial correlations
site energies due to the charge-dipole interactions can
calculated in the same way as in the calculation of the M
cus reorganization energy due to the charge-dip
interactions.10 If e denotes the dielectric constant of th
doped organic materials, the fluctuation-dissipation theor
the mean-field approximation leads to

^Pa~r !Pb~r 8!&5
kBT

4p S 12
1

e D dabd~r2r 8!, ~2.4!

wherea andb is introduced to represent the Cartesian co
ponents ofP, anddab denotes Kronecker’s delta,dab51 if
a5b anddab50 if aÞb. Using the definition ofV( i ) @Eq.
~2.3!#, together with Eq.~2.4!, for the isotropic materials10

we obtain

^V~ i !V~ j !&5e2kBTS 12
1

e D S 1

a0
d i j 1

1

ur i2r j u
~12d i j ! D ,

~2.5!

where (12d i j ) should be regarded as zero ifi 5 j , despite
the multiplication of the divergent function. When th
sample dielectric constant comes mainly from the perman
dipoles of the doped molecules, Debye’s formula can
applied,38 which in our case is written as

12
1

e
5

4p

3
c

p2

kBT
, ~2.6!
01430
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wherec is the molecular concentration~molecules/cm3) of
the doped molecules with the permanent dipole momenp.
Then, the site energy correlation can be written as4

^V~ i !V~ j !&5
4p

3
ce2p2S 1

a0
d i j 1

1

ur i2r j u
~12d i j ! D .

~2.7!

Some other models of energy disorder due to charge-dip
interactions were also proposed.25–29 In general, both types
of energetic disorder, the local disorder induced by the e
tronic polarization and the long-range disorder due to
permanent dipoles, are present. Hence the correlation of
energies can be written as

^V~ i !V~ j !&5s2S d i j 1
a

u i 2 j u l ~12d i j ! D , ~2.8!

where a5a0sd
2/s2,s25sL

21sd
2 , and sd

25e2kBT(1
21/e)/a0 in terms of the dielectric constant of doped ma
rials, orsd

254pce2p2/(3a0) in terms of the dipole momen
of the doped molecule. In the above treatment we adopt
continuum model to evaluate the electrostatic potential
to the permanent dipoles. Some deviation from the c
tinuum model is observed for a molecular model of
solvent.39 For simplicity any deviation due to short-rang
interactions is assumed to be completely local and isotro
as shown in Eq.~2.2!. The phenomenological parametera
includes the contribution of such local disorder relative to
long-range disorder derived from the continuum model.

III. MOBILITY: FORMAL EXPRESSION

We consider a segment of a linear chain withN11 sites,
which are numbered from 0 toN. The length of the chain is
L5Nl. The hopping motion is described by a one-step p
cess where charge transfer is allowed only between adja
sites. We suppose that at site 0 there is a perfectly reflec
boundary and at siteN a perfectly absorbing boundary i
imposed~see Fig. 1!.The drift mobility m is defined by

m[
lN

tmftE0
, ~3.1!

where the mean first passage timetmft of carriers starting
from the reflecting edge at site 0 should correspond to
transit time in TOF experiments.tmft is most easily derived
through the adjoint equation to the master equation of
one step process.40 The result is given by40–42

tmft5 (
i 50

N21
1

Wi→ i 11
1 (

i 51

N21

(
k50

i 21

)
j 5k

i 21
Wj 11→ j

Wj→ j 11

1

Wi→ i 11
.

~3.2!

A similar factor appeared in the expression of the drift v
locity and the diffusion constant of a periodic on
dimensional hopping model.43 With the aid of a detailed bal-
ance condition,
5-3
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Wj 11→ j

Wj→ j 11
5expS 2

V~ j !2V~ j 11!1eE0l

kBT D , ~3.3!

Eq. ~3.2! is simplified to40,42

tmft5 (
i 50

N21

(
j 50

i

expS 2
eE0 j l

kBT D
3expS 2

V~ i 2 j !2V~ i !

kBT D 1

Wi→ i 11
. ~3.4!

For a system having a translational invariance for any co
lations of site energies with a finite correlation length sma
than a system size ofN sites, the summation with respect
each site is equivalent, and we can introduce the sam
averagê •••& for tmft/N:

tmft

N
5K (

j 50

N21

expS 2
eE0 j l

kBT D
3expS 2

V~N212 j !2V~N21!

kBT D 1

WN21→N
L .

~3.5!
a
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n
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a
0
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Recently, the ensemble average was exactly evaluated
transition rate of Miller-Abrahams type and for the large r
organization energy limit of the Marcus rate equation,
assuming a certain model of site energy correlations.44 The
mobility is sensitive to the transition probability of the e
ementary hopping process. In this paper, we choose
physically most plausible form of the transition probabilit
namely, the Marcus rate equation@Eq. ~2.1!#. After introduc-
ing dimensionless quantities

Ē0[
eE0l

kBT
, V̄~ i ![

V~ i !

kBT
,

Ēr[
Er

kBT
, m̄5

\A4pErkBT

2pJ2

kBT

el2
m,

s̄25
s2

~kBT!2
, ā5

a

l
, ~3.6!

we arrive at the fundamental equation for our later analy
m̄5
1

(
m50

N21

Ē0 exp~2Ē0m!K expF2V̄~N212m!1V̄~N21!1
$V̄~N!2V̄~N21!2Ē01Ēr%

2

4Ēr
G L . ~3.7!
be-
ion
nd
. It
ld

the
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lly

ga-
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t to
po-
g
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In order to calculate the mobility, the summation as well
the ensemble average should be taken. The ensemble av
will be calculated analytically. The numerical calculatio
was also performed by generating a correlated Gaussian
tribution with suitable correlation functions to the energies
5000 sites, for which the square-root method w
employed.45 Subsequently, the average is taken for 500
runs. The mobility thus calculated was used to confirm
accuracy of the analytical solutions.

IV. MOBILITY IN THE ABSENCE OF DISORDER

Before investigating charge transport under the influe
of random potentials, mobility in the absence of random
tentials is summarized in this section. In the absence of
dom potentials the summation in Eq.~3.7! is easily per-
formed, yielding17

m̄5expS 2
Ēr

4
2

Ē0
2

4Ēr
D sinh~Ē0/2!

Ē0/2
. ~4.1!

For a large reorganization energyĒ0,Ēr , the above equa
tion reduces to the well-known formula due to Bagley:46
s
age

is-
f
s
0
e

e
-
n-

m̄5expS 2
Ēr

4
D sinh~Ē0/2!

Ē0/2
. ~4.2!

The above expressions are nothing but the difference
tween the enhanced rate of hopping in the forward direct
due to an electric-field reduction of the activation energy, a
the decreased rate of transfer in the reverse direction
should also be noted that the increase in mobility with fie
strength at high fields is more moderate in the result of
full Marcus model compared to Bagley’s expression. T
tendency of the result from the Marcus model is especia
true for smaller reorganization energies~polaron binding en-
ergies!. For very small reorganization energies even a ne
tive field dependence can be predicted from the Mar
model. This phenomenon can be interpreted on the bas
the Marcus inverted region, where the charge-transfer r
for hops to lower energies decrease for sufficiently h
fields. Incidentally, the external field dependence turns ou
be weak compared with that in the presence of random
tentials. In the following sections, we will show a stron
field dependence due to the presence of random potentia
comparison with the above formulas.
5-4
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V. MOBILITY FOR LARGE REORGANIZATION ENERGY

For a large reorganization energy, we approximate the transition probability as

WN21→N.
2p

\
J2

1

A4pErkBT
expF2

Er

4kBT
2

V~N!2V~N21!2eE0l

2kBT G . ~5.1!

When V( i ) is a Gaussian process, a linear combination of Gaussian processes is a Gaussian process, and after a
expansion Eq.~3.7! can be written as

m̄5

expS 2
Ēr22Ē0

4
D

(
m50

N21

Ē0 expF2Ē0m1
1

2 K H V̄~N!1V̄~N21!

2
2V̄~N212m!J 2L G . ~5.2!
he

o
.

uld
en-
y is

ela-

ent
gy
The mobility is expressed in terms of correlations of t
energy disorder. Now we evaluate Eq.~5.2! by introducing
explicit forms of the correlations.

A. Local energy disorder

For local energy disorder,

^V̄~ i !V̄~ j !&5s̄2d i j , ~5.3!

in the thermodynamic limit Eq.~5.2! is reduced to

m̄5

expS 2
Ēr1s̄222Ē0

4
D

2 sinh~Ē0/2!1expS s̄22Ē0

2
D

sinh~Ē0/2!

Ē0/2
. ~5.4!

The above equation coincides with the recent result
Cordeset al.44 The zero-field mobility is derived from Eq
~5.4! as

m̄uĒ0505expS 2
Ēr13s̄2

4
D . ~5.5!
01430
f

For a large reorganization energy the Arrhenius law sho
hold in addition to the algebraic weak-temperature dep
dence. However, even when the reorganization energ
dominant in the transition rate,Ēr>s̄2, there exists a certain
range of disorderĒr>s̄2>Ēr /3 where logm̄}1/T2 behavior
dominates compared to logm̄}1/T behavior.

B. Long-range energy disorder

In the presence of charge-dipole interactions, the corr
tion of V̄( i ) is obtained from Eq.~2.8! as

^V̄~ i !V̄~ j !&5s̄2S d i j 1
ā

u i 2 j u ~12d i j ! D . ~5.6!

This model was first studied by Dunlapet al.by approximat-
ing WN21→N as a constant value in Eq.~3.5!.4 Therefore,
our treatment in this section can be regarded as a refinem
of their theory, taking into account all of the site ener
correlations properly. In the thermodynamic limit Eq.~5.2!
becomes
ated as
m̄5

expS 2
Ēr1s̄2~12ā!22Ē0

4
D

Ē0F11expS s̄2~11ā!

2
2Ē0D H (

m50

`

expS 2Ē0m2s̄2ā
2m13

2~m11!~m12! D J G . ~5.7!

It should be noted that the exponential function in the summation appearing in the denominator can be approxim

exp(2Ē0m) for Ē0@3s̄2ā/4. Therefore, for strong external fields we have the approximate expression

m̄5

expS 2
Ēr1s̄2~12ā!22Ē0

4
D

Ē0F11expS s̄2~11ā!2Ē0

2
D 1

2 sinh~Ē0/2!
G . ~5.8!
5-5
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When the random potential has no spatial correlations, the above equation reduces to Eq.~5.4! in the limit of a→0. As the
value of s̄2ā increases, the second term in2Ē0m2s̄2ā(2m13)/@2(m11)(m12)# cannot be neglected in Eq.~5.7!. For
Ē0@5s̄2ā/24, we take the first term in the summation, and for the rest we again approximate2Ē0m2s̄2ā(2m13)/@2(m
11)(m12)# as2Ē0m. In this way, the next order approximation is obtained as

m̄5

expS 2
Ēr1s̄2~12ā!22Ē0

4
D

Ē0F11expS s̄2~11ā!

2
2Ē0D H expS 2

3s̄2ā

4
D 1

exp~2Ē0/2!

2 sinh~Ē0/2!
J G . ~5.9!

A completely different approximate formula is possible whenĒ0;s̄2ā.We approximate the sum by the integral

(
m50

`

expS 2Ē0m2s̄2ā
2m13

2~m11!~m12! D;E
0

`

expS 2Ē0x2
s̄2ā

x11
D dx. ~5.10!

Then, by further approximating the integrand by the Gaussian function, we obtain

m̄5

expS 2
Ēr1s̄2~12ā!22Ē0

4
D

Ē0F 11Ap

Ē0

As̄2ā

Ē0

expS 22AĒ0s̄2ā1
s̄2~11ā!

2
D G . ~5.11!
r
e
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The same zero-field mobility is obtained from Eqs.~5.8! and
~5.9! as

m̄uĒ0505expS 2
Ēr1s̄2~31ā!

4
D . ~5.12!

In general, the summation appearing in the denominato
Eq. ~5.7! can be divided into a finite summation and a r
mainder which can be approximated as( exp(2Ē0m); the
finite summation part does not contribute in the zero-fi
limit. As a result Eq.~5.12! should be regarded as the exa
zero-field limit of Eq.~5.7!.

Now we compare our expressions with those of Dun
et al.4 They obtainedm̄}exp(2s̄2) in the low-field limit.4

The slightly different coefficient of 3/4 appeared in our e
pression,@Eq. ~5.12!# instead of their value of 1. It should
also be noted that our expressions for the field depende
are much more complicated than the simple analytical
pressions of Dunlapet al., which clearly predicted Gill’s law
mathematically. The difference arises simply because Dun
01430
of
-
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et al. neglected some energy correlations whenWN21→N in
Eq. ~3.5! was assumed to be a constant.4 Note that the as-
sumption of the constant forward rate in the ensemble a
age is appropriate for a transition rate of Miller-Abraham
type in the strong external field, because under such co
tions most forward transitions are toward energetically low
sites and the corresponding transition rates are a cons
according to the Miller-Abrahams expression. The mobil
expression depends on the form of the transition rate
sumed, and the elegant theory of Dunlapet al. may be better
applied for a transition rate of Miller-Abrahams type.

VI. MOBILITY: EXACT RESULT

When the transition probability is described by the fu
Marcus rate equation,@Eq. ~2.1!#, the cumulant expansion
introduced in Sec. V is not an efficient method to calcula
the sample average. It is more convenient to rewrite Eq.~3.7!
in terms of variablesV̄d[V̄(N)2V̄(N21) and V̄m[V̄(N
212m)2V̄(N21), and introduce the distribution functio
explicitly,
P~V̄d ,V̄m!55
1

2pAuSu
expS 2

V̄d
2S$1,1%

21 12V̄dV̄mS {1,2}
21 1V̄m

2 S {2,2}
21

2
D for ~mÞ0!

1

A2p^V̄d
2&

expS 2
V̄d

2

2^V̄d
2&
D for ~m50!,

~6.1!
5-6
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whereS$ i , j %
21 is the$ i , j % component of the inverse matrix o

S5S ^V̄d
2& ^V̄dV̄m&

^V̄dV̄m& ^V̄m
2 &

D , ~6.2!

and uSu denotes the determinant of the matrixS. Then the
mobility is given by the Gaussian integral which is solvab
analytically,

m̄5

expF2
Ēr

4 S 12
Ē0

Ēr
D 2G

(
m50

N21

Ē0 exp~2Ē0m! f m

, ~6.3!

where

f m5E
2`

`

dV̄dE
2`

`

dV̄mP~V̄d ,V̄m!

3expF2V̄m1
1

2 S 12
Ē0

Ēr
D V̄d1

V̄d
2

4Ēr
G . ~6.4!

After performing the Gaussian integration, we find that t
variance is renormalized by the factor 12S$1,1% /(2Ēr) due
to the interplay between the distribution of potentials and
potential shape:

f m5
1

A12
S$1,1%

2Ēr

expH 1

2

1

12
S {1,1}

2Ēr

FS {1,1}

4 S 12
Ē0

Ēr
D 2

2S {1,2} S 12
Ē0

Ēr
D 1S {2,2} 2

uSu

2Ēr
G J . ~6.5!
e

he

01430
e

e

As long as we know the correlation matrix of the ener
disorder, we can calculate the mobility by substituting E
~6.5! into Eq. ~6.3!. It is interesting to note that the mobility

is proportional to the renormalization factorm̄

}A12S$1,1% /(2Ēr). The mobility decreases as the ratio
the variance of the random energy difference to the reor

nization energy,̂V̄d
2&/(2Ēr), increases. When the variance

the disorder is comparable to the reorganization ene

^V̄d
2&;2Ēr , the mobility tends to zero. This is due to the fa

that we consider an infinite length of the one-dimensio
chain. Specifically, the mobility is inversely proportional
the ensemble average of the waiting time needed for
hopping transition. Due to the detailed balance conditi
only a single waiting time is involved in each sequence
the random work accomplished by the absorption at
edge—as we can see from Eq.~3.5!, where the summation is
divided by a single transition rate. The condition that t
width of the site energy distribution is the same as the re
ganization energy, i.e., the width of the parabolic free ene
curve, implies that the sample average of the waiting ti
appearing for each sequence of the random work tend
infinity. The sample average by the Gaussian distribution
sumes an infinite number of site energies resulting from
migration of charge carriers between an infinite number
sites in the chain. For a finite chain length the mobility d
creases monotonically to a limiting value of zero as the d
order strength increases.

A. Local energy disorder

For local energy disorder, described by Eq.~5.3!, the mo-
bility in the thermodynamic limit follows from Eqs.~6.3! and
~6.5!,
m̄5As̄2

s̄ r
2

expF2
Ēr1s̄ r

2

4 S 12
Ē0

Ēr
D 2G

2 sinh~Ē0/2!1expF s̄ r
2S 21Ē0 /Ēr23s̄2/Ēr

4
D 2

Ē0

2
G

sinh~Ē0/2!

Ē0/2
, ~6.6!
-
n

h a
i-
where the renormalized variance is defined bys̄ r
2[s̄2/(1

2s̄2/Ēr). The zero-field mobility is obtained as

m̄uĒ0505As̄2

s̄ r
2

expS 2
Ēr13s̄2

4
D . ~6.7!

The dominant temperature dependence comes from the
ponential function. When 3s̄2 is larger thanĒr , a better
straight line is obtained if one plots the logarithm of t
x-

mobility against 1/T2 instead of 1/T. It is also clear that the
distinction becomes difficult ass̄2 becomes smaller. More
over, the normalization factor of the mobility adds a
additional temperature factor to the real mobility:m
}m̄/(kBT)3/2. Because of this algebraic factor, even thoug
straight line is found for the semilogarithmic plot of the d
mensionless mobilitym̄ versus 1/T, the line is bent when the
logarithm of the real mobilitym is plotted against 1/T, and
the semilogarithmic plot ofm versus 1/T2 tends to look
straight.
5-7
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B. Long-range energy disorder

In terms of the long-range correlations due to the char
dipole interactions@Eq. ~5.6!#, the renormalized variance ca
be defined as
,
by

c
it

te
i

on

en

ic
io
s

al

01430
-

s̄ r
2[

s̄2

12
s̄2~12ā!

Ēr

, ~6.8!

and the mobility in the thermodynamic limit is expressed
m̄5

As̄2

s̄ r
2

Ē0

expF2
Ēr1s̄ r

2~12ā!

4 S 12
Ē0

Ēr
D 2G

11 expF s̄ r
2H 12~12ā!

2~12Ē0 /Ēr !1~31ā!s̄2/Ēr

4 J 2Ē0G f

, ~6.9!

where

f [ (
m50

`

expF2Ē0m2
s̄ r

2ā

2~m11!~m12! H ~2m13!
s̄2

s̄ r
2

1
Ē0

Ēr

2
s̄2

2Ēr

ā

~m11!~m12!J G . ~6.10!

As before, the summation is easily performed for the lowest order approximation,f ;( exp(2Ē0m),

m̄5

As̄2

s̄ r
2

Ē0

expF2
Ēr1s̄ r

2~12ā!

4 S 12
Ē0

Ēr
D 2G

11expF s̄ r
2H 12~12ā!

2~12Ē0 /Ēr !1~31ā!s̄2/Ēr

4 J 2Ē0/2G 1

2sinh~Ē0/2!

, ~6.11!
is
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which goes to Eq.~6.6! in the limit of no spatial correlations
a→0. As in Sec. V the next-order approximation is given

f ; expF2
s̄ r

2ā

4 S 3
s̄2

s̄ r
2

1
Ē0

Ēr

2
s̄2ā

4Ēr
D G1

exp~2Ē0/2!

2 sinh~Ē0/2!
,

~6.12!

together with Eq.~6.9!. In the zero-field limit Eqs.~6.11! and
~6.12! reduce to the same expression. The approximation
be improved by increasing the number of terms in the fin
summation inf. Moreover, it is obvious that the approxima
expression gives the same mobility in the zero-field lim
regardless of the number of terms in the finite summati
Thus the zero-field mobility should be given by

m̄uĒ0505As̄2

s̄ r
2

expF2
Ēr1s̄ r

2~31ā!$12~12ā!s̄2/Ēr%

4
G .

~6.13!

The zero-field mobility has a remarkably simple form ev
in the presence of long-range disorder.

VII. RESULTS AND DISCUSSION

In this section, we study some aspects of the analyt
expressions of the mobility. The most general express
Eq. ~6.9! with Eq. ~6.10!, was derived in Sec. VI and it
zero-field limit was obtained in Eq.~6.13!. In Fig. 2 we
compare the analytical expressions with the numerical ev
an
e

t
.

al
n,

u-

ation of Eq.~3.7!. When the dimensionless field strength

equal to 1, Ē051, the real field strength isE0;3
3105 V/cm for the lattice separationl 510 Å at room tem-
perature. A numerical evaluation is performed according
two procedures; one uses the Marcus expression for its
ementary process, and the other is based on a limiting f
valid for a large reorganization energy@Eq. ~5.1!#. In both
cases the agreement between the analytical expressions
the numerical evaluation is excellent; our analytical expr
sions are fully reliable. In the same figure, we also pres
the results in the absence of disorder@Eqs. ~4.1! and ~4.2!#.
The mobility is smaller in the presence of disorder compa
to that in its absence, because the mobility is limited by
small transition rates or equivalently the large barriers c
ated by the energetic disorder. At weak fields charge tra
port is more influenced by energetic disorder than at hig
fields, so that as the field strength decreases the mobilit
considerably lowered from that in the absence of disord
The field dependence of the mobility is very weak in t
absence of energetic disorder, while the mobility increa
considerably with field strength in the presence of disord

The plot of logm̄ againstAĒ0 exhibits a linear dependenc
over a wide range in the intermediate region of the fie
strength, even though the correlation length is small:ā
50.1. Nevertheless, our expression is well approximated
Gill’s law. As shown in Fig. 3, the linear region shifts towar
a lower field strength by increasingā, which is the charac-
5-8



h

e
de
io
th

in-
s is

ld
l

n
s.
e is

ed

r-
sult

n
ic-
de-

of
o-

ga-
ion,
ua-
-
is
sed
eld
he
of
in-
ther
a

ty
g

Th
io
-

ty
g

Th
io

ty
gth.

tic

ELECTRIC FIELD DEPENDENCE OF CHARGE . . . PHYSICAL REVIEW B 65 014305
teristic length of the long-range spatial correlations. T

straight line of logm̄ againstAĒ0 is apparently the signatur
of the influence of energetic disorder on hopping motion
scribed by the Marcus rate equation. The further introduct
of spatial correlations moves the region described by

FIG. 2. Semilogarithmic plot of the dimensionless mobili
against the square root of the dimensionless electric-field stren

The parameters areĒr510.0,s̄51.0, andā50.1. The lower thick
solid line is the analytical result of Eq.~6.9! with Eq. ~6.10!. The1
symbols on the line are the numerical evaluation of Eq.~3.7!. The
upper thin solid line is the analytical result of Eq.~5.7!, and the3
symbols on the line are the corresponding numerical results.
short dashed line is the mobility from the Marcus rate equat
without energetic disorder@Eq. ~4.1!#. The long dashed line is Ba
gley’s mobility @Eq. ~4.2!#.

FIG. 3. Semilogarithmic plot of the dimensionless mobili
against the square root of the dimensionless electric-field stren

The parameters areĒr510.0,s̄51.0, andā50.5. The lower thick
solid line is the analytical result of Eq.~6.9! with Eq. ~6.10!. The1
symbols on the line are the numerical evaluation of Eq.~3.7!. The
upper thin solid line is the analytical result of Eq.~5.7!, and the3
symbols on the line are the corresponding numerical results.
short dashed line is the mobility from the Marcus rate equat
without energetic disorder@Eq. ~4.1!#. The long dashed line is
Bagley’s mobility @Eq. ~4.2!#.
01430
e

-
n
e

straight line. Here the long-range correlation due to the
teraction of the charge with the permanent dipole moment

not essential for a linear relation between logm̄ andAĒ0. In
our expressionsm̄ is a complicated function ofĒ0, which can
be approximated by Gill’s law in a wide range of fie
strengths. Note that Dunlapet al. derived the mathematica

relation logm̄}AĒ0, which arises purely from the interactio
of the charge with randomly distributed permanent dipole4

Since the forward transition rate in the ensemble averag
simplified as a constant in their theory,4 their mechanism is
appropriate for a rate of Miller-Abrahams type, as mention
in Sec. V B.

At high electric fields the mobility obtained from the Ma
cus rate equation saturates, in sharp contrast to the re
obtained from its limiting form valid for large reorganizatio
energy. In general, a plot of the mobility against the electr
field strength is S shaped when the hopping motion is
scribed by the Marcus rate equation under the influence
energetic disorder; upon increasing the applied field, the m

bility initially increases, and then a region of logm̄'AĒ0
appears, which is followed by saturation. For a small reor
nization energy the mobility even decreases after saturat
as shown in Fig. 4. If we approximate the Marcus rate eq
tion by its limiting form valid for a large reorganization en
ergy, such a decrease of the mobility with field strength
never observed. In the absence of disorder the mobility ba
on the Marcus rate equation depends weakly on the fi
strength, and then drops with increasing field strength. T
decrease of the mobility with field strength is the signature
the Marcus inverted region, where the activation energy
creases with a decreasing free-energy change. On the o
hand, the increase of the mobility with field strength in

th.

e
n

th.

e
n

FIG. 4. Semilogarithmic plot of the dimensionless mobili
against the square root of the dimensionless electric-field stren

The parameters areĒr55.0,s̄52.0, andā50.2. The lower thick
solid line is the analytical result of Eq.~6.9! with Eq. ~6.10!. The1
symbols on the line are the numerical evaluation of Eq.~3.7!. The
upper thin solid line is the analytical result of Eq.~5.7!. The dashed
line is the mobility from the Marcus rate equation without energe
disorder@Eq. ~4.1!#.
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KAZUHIKO SEKI AND M. TACHIYA PHYSICAL REVIEW B 65 014305
relatively low-field region originates from energetic disord
The mobility increases faster with field strength for lar
energetic disorder, while a prominent decrease of the mo
ity with field strength is found for small reorganization e
ergy.

So far we have examined the general feature of the fi
dependence of the mobility. We now investigate whether
analytical expression of the mobility can fit the experimen
data by the reasonable choice of parameter values. In F
the measured mobility for 50-mol % DEH~hydrazone!-
doped polycarbonate, taken from the paper by Scheinet al.30

is fitted by Eq. ~6.9! with Eq. ~6.10!. The parameters
are Er50.3 eV,s50.072 eV,a054 Å,l 510 Å, and
m050.0067 cm2/(Vs), where m0[2pJ2el2/
(\A4pErkBTrkBTr) with the room temperatureTr
5300 K. Since the ratio of the energy disorder by the el
tronic polarization to that by the charge-dipole interactions
ambiguous, we assume that both contributions are com
rable, sd

2/s251/2. Our theoretical curve is consistent wi
the data throughout the whole field range. The long das
line represents the first approximate expression@Eq. ~6.11!#,
which has the same functional form as that of the local
ergy disorder. Roughly speaking, the long dashed line sh
a good correlation with experimental data. The linear relat
between logm and AE0 arises because of the complicat
combination of exponential functions ofE0. When Dunlap
et al. analyzed the same experimental data, an excellen
was obtained from the expression which reduces mathem
cally to Gill’s law.4 In their derivation, the interaction of th
charge carrier and the randomly distributed permanent
poles is a necessary ingredient for the field dependence.4 The
role of such correlations is diminished in our analysis b
cause we use the full Marcus equation for the forward tr
sition rate in the ensemble average needed to obtain the

FIG. 5. Semilogarithmic plot of the mobility@cm2/(V s)#
against the square root of the electric-field strength@(V/cm)1/2#.
Points are the measured data of the mobility
50 mol %DEH-doped polycarbonate at 298 K taken from Ref.
The solid line is the analytical result of Eq.~6.9! with Eq. ~6.10!
with Er50.3 eV,s50.072 eV,a054 Å,l 510 Å, and m0

50.0067 cm2/(V s). The long dashed line is the first approxima
expression@Eq. ~6.11!#. The short dashed line is the second appro
mate expression@Eq. ~6.9!# with Eq. ~6.12!.
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bility @Eq. ~3.5!#. On the other hand, in their theory4 it was
approximated as a constant independent of random site
ergy. TheEr value chosen for the fitting is reasonable for t
reorganization energy due to vibronic relaxation. By usi
the method commonly used in this field the distance betw
adjacent dopant molecules can be estimated by assumi
cubic lattice,l 5(1/c)1/3;9.9 Å, wherec is the number den-
sity of DEH molecules,47 andc59.631020 molecules/cm3.
A similar distance can be obtained from the mean near
neighbor distance for the uniform distribution of dopant m
ecules outside the region of spherical volume whose radiu
the contact distance 2a0. Since the nearest-neighbor distrib
tion is given by48 P(r )5cv8(r )exp@2cv(r)#, where v(r )
[4pr 3/3 and v8(r )[4pr 2 is its derivative, the mean
nearest-neighbor distance, *2a0

` rP(r )dr becomes

@3/(4pc)1/3#exp@cv(2a0)#G@1/3,cv(2a0)#;14.5 Å, where
G(a,z) is the incomplete gamma function. The value ol
thus estimated is a little larger than that for the cubic latti
We may conclude that the distance ofl;(10–15)Å is rea-
sonable. From the definition,sd

254pce2p2/(3a0) and the
dipole moment of DEH,20 p;3 D, we estimate sd
;0.05 eV. The other expressionsd

25e2kBT(121/e)/a0
with e;3 gives the larger valuesd;0.24 eV. The value for
the fitting s50.072 eV is close to the lower bound.J
50.4231023 eV is obtained fromm050.0067 cm2/(V s).
By assuming a typical form of the transfer integralJ2

5J0
2exp@2b(l22a0)# with the valuesJ0550 cm21 and b

51 1/Å, we find a slightly larger valueJ52.331023 eV,
but the difference is within a range of error which aris
from the uncertainties in the values ofJ0 andb. Therefore,
our parameter values for the fitting are in agreement w
those estimated. In the same figure, the approximate exp
sions @Eqs. ~6.11! and ~6.9!, with Eq. ~6.12!#, are also pre-
sented. They do not deviate significantly from the exact
pression, which implies that the summation in the ex
expression converges rather quickly.

As we already mentioned, a bell-shaped field depende
of the mobility has been reported.5–8 We examine one of the
recent results on this issue.8 In Fig. 6 the measured mobility
from the paper8 by Hartensteinet al. is presented for
17-wt % EFTP doped polycarbonate at 298 K. The theo
ical curve is calculated by Eq.~6.9! with Eq. ~6.10!, with the
parameters Er50.1 eV,s50.03 eV,a055 Å,l 518 Å,
and m051.431024 cm2/(V s). The curves from the ap
proximated expressions are also presented in the same fi
The theoretical curves are consistent with the measured d
The result suggests that the decrease of the mobility w
increasing field strength is in analogy to the Marcus inver
region.

In order to investigate more about the bell-shaped fi
dependence of the mobility, the temperature dependenc
the mobility is presented in Fig. 7. The experimental data
temperatures of 357 and 268 K are taken from Ref. 8. Si
the sample is the same as that in Fig. 6, the measured da
298 K in Fig. 6 are also included in Fig. 7. The theoretic
curves are calculated by Eq.~6.9! with Eq. ~6.10! with the
same parameters as those used to calculate the theor
curves in Fig. 6 except form0. By assuming J2

5J0
2 exp@2b(l22a0)# with the valuesJ0550 cm21 and b

511/Å we estimateJ51.1431024 eV, which is larger

.

-
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ELECTRIC FIELD DEPENDENCE OF CHARGE . . . PHYSICAL REVIEW B 65 014305
than J54.631026 eV obtained from m051.4
31026 cm2/(V s), the parameter value used in Fig. 6. T
smaller parameter value suggests that the charge trans
limited by the vibronic relaxation; the corresponding conc
for reactions in liquid is referred to as the dynamical solv
control, where solvent fluctuation is the limiting step.49,50By
assuming an Arrhenius-type temperature dependence fo
vibronic relaxation rate, m051.1 exp@2Ea /(kBT)#
3@cm2/(V s)#, with an activation energyEa50.35 eV, the
theoretical curves are calculated by Eq.~6.9!, with Eq.
~6.10!, and compared to the measured field-dependent mo
ity at different temperatures in Fig. 7. The theoretical curv
are in overall accordance with the measured data at e
temperature except at high-field strength, where our theo
ical curve drops faster with the field strength compared to
measured data. The reason for this may be due to the ne
of high-frequency quantum modes of vibrational states in
Marcus rate equation, which tend to maintain an activati
less situation even in an inverted region.11,51 In the normal
region, specifically given by the conditioneE0l ,Er , where
the mobility increases with the field strength, the contrib
tion of high-frequency modes is negligibly small
practice.11,51 The charge-transfer rate increases if hig
frequency quantum modes are excited in the reactant s
because in this case tunneling barriers become lower; h
ever, the thermal population of excited vibrational states
creases strongly with increasing quanta involved in th
states.11,51 The situation is different in the inverted regio
eE0l .Er . The particular high-frequency modes in the pro
uct state ensures that the transition remains approxima
activationless; the mobility is underestimated in the inver
region when the large quantum intramolecular vibrations
ignored.11,51 Therefore, it is important to take such high
frequency modes into account in the inverted region. R

FIG. 6. Semilogarithmic plot of the mobility@cm2/(V s)#
against the square root of the electric-field strength@(V/cm)1/2#.
Points are the measured data of the mobility
17 wt %EFTP-doped polycarbonate at 298 K taken from Ref
The solid line is the analytical result of Eq.~6.9! with Eq. ~6.10!,
with Er50.1 eV,s50.03 eV,a055 Å,l 518 Å, and m051.4
31026 cm2/(V s). The long dashed line is the first approxima
expression,@Eq. ~6.11!#. The short dashed line is the second a
proximate expression@Eq. ~6.9!#, with Eq. ~6.12!.
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search in this direction is in progress. The activation ene
of 0.35 eV corresponds to 8.1 kcal/mol; this value is clo
to the activation energy of the dielectric relaxation rate
monoalcohols with long chain lengths in the pure state, s
as52 octanol-1:;8.4 kcal/mol. The value is a little smalle
than the activation energy for the isomerization reaction
stilbenes:;15 kcal/mol.53 The origin of the activation pro-
cess may be the torsional motion of the dopant molec
associated with charge transfer; the activation barrier
0.35 eV found by our fitting procedure is reasonable
such a process. Our theory agrees well with not only the fi
dependence but also with the temperature dependence o
measured mobility, which indicates that the polaron mo
with energetic disorder may be realistic and the appeara
of a maximum in the mobility at high fields can be consi
ered as evidence of a transition to an inverted region.

VIII. CONCLUSION

In this paper we have theoretically investigated the ap
cability of the Marcus rate equation to describe charge tra
port in disordered molecular solids. In the solid state
reorganization energy, due to the reorientation of dipole m
ecules in the environment, is absent. Under such circu
stances, the Marcus rate equation is equivalent to the s

.

-

FIG. 7. Semilogarithmic plot of the mobility@cm2/(V s)#
against the square root of the electric-field strength@(V/cm)1/2#.
Points are the measured data of the mobility f
17 wt % EFTP-doped polycarbonate at various temperatures ta
from Ref. 8. The solid line is the analytical result of Eq.~6.9! with
Eq. ~6.10!. For details on the parameters, see the text. The temp
ture is 357,298, and 268 K from top to bottom.
5-11
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KAZUHIKO SEKI AND M. TACHIYA PHYSICAL REVIEW B 65 014305
polaron model, where the reorganization energy is twice
polaron binding energy. In a one-dimensional analysis
exact analytical expression of the field-dependent mobility
derived for charge transport by using the Marcus rate eq
tion under the influence of energetic disorder. The most g
eral expression for the Gaussian energetic disorder is g
by Eq. ~6.3! with Eq. ~6.5!. For the problem of charge trans
port in molecularly doped polymers, two types of Gauss
disorder are considered. One is the local energy disorder
to the electronic polarization, for which the mobility is give
by Eq.~6.6!. The other is the long-range energy disorder d
to the charge-dipole interactions. In the presence of cha
dipole interactions the mobility is obtained as Eq.~6.9! with
Eq. ~6.10!. The phenomenological Gill’s relation occurs
the intermediate region of the S-shaped field dependenc
the mobility. The slope of lnm againstAE0 is mainly gov-
erned by the reorganization energy and the variance of
energetic disorder. On the other hand, the region of lm
}AE0 shifts by changing the characteristic length of t
long-range correlations. Therefore, Gill’s law does not n
essarily imply long-range correlations, and such correlati
are needed for a qualitative fit to the experimental data
the presence of energetic disorder the mobility is limited
the escape from energetically deep traps. As the energy
order relative to the potential gradient due to the exter
field decreases, the mobility increases toward values with
energetic disorder whose field dependence is much wea
The way mobility increases with field strength is not trivia
and it depends on the transition rate. The mobility derived
the basis of the Marcus rate equation is well approxima
n
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by Gill’s law in a wide range of field strengths. Within rea
sonable values of the parameters, our theoretical express
are consistent with the experimental data, which exh
Gill’s relation over a wide range of field strengths, 14

;106 V/cm. Our theoretical expressions are also in acc
dance with the measured data on the field dependence o
mobility, which show that the mobility increases with in
creasing field strength at low fields, passes through a m
mum, and then decreases with increasing field strength. S
a decrease of the mobility with increasing field strength
never observed if it is derived on the basis of an approxim
rate expression valid in the limit of the large reorganizat
energy, as done by Dunlapet al.,4 since the transition rate i
an increasing function of the field strength. The increase
the mobility with field strength is mainly due to energe
disorder, whereas the appearance of a maximum in the
bility at high fields can be regarded as an evidence fo
transition to the Marcus inverted region.
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