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Electric field dependence of charge mobility in energetically disordered materials:
Polaron aspects

Kazuhiko Seki and M. Tachiya
National Institute of Advanced Industrial Science and Technology AIST Tsukuba Central 5 Higashi 1-1-1, Tsukuba, Japan, 305-8565
(Received 8 February 2001; revised manuscript received 30 May 2001; published 13 December 2001

In order to understand the electric-field dependence of charge mobility in molecularly doped organic mate-
rials, we consider the one-dimensional migration of carriers between sites with Gaussian energetic disorder.
The transition rate of carriers to neighboring sites is assumed to be given by the Marcus rate equation. An exact
analytical expression is derived, and is compared to the measured data. A phenomenological Gill’s relation
occurs in the intermediate region of the S-shaped field dependence of the mobility. The recently observed
anomalous field dependence of the mobility, which shows that the mobility increases with field strength at low
fields, passes through a maximum, and then decreases with increasing field strength, is reproduced. The
increase followed by the decrease of the mobility with increasing field strength is interpreted as a result of
energetic disorder and the Marcus inverted region.
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. INTRODUCTION spread with a deviation of-0.1 eV which is much larger
than the value of the transfer integral, resulting in an

Charge transport in many doped organic materials showanderson-Mott localizatioh? Furthermore, the reorganiza-
a strong response to external electric fieligsand tempera- tion energy of 0.1-0.3 eV, which is typical of the low-
ture T. The mobilities are very low, and the field dependencefrequency vibronic relaxation, is also large compared to the
is well described by Gill's empirical law, log>=\Ep, in @  value of the transfer integral. Under such conditions a po-
wide range of the field strengttE,~10*—10° V/cm, for  laron is well localized, and is termed a Holstein small
various combination of the dopant molecules and hospolaron!®®A transition takes place to neighboring sites by
materials>? Most of the experimental results showed a posi-hopping, because the bandwidth is considerably reduced due
tive slopel! log u increases with/E,. A negative slope was to the lattice distortion around the charge. The most impor-
also observed at sufficiently low concentrations of dopantant manifestation of the Marcus rate equation is the appear-
molecules and high temperatut&he origin of such a uni- ance of a so-called inverted region where the transition rate
versal field dependence has been of both theoretical and edlecreases by decreasing the free-energy change associated
perimental interestAmong many theoretical studies a par- with the charge transféf. The free-energy change can be
ticularly important mechanism was proposed by Dunlapcreated by external electric fields, so that a similar effect may
etal? They demonstrated that Gill's law arises naturally be expected for the mobility. The decrease of mobility at
from the interaction of charge carriers with randomly distrib-extremely high electric fields was predicted a long time ago
uted permanent dipolésin some experiments Gill's law is for polaron modeld’ However, the bell-shaped dependence
observed at an intermediate field strength. At high fields thef the mobility on the external electric field strength was
mobility passes through a maximum and even decreages. observed only recentf7;and the results were interpreted on
To cast some light on such a field dependence of the mobilthe basis of the Marcus inverted regioH.
ity, namely, Gill's law and the appearance of a maximum, we The bell-shaped field dependence of the mobility supports
have developed analytical expressions for the charge mobithe polaronic effect. On the other hand, the mobility nor-
ity by assuming a physically plausible but simple enoughmally does not obey an Arrhenius law. In many experiments
charge transport mechanism. It is generally accepted thahe mobility scales with the reciprocal square of temperature,
charge transport occurs due to a hopping transition betweewhich suggests the importance of energetic disorder. Most
adjacent donor or acceptor moleculds. solution, the Mar- experimental results in the last decade were interpreted using
cus rate equation is well established for such charge-transfehe Gaussian disorder modélwhich describes the charge
processe&’ In Marcus theory the contribution to the reorga- transport as a biased random walk among dopant molecules
nization energy comes from both the reorientation of dipolesith Gaussian-distributed random site energies. Extensive
in the solvent and the intramolecular vibratt! In the  numerical simulations based on the disorder model revealed
solid phase dipoles cannot rotate, and the reorganizatiothat the phenomenological law of Gill's equation occurs in
should be governed solely by the vibrational relaxafion. an intermediate region of the S-shaped field dependence of
Indeed, a corresponding equation exists in the description ahe mobility!8 The bell-shaped field dependence of the mo-
a small polaron, and the reorganization enekgyis twice  bility is also reported to arise due to the inclusion of posi-
the polaron binding energy due to the coupling of the chargeional disordef Furthermore, pure positional disorder results
with low-frequency phonon modéé! The localization of  in mobilities that decrease with increasing field strength over
the charge required for the small polaron picture is justifiedthe entire range of fieldS. In the disorder model energetic
for several reasons. As we will explain below, site energiegisorder arises from charge-dipole or local van der Waals
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interactions->~3°Moreover, it is assumed that charge-carrier ~ Free Energy
hopping to the adjacent sites is given by the Miller- A
Abrahams expression rather than the Marcus rate

equation'®3! The Miller-Abrahams expression was origi-
nally proposed to describe impurity hopping in
semiconductord! On the other hand, the Marcus rate equa-
tion appeared in small polaron hopping theory, in which the
hopping particle is a charge associated with molecular dis-
tortion which results from a charge-phonon interactibin

this paper, we describe the hopping motion of charges in
energetically disordered materials according to the Marcus

rate equation. In most of experiments the mobilities depend A V1) V(i) ek !
on temperaturd as loguoc1/T?, but in some measurements Lo X
Arrhenius behavior is observéd® Both phenomena are in-

herent in our model where the polaron effect is combined \4_—»|
with the disorder model. There are only a few examples of

work done in this direction. In one example the mobilities i i+l
are shown to obey Gill's law in the limit of large reorgani- \ ! /
zation energy over a wide range of the field strength due ta <>

the long range nature of the charge-dipole interactfolms.  |<@i=f=d---- <t [ g

another example, the origin of the compensation temperaturo 1 2 3 i N3 N2 NI N
at which the mobility becomes field independent is investi-
gated by simulation with the Marcus rate equation. FIG. 1. Schematic representation of our theoretical model of

The mobility is obtained from the time-of-flighfTOF) one-dimensional charge transport amadwg 1 lattice sites. A per-
measurements where photogenerated charge carriers crosigly reflecting boundary condition is imposed on site 0, and a
film of thicknessL under an applied fiel&,. The transit time perfe_C_tly absorblng bo_undary condition is imposed on Nlt(Each_

t, gives the mobility throughu=L/(Eqt,). In order to ob- trans!t!on rate is described by_ the Mar_cus rate equation, for whlch a
tain analytical expressions, we consider the hopping motioffansition takes place at the intersection of the two parabolic free-
of charge carriers on one-dimensional chains and calculafg'€"dy Curves.

the mean first passage time. The mean first passage tim . . .
corresponds to 519 tragnsit time of the TOF expefi)mentg. Ce,t_ﬁeory(se_z_e Fig. 1 Aqt_:ordmg_ to t%e Marcus rate equation,
tainly, the one-dimensional model is an oversimplification atthe transition probability is given B

weak fields, due to the appearance of many loops which are

energetically favorable compared to the direct short path. W :2_77J2 1

However, most of the analytical theories on transport through =il g VATE kg T

disordered media were restricted to one-dimensional

systems33"Since predictions from the disorder model have [V(i=1) = V(i) FeEyl +E,]?

been largely made by Monte Carlo simulations, analytical X exp| — 4E kgT '
theories are still useful, especially to understand the roles of

the polaron effect and the energetic disorder in determining 23

the mobility. where# represents the Planck constant divided by, &g is

The structure of the paper is as follows. In Sec. Il thethe Boltzmann constand,is the transfer integral/(i) is the
formulation of the theory is presented. In Sec. Ill the mobil-sjte energy in the absence of an external electric field Eand
ity is formulated in terms of the mean first passage time. Ing the reorganization energy. The reorganization energy is
Sec. IV mobility in the absence of disorder is reviewed. Inyyice the polaron binding energ§,~0.3 eV is a rough
Sec. V an analytical expression of the mobility in the pres-gstimate of the intramolecular relaxation in doped organic
ence of energetic disorder is obtained in the limit of largemglecules. Since the site energy appears in the Marcus
reorganization energy. In Sec. VI the mobili_ty, Without any theory as an energy differensi+1)—V(i), only the fluc-
restrictions on the reorganization energy, is derived. OUkyating component contributes to the transition rate when
theory is compared to the experimental results in Sec. V”(V(i+1))=<V(i)>. Thus, without loss of generality/(i)

Section Vlil is devoted to conclusions. denotes the fluctuating component of a site energy whose
sample average is zer(@V(i))=0.
IIl. MARCUS RATE EQUATION AND ENERGETIC _ Charge carriers in d.isordered organic materials are be-
DISORDER lieved to be highly localized at the site of doped molectiles.

The site energy fluctuates statistically from site to site be-
We consider charge transport across a sample of widtbause the molecules are embedded in different environments.
L=NI, wherel is the mean interdopant spacing ade- 1 is  An inhomogeneous broadening of absorption and fluores-
the number of sites. The charge transport from the site dezence spectra is a signature of such energy disorder.
noted byi to its adjacent site+ 1 is described by the Marcus Gaussian distribution of the density of states is commonly
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assumed, because the energy fluctuation depends on largéerec is the molecular concentratioimolecules/cr?) of

degrees of freedom, each varying randomly. One of theéhe doped molecules with the permanent dipole monpent

sources of the local energy difference, typically of the orderThen, the site energy correlation can be writteh as

~0.1 eV, results from the electronic polarization. The local-

ized charge causes a fast electronic polarization of surround- 1

ing molecules. The induced dipoles in the vicinity of the <V(|)V(J)>— " ce? p 5|J+ =, |(1 5ij) |-

charged molecule create a local variation of the potehtial. b 2.7

The local energy disorder of the Gaussian energy distribution '

can be characterized by Some other models of energy disorder due to charge-dipole
interactions were also propos&d?®In general, both types

(V(i)V(j))zoE&ij , (2.2 of energetic disorder, the local disorder induced by the elec-

tronic polarization and the long-range disorder due to the

whereo{~0.1 eV ands;; is Kronecker’s delta. In addition permanent dipoles, are present. Hence the correlation of site

to the above local energy disorder, there is a considerablenergies can be written as

amount of evidence that the energy disorder depends on the

permanent dipole moment of the dopant molecule as well as a

that of the host organic materi@:2°The distribution of per- (V(V(j)=0? & +| || (1=46ij) |, 2.9

manent dipoles generates fluctuations in the electrostatic po- -

tential due to the charge-dipole interactions, where azao(rﬁ/(rz 02:UE+U§ and ngeszT(l

—1/e)/ay in terms of the dielectric constant of doped mate-

rials, oro5=4mce?p?/(3ay) in terms of the dipole moment

of the doped molecule. In the above treatment we adopt the

continuum model to evaluate the electrostatic potential due

wheree is the charge of the carrieB(r) is the dipole mo- to the permanent dipoles. Some deviation from the con-

ment at the positiom, andr; is the position of the charge. tinuum model is observed for a molecular model of a

EV denotes that the region occupied by the charged doparsolvent® For simplicity any deviation due to short-range

molecule which is assumed to be spherical with radiyss  interactions is assumed to be completely local and isotropic,

excluded when calculating the spatial integration. Due to th&s shown in Eq(2.2). The phenomenological parametr

long-range nature of the charge-dipole interactions, the sitécludes the contribution of such local disorder relative to the

energy has spatial correlations. The spatial correlations dpng-range disorder derived from the continuum model.

site energies due to the charge-dipole interactions can be

calculated in the same way as in the calculation of the Mar- IIl. MOBILITY: FORMAL EXPRESSION

cus reorganization energy due to the charge-dipole

interactions'® If e denotes the dielectric constant of the We consider a segment of a linear chain with- 1 sites,

doped organic materials, the fluctuation-dissipation theory irwhich are numbered from 0 td. The length of the chain is

the mean-field approximation leads to L=NI. The hopping motion is described by a one-step pro-

cess where charge transfer is allowed only between adjacent
kT 1 sites. We suppose that at site O there is a perfectly reflecting
(Por)Pg(r"))= E(l_ ;) Sqp0(r—r"), (2.4  boundary and at sit&N a perfectly absorbing boundary is
imposed(see Fig. 1 The drift mobility . is defined by
wherea and g is introduced to represent the Cartesian com-

V(i)= eJ drP(r)| r|3, (2.3

ponents ofP, and J,; denotes Kronecker’s deltd, ;=1 if _IN 3.1
a=p andd,z=0 if a# B. Using the definition ok/(i) [Eq. M= TmitEo 3.
(2.3)], together with Eq(2.4), for the isotropic materiat8

we obtain where the mean first passage timg; of carriers starting

from the reflecting edge at site 0 should correspond to the
transit time in TOF experiments,,; is most easily derived
a—05ij+ m(l—tﬂj) , through the adjoint equation to the master equation of the
! (2.5  oOne step procedd.The result is given Hf~*?

<V(i)V(J')>=62kBT(1—

where (1-6;;) should be regarded as zeroiifj, despite N"1 g N-1i-1i-1,y 1
L - . j+14>]
the multiplication of the divergent function. When the — 7mg= >, W + > Z I1 m W
sample dielectric constant comes mainly from the permanent =0 Winien =1 850 =k Winjes Winiva® 32
dipoles of the doped molecules, Debye’s formula can be (3.2

applied,” which in our case is written as A similar factor appeared in the expression of the drift ve-
5 locity and the diffusion constant of a periodic one-
_ 1 4m p (2.6) dimensional hopping modé&f.with the aid of a detailed bal-

—=—0Cr—= "
e 3 kgT’ ance condition,
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W1 V(j)—V(j+1)+eEl Recently, the ensemble average was exactly evaluated for a
W_—_ZGXP( - KT ) (3.3 transition rate of Miller-Abrahams type and for the large re-
=i+ B organization energy limit of the Marcus rate equation, by
Eq. (3.2 is simplified t¢%42 assuming a certain model of site energy correlatf§riEne
mobility is sensitive to the transition probability of the el-
N-1 i eEyjl ementary hopping process. In this paper, we choos_e_ the
Tft= Z 2 exp — T ) physically most plausible form of the transition probability,
i=0 j=0 B

namely, the Marcus rate equatipq. (2.1)]. After introduc-

V(i—j)—V(i) 1 ing dimensionless quantities
X - . 3.4
4 aT )WHH1 34
For a system having a translational invariance for any corre- = _ eEyl V(i)= V(i)
lations of site energies with a finite correlation length smaller 07 kgT’ ~ kgT’

than a system size i sites, the summation with respect to
each site is equivalent, and we can introduce the sample

average(- - -) for rpa/N: E, _ A\AmEKgT keT

E=—", p=-Tffe
N-1 : ket 2r? el "
Tt _ (S gy — SE
N j=0 kBT )
— (oa — a
V(N-1-j)-V(N-1)| 1 P=——, a=r, (3.6
xexp{— ) . (kgT) |
kBT WN*].HN

(3.5 we arrive at the fundamental equation for our later analysis:

_ 1
S _ — — . (3.7
HoNmT _ _ _ (V(N)—V(N—1)—Eo+E,}
> Egexp(—Eom){ exp| —V(N—1-m)+V(N-1)+ -
m=0 4E,
|
In order to calculate the mobility, the summation as well as . E, | sinh(Ey/2)
the ensemble average should be taken. The ensemble average pm=exp — Z’ _— 4.2
will be calculated analytically. The numerical calculation Eo/2

was also performed by generating a correlated Gaussian dis-

tribution with suitable correlation functions to the energies of ) ) .
5000 sites, for which the square-root method was! e above expressions are nothing but the difference be-

employed”® Subsequently, the average is taken for 5000dween the enhanced rate of hopping in the forward direction

runs. The mobility thus calculated was used to confirm thedue to an electric-field reduction of the activation energy, and
accuracy of the analytical solutions. the decreased rate of transfer in the reverse direction. It

should also be noted that the increase in mobility with field
strength at high fields is more moderate in the result of the
full Marcus model compared to Bagley’s expression. This
Before investigating charge transport under the influencéendency of the result from the Marcus model is especially
of random potentials, mobility in the absence of random po4rue for smaller reorganization energigmlaron binding en-
tentials is summarized in this section. In the absence of rarergies. For very small reorganization energies even a nega-
dom potentials the summation in E¢3.7) is easily per- tive field dependence can be predicted from the Marcus

IV. MOBILITY IN THE ABSENCE OF DISORDER

formed, yielding’ model. This phenomenon can be interpreted on the basis of
the Marcus inverted region, where the charge-transfer rates
. Er ES sinh(EO/Z) fpr hops to lower energies de_crease for sufficiently high
u=exp ——— —=|—— (4.2)  fields. Incidentally, the external field dependence turns out to
4 4E,]  Ey2 be weak compared with that in the presence of random po-

o tentials. In the following sections, we will show a strong
For a large reorganization ener§y<E,, the above equa- field dependence due to the presence of random potentials in
tion reduces to the well-known formula due to Bagféy: comparison with the above formulas.
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V. MOBILITY FOR LARGE REORGANIZATION ENERGY

For a large reorganization energy, we approximate the transition probability as

W 27TJ2 1 F{ E, V(N)-V(N—-1)—eEy 5.2
N exp — - .
N=1=N""7 VATE KgT AkgT 2kgT

When V(i) is a Gaussian process, a linear combination of Gaussian processes is a Gaussian process, and after a cumulan
expansion Eq(3.7) can be written as

E,—2E,
N ex 7

M= N1 V7 V7 AN
_ _ 1/ [V(N+V(N-1) _
mE:O Eoex;{—E0m+§< e ] H

(5.2

5 —V(N—1-m)

The mobility is expressed in terms of correlations of theFor a large reorganization energy the Arrhenius law should
energy disorder. Now we evaluate H§.2) by introducing hold in addition to the algebraic weak-temperature depen-

explicit forms of the correlations. dence. However, even when the reorganization energy is
dominant in the transition rat&, = o, there exists a certain
A. Local energy disorder range of disordeE,= ¢?=E,/3 where logu1/T? behavior
For local energy disorder, dominates compared to lag<1/T behavior.
(ViV() =05y, (5.3

B. Long-range energy disorder
in the thermodynamic limit Eq(5.2) is reduced to

p( E+;2—ZEO)
_ oan 4 Sinh(Ey/2) 54 _
_ S — . (5. o _ a

23inh(Eo/2)+exp( UZ;EO) Eo/2 (V(V(j))=0? 5ij+m(1_5ii) . (5.6

In the presence of charge-dipole interactions, the correla-
tion of V(i) is obtained from Eq(2.8) as

The above equation coincides with the recent result ofrhis model was first studied by Dunlap al. by approximat-
Cordeset al** The zero-field mobility is derived from Eq. ing Wy_, .y as a constant value in E¢3.5.* Therefore,
(5.4 as our treatment in this section can be regarded as a refinement
= = of their theory, taking into account all of the site energy
ale :exp( B E+30 correlations properly. In the thermodynamic limit E§.2)
KIEp=0 4 ' becomes

(5.9

|
p( E,+EZ(1—E)—2EO)
exp — 4

. o(1+a) = ” = 2m+3
ex 2 Fo)) &, SR TR e ) (mt 2)

ILL:

. (5.7
It should be noted that the exponential function in the summation appearing in the denominator can be approximated as
exp(—Eym) for E,>302al4. Therefore, for strong external fields we have the approximate expression

p( E+32(1—§)—2E0)
exp —
4

_ p(?2(1+§)—E0) 1
Eol 1+ex ——
2 2 sinl(Ey/2)
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When the random potential has no spatial correlations the above equation reduce$5d)kn.the limit of a—0. As the
value of ¢?a increases, the second term 4nEom— o?a(2m+3)/[2(m+1)(m+2)] cannot be _neglected in E¢p.7). For
E0>50' a/24, we take the first term in the summation, and for the rest we again approxintafe— o a(2mvL 3)/[2(m
+1)(m+2)] as— Eom. In this way, the next order approximation is obtained as

p( E+32(1—§)—2E0)

ex

(5.9

r= p( 2(1+a) _) p( 303 expl — Eqf2)
Eol 1+ex ——
2 2 sinh(Ey/2)
A completely different approximate formula is possible wigp-o2a.We approximate the sum by the integral
_ 2m+3
24
220 ex Eom o uz(m+1 m+2) f exp( d (5.10
Then, by further approximating the integrand by the Gaussian function, we obtain
p( E,+32(1—E)—2E0)
exp —
_ 4
n= . (5.1)

_ T [ola —— od%1+a)
Eol 1+ \/ = \/ —exp —2VEyc’a+ ———
E E 2

0 0

The same zero-field mobility is obtained from E¢s.8 and et al. neglected some energy correlations whi#g__. in
(5.9 as Eq. (3.5 was assumed to be a constAmiote that the as-
o . sumption of the constant forward rate in the ensemble aver-
— E,+0%(3+a) age is appropriate for a transition rate of Miller-Abrahams
M|E0=o=ex R (5.12  type in the strong external field, because under such condi-
tions most forward transitions are toward energetically lower
In general, the summation appearing in the denominator ofites and the corresponding transition rates are a constant
Eqg. (5.7) can be divided into a finite summation and a re-according to the Miller-Abrahams expression. The mobility
mainder which can be approximated Asxp(—Eym); the  expression depends on the form of the transition rate as-
finite summation part does not contribute in the zero-fieldsumed, and the elegant theory of Dunktpal. may be better
limit. As a result Eq.(5.12 should be regarded as the exactapplied for a transition rate of Miller-Abrahams type.
zero-field limit of Eq.(5.7). VI. MOBILITY: EXACT RESULT
Now we compare our expressions with those of Dunlap
et al* They obtaineducexp(—d? in the low-field limit?

The slightly different coefficient of 3/4 appeared in our ex-. . ; -
pression[Eq. (5.12] instead of their value of 1. It should introduced in Sec. V is not an efficient method to calculate

also be noted that our expressions for the field dependendB€ Sample average. Itis more convenient to rewrite(&q)
are much more complicated than the simple analytical exin terms of variables/q=V(N)—V(N—1) andV,,=V(N
pressions of Dunlagt al, which clearly predicted Gill's law —1—m)—V(N—1), and introduce the distribution function
mathematically. The difference arises simply because Dunlapxplicitly,

When the transition probability is described by the full
Marcus rate equatiorEq. (2.1)], the cumulant expansion

1 p( VES iyt 2VeVnl o Vet ah )
exp — for (m#0)
_ 2mV|2] 2
P(V4,Vm) = 1 v (6.9
exp< e for (m=0),
V2m(V3) 2(V3)
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WhereE{’ij} is the{i,j} component of the inverse matrix of As long as we know the correlation matrix of the energy
disorder, we can calculate the mobility by substituting Eq.
(6.5 into Eq.(6.3). It is interesting to note that the mobility

is proportional to the renormalization factoru

. x\/l—E{lyl}/(ZE). The mobility decreases as the ratio of
and |.2.| Qenptes the determmgnt C.)f the matE_x Then the the variance of the random energy difference to the reorga-
mobility is given by the Gaussian integral which is solvable ™~ . — o= ,
analytically, nization energy V§)/(2E,), increases. When the variance of
the disorder is comparable to the reorganization energy,
(V3)~2E, , the mobility tends to zero. This is due to the fact
that we consider an infinite length of the one-dimensional

<Vg> <vdvm>
(VaV) (Vi)

, (6.2

= N=T , (6.3 chain. Specifically, the mobility is inversely proportional to
E Eo exp(—Eom)fm the e.nsemble.gverage of the Waiting time needed fo_r. the
m=0 hopping transition. Due to the detailed balance condition,

only a single waiting time is involved in each sequence of
the random work accomplished by the absorption at the
Y edge—as we can see from E§.5), where the summation is
Fm= ledvdfimdva(Vd,Vm) divided by a single transition rate. The condition that the
width of the site energy distribution is the same as the reor-

where

_ 1 EO _ Vg ganization energy, i.e., the width of the parabolic free energy
xXexp —Vmt 5| 1= = Vgt | (6.4  curve, implies that the sample average of the waiting time
r r

appearing for each sequence of the random work tends to
After performing the Gaussian integration, we find that theinfinity. The sample average by the Gaussian distribution as-
variance is renormalized by the factorE ]}/(ZE) due sumes an infinite number of site energies resulting from the
to the interplay between the distribution of potentials and thénigration of charge carriers between an infinite number of

potential shape: sites in the chain. For a finite chain length the mobility de-
., creases monotonically to a limiting value of zero as the dis-
1 1 1 2 Eq order strength increases.
fp=———exp| ———— - =
1 2y 2 _ 2ay 4 E,
Rl — A. Local energy disorder
2F, 2E, »
E 5| For local energy disorder, described by E5.3), the mo-
o . S
_2{1’2}( 1— E_ +3 02— T] (6.5) ?6”'2), in the thermodynamic limit follows from Eg$6.3) and
r r I

E to} Eo\®
expg — 1-—
4 E,

_ o’ Sinh(Ey/2)
w=\/= — = — : (6.6)
o? _ 2+Eo/E,—30%E,| Eo| Ey2
2 sini(Ey/2) +ex ;rz 2 -—

where the renormalized variance is defined df=c?/(1 ~ mobility against 1T? instead of_%T. It is also clear that the
— 02/E,). The zero-field mobility is obtained as distinction becomes difficult as“ becomes smaller. More-

over, the normalization factor of the mobility adds an
— = . additional temperature factor to the real mobility
— o E,+30 — 3/2 . .
LlE o= \/=exp — _ 6.7 ocu[(kBT) . Because of this algegbralc_factpr, even though a
0 Ef 4 straight line is found for the semilogarithmic plot of the di-
: mensionless mobility. versus 1T, the line is bent when the
The dqmmant t.emperature_ge.pendence comes from the efggarithm of the real mobilityw is plotted against T/, and
straight line is obtained if one plots the logarithm of the strajight.
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B. Long-range energy disorder 2
F - (6.9
In terms of the long-range correlations due to the charge- 1-——
dipole interaction$Eq. (5.6)], the renormalized variance can E,
be defined as and the mobility in the thermodynamic limit is expressed as
|
a? E +oi(1-a) 1 Eo ?
= exg ———— | 1- =
_ o2 4 E,
T E 2(1-Eo/E,)+(3+a)0?IE, ! €9
— — o -
° 1+ exp[?r2|1—(1—a) 0 —r " r]—Eo}f
where
f i E, oia (2 +3);2+E° o a (6.10
= exg —Egm— 5———-5-9 (2m St=—="——""—5| .
o o 2(m+1)(m+2) 2 E 2E (mt1)(m+2)
As before, the summation is easily performed for the lowest order approximaﬁoﬁ,exp(—gom),
& E+?r<1——>(l &\’
= exg ———mm| 1- =
— Vo 4 E,
n= : (6.1

o

E, _ 2(1-Eo/E,)+(3+a)d%E,| —
1+exp[3,2[1—(1—a)( o/E)+(3+a)o r]—EOIZ}.—_
4 2sinh(Ey/2)

which goes to Eq(6.6) in the limit of no spatial correlations, ation of Eq.(3.7). When the dimensionless field strength is
a—0.As in Sec. V the next-order approximation is given by equal to 1, E,=1, the real field strength isEy~3
—— = = — X 10° V/cm for the lattice separation=10 A at room tem-
oral o Ey o‘a exp(—Eqy/2) i i :
feexd — ——|3—+—2_ | |+ ¢ perature. A numerical evaluation is performed according to
F{ 4\ 62 E 4ET) 2 sinh(Ey/2) two procedures; one uses the Marcus expression for its el-
ementary process, and the other is based on a limiting form
together with Eq(6.9). In the zero-field limit Eqs(6.1) and ~ V@lid for a large reorganization energq. (5.1)]. In both
(6.12 reduce to the same expression. The approximation caf?S€S the agreement between the analytical expressions and
be improved by increasing the number of terms in the finitetr_‘e numerical evgluanon is excellent;_our analytical expres-
summation irf. Moreover, it is obvious that the approximate Sions are fully reliable. In the same figure, we also present
expression gives the same mobility in the zero-field limitthe results in the absence of disordEgs. (4.1) and (4.2)].
regardless of the number of terms in the finite summationThe mobility is smaller in the presence of disorder compared

Thus the zero-field mobility should be given by to that in its absence, because the mobility is limited by the
small transition rates or equivalently the large barriers cre-

_ o2 E,+02(3+a){1—(1-a)c¥E,} ated by the energetic disorder. At weak fields charge trans-
M|E0=o= = expg — 4 : port is more influenced by energetic disorder than at higher
Ir 6.13 fields, so that as the field strength decreases the mobility is

considerably lowered from that in the absence of disorder.
The zero-field mobility has a remarkably simple form evenThe field dependence of the mobility is very weak in the

in the presence of long-range disorder. absence of energetic disorder, while the mobility increases
considerably with field strength in the presence of disorder.
VII. RESULTS AND DISCUSSION The plot of logu againstyE, exhibits a linear dependence

In this section, we study some aspects of the analyticaﬁ)ver a wide range in the intermediate region of the_field
expressions of the mobility. The most general expressiorstrength, even though the correlation length is small:
Eq. (6.9 with Eq. (6.10, was derived in Sec. VI and its =0.1. Nevertheless, our expression is well approximated by
zero-field limit was obtained in Eq6.13. In Fig. 2 we  Gill's law. As shown in Fig. 3, the Iiﬂear region shifts toward
compare the analytical expressions with the numerical evalua lower field strength by increasiry which is the charac-
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|2 006 |

FIG. 2. Semilogarithmic plot of the dimensionless mobility 5,
against the square root of the dimensionless electric-field strength.
The parameters arEr=10.0;= 1.0, anda=0.1. The lower thick F_IG. 4. Semilogarithmic pIo.t of the dimensioqlegs mobility
solid line is the analytical result of E6.9) with Eq. (6.10. The + against the square root of@e dlmensm_nless electric-field strength.
symbols on the line are the numerical evaluation of @qj7). The  The parameters arg,=5.00=2.0, anda=0.2. The lower thick
upper thin solid line is the analytical result of E&.7), and thex  solid line is the analytical result of E¢6.9) with Eq. (6.10. The +
symbols on the line are the corresponding numerical results. Theymbols on the line are the numerical evaluation of &qr). The
short dashed line is the mobility from the Marcus rate equationupper thin solid line is the analytical result of E§.7). The dashed
without energetic disorddiEq. (4.1)]. The long dashed line is Ba- line is the mobility from the Marcus rate equation without energetic
gley’s mobility [Eq. (4.2)]. disorder[Eq. (4.1)].

teristic length of the long-range spatial correlations. Thestraight line. Here the long-range correlation due to the in-

straight line of log agalnst\/— is apparently the signature teraction of the charge with the permanent dipole moments is
of the influence of energetic disorder on hopping motion de-not essential for a linear relation between },ognd \/— In
scribed by the Marcus rate equation. The further introductiorour expressmng is a complicated function dfo, which can
of spatial correlations moves the region described by théye approximated by Gill's law in a wide range of field
strengths. Note that Dunlagt al. derived the mathematical

relation Iog,uoc \/— which arises purely from the interaction
of the charge with randomly distributed permanent dipdles.
Since the forward transition rate in the ensemble average is
simplified as a constant in their thedtryheir mechanism is
appropriate for a rate of Miller-Abrahams type, as mentioned
in Sec. V B.

At high electric fields the mobility obtained from the Mar-
cus rate equation saturates, in sharp contrast to the result
obtained from its limiting form valid for large reorganization
energy. In general, a plot of the mobility against the electric-
field strength is S shaped when the hopping motion is de-
scribed by the Marcus rate equation under the influence of
energetic disorder; upon increasing the applied field, the mo-

bility initially increases, and then a region of Ig)_gv \/EO
0% v 1 20 appears, which is followed by saturation. For a small reorga-
nization energy the mobility even decreases after saturation,

EO

FIG. 3. Semilogarithmic plot of the dimensionless mobility & Shown in Fig. 4. If we approximate the Marcus rate equa-
against the square root of the dimensionless electric-field strengtfion by its limiting form valid for a large reorganization en-
The parameters arg, =10.0p= 1.0, anda=0.5. The lower thick €"9Y: such a decrease of the mob|I'|ty with field str'efngth is
solid line is the analytical result of E.9) with Eq. (6.10. The + never observed. In the absgnce of disorder the mobility bgsed
symbols on the line are the numerical evaluation of @qj7). The ~ ©On the Marcus rate equation depends weakly on the field
upper thin solid line is the analytical result of B§.7), and thex  strength, and then drops with increasing field strength. The
symbols on the line are the corresponding numerical results. Theecrease of the mobility with field strength is the signature of
short dashed line is the mobility from the Marcus rate equationthe Marcus inverted region, where the activation energy in-
without energetic disordefEq. (4.1)]. The long dashed line is creases with a decreasing free-energy change. On the other
Bagley’s mobility[Eqg. (4.2)]. hand, the increase of the mobility with field strength in a
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1 ' ' ' ' ' ] bility [Eq. (3.5)]. On the other hand, in their thedrit was
] approximated as a constant independent of random site en-
. ergy. TheE, value chosen for the fitting is reasonable for the
] reorganization energy due to vibronic relaxation. By using
the method commonly used in this field the distance between
adjacent dopant molecules can be estimated by assuming a
P cubic lattice| = (1/c)3*~9.9 A, wherec is the number den-
i sity of DEH molecule$; andc=9.6x10?° molecules/cri
] A similar distance can be obtained from the mean nearest-
neighbor distance for the uniform distribution of dopant mol-
ecules outside the region of spherical volume whose radius is
T 4 the contact distancea. Since the nearest-neighbor distribu-
et i  tion is given by® P(r)=cv’(r)exd —cu(r)], where v(r)
e ' ' ' L L L =47r33 and v'(r)=4nr? is its derivative, the mean
200 400 600 800 1000 1200 1400 . . 0
nearest-neighbor  distance, [5, rP(r)dr  becomes
[3/(4mc)Yelexfdcuv(2a)T[1/3cv(2ay)]~14.5 A, where
FIG. 5. Semilogarithmic plot of the mobilitycn?/(Vs)]  TI'(a,z) is the incomplete gamma function. The valuelof
against the square root of the electric-field strenigtf/cm)™?.  thus estimated is a little larger than that for the cubic lattice.
Points are the measured data of the mobility forWe may conclude that the distancelef(10-15)A is rea-
50 mol % DEH-doped polycarbonate at 298 K taken from Ref. 30.sonable. From the definitiom§=47rce2p2/(3ao) and the
The solid line is the analytical result of E¢.9) with Eq. (6.10 d|p0|e moment of DE'—?’O p~3 D, we estimate o4
with E =03 eVo=0072 eVao=4 AI=10 A, ‘and uo 005 eV. The other expression’=e?ksT(1— 1/e)/a
=0.0067 crd/(Vs). The long dashed line is the first approximate with e~ 3 gives the larger valuey~0.24 eV. The value for
expressioEg. (6.11)]. The short dashed line is the second approxi- e fitting 0=0.072 eV is close to the lower bound.
mate expressiofiEq. (6.9] with Eg. (6.12. =0.42<10"3 eV is obtained fromuy="0.0067 cri/(V's).
By assuming a typical form of the transfer integrdd
= J3exq — B(I—2ag)] with the valuesJ,=50 cm* and 8
=1 1/A, we find a slightly larger valud=2.3x10"2 eV,
but the difference is within a range of error which arises
from the uncertainties in the values & and 8. Therefore,
ergy. . . our parameter values for the fitting are in agreement with

I : - hose estimated. In the same figure, the approximate expres-
dependence of the mobility. We now investigate whether OUKjons[Egs. (6.1) and (6.9), with Eq. (6.12], are also pre-

analytical expression of the mobility can fit the experimentalsented. They do not deviate significantly from the exact ex-
data by the reasonable choice of parameter values. In Fig. §ression, which implies that the summation in the exact
the measured mobility for 50-mol % DE}fhydrazoné,L expression converges rather quick|y_

doped polycarbonate, taken from the paper by Scaea *° As we already mentioned, a bell-shaped field dependence
is fited by Eq. (6.9 with Eq. (6.10. The parameters of the mobility has been reportéd®We examine one of the
are E,=0.3 eVe=0.072 eVa,=4 A,1=10 A, and recent results on this issdién Fig. 6 the measured mobility
o= 0.0067 cm/(Vs), where  uo=2wJ%l?  from the papél by Hartensteinetal. is presented for
(A47E kgT,kgT,) with the room temperatureT, 17-wt % EFTP doped polycarbonate at 298 K. The theoret-
=300 K. Since the ratio of the energy disorder by the elecical curve is calculated by E6.9) with Eq. (6.10, with the
tronic polarization to that by the charge-dipole interactions isparameters E,=0.1 eV,0=0.03 eVa,=5 A,1=18 A,
ambiguous, we assume that both contributions are compand wo=1.4x10"4 cm?/(Vs). The curves from the ap-
rable, o3/ a?=1/2. Our theoretical curve is consistent with proximated expressions are also presented in the same figure.
the data throughout the whole field range. The long dashedlhe theoretical curves are consistent with the measured data.
line represents the first approximate expres$lq. (6.11)],  The result suggests that the decrease of the mobility with
which has the same functional form as that of the local enincreasing field strength is in analogy to the Marcus inverted
ergy disorder. Roughly speaking, the long dashed line showkegion.

a good correlation with experimental data. The linear relation In order to investigate more about the bell-shaped field
between log. and \/E—o arises because of the complicated dependence of the mobility, the temperature dependence of
combination of exponential functions &,. When Dunlap the mobility is presented in Fig. 7. The experimental data for
et al. analyzed the same experimental data, an excellent flemperatures of 357 and 268 K are taken from Ref. 8. Since
was obtained from the expression which reduces mathematibe sample is the same as that in Fig. 6, the measured data at
cally to Gill's law.* In their derivation, the interaction of the 298 K in Fig. 6 are also included in Fig. 7. The theoretical
charge carrier and the randomly distributed permanent dicurves are calculated by E¢6.9) with Eq. (6.10 with the
poles is a necessary ingredient for the field dependéfibe.  Same parameters as those used to calculate the theoretical
role of such correlations is diminished in our analysis becurves in Fig. 6 except foruy,. By assuming J?
cause we use the full Marcus equation for the forward tran:JS exfd — B(I—2ay)] with the valuesJ,=50 cm ! and 3

sition rate in the ensemble average needed to obtain the me=11/A we estimateJ=1.14x10 * eV, which is larger

o
T T T TTTTT]

pler/ (Vs) ]

Eul/z L (V/cm)“z]

relatively low-field region originates from energetic disorder.
The mobility increases faster with field strength for large
energetic disorder, while a prominent decrease of the mobil
ity with field strength is found for small reorganization en-
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FIG. 6. Semilogarithmic plot of the mobilitfcn?/(Vs)]
against the square root of the electric-field strenjgfti/cm)*/?].
Points are the measured data of the mobility for
17 wt%EFTP-doped polycarbonate at 298 K taken from Ref. 8.
The solid line is the analytical result of E(6.9) with Eq. (6.10,
with E,=0.1 eVo=0.03 eVa,=5 A,1=18 A, and uo=1.4
%1078 cn?/(Vs). The long dashed line is the first approximate
expression[Eqg. (6.11)]. The short dashed line is the second ap-
proximate expressiofEqg. (6.9)], with Eq. (6.12.

| ] | ]
200 400 600 800 1000

than J=4.6x10°% eV obtained from uy=1.4
X108 cnm?/(Vs), the parameter value used in Fig. 6. The
smaller parameter value suggests that the charge transfer is ;5 7. Semilogarithmic plot of the mobilitycr?/(V's)]
limited b_y the_vipror_lic_ relaxation; the correspondi_ng conceplygainst the square root of the electric-field strenigttt/cm)¥2].

for reactions in liquid is referred to as the dynamical solventpgints are the measured data of the mobility for
control, where solvent fluctuation is the limiting St€F°By 17 wt% EFTP-doped polycarbonate at various temperatures taken
assuming an Arrhenius-type temperature dependence for th@&m Ref. 8. The solid line is the analytical result of £§.9) with
vibronic relaxation rate, uo=1l.1exp—E,/(ksT)]  Eq.(6.10. For details on the parameters, see the text. The tempera-
x[cm?/(V's)], with an activation energ¥,=0.35 eV, the ture is 357,298, and 268 K from top to bottom.

theoretical curves are calculated by E®.9, with Eq. o L

(6.10, and compared to the measured field-dependent mobif€arch in this direction is in progress. The activation energy
ity at different temperatures in Fig. 7. The theoretical curvesOf 0.35 eV cqrresponds to8.1 k(_:allmql, this vallue is close
are in overall accordance with the measured data at eadh the activation energy of .the d|eIecFr|c relaxation rate of
temperature except at high-field strength, where our theorepgznoalcohols. with long chain lengths in the pure state, such
ical curve drops faster with the field strength compared to th(%l oﬁanol-_l.~.8.4 kcal/mol. Tr?e yalue IS a.llttle smgller
measured data. The reason for this may be due to the negle Il;] the icf%/aﬂonllenelgg}_/rgor the. |sofrnﬁr|zat|9n (eact|or1 of
of high-frequency quantum modes of vibrational states in thetlbenes: calmor. e origin of the activation pro
Marcus rate equation, which tend to maintain an activation€SS May be_the torsional motion of the_dopant mo_IecuIe
less situation even in an inverted regitri! In the normal associated with charge transfer; the activation barrier of

- e : o 0.35 eV found by our fitting procedure is reasonable for
region, specifically given by the conditiaE,l <E, , where . .
the mobility increases with the field strength, the contribu-SUCh a process. Qur the_ory agrees well with not only the field
tion of high-frequency modes is negligibly small in dependence but also with the temperature dependence of the

practice’*®* The charge-transfer rate increases if high_m_(:'r?sured nt].Obél.'ty’ ;Vh'Ch mcé:catesl_trggt thg {oholaron model
frequency quantum modes are excited in the reactant sta th energetic disorder may be realistic and theé appearance

because in this case tunneling barriers become lower; how- a maximum in the mOb"'FY at high f!elds can be. consid-
ever, the thermal population of excited vibrational states de_ered as evidence of a transition to an inverted region.
creases strongly with increasing quanta involved in those
statest®! The situation is different in the inverted region,
eEyl >E, . The particular high-frequency modes in the prod- In this paper we have theoretically investigated the appli-
uct state ensures that the transition remains approximatelyability of the Marcus rate equation to describe charge trans-
activationless; the mobility is underestimated in the invertedoort in disordered molecular solids. In the solid state the
region when the large quantum intramolecular vibrations areeorganization energy, due to the reorientation of dipole mol-
ignored!'®! Therefore, it is important to take such high- ecules in the environment, is absent. Under such circum-
frequency modes into account in the inverted region. Restances, the Marcus rate equation is equivalent to the small

Eol/z[ (V/cm)1/2]

VIIl. CONCLUSION
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polaron model, where the reorganization energy is twice théy Gill's law in a wide range of field strengths. Within rea-
polaron binding energy. In a one-dimensional analysis arsonable values of the parameters, our theoretical expressions
exact analytical expression of the field-dependent mobility isare consistent with the experimental data, which exhibit
derived for charge transport by using the Marcus rate equaGill's relation over a wide range of field strengths,*10
tion under the influence of energetic disorder. The most gen-10° V/cm. Our theoretical expressions are also in accor-
eral expression for the Gaussian energetic disorder is givediance with the measured data on the field dependence of the
by Eg. (6.3 with Eq. (6.5). For the problem of charge trans- mobility, which show that the mobility increases with in-
port in molecularly doped polymers, two types of Gaussiarcreasing field strength at low fields, passes through a maxi-
disorder are considered. One is the local energy disorder duaum, and then decreases with increasing field strength. Such
to the electronic polarization, for which the mobility is given a decrease of the mobility with increasing field strength is
by Eq.(6.6). The other is the long-range energy disorder duenever observed if it is derived on the basis of an approximate
to the charge-dipole interactions. In the presence of chargeate expression valid in the limit of the large reorganization
dipole interactions the mobility is obtained as E6.9) with  energy, as done by Dunlag al,* since the transition rate is

Eqg. (6.10. The phenomenological Gill's relation occurs in an increasing function of the field strength. The increase of
the intermediate region of the S-shaped field dependence tfie mobility with field strength is mainly due to energetic
the mobility. The slope of I against\E, is mainly gov-  disorder, whereas the appearance of a maximum in the mo-
erned by the reorganization energy and the variance of thkility at high fields can be regarded as an evidence for a
energetic disorder. On the other hand, the region qf In transition to the Marcus inverted region.

«\JE, shifts by changing the characteristic length of the
long-range correlations. Therefore, Gill's law does not nec-
essarily imply long-range correlations, and such correlations
are needed for a qualitative fit to the experimental data. In We would like to thank Dr. T. Kato for useful discussions
the presence of energetic disorder the mobility is limited byin the early stages of the present work. We are indebted to
the escape from energetically deep traps. As the energy di®r. A. V. Barzykin for critical comments and for useful dis-
order relative to the potential gradient due to the externatussions on the mobility derived on the basis of the Miller-
field decreases, the mobility increases toward values withouhAbrahams rate expression in the presence of energetic disor-
energetic disorder whose field dependence is much weaketer. It is our pleasure to acknowledge Professor S. D.
The way mobility increases with field strength is not trivial, Baranovskii for discussions on the occasion of the PCPM01
and it depends on the transition rate. The mobility derived orconferencdTsukuba, March 14—16 20D1and for providing

the basis of the Marcus rate equation is well approximatedis with his reprints.
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