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Representation of mechanical loads in molecular dynamics simulations
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We describe a constant-traction molecular dynamics method to perform simulations of a generic atomistic
system under an applied external load. The main objective is to ensure consistency between the atomistic
model and the macroscopic continuum-mechanics description. Examples of simulations for different kinds of
extended defects under an external load, such as a grain boundary, an elliptical microcrack, and a screw
dislocation in a fcc crystal are presented, and compared with the results of the corresponding continuum
mechanics description.
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I. INTRODUCTION the size and shape of tlggeriodig simulation box. However,
in a discrete system the total stress can be obtained only as a
The study of the mechanical response of materials undefum over some “atomistic” stress tens@ee below; which

an external load has recently grown to a subject of fundals derived by breaking down the total stress into the contri-

mental research, mainly thanks to the possibility of performutions of equivalent atontsBy contrast, defects such as

ing fully atomic-scale simulations of very large systems con—d.'SIOCat'onS or mlcrocracks tend to concentrate the stress
eld, thus making the system elastically inhomogenous.

taining extended defects, such as microcracks, dislocation : -
onsequently, as clearly stated already in the original ghper,

and grain boundarie’s’> The key issue in the atomic-level fhe PR method is Suitable only for a homogenous system
description of a tem under an externally applied mechani- :
SCrpll SYs v xerna’ty app Alternate forms of BC's have thus been devised to deal

cal load, i.e., under a given state of macroscopic stress, is to, h ded def . e d hani
ensure that the border conditions of the simulation cell propWIt extended defects in atomistic systems under a m?g ant-
al load:(a) constant-displacemenr fixed-boundary BC;

erly represent the type and magnitude of the external loadt

As we shall see, this problem is closely connected with thd" ‘.NhiCh the b.order atoms are helq in the strained configu-
suppression of system-size effects such that the far-aw tion or, equivalently, periodicity is preserved across the

stress and strain fields surrounding the typically very smalPorder for the whole duration of the simulatiah) constant-

: 9-11 . : TR
region of interest, e.g., enclosing one or more dislocations of &ction BC,"in which periodicity is removed all around

microcracks, converge to the proper linear-elasticity limit fortEe bordersf adn(: the e_quwalent forces gecejsary IFO dpresehrve
any given state of loading. the state of deformation are computed and applied to the

Since any practically realizable atomistic system is Ofborder atoms during the simulation. The above classes of BC

very small size, real-world extended systems are usually regeo"€SPond, respectively, to the displacement-boundary value

resented in molecular dynamiésID) simulations by means (oF Dirichled and to the stress-boundary valiez Neumani

of periodic border condition@C) applied to the box enclos- fo_rmula;ions of continuum mechanics prot_JIems, in which
ing the atomistic systefiPeriodic BC may, however, induce either displacements or stresses are prescribed along the sys-
spurious effects due to the fact that the atoms in the bo>t<e”|] bﬁfders- K d ib istic simulati h
interact with each other and with all their periodic replicas.. " this work we describe an atomistic simulation scheme

For long-range fields, such as the elastic field of a dislocal® @PPly @ general external load to a finite-size, nonperiodic

tion, which decays as %, or that of a microcrack, which atomistic system while reproducing the loading conditions of
dec:'alys as 2 this appro,ach leads to the so—callea probleman infinite continuum. Such a scheme, previously developed

of the image forces, namely the defect fictitiously interactingat Zero temperatu’r%ll and herg .g'enerallzed to f_|n|te tem-
with itself infinite times, leading to a divergence in the total peratures, Is based on the de_f|n|t|on of an atomlc-§sate
energy. In the recent literature this problem has been usuall ce traction perfectly equivalent to Its continuum-
circumvented by studying particular clusters of defects, e.g. echanics analog. The surfacg traction Is .appl|ed as a
a dislocation dipole or quadrupole with properly :irrangedéonst"’mt exter_na}l force to the fréee., nonpenodﬂ:pordgrs
Burgers vector$,such that the long-range stress fields ap—Of the atomistic system, hence the ~denomination of

proximately cancel out. Clearly, one should aim at a more constant-traction BC.” As an additional benefit, we will
general framework in which, moreover, consistency Withshow that the constant-traction BC under zero external load

macroscopic continuum mechanics is ensured. represents a practical way to embed an intrinsically nonperi-

The problem of simulating an atomistic system in a well-f)dIC . at?Zm'St'C system, e.g. a .d|slocat|on or a triple
defined state diomogeneoustress was boldly solved by the junction;*in a virtually infinite medium.
so-called Parrinello-RahmafiPR) formulation of constant-
stress MD* The PR method is a special type of periodic BC
in which the total stresgéa Cartesian tenspacts as a nine- The most important quantity to compare the atomic-level
component constraint determining the dynamic evolution ofand continuum mechanics description of a system under ex-

Il. CONSTANT-TRACTION METHOD
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ternal load is the stress tensor. In the context of atomistc © © O O O
simulations it is customary to calculate the so-called virial O o o0 O

stress tensok ,5:%7° o e 0 o O :
© oo o »
B ool o 0 -0--¢-l¢-e--0
p.ap. 1 oV T T
QS p=> ———> ——rrf, (1) o ©0%0 o o olko o
Toom S Onj © e;0 o 0 o e 0 o ©
where a,B=X,y,z denote Cartesian components and the ¢c % & D e ® 8 @
sums extend over all the atoms in a simulation box of total © © © © © e @ 8 & 49
volume; m; andp; are the mass and linear momentum of
atomi, respectively, and;; is the relative distance between (@) (b)

atomsi andj interacting via a pair potential =V(rj;); we
note that both Eq(1) and the following expressions are eas-
ily generalized to more complex interatomic pOteI’ltlals'atoms) contribute to the force on atomf;=0. (b) Free border: the

Mgreot‘fr' it '3 worth nof[mgzthat tP:je V'”alh EXPIESSION Pro- ,asence of only part of the neighbojsresults in a nonzero bulk
vides the product quantitf23.,; and not the stress tensor fo oot which gives the surface tractidp— —f. .

alone.

The rfnohst obvious prescription to calculate the individualp”ed to the atomistic system as a whole. The corresponding
terms of the sum in Eql) for a crystal lattice ofN atoms : : : ) .
enclosed in a eriodicqng is to sy bdivide the total systencoo ENSOr'iS easily obtainedadg; =2 ,5C.qpys€ 5 Which
volume into e pual atomic \}c;lume u_ &%IN thus d finizs €Ms a generalized Hooke’s law with the point-group symmetry

tomic-| qI ¢ { P 8= » (US GETINING ot the crystal lattice, the matrix of elastic constaftgg, s
an atomic-level stress tensot, ;- playing the role of a four-index tensorial spring constant.
The Cartesian component of the force on each atom

FIG. 1. Schematic of the forces acting on a border atan.
Periodic border: all the neighbors within the cutoff radishaded

1/ ppf 1 4V , . ’ _
—— N T e induced by a pair potentiaf(r;;) is
Tab™ | Tm, 2,: ry arg @ !
1 9V
such that fia:; <_Eﬁ)rﬁ (4)
1 S wo'
Eaﬁ_ﬁ —~ VTap- ) At mechanical equilibrium each component of the net

force on each atom is zero. Now, the analogy between the

Strictly speaking, the above expression is well definedconstant-traction BC and the removal of periodicity across a
only for a system of perfectly equivalent atoms, i.e., a homoborder can be understood with the help of Fig. 1. Figugs 1
geneously stressed system. However, it has been frequentfi§presents the usual periodir constant-displacemerBC:
used also for nonhomogeneous systems, e.g., to calculate tHe horizontal line defines the limit between the portion of
stress around a dislocation. Apparently, this was attemptethe system explicitly simulated and its periodic replica.
by Basinskiet all® and subsequently by many others, by When an initial deformatior,z is imposed on such a peri-
replacing  (or better, w;) with, e.g., the volume of the odic system, equal and opposite forces are induced on each
Wigner-Seitz or Voronoi cell centered at each atom. atomi from its displaced neighbojs ending up with a zero

The inadequacy of Eq2) for systems containing either net force and thus with no additional displacement with re-
pointlike or extended defects was clearly exposed byspect to the imposed deformation. It is worth underscoring
Lutsko** and Cheung and Yip® both which suggested alter- that, although the atoms experience a state of nonzero stress,
native prescriptions for defining an atomic-level stress tensoihey keep the deformed configuration becatfse 0 for ev-
to account for nonequivalent atoms. More recently, anotheery atom. Figure (b), in turn, represents the constant-
definition of atomic-level stress was introdu¢®d/hich ap-  traction BC: after imposing the homogeneous deformation
pears to satisfy conservation of linear momentum. In fact, the,z to the system, periodicity in the direction normal to the
commonly used definition of Eq2) is known to give un- border is suppressed, i.e., atoms in the region above the
physical results, e.g., when approaching a free surface or @ashed lindindicating a free bordemre removed. The effect
grain boundary. It must be noted that the PR method requiresf these “missing” atoms can be mimicked by a suitable
us to calculate the total stress in the simulation box, i.e., foexternal forcet; to be applied to the border atoms for the
a system including extended defects it would include also thavhole duration of the simulation. This is nothing but the
contribution of regions in which the expressi® is ill de- ~ Cauchy-Euler principle of continuum mechantésstating
fined. that the action of the material occupying the part exterior to

The constant-traction BC which we are now going to de-a closed surface onto the material occupying the interior part
scribe does not rely upon the explicit evaluation of theis represented by a vector field called thesurface traction
atomic-level stress, and this is quite an advantage in view of By substituting Eq(4) in the virial definition, Eq.(2), for
the above discussion. We consider a static external load, idéhe atomic-level stress and noting that at zero temperature
ally applied at infinite distance from the region of interest,the kinetic contribution is zero, it is easily shown that the
represented by a homogeneous deformation teaggrap-  oppositeof the net resulting force-f{* is equivalent to a
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surface force parallel to the surface normmél tending ©0 7 is a unit vector and is directed as the average value of the

preserve the state of deformation: surface normal. Furthermore, E(L0) also suggests an op-
erational definition of the instantaneous surface, to be iden-
o= f (giaﬁ. nf)ds=—f¢. (5) tified with the plane perpendicular to the instantaneous miss-
As ing force.

. . In practice, the constant-traction MD method works in
_ We note that thls_procedure for obta!mng a surface tracs,q separate stepsi) the modulus of the average missing
tion from the opposite of a bulk force is analogous to theg, e s ohtained in a separate bulk calculation at finite tem-
image-field method, widely used in continuum mechanics (e ratyre during which the atomic force across any dividing
obtain a7speC|aI solution for singular boundary-\{alue lane {hkl} can be calculated(ii) the surface traction is
problems.” Such a procedure has been used, e.g., in th pplied during the subsequent simulation to each border
finite-element solution for the problem of finding the equi- 40 \with a constant modulus corresponding to the given

Ilbrlum dlstr|put|on qf a collection of discrete dislocations in value of T and directed as the opposite of the instantaneous
a linear elastic mediurtf Moreover, we underscore that Eq. resulting forcef,
i

(5) does not depend on the particular definition of atomic-
level stress adopted, since one can directly obtain the value
of t from the bulk forcef without having to explicitly calcu-
late o - As a first test we run a microcanonical MD simulation of
In this respect, the central observation is that the totaB000 Si atoms described by the Stillinger-Weber interatomic
stress is generally linked to the tensorial first derivative withpotential®® An isotropic, triaxial straine,z=€d,; at the
respect to the deformation of the internal enerdy, initial temperaturél =500 K was imposed to the atomic sys-

IIl. COMPUTATIONAL TESTS OF THE METHOD

=3,U;, by the thermodynamic relatiéh tem, initially arranged with the diamond fcc symmetry in a
cube of side 18,=5.43 nm with either periodic or constant-
s :i D (9_Ui:_£ S ferh ©6) traction BC in the three directions. We compared several
(04 J€up QS ! quantities, e.g., the instantaneous temperature, energy and

, ) o o root-mean-square displacement averaged over the atoms in
independently on the particular atomistic definition chosenne inner portion of the simulation box. We found virtually
for oap. no difference between the simulation with either periodic or

At finite temperatures the surface traction must be ob¢gnstant-traction borders for such a homogeneous, defect
tained by a statistical ensemble average. Indeed, mechaniggbe system, i.e., the constant-traction BC provides an effec-

equilibrium atT>0 is imposed by requiring that treverage  tiyve embedding of the atomistic system in an infinitely ex-

force on each atom is zero: tended medium. Moreover, such a simulation is a proof that
1 the constant-traction BC indeed gives an unbiased sampling
fy==> f dQe VUkeT(—vv)=0 (7)  of the microcanonical ensemble for the atoms far from the

VA boundary.

As a second test we performed a MD simulation of a
{113 symmetric tilt grain boundary in fcc Cu. We used a
simple Lennard-Joned.J) pair potential, with parameters
=0.167 eV andr=2.405 A, resulting in an equilibrium lat-

tice parametea,=3.615 A. The grain boundary is placed in
> JdQe‘U“‘BT(—ViV)JrJ dQe‘U’kBTt) =0, the x-y plane atz=0 in a three-dimensiondBD) periodic
i simulation box. The simulation was run with both the
(8)  constant-traction BC and the PR method under a uniaxial
where the prime indicates that the sum runs only on th&Xternal load described by the stress terispg==20,,5p,
remaining neighbors after removal of the periodicity. and2,=0.1E, with E=0.167 Mbar the theoretical Youngs
We note that the modulus and direction of the surfacdnodulus of our LJ potential. In the constant-traction MD run

traction are uncorrelated in the thermal motion of border atin€ periodicity alongz was removed. The initial minimum-
oms, i.e., the three Cartesian components fafctuate inde- energy configuration of the grain boundary was obtained by

. A A . simultaneously optimizing the individual atomic positions
Fo(erno?;‘?r:g.d S”? I\:A:S Cfmu\)/vgﬁ;t:, with n being the unit vec- and the relative translation between the two half crystals at

T=0;* then, the deformation was imposed, the system was
annealed aff=100 K for about 10 ps and subsequently

with Z= [dQ exp(—U/kgT).
For the atoms at the nonperiodic border of Fi¢o)lthe
mechanical equilibrium is written

1
z

(fi) +(tm) = (fi) +(t)(n) =0 ©) guenched down to zero temperature.
from which the surface traction is formally defined as In Fig. 2 we show ther,, component of the stress calcu-
lated from Egq. (2), averaged over slices of widtiAz
(ty(ny=—(f). (100 =0.25,. The central result is that the constant-traction BC

is able to preservéby constructionthe bulk state of stress at
The above expression states that the average surface trasfficiently large distances from the grain boundary, indepen-
tion is equal in modulus to the average missing faisiace  dently on the particular definition adopted to calculate the
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FIG. 2. Plot of the plane-averagerd,, component of the stress FIG. 3. Plot of theo,, component of the stress field around an
field (in units of the Youngs modulus) across g113 symmetric-  elliptical {001}(010) microcrack in a Lennard-Jones fcc crystal.
tilt grain boundary in a Lennard-Jones fcc crystal. The dashed lindhe stress is plotted along tlyg 010] direction, starting from the
represents the result of a Parrinello-Rahman simulation, the corerack tip. Symbols represent the results of constant-traction simula-
tinuous line is the result of a constant-traction simulation, both ations atT=100 K followed by quenching at=0 K for various
T=0 K. system sizes. The full line is the result of the continuum, anisotropic

linear-elasticity solution. The dashed line is the asymptotic value of
atomic-level stress in the core region. By contrast, the PRxternal stress.
solution in the far field contains a small, but nonzero level of _ o o )
excess stress which results from the average of the bulk ad@01(010 orientation, i.e., the-y plane coincides with the
grain-boundary regions. For both cases it can be seen that tisgack plane and the crack tip moves along yhdirection.
definition (2) gives rise to wild changes of sign in the stressThe external uniaxial load perpendicular to the crack plane,
as the boundary plane=0, is approached, just as it is found i.e., along thez [001] direction, is also in this cas&,
to occur at free surfacés.Now, for an interface or a surface =0.1E. Figure 3 shows ther,, component of the stress
the perpendicular stress should vanish at mechanical equili®long they [010] direction, as obtained from a MD simula-
rium. However, any atomistic definition of stress incorpo-tion atT=100 K of the microcrack embedded in systems of
rates some averaging volume, and it is this volume-averageidcreasing size. Each atomistic system is periodicxig
quantity that must vanish, not necessarily its pointwise valuewhile a constant-traction BC is applied m In the same
Indeed, in this framework there is no way of establishingfigure we report also the LEFM solution for the problem of
whether such an oscillatory behavior is a physically meanan elliptical crack in a 2D anisotropic pl&fewith the input
ingful result or it is a mere numerical artifact. values of Youngs modulus and surface energy corresponding

In principle, the discrepancy of the far-field stress in theto our LJ potential. As amply discussed already in Refs. 10
PR simulation can be fixed by increasing the simulated sysand 11, the constant-traction BC nicely matches the LEFM
tem size up to the point where the far-field stress is wellsolution provided the system size is large enough. The only
converged to the value of the applied external load. It couldexception is the immediate vicinity of the crack tip, where
thus be objected that the constant-traction BC is not muclhe discrete nature of the crystal lattice dominates and the
different, since it needs as well to be verified against thestress tensor, E¢2), becomes ill defined.
system size. However, in the case of the constant-traction BC Similar results can be obtained for any other extended
we are taking as a measure of convergence the pointwisgefect, e.g., dislocations. As an example, in Fig. 4 we plot
value of the stress field in tHéinear-elasti¢ region far away the o,, component of the stress field around a screw dislo-
from the defect, and not its integral over the entire system asation with Burgers vectob parallel to thez axis (corre-
it is required in the PR method: this removes any difficulty sponding to the fc§001] direction; the system is again fcc
connected with the particular definition and explicit evalua-Cu with the same LJ potential above. The dislocation is cre-
tion of the atomic-level stress tensor. ated by initially applying the displacement field from the

In a previous work*! we applied the constant-traction anisotropic linear-elasticity solutiéhto each atom, includ-
BC at T=0 to study the stress and strain fields around dng the core region. The system is subsequently relaxed by a
finite-size microcrack in fcc Cu with the same LJ potential. conjugate gradient procedureTat O and using the constant-

In that study we demonstrated that the correct stress-strainaction BC in thex-y plane, while thez direction is kept
solution from anisotropic linear-elastic continuum theory ofperiodic. It is seen that the asymptotia Hecay of the Vol-
fracture mechanic¢or LEFM, Ref. 23 is recovered in the terra solution for the stress field is correctly recovered al-
atomistic model already at system sizes of about 10L20 ready at system sizes of the order ofb4@®emarkably, the
with | the length of the microcrack. The microcrack has theconstant-traction BC allows us to represent an isolated dis-
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e [=12Db
O L=40b
1/r
bN
,,,,,,,,,,, et traasgs,
QL [ L P 1 I
0 5 10 15
Y [010] (units of b) FIG. 5. Minimum-energy atomic structure of a multiple-twin

. junction in Si obtained after a constant-traction MD simulation;

FIG. _4' PIo_t of_theozz component of the stress f!eld around a only a central portion of the nonperiodic 9052-atom system pro-

screw dislocation in a Lenna_rd-Jc_)nes fcc crystal,_ with the Burger?ected in they-z plane is represented. Shaded rings indicate the
vector parallel to the [001] direction. The stress is plotted along grain boundaries: the two nonequivaldat3 twins (left) and the

they [010] direction, starting from the dislocation core. Symbols {112 symmetric tilt boundary(right), obtained by rotation about
represent the results of constant-traction simulation§-af00 K the commor(TlO) polar axis(perpendicular to the figuye

followed by quenching at =0 K for various system sizes. The full
line is the result of the continuum, anisotropic linear-elasticity so-applied load. The so-called “constant traction” method is
lution. The dashed line is the asymptotic value of external stress. based on the evaluation of border tractigadditive force$

to be applied to the atomistic system during the whole simu-

location in an infinite bulk, thus removing the problems con-lation, in analogy with the Cauchy-Euler principle of con-

nected with the image forces implicit in the use of standardinuum mechanics. We elaborated over our previous \’:\J/o_rk
periodic BC2 in order to provide an extension of the constant-traction

Whenever the initial deformatiom,; (or, equivalently, method also to finite-temperature simulations. Several tests

the external stregss zero the constant-traction BC is able to ©f the method on atomistic systems containing different

. L Ol inds of extended defects, such as a dislocation, a micro-
provide the correct embedding in an infinite, unperturbe.dérack’ and a grain boundary, demonstrated the capability of

medium. In _this respect, the constant-traction MD me_:thod She method to describe a system under a mechanical load
also a practical way around the problem of representing non-

periodic defects within a finite-size simulation box. We al- with the proper decay of the far-field strege., away from

ready used the constant-traction BC at zero load to study ththe region surrounding the defean perfect agreement with

structure and elastic behavior of triple junctions in‘Sie., the requirements of linear elasticity.

the linear defect formed by the joining of three grains with A.ﬂrSt re[evgnt feature of the constant traction _m_e_thod 1S
. : o . L . that its application does not require the explicit definition and
different relative misorientation. This is a typical example of

defect for which it is geometrically impossible to build a evaluation of some atomic-level stress tensor. This is defi-

periodic simulation box except for a few, very special orien—g';?h/neﬁg_Raa?]\ﬁgtmapgé fz\r/enron?g:rsrtllggenrggttjzosdss’te?ﬁg.’su::rrze
tations of the grains. Figure 5 shows the minimum-energy ' 9 y

configuration of the multiple twin junction formed by two as a supercell enclosing extended defects. In fact, it has been

. . . ~ repeatedly shown that all pointwise definitions of atomic-
nonequivaleni{113 twin boundaries and ong112 sym level stress fail in the immediate neighborhood of

metric tilt boundary, the (10) x direction (perpendicular t0  §efectsl4-16 By comparing simulations with the constant-
the pagg being the common polar axis. The latter direction action and the PR methods, we clearly demonstrated that
was periodic while constant-traction BC's were applied inthe stress field calculated with a PR simulation contains a
they-z plane. The configuration was obtained after annealing,yrious contribution originating from the highly nonlinear
atT=500 K for 40 ps followed by quenching &=0, again  ¢ore region of the defect, where the stress tensor is ill de-
using the Stillinger-Weber potential for Si. Such MD simu- fined. Such a problem is absent in the constant-traction
lations performed both &ft=0 and finite temperatures dem- method by construction, since it relies only on the evaluation
onstrate the applicability and usefulness of the constantyf forces.
traction BC also in such a peculiar system. A second important feature is that the constant-traction
border condition provides the correct embedding in an infi-
nite medium in absence of periodicity. This is of great im-
portance for the simulation of nonperiodic defects with a
We presented a method to perform molecular dynamicsinite-size simulation box, both under a mechanical loading
simulations of a fully atomistic system under an externallyand load free. We demonstrated the applicability of the

IV. CONCLUSIONS
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method by simulating nonperiodic defects such as an isolatetl energy. Such an approach, indeed, overcomes the problem
screw dislocation and an isolated triple junction among thre®f introducing an arbitrary link between a discretized and a
grain boundaries. continuum region. However, it has major difficulties in being
Under this latter respect, the constant-traction methogxtended fromlr'=0 to finite temperatures for which, as we
should compare well also against the so-called “hybrid” ap-demonstrated, the constant-traction method instead performs
proaches, which couple atomistic molecular dynamics withequally well.
continuum methods such as finite elemeéfite. Such a cou-
pling can be done by introducing an intermediate region
within which atoms and finite elements are linked together
by means of a subtle boundary conditf@rifferently from
such approaches, in our method there is no need to introduce Work was funded by the INFM-Forum Project MUSIC
an explicit connection between the fully atomistic region and‘Multiscale Simulation of Complex Materials” and by
a continuum region, instead the condition of continuity beingthe ENEA-Murst Project FOTO “Laser-induced recrystalli-
ensured by the vanishing of the total forces at the free borzation of amorphous silicon.” | am indebted to S. Costantini
ders. A more advanced option in hybrid methods is the “qua{now with ST Microelectronicsand M. Puliga(University
sicontinuum” approaci® in which the atomistic and con- of Cagliar) for performing some of the computer simula-
tinuum regions are smoothly linked by means of antions here described. L. Colomk€agliar) and C. Masso-
interpolation scheme based on the atomistic definition of tobrio (Strasbourgare also thanked for useful discussions.
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