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Representation of mechanical loads in molecular dynamics simulations
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We describe a constant-traction molecular dynamics method to perform simulations of a generic atomistic
system under an applied external load. The main objective is to ensure consistency between the atomistic
model and the macroscopic continuum-mechanics description. Examples of simulations for different kinds of
extended defects under an external load, such as a grain boundary, an elliptical microcrack, and a screw
dislocation in a fcc crystal are presented, and compared with the results of the corresponding continuum
mechanics description.
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I. INTRODUCTION

The study of the mechanical response of materials un
an external load has recently grown to a subject of fun
mental research, mainly thanks to the possibility of perfor
ing fully atomic-scale simulations of very large systems co
taining extended defects, such as microcracks, dislocati
and grain boundaries.1,2 The key issue in the atomic-leve
description of a system under an externally applied mech
cal load, i.e., under a given state of macroscopic stress,
ensure that the border conditions of the simulation cell pr
erly represent the type and magnitude of the external lo
As we shall see, this problem is closely connected with
suppression of system-size effects such that the far-a
stress and strain fields surrounding the typically very sm
region of interest, e.g., enclosing one or more dislocation
microcracks, converge to the proper linear-elasticity limit
any given state of loading.

Since any practically realizable atomistic system is
very small size, real-world extended systems are usually
resented in molecular dynamics~MD! simulations by means
of periodic border conditions~BC! applied to the box enclos
ing the atomistic system.3 Periodic BC may, however, induc
spurious effects due to the fact that the atoms in the
interact with each other and with all their periodic replica
For long-range fields, such as the elastic field of a dislo
tion, which decays asr 21, or that of a microcrack, which
decays asr 21/2, this approach leads to the so-called proble
of the image forces, namely the defect fictitiously interact
with itself infinite times, leading to a divergence in the to
energy. In the recent literature this problem has been usu
circumvented by studying particular clusters of defects, e
a dislocation dipole or quadrupole with properly arrang
Burgers vectors,2 such that the long-range stress fields a
proximately cancel out. Clearly, one should aim at a m
general framework in which, moreover, consistency w
macroscopic continuum mechanics is ensured.

The problem of simulating an atomistic system in a we
defined state ofhomogeneousstress was boldly solved by th
so-called Parrinello-Rahman~PR! formulation of constant-
stress MD.4 The PR method is a special type of periodic B
in which the total stress~a Cartesian tensor! acts as a nine-
component constraint determining the dynamic evolution
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the size and shape of the~periodic! simulation box. However,
in a discrete system the total stress can be obtained only
sum over some ‘‘atomistic’’ stress tensor~see below!, which
is derived by breaking down the total stress into the con
butions of equivalent atoms.5 By contrast, defects such a
dislocations or microcracks tend to concentrate the st
field, thus making the system elastically inhomogeno
Consequently, as clearly stated already in the original pap4

the PR method is suitable only for a homogenous system
Alternate forms of BC’s have thus been devised to d

with extended defects in atomistic systems under a mech
cal load:~a! constant-displacementor fixed-boundary BC,6–8

in which the border atoms are held in the strained confi
ration or, equivalently, periodicity is preserved across
border for the whole duration of the simulation;~b! constant-
traction BC,9–11 in which periodicity is removed all around
the borders and the equivalent forces necessary to pres
the state of deformation are computed and applied to
border atoms during the simulation. The above classes of
correspond, respectively, to the displacement-boundary v
~or Dirichlet! and to the stress-boundary value~or Neumann!
formulations of continuum mechanics problems, in whi
either displacements or stresses are prescribed along the
tem borders.

In this work we describe an atomistic simulation sche
to apply a general external load to a finite-size, nonperio
atomistic system while reproducing the loading conditions
an infinite continuum. Such a scheme, previously develo
at zero temperature10,11 and here generalized to finite tem
peratures, is based on the definition of an atomic-scalesur-
face traction perfectly equivalent to its continuum
mechanics analog. The surface traction is applied a
constant external force to the free~i.e., nonperiodic! borders
of the atomistic system, hence the denomination
‘‘constant-traction BC.’’ As an additional benefit, we wi
show that the constant-traction BC under zero external l
represents a practical way to embed an intrinsically nonp
odic atomistic system, e.g., a dislocation or a trip
junction,12 in a virtually infinite medium.

II. CONSTANT-TRACTION METHOD

The most important quantity to compare the atomic-le
and continuum mechanics description of a system under
©2001 The American Physical Society07-1
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FABRIZIO CLERI PHYSICAL REVIEW B 65 014107
ternal load is the stress tensor. In the context of atomi
simulations it is customary to calculate the so-called vir
stress tensorSab :3–5

VSab5(
i

pi
api

b

mi
2(

i , j

1

r i j

]V

]r i j
r i j

a r i j
b , ~1!

where a,b5x,y,z denote Cartesian components and
sums extend over all the atoms in a simulation box of to
volumeV; mi andpi are the mass and linear momentum
atom i, respectively, andr i j is the relative distance betwee
atomsi and j interacting via a pair potentialV5V(r i j ); we
note that both Eq.~1! and the following expressions are ea
ily generalized to more complex interatomic potentia
Moreover, it is worth noting that the virial expression pr
vides the product quantityVSab and not the stress tenso
alone.

The most obvious prescription to calculate the individu
terms of the sum in Eq.~1! for a crystal lattice ofN atoms
enclosed in a periodic box, is to subdivide the total syst
volume into equal atomic volumes,v5V/N, thus defining
an atomic-level stress tensorsab

i :

sab
i 5

1

v S pi
api

b

mi
2(

j

1

r i j

]V

]r i j
r i j

a r i j
b D ~2!

such that

Sab5
1

V (
i

vsab
i . ~3!

Strictly speaking, the above expression is well defin
only for a system of perfectly equivalent atoms, i.e., a hom
geneously stressed system. However, it has been frequ
used also for nonhomogeneous systems, e.g., to calculat
stress around a dislocation. Apparently, this was attemp
by Basinski et al.13 and subsequently by many others,
replacing v ~or better, v i) with, e.g., the volume of the
Wigner-Seitz or Voronoi cell centered at each atom.

The inadequacy of Eq.~2! for systems containing eithe
pointlike or extended defects was clearly exposed
Lutsko14 and Cheung and Yip,15 both which suggested alter
native prescriptions for defining an atomic-level stress ten
to account for nonequivalent atoms. More recently, anot
definition of atomic-level stress was introduced16 which ap-
pears to satisfy conservation of linear momentum. In fact,
commonly used definition of Eq.~2! is known to give un-
physical results, e.g., when approaching a free surface
grain boundary. It must be noted that the PR method requ
us to calculate the total stress in the simulation box, i.e.,
a system including extended defects it would include also
contribution of regions in which the expression~2! is ill de-
fined.

The constant-traction BC which we are now going to d
scribe does not rely upon the explicit evaluation of t
atomic-level stress, and this is quite an advantage in view
the above discussion. We consider a static external load,
ally applied at infinite distance from the region of intere
represented by a homogeneous deformation tensoreab ap-
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plied to the atomistic system as a whole. The correspond
stress tensor is easily obtained assab5(gdCabgdegd which
is a generalized Hooke’s law with the point-group symme
of the crystal lattice, the matrix of elastic constantsCabgd
playing the role of a four-index tensorial spring constant.5

The Cartesian component of the force on each atoi
induced by a pair potentialV(r i j ) is

f i
a5(

j
S 2

1

r i j

]V

]r i j
D r i j

a . ~4!

At mechanical equilibrium each component of the n
force on each atom is zero. Now, the analogy between
constant-traction BC and the removal of periodicity acros
border can be understood with the help of Fig. 1. Figure 1~a!
represents the usual periodic~or constant-displacement! BC:
the horizontal line defines the limit between the portion
the system explicitly simulated and its periodic replic
When an initial deformationeab is imposed on such a peri
odic system, equal and opposite forces are induced on e
atom i from its displaced neighborsj, ending up with a zero
net force and thus with no additional displacement with
spect to the imposed deformation. It is worth underscor
that, although the atoms experience a state of nonzero st
they keep the deformed configuration becausef i

a50 for ev-
ery atom. Figure 1~b!, in turn, represents the constan
traction BC: after imposing the homogeneous deformat
eab to the system, periodicity in the direction normal to th
border is suppressed, i.e., atoms in the region above
dashed line~indicating a free border! are removed. The effec
of these ‘‘missing’’ atoms can be mimicked by a suitab
external forcet i to be applied to the border atoms for th
whole duration of the simulation. This is nothing but th
Cauchy-Euler principle of continuum mechanics,17 stating
that the action of the material occupying the part exterior
a closed surface onto the material occupying the interior p
is represented by a vector fieldt i , called thesurface traction.

By substituting Eq.~4! in the virial definition, Eq.~2!, for
the atomic-level stress and noting that at zero tempera
the kinetic contribution is zero, it is easily shown that t
oppositeof the net resulting force2 f i

a is equivalent to a

FIG. 1. Schematic of the forces acting on a border atom.~a!
Periodic border: all the neighbors within the cutoff radius~shaded
atoms! contribute to the force on atomi, f i50. ~b! Free border: the
presence of only part of the neighbors,j, results in a nonzero bulk
force f i which gives the surface tractiont i52f i .
7-2
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REPRESENTATION OF MECHANICAL LOADS IN . . . PHYSICAL REVIEW B65 014107
surface force parallel to the surface normalnb tending to
preserve the state of deformation:

t i
a5E

DS
~sab

i
•nb!dS52 f i

a . ~5!

We note that this procedure for obtaining a surface tr
tion from the opposite of a bulk force is analogous to t
image-field method, widely used in continuum mechanics
obtain a special solution for singular boundary-val
problems.17 Such a procedure has been used, e.g., in
finite-element solution for the problem of finding the equ
librium distribution of a collection of discrete dislocations
a linear elastic medium.18 Moreover, we underscore that E
~5! does not depend on the particular definition of atom
level stress adopted, since one can directly obtain the v
of t from the bulk forcef without having to explicitly calcu-
late sab .

In this respect, the central observation is that the to
stress is generally linked to the tensorial first derivative w
respect to the deformation of the internal energy,U
5( iUi , by the thermodynamic relation19

Sab5
1

V (
i

]Ui

]eab
52

1

V (
i

f i
ar i

b ~6!

independently on the particular atomistic definition chos
for sab .

At finite temperatures the surface traction must be
tained by a statistical ensemble average. Indeed, mecha
equilibrium atT.0 is imposed by requiring that theaverage
force on each atom is zero:

^f i&5
1

Z (
i
E dVe2U/kBT~2¹iV!50 ~7!

with Z5*dV exp(2U/kBT).
For the atoms at the nonperiodic border of Fig. 1~b! the

mechanical equilibrium is written

1

Z S (
i 8

E dVe2U/kBT~2¹iV!1E dVe2U/kBTtD 50,

~8!

where the prime indicates that the sum runs only on
remaining neighbors after removal of the periodicity.

We note that the modulus and direction of the surfa
traction are uncorrelated in the thermal motion of border
oms, i.e., the three Cartesian components oft fluctuate inde-
pendently. So we can writet5tn̂, with n̂ being the unit vec-
tor defined in Fig. 1, to obtain

^f i&1^tn̂&5^f i&1^t&^n̂&50 ~9!

from which the surface traction is formally defined as

^t&^n̂&52^f i&. ~10!

The above expression states that the average surface
tion is equal in modulus to the average missing force~since
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n̂ is a unit vector! and is directed as the average value of t
surface normal. Furthermore, Eq.~10! also suggests an op
erational definition of the instantaneous surface, to be id
tified with the plane perpendicular to the instantaneous m
ing force.

In practice, the constant-traction MD method works
two separate steps:~i! the modulus of the average missin
force is obtained in a separate bulk calculation at finite te
perature during which the atomic force across any divid
plane $hkl% can be calculated;~ii ! the surface traction is
applied during the subsequent simulation to each bor
atom with a constant modulus corresponding to the giv
value ofT and directed as the opposite of the instantane
resulting forcef i .

III. COMPUTATIONAL TESTS OF THE METHOD

As a first test we run a microcanonical MD simulation
8000 Si atoms described by the Stillinger-Weber interatom
potential.20 An isotropic, triaxial straineab5e0dab at the
initial temperatureT5500 K was imposed to the atomic sy
tem, initially arranged with the diamond fcc symmetry in
cube of side 10a055.43 nm with either periodic or constan
traction BC in the three directions. We compared seve
quantities, e.g., the instantaneous temperature, energy
root-mean-square displacement averaged over the atom
the inner portion of the simulation box. We found virtual
no difference between the simulation with either periodic
constant-traction borders for such a homogeneous, de
free system, i.e., the constant-traction BC provides an ef
tive embedding of the atomistic system in an infinitely e
tended medium. Moreover, such a simulation is a proof t
the constant-traction BC indeed gives an unbiased samp
of the microcanonical ensemble for the atoms far from
boundary.

As a second test we performed a MD simulation of
$113% symmetric tilt grain boundary in fcc Cu. We used
simple Lennard-Jones~LJ! pair potential, with parameterse
50.167 eV ands52.405 Å, resulting in an equilibrium lat
tice parametera053.615 Å. The grain boundary is placed
the x-y plane atz50 in a three-dimensional~3D! periodic
simulation box. The simulation was run with both th
constant-traction BC and the PR method under a unia
external load described by the stress tensorSab5S0dazdbz
and S050.1E, with E50.167 Mbar the theoretical Young
modulus of our LJ potential. In the constant-traction MD r
the periodicity alongz was removed. The initial minimum
energy configuration of the grain boundary was obtained
simultaneously optimizing the individual atomic position
and the relative translation between the two half crystals
T50;21 then, the deformation was imposed, the system w
annealed atT5100 K for about 10 ps and subsequen
quenched down to zero temperature.

In Fig. 2 we show theszz component of the stress calcu
lated from Eq. ~2!, averaged over slices of widthDz
50.25a0. The central result is that the constant-traction B
is able to preserve~by construction! the bulk state of stress a
sufficiently large distances from the grain boundary, indep
dently on the particular definition adopted to calculate
7-3



P
o
a
t
ss
d
e
il
o
g
lu
ng
an

he
y
e
ul
uc
th
B

wi

a
lty
a

n

al
tra
o

0
h

ne,

s
-
of

of

ding
10

FM
nly
re
the

ed
lot
lo-

re-
e

by a
-

al-

dis-

s

lin
co

a

n
l.

ula-

pic
of

FABRIZIO CLERI PHYSICAL REVIEW B 65 014107
atomic-level stress in the core region. By contrast, the
solution in the far field contains a small, but nonzero level
excess stress which results from the average of the bulk
grain-boundary regions. For both cases it can be seen tha
definition ~2! gives rise to wild changes of sign in the stre
as the boundary plane,z50, is approached, just as it is foun
to occur at free surfaces.15 Now, for an interface or a surfac
the perpendicular stress should vanish at mechanical equ
rium. However, any atomistic definition of stress incorp
rates some averaging volume, and it is this volume-avera
quantity that must vanish, not necessarily its pointwise va
Indeed, in this framework there is no way of establishi
whether such an oscillatory behavior is a physically me
ingful result or it is a mere numerical artifact.

In principle, the discrepancy of the far-field stress in t
PR simulation can be fixed by increasing the simulated s
tem size up to the point where the far-field stress is w
converged to the value of the applied external load. It co
thus be objected that the constant-traction BC is not m
different, since it needs as well to be verified against
system size. However, in the case of the constant-traction
we are taking as a measure of convergence the point
value of the stress field in the~linear-elastic! region far away
from the defect, and not its integral over the entire system
it is required in the PR method: this removes any difficu
connected with the particular definition and explicit evalu
tion of the atomic-level stress tensor.

In a previous work10,11 we applied the constant-tractio
BC at T50 to study the stress and strain fields around
finite-size microcrack in fcc Cu with the same LJ potenti
In that study we demonstrated that the correct stress-s
solution from anisotropic linear-elastic continuum theory
fracture mechanics~or LEFM, Ref. 22! is recovered in the
atomistic model already at system sizes of about 10–2l,
with l the length of the microcrack. The microcrack has t

FIG. 2. Plot of the plane-averagedszz component of the stres
field ~in units of the Youngs modulusE) across a$113% symmetric-
tilt grain boundary in a Lennard-Jones fcc crystal. The dashed
represents the result of a Parrinello-Rahman simulation, the
tinuous line is the result of a constant-traction simulation, both
T50 K.
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$001%^010& orientation, i.e., thex-y plane coincides with the
crack plane and the crack tip moves along they direction.
The external uniaxial load perpendicular to the crack pla
i.e., along thez @001# direction, is also in this caseS0
50.1E. Figure 3 shows theszz component of the stres
along they @010# direction, as obtained from a MD simula
tion at T5100 K of the microcrack embedded in systems
increasing size. Each atomistic system is periodic inx-y
while a constant-traction BC is applied inz. In the same
figure we report also the LEFM solution for the problem
an elliptical crack in a 2D anisotropic plate22 with the input
values of Youngs modulus and surface energy correspon
to our LJ potential. As amply discussed already in Refs.
and 11, the constant-traction BC nicely matches the LE
solution provided the system size is large enough. The o
exception is the immediate vicinity of the crack tip, whe
the discrete nature of the crystal lattice dominates and
stress tensor, Eq.~2!, becomes ill defined.

Similar results can be obtained for any other extend
defect, e.g., dislocations. As an example, in Fig. 4 we p
the szz component of the stress field around a screw dis
cation with Burgers vectorb parallel to thez axis ~corre-
sponding to the fcc@001# direction!; the system is again fcc
Cu with the same LJ potential above. The dislocation is c
ated by initially applying the displacement field from th
anisotropic linear-elasticity solution23 to each atom, includ-
ing the core region. The system is subsequently relaxed
conjugate gradient procedure atT50 and using the constant
traction BC in thex-y plane, while thez direction is kept
periodic. It is seen that the asymptotic 1/r decay of the Vol-
terra solution for the stress field is correctly recovered
ready at system sizes of the order of 40b. Remarkably, the
constant-traction BC allows us to represent an isolated

e
n-
t

FIG. 3. Plot of theszz component of the stress field around a
elliptical $001%^010& microcrack in a Lennard-Jones fcc crysta
The stress is plotted along they @010# direction, starting from the
crack tip. Symbols represent the results of constant-traction sim
tions at T5100 K followed by quenching atT50 K for various
system sizes. The full line is the result of the continuum, anisotro
linear-elasticity solution. The dashed line is the asymptotic value
external stress.
7-4
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REPRESENTATION OF MECHANICAL LOADS IN . . . PHYSICAL REVIEW B65 014107
location in an infinite bulk, thus removing the problems co
nected with the image forces implicit in the use of stand
periodic BC.2

Whenever the initial deformationeab ~or, equivalently,
the external stress! is zero the constant-traction BC is able
provide the correct embedding in an infinite, unperturb
medium. In this respect, the constant-traction MD method
also a practical way around the problem of representing n
periodic defects within a finite-size simulation box. We a
ready used the constant-traction BC at zero load to study
structure and elastic behavior of triple junctions in Si,12 i.e.,
the linear defect formed by the joining of three grains w
different relative misorientation. This is a typical example
defect for which it is geometrically impossible to build
periodic simulation box except for a few, very special orie
tations of the grains. Figure 5 shows the minimum-ene
configuration of the multiple twin junction formed by tw
nonequivalent$113% twin boundaries and one$112% sym-
metric tilt boundary, the (1̄10) x direction ~perpendicular to
the page! being the common polar axis. The latter directi
was periodic while constant-traction BC’s were applied
they-z plane. The configuration was obtained after annea
at T5500 K for 40 ps followed by quenching atT50, again
using the Stillinger-Weber potential for Si. Such MD sim
lations performed both atT50 and finite temperatures dem
onstrate the applicability and usefulness of the const
traction BC also in such a peculiar system.

IV. CONCLUSIONS

We presented a method to perform molecular dynam
simulations of a fully atomistic system under an externa

FIG. 4. Plot of theszz component of the stress field around
screw dislocation in a Lennard-Jones fcc crystal, with the Burg
vector parallel to thez @001# direction. The stress is plotted alon
the y @010# direction, starting from the dislocation core. Symbo
represent the results of constant-traction simulations atT5100 K
followed by quenching atT50 K for various system sizes. The fu
line is the result of the continuum, anisotropic linear-elasticity
lution. The dashed line is the asymptotic value of external stres
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applied load. The so-called ‘‘constant traction’’ method
based on the evaluation of border tractions~additive forces!
to be applied to the atomistic system during the whole sim
lation, in analogy with the Cauchy-Euler principle of co
tinuum mechanics. We elaborated over our previous wo11

in order to provide an extension of the constant-tract
method also to finite-temperature simulations. Several t
of the method on atomistic systems containing differe
kinds of extended defects, such as a dislocation, a mi
crack, and a grain boundary, demonstrated the capabilit
the method to describe a system under a mechanical
with the proper decay of the far-field stress~i.e., away from
the region surrounding the defect! in perfect agreement with
the requirements of linear elasticity.

A first relevant feature of the constant traction method
that its application does not require the explicit definition a
evaluation of some atomic-level stress tensor. This is d
nitely an advantage over existing methods, e.g.,
Parrinello-Rahman~PR!, for nonhomogeneous systems su
as a supercell enclosing extended defects. In fact, it has b
repeatedly shown that all pointwise definitions of atom
level stress fail in the immediate neighborhood
defects.14–16 By comparing simulations with the constan
traction and the PR methods, we clearly demonstrated
the stress field calculated with a PR simulation contain
spurious contribution originating from the highly nonline
core region of the defect, where the stress tensor is ill
fined. Such a problem is absent in the constant-trac
method by construction, since it relies only on the evaluat
of forces.

A second important feature is that the constant-tract
border condition provides the correct embedding in an in
nite medium in absence of periodicity. This is of great im
portance for the simulation of nonperiodic defects with
finite-size simulation box, both under a mechanical load
and load free. We demonstrated the applicability of t

rs

-
.

FIG. 5. Minimum-energy atomic structure of a multiple-tw
junction in Si obtained after a constant-traction MD simulatio
only a central portion of the nonperiodic 9052-atom system p
jected in they-z plane is represented. Shaded rings indicate
grain boundaries: the two nonequivalent$113% twins ~left! and the
$112% symmetric tilt boundary~right!, obtained by rotation abou
the common~1̄10! polar axis~perpendicular to the figure!.
7-5
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FABRIZIO CLERI PHYSICAL REVIEW B 65 014107
method by simulating nonperiodic defects such as an isol
screw dislocation and an isolated triple junction among th
grain boundaries.

Under this latter respect, the constant-traction meth
should compare well also against the so-called ‘‘hybrid’’ a
proaches, which couple atomistic molecular dynamics w
continuum methods such as finite elements.24,25 Such a cou-
pling can be done by introducing an intermediate reg
within which atoms and finite elements are linked toget
by means of a subtle boundary condition.24 Differently from
such approaches, in our method there is no need to introd
an explicit connection between the fully atomistic region a
a continuum region, instead the condition of continuity be
ensured by the vanishing of the total forces at the free b
ders. A more advanced option in hybrid methods is the ‘‘q
sicontinuum’’ approach,25 in which the atomistic and con
tinuum regions are smoothly linked by means of
interpolation scheme based on the atomistic definition of
p,

c

d

s

c.

B
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tal energy. Such an approach, indeed, overcomes the pro
of introducing an arbitrary link between a discretized and
continuum region. However, it has major difficulties in bein
extended fromT50 to finite temperatures for which, as w
demonstrated, the constant-traction method instead perfo
equally well.
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