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Phase transitions in the mesoscopic superconducting square
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We solve the Ginzburg-Landau equation for a mesoscopic thin film of square shape in the magnetic field. In
the limit of large screening length we find a series of first- and second-order phase transitions as temperature
and/or magnetic field changes. First-order phase transitions between giant-flux states can be described with a
simple variational procedure. We discuss the similarity with rotating liquitiate derive a simple formula for
H.1. We identify order parameters based on symmetry arguments and we propose a Landau functional describ-
ing the second-order phase transition.
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Advances in nanotechnology and constantly shrinkingsquare sample near th€., line should be qualitatively dif-
semiconductor devices have motivated researchers to studgrent from the disks. On the basis of the solution of the
properties of mesoscopic superconducting samples. One lilmearized GLE the appearance of the antivortex in the center
of research in this field has focused on the problem of phasef the sample has been predicted.
transitions in a mesoscopic superconducting sample under In this paper we investigate phase transitions in a super-
the influence of the external magnetic fiél@here are two conducting film of square shape as a function of temperature
characteristic limits in which phase transitions have differenfl and external magnetic field in the limit a~&<\q¢. We
properties. If the size of the sampée> ¢, where ¢ is the  solve the GLE for thin superconducting films with thickness
superconducting coherence length, and the applied field ig<<\. Our results are also valid for a type-two superconduct-
large enough, there are many vortices in the sample. In thigg cylinder of square cross section, if the Ginzburg-Landau
case long-range interaction between vortices and image voparameterk=\/§>1. We show that a configuration with
tices is screened by spontaneous creation of vortex loop3ne antivortex in the center and four vortices on the diago-
near the sample bound&rwhich leads to a decrease of the nals of the square is unstable when we move away from the
surface barrier for the vortex to penetrate the sample. In thél., line and the nonlinear term in the GLE is considered. On
opposite case, whea~ &é<\.¢;=A%/d, with X being the the contrary, at higher magnetic field, the configuration with
London penetration depth ardibeing the thickness of the four vortices on diagonals of the square remains stable. Simi-
sample, there are only few vortices in the sample. The starar to the superconducting df$i€ we find a sequence of
dard Abrikosov approac¢hmust be modified because of the phase transitions of the first order between giant vortex states
strong influence of the sample boundaries. In this case mags well as between multivortex states with different vorticity.
netic field is uniform throughout the sample. The thermody-Second-order phase transition takes place when a giant vor-
namics of this system is determined by the repulsion betweelex state splits into a multivortex state while simultaneously
vortices and Bean-Livingston barrier foréesn the scale breaking theC, symmetry. Such transitions are discussed in
~&. terms of the phenomenological theory of Landau.

Different approaches have been applied for the investiga- The GLE for dimensionless order parameterhas the
tion of phase transitions in the latter limit. Most of them form
consider disk geometry. Buzdin and Brison applied electro-
static formalism to consider influence of the barrier on the 2
vortex structure of a thin superconducting disWithin this 3
approach vortices are replaced by the hard-core patrticles in- ) ]
teracting through Coulomb forces. Numerical solution of theh€reé= (% /4m|a]), a is the temperature-dependent param-
Ginzburg-Landau equatiofGLE) for the same geometry re- eter.of the Ginzburg-Landau expansion for the free_ energy,
veals a series of the first and second order phase transitiof& iS the flux quantum, and is the vector potentiaH
in the superconducting disk. Such transitions take place be= VX A. The second GLE equation for the vector potential
tween giant vortex states with different vorticity as well as¢an be written as
between a giant vortex state and a multivortex state as the
external field changée%.® We emphasize an important differ- VXV XA= ] 0 *y _— ] °A 5
ence between the disk and the square geometries. Solution of HKVXA=— 47T)\2("b Y=YVt - \2 @
the linearized GLE, describing the nucleation of the super-
conducting order parameter near tHe, line for the disk, Since we consider the case of a small mesoscopic square
always corresponds to the giant vortex state. On the othewherea~ &é<\.¢¢, the magnetic field is uniform in the film.
hand, as it was demonstrated by Chibotatal.! there are  The correction to the external field is of the order of2and
many well-separated zeros of the order parameter in the caseay be found by solving Eql) while assuming uniform
of the square sample. Consequently, the behavior of thenagnetic field and substituting the solution of Ed) into
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Eq. (2). Such a solution is equivalent to the expansion of the  0.02
free energy in a/\ k series. In addition to Eq1l) we have  AFf

to supply the boundary condition for the superconductor- 0
insulator junction:

-0.02 |
v 27A 0
Vg, ny=0, © -0.04
0 50 100 ey 150
wheren is a normal vector to the surface of the sample. 08 o 155, o2 0 '
IntroducingN X N discrete points in the square we rewrite n [—— fon. h7 me3 | A710
H . . LT 06 nx‘ ’ C)
Eq. (1) in the form of a nonlinear discrete Schlinger equa- ——— 10m, h=7, m=3 -1
tion: 04
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where the summation indek=(+1,0),(0+1) points to- (afg)” (a/g)

. _ 2 _ .
ward nearest neighbors, ant, ;=(¢N/a)%exy—(2i/ FIG. 1. (a Difference in the free energAF in units of

dDO)f:lA(r)dr].9 Equivalent discretization of the boundary [®3a2d/(47)3\2£2] between solutions with different integral vor-
conditions, Eq.(3), provides an additional equation which ticities. For the case dfi=5.5, AF=F(m=3)—F(m=2) and for
can be directly solved and substituted into Ed). As a h=7, AF=F(m=4)—F(m=3). (b) Order parameter vs (a/¢)?

result, equations close to the boundary are slightly differenfor the solution withm=2 calculated ath=5.5, and the two-
from the “bulk:” dimensional order parameteys, and 7, for the solution withm

=3 calculated ah=7. (c) The second derivative of the free energy
A=d?F/d[(al€)?]? for the solution withm=2 ath=5.5.

§|: ti,i i — €Dt = g+ il | *=0, 5
aries. Consequently, we do not expect suppression of the

where ;=0 if i is outside the samplee(i):4—6ixﬁl field in the core of the antivortex.
8 n—8i 1= & N and i=(ix=1,... N,i,2=1,... N). In the following we consider the changes in the vortex
X y’ y’

There is one important advantage of such a treatment of th&l"ucture when we move away from thig; line. Taking into
boundary condition. When neglecting the nonlinear term in2ccount the nonlinear term, we were unable to detect more
Eq. (4), the system of linear equations reduces to the probthan one zero of the order parameter near the origin of the
lem of eigenvalues and eigenfunctions of the Hermitian masquare for the value of the field=5.5. Consequently, the
trix. On the other hand, the solution of nonlinear equationssolution with more than one zero survives only very close to
requires iterations and inversion of the Hermitian matrix. the H, line. These findings are supported by a recent work
Let us first discuss the solution of the linearized GLE andby Baelus and PeetetWe do not expect any phase transi-
compare our results with previous studfeShe lowest ei- tion at the point where all zeros are joined together since
genvalue of the linear GLE determines the upper critical fieldotal flux and the symmetry of the solution do not change.
of the sample. We have calculated eigenvalues of the lineaFhis situation is different from the case of the higher field
problem expressed in unifs/£(T)]? as a function of the h=7, where the solution with four zeros of the order param-
dimensionless external magnetic fidle- /P, whered is  eter survives far from théd, line. In fact, the giant-flux
the total flux through the sample. Our results for a few low-solution was not detected in that case.
est eigenvalues agree within the linewidth with the results of In Fig. 1(a) we plot the difference in the free energy be-
Ref. 1. The spatial pattern of the order parameter is alstween solutions with different integral vorticithkF=F(m
similar. For the fielcth=5.5 we have observed five zeros of =3)—F(m=2) as a function of §/&)? for the fixed mag-
the order parameter near the center of the square. The solnetic fieldh=5.5. As is clearly seen from the figure, near
tion corresponds to four vortices on the diagonals and onéa/&)?~ 43, a first-order phase transition takes place. At that
antivortex in the center of the square with total vortiaity ~ point the high-temperature phase corresponding to the giant
=31 The distance between vortices is of the ordersof vortex withm=3 becomes metastable, and the phase corre-
=0.12¢<&. The maximum value of the order parametersponding to giant vortex, shown in Fig.(Bft), with m=2
|(x,y)| in the region between zeros is sméibur orders becomes a ground state. At this point, the slope of the first
less then the value of the order parameter near the sampierivative of the free energy as a functionTois discontinu-
boundary. This indicates that the vortex-anti-vortex struc- ous, which corresponds to the latent heat of the transition.
ture becomes unstable when we move away fromHhe  With further decrease of the temperature d&hdhe second
line, and the nonlinear term andxltorrections are consid- transition takes place. Ag(&)2~ 66 the giant vortex located
ered. Moreover, the screening currents flowing between zen the center splits along one of the diagonals, Figright).
ros are small. In that case correction to the external field iFhis transition is the second order phase transition, where
determined by the current flowing near the sample boundhy|? is no longer invariant under the fourfold axis of the

012509-2



BRIEF REPORTS PHYSICAL REVIEW B 65 012509

FIG. 2. |#(x,y)| calculated at a fixed mag-
netic field h=5.5. Presented are solutions with
lowest free energy calculated at/¢)%=50 with
one giant fluxm=2 (left) and @/£)?=90 with
two separated fluxes each carryimg=1 (right).
Contours representy(x,y)|=0.1, .. .,0.9.

square. The phase transition is clearly observed by compubetween vortices is determined by the vortex-vortex repul-
ing the order parametey= [xy|#(x,y)|?dxdy, presented in sion that tends to separate them as far as possible, while to
Fig. 1(b). A nonvanishing is followed by a jump in the the contrary, repulsion from the boundaries prevents vortices
second derivative of the free energy=d?F/d[(a/¢)?]?,  from approaching the boundaries.

presented in Fig. (t). We estimated the magnitude of the  The situation is different when the external magnetic field
effect in terms of the specific-heat jumpsC/a?d=[5 is increased toh=7. In that case near thel., line the

X 10 3®3T./(47)3\2£2T2], where T, is the critical tem-  ground state corresponds to a multivortex state with the total
perature of the transition determined by the conditionvorticity m=4, Fig. 3 (left). When temperature decreases,
(al£)?=66, andT, is the critical temperature of the sample the first-order phase transition takes place a@ft£}*=110,
ath=0. The Landau functional, describing this phase transee Fig. ). At this point the multivortex state witm=4
sition, is defined a§ = a; »°+ B, 7%, wherea; and B, are  becomes unstable while the multivortex state with=3,
Landau coefficients withy, > (T—T/). This phase transition presented in Fig. 3right), represents the solution with the

corresponds to the one-dimensional corepresentatinithe ~ lowest free energy. Apart from the change of the vorticity,
nonunitaryC,,(C,) group. the symmetry is also reduced at the transition point. A phase

Since we restrict our calculation to the casg;>a~¢  transition takes place in accordance with joint corepresenta-

long-range forces between vortices are irrelevant. At shorion E~ of the nonunitary groupC,,(C,). Consequently,
distances ~ & interaction between vortices is different from four orientations of the pseudodipolar moment of the vorti-
that in the London limit because of substantial overlap of theces are possible. The two-component order parameter corre-
vortex core. The interaction with the boundaries is detersponding to a given change of symmetry, presented in Fig.
mined by the Bean-Livingston barriérinteraction of the 1(b), can be determined as follows, = x| #(x,y)|dxdy,
vortex with the screening current, which is the strongest neatty=JY|#(x,y)|*dxdy. Free energy in that case depends on
sample boundaries, and interaction caused by the overlap #ie vorticity m and order parameterzn,,n,. F(m

the vortex core with the boundaries. For the field 5.5 in ~ =4.7x,7y) always has a minimum aty=7,=0.

the vicinity of theH,, line the interaction with the bound- For m=3, F(m=3,7,,7y)=ax(n}+ 73)+ B2 ny+ 1))
aries is larger than the repulsion between vortices and the- 727;3(175, where a,,85,,7, are Landau coefficients, and
giant vortex withm=3 is located in the center of the sample. a,>(T—T(), whereT/ is the temperature of the transition
With the decrease of the energy difference between two between the giant vortex state and the multivortex state for
different solutions with different vorticity decreases and thethe casem=3. T. is determined by the conditiora(¢)?

first order phase transition to a giant-flux state with vorticity =56. This transition is unobservable becadgeis lower
m=2 takes place atal&)?=43. A giant-flux state(with  than the transition temperature for the first-order phase tran-
lower vorticity) remains stable, since the interaction with thesition where the vorticitym changes frorm=3 to m=2
sample boundaries still dominates over the repulsion befcompare Figs. () and 1b)].

tween vortices. Further decrease¢deads to the decrease of  The first-order phase transition between giant vortex
the interaction of the vortices with the boundaries, and repulstates with different vorticity can be described qualitatively
sion between vortices in the giant-flux state starts to domien the basis of a simple variational function for the order
nate. As a result a second-order phase transf@or(a/&)? parameter. Spatial dependence of the order parameter in the
=66] between the giant vortex state and the multivortexgiant vortex state with vorticityn can be approximated by
state takes place, preserving the integral vorticity. Separatiotine function

FIG. 3. |#(x,y)| calculated at a fixed mag-
netic field h=7. Presented are solutions with
lowest free energy calculated at/¢)?=100
(left) and (@/&)2=120 (right). Contours are de-
fined as in Fig. 2.
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(rl&)Mexplime) r<é, liquid.** This similarity appears because>a and all inte-
exgime) r>¢ (6)  grals are cut a#, rather than ak. Moreover, Eq(7) yields a
' previously derived estimate fd#.;,> which represents the
Substituting this function into the Ginzburg-Landau func-field at which the first vortex appears in the sample. Substi-
tional and keeping only leading terms ia/§)?, we obtain a  tutingm=1 into Eq.(1) and solving the equatioR(m=1)

P(r,¢)=

simple expression for the free energy: =0 we obtain
F o [m?In(a?/ w&?)[2— D -m/ D) (7) H o In(a?/ 7&?) (9)
=———[m‘In(a/ —®-m . =——>-In(a/w&°).
(8#)27\2 0 cl 2a2
Minimization of Eqg.(7) in the largem>1 limit provides the  Note that this expression is similar to the expression for bulk
expression for the vorticity: H¢; (Ref. 3 where\? is replaced bya?/ .

In conclusion we have solved the GLE in the limit of
® % for a thin square film. We have predicted a series of
first- and second-order phase transitions with a change of
temperature and magnetic field. On the basis of the symme-
try we constructed a Landau functional for the second-order
transitions. First-order transitions are described on the basis
of variational estimates.

m= 3/In(a2/ £2)

= CI)O o .
Minimization of Eq. (7) at h=>5.5 leads to the estimated
value for the phase transition from=3 to m=2 at
(a/€)?=28, which is lower than the calculated value
(al€)?>=43. Nevertheless, this rather naive variational for-
mula provides a simple explanation of the transition with the ~ We wish to thank D. MihailovicV.V. Moshchalkov, L.
change of vorticity in the giant vortex. It is interesting to Bulaevskii, and A.S. Alexandrov for many useful discussions
note that due to a logarithmic term, E@) for the free en- and suggestions. We are also grateful to |. Sega for critically
ergy is similar to the free energy of the rotating superfluidreading the manuscript.
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