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Phase transitions in the mesoscopic superconducting square

J. Bonča1 and V. V. Kabanov2
1J. Stefan Institute 1001, Ljubljana, Slovenia

2FMF, University of Ljubljana, Ljubljana, Slovenia
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We solve the Ginzburg-Landau equation for a mesoscopic thin film of square shape in the magnetic field. In
the limit of large screening length we find a series of first- and second-order phase transitions as temperature
and/or magnetic field changes. First-order phase transitions between giant-flux states can be described with a
simple variational procedure. We discuss the similarity with rotating liquid He4 and derive a simple formula for
Hc1. We identify order parameters based on symmetry arguments and we propose a Landau functional describ-
ing the second-order phase transition.
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Advances in nanotechnology and constantly shrink
semiconductor devices have motivated researchers to s
properties of mesoscopic superconducting samples. One
of research in this field has focused on the problem of ph
transitions in a mesoscopic superconducting sample u
the influence of the external magnetic field.1 There are two
characteristic limits in which phase transitions have differ
properties. If the size of the samplea@j, where j is the
superconducting coherence length, and the applied fiel
large enough, there are many vortices in the sample. In
case long-range interaction between vortices and image
tices is screened by spontaneous creation of vortex lo
near the sample boundary2 which leads to a decrease of th
surface barrier for the vortex to penetrate the sample. In
opposite case, whena;j!le f f5l2/d, with l being the
London penetration depth andd being the thickness of the
sample, there are only few vortices in the sample. The s
dard Abrikosov approach3 must be modified because of th
strong influence of the sample boundaries. In this case m
netic field is uniform throughout the sample. The thermod
namics of this system is determined by the repulsion betw
vortices and Bean-Livingston barrier forces4 on the scaler
;j.

Different approaches have been applied for the invest
tion of phase transitions in the latter limit. Most of the
consider disk geometry. Buzdin and Brison applied elec
static formalism to consider influence of the barrier on
vortex structure of a thin superconducting disk.5 Within this
approach vortices are replaced by the hard-core particle
teracting through Coulomb forces. Numerical solution of t
Ginzburg-Landau equation~GLE! for the same geometry re
veals a series of the first and second order phase transi
in the superconducting disk. Such transitions take place
tween giant vortex states with different vorticity as well
between a giant vortex state and a multivortex state as
external field changes.6–8 We emphasize an important diffe
ence between the disk and the square geometries. Soluti
the linearized GLE, describing the nucleation of the sup
conducting order parameter near theHc2 line for the disk,
always corresponds to the giant vortex state. On the o
hand, as it was demonstrated by Chibotaruet al.,1 there are
many well-separated zeros of the order parameter in the
of the square sample. Consequently, the behavior of
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square sample near theHc2 line should be qualitatively dif-
ferent from the disks. On the basis of the solution of t
linearized GLE the appearance of the antivortex in the ce
of the sample has been predicted.1

In this paper we investigate phase transitions in a sup
conducting film of square shape as a function of tempera
T and external magnetic fieldH in the limit a;j!le f f . We
solve the GLE for thin superconducting films with thickne
d!l. Our results are also valid for a type-two supercondu
ing cylinder of square cross section, if the Ginzburg-Land
parameterk5l/j@1. We show that a configuration with
one antivortex in the center and four vortices on the dia
nals of the square is unstable when we move away from
Hc2 line and the nonlinear term in the GLE is considered.
the contrary, at higher magnetic field, the configuration w
four vortices on diagonals of the square remains stable. S
lar to the superconducting disk6–8 we find a sequence o
phase transitions of the first order between giant vortex st
as well as between multivortex states with different vortici
Second-order phase transition takes place when a giant
tex state splits into a multivortex state while simultaneou
breaking theC4 symmetry. Such transitions are discussed
terms of the phenomenological theory of Landau.

The GLE for dimensionless order parameterc has the
form

j2S i¹1
2pA

F0
D 2

c2c1cucu250. ~1!

herej5(\2/4muau), a is the temperature-dependent para
eter of the Ginzburg-Landau expansion for the free ene
F0 is the flux quantum, andA is the vector potentialH
5¹3A. The second GLE equation for the vector potent
can be written as

¹3¹3A52 i
F0

4pl2
~c* ¹c2c¹c* !2

ucu2A

l2
. ~2!

Since we consider the case of a small mesoscopic sq
wherea;j!le f f , the magnetic field is uniform in the film
The correction to the external field is of the order of 1/k2 and
may be found by solving Eq.~1! while assuming uniform
magnetic field and substituting the solution of Eq.~1! into
©2001 The American Physical Society09-1
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BRIEF REPORTS PHYSICAL REVIEW B 65 012509
Eq. ~2!. Such a solution is equivalent to the expansion of
free energy in ad/lk series. In addition to Eq.~1! we have
to supply the boundary condition for the superconduct
insulator junction:

S i¹1
2pA

F0
D •nc50, ~3!

wheren is a normal vector to the surface of the sample.
IntroducingN3N discrete points in the square we rewri

Eq. ~1! in the form of a nonlinear discrete Schro¨dinger equa-
tion:

(
l

t i1 l,ic i1 l24t i,ic i2c i1c iuc iu250, ~4!

where the summation indexl5(61,0),(0,61) points to-
ward nearest neighbors, andt i1 ,i5(jN/a)2exp@2(2pi/

F0)*i
i1A(r )dr #.9 Equivalent discretization of the bounda

conditions, Eq.~3!, provides an additional equation whic
can be directly solved and substituted into Eq.~4!. As a
result, equations close to the boundary are slightly differ
from the ‘‘bulk:’’

(
l

t i1 l,ic i1 l2e~ i!t i,ic i2c i1c iuc iu250, ~5!

where c i50 if i is outside the sample,e( i)542d i x,1

2d i x ,N2d i y,12d i y ,N, and i5( i x51, . . . ,N,i y51, . . . ,N).
There is one important advantage of such a treatment of
boundary condition. When neglecting the nonlinear term
Eq. ~4!, the system of linear equations reduces to the pr
lem of eigenvalues and eigenfunctions of the Hermitian m
trix. On the other hand, the solution of nonlinear equatio
requires iterations and inversion of the Hermitian matrix.

Let us first discuss the solution of the linearized GLE a
compare our results with previous studies.1 The lowest ei-
genvalue of the linear GLE determines the upper critical fi
of the sample. We have calculated eigenvalues of the lin
problem expressed in units@a/j(T)#2 as a function of the
dimensionless external magnetic fieldh5F/F0 whereF is
the total flux through the sample. Our results for a few lo
est eigenvalues agree within the linewidth with the results
Ref. 1. The spatial pattern of the order parameter is a
similar. For the fieldh.5.5 we have observed five zeros
the order parameter near the center of the square. The
tion corresponds to four vortices on the diagonals and
antivortex in the center of the square with total vorticitym
53.1 The distance between vortices is of the order ofd
.0.12j!j. The maximum value of the order paramet
uc(x,y)u in the region between zeros is small~four orders
less then the value of the order parameter near the sa
boundary!. This indicates that the vortex-anti-vortex stru
ture becomes unstable when we move away from theHc2
line, and the nonlinear term and 1/k corrections are consid
ered. Moreover, the screening currents flowing between
ros are small. In that case correction to the external fiel
determined by the current flowing near the sample bou
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aries. Consequently, we do not expect suppression of
field in the core of the antivortex.

In the following we consider the changes in the vort
structure when we move away from theHc2 line. Taking into
account the nonlinear term, we were unable to detect m
than one zero of the order parameter near the origin of
square for the value of the fieldh55.5. Consequently, the
solution with more than one zero survives only very close
the Hc2 line. These findings are supported by a recent w
by Baelus and Peeters.10 We do not expect any phase trans
tion at the point where all zeros are joined together sin
total flux and the symmetry of the solution do not chang
This situation is different from the case of the higher fie
h57, where the solution with four zeros of the order para
eter survives far from theHc2 line. In fact, the giant-flux
solution was not detected in that case.

In Fig. 1~a! we plot the difference in the free energy b
tween solutions with different integral vorticityDF5F(m
53)2F(m52) as a function of (a/j)2 for the fixed mag-
netic field h55.5. As is clearly seen from the figure, ne
(a/j)2;43, a first-order phase transition takes place. At t
point the high-temperature phase corresponding to the g
vortex with m53 becomes metastable, and the phase co
sponding to giant vortex, shown in Fig. 2~left!, with m52
becomes a ground state. At this point, the slope of the
derivative of the free energy as a function ofT is discontinu-
ous, which corresponds to the latent heat of the transit
With further decrease of the temperature andj, the second
transition takes place. At (a/j)2;66 the giant vortex located
in the center splits along one of the diagonals, Fig. 2~right!.
This transition is the second order phase transition, wh
ucu2 is no longer invariant under the fourfold axis of th

FIG. 1. ~a! Difference in the free energyDF in units of
@F0

2a2d/(4p)3l2j2# between solutions with different integral vor
ticities. For the case ofh55.5, DF5F(m53)2F(m52) and for
h57, DF5F(m54)2F(m53). ~b! Order parameterh vs (a/j)2

for the solution with m52 calculated ath55.5, and the two-
dimensional order parametershx and hy for the solution withm
53 calculated ath57. ~c! The second derivative of the free energ
D5d2F/d@(a/j)2#2 for the solution withm52 at h55.5.
9-2
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FIG. 2. uc(x,y)u calculated at a fixed mag
netic field h55.5. Presented are solutions wit
lowest free energy calculated at (a/j)2550 with
one giant fluxm52 ~left! and (a/j)2590 with
two separated fluxes each carryingm51 ~right!.
Contours representuc(x,y)u50.1, . . .,0.9.
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square. The phase transition is clearly observed by com
ing the order parameterh5*xyuc(x,y)u2dxdy, presented in
Fig. 1~b!. A nonvanishingh is followed by a jump in the
second derivative of the free energyD5d2F/d@(a/j)2#2,
presented in Fig. 1~c!. We estimated the magnitude of th
effect in terms of the specific-heat jump:DC/a2d5@5
31023F0

2Tc8/(4p)3l2j2Tc
2#, where Tc8 is the critical tem-

perature of the transition determined by the condit
(a/j)2.66, andTc is the critical temperature of the samp
at h50. The Landau functional, describing this phase tr
sition, is defined asF5a1h21b1h4, wherea1 andb1 are
Landau coefficients witha1}(T2Tc8). This phase transition
corresponds to the one-dimensional corepresentationB of the
nonunitaryC4v(C4) group.

Since we restrict our calculation to the casele f f@a;j
long-range forces between vortices are irrelevant. At sh
distancesr;j interaction between vortices is different fro
that in the London limit because of substantial overlap of
vortex core. The interaction with the boundaries is de
mined by the Bean-Livingston barrier,4 interaction of the
vortex with the screening current, which is the strongest n
sample boundaries, and interaction caused by the overla
the vortex core with the boundaries. For the fieldh55.5 in
the vicinity of theHc2 line the interaction with the bound
aries is larger than the repulsion between vortices and
giant vortex withm53 is located in the center of the sampl
With the decrease ofj the energy difference between tw
different solutions with different vorticity decreases and t
first order phase transition to a giant-flux state with vortic
m52 takes place at (a/j)2.43. A giant-flux state~with
lower vorticity! remains stable, since the interaction with t
sample boundaries still dominates over the repulsion
tween vortices. Further decrease ofj leads to the decrease o
the interaction of the vortices with the boundaries, and rep
sion between vortices in the giant-flux state starts to do
nate. As a result a second-order phase transition@at (a/j)2

.66] between the giant vortex state and the multivor
state takes place, preserving the integral vorticity. Separa
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between vortices is determined by the vortex-vortex rep
sion that tends to separate them as far as possible, whi
the contrary, repulsion from the boundaries prevents vorti
from approaching the boundaries.

The situation is different when the external magnetic fie
is increased toh.7. In that case near theHc2 line the
ground state corresponds to a multivortex state with the t
vorticity m54, Fig. 3 ~left!. When temperature decrease
the first-order phase transition takes place at (a/j)25110,
see Fig. 1~a!. At this point the multivortex state withm54
becomes unstable while the multivortex state withm53,
presented in Fig. 3~right!, represents the solution with th
lowest free energy. Apart from the change of the vortici
the symmetry is also reduced at the transition point. A ph
transition takes place in accordance with joint coreprese
tion E6 of the nonunitary groupC4v(C4). Consequently,
four orientations of the pseudodipolar moment of the vo
ces are possible. The two-component order parameter co
sponding to a given change of symmetry, presented in
1~b!, can be determined as follows:hx5*xuc(x,y)u2dxdy,
hy5*yuc(x,y)u2dxdy. Free energy in that case depends
the vorticity m and order parameterhx ,hy . F(m
54,hx ,hy) always has a minimum athx5hy50.
For m53, F(m53,hx ,hy)5a2(hx

21hy
2)1b2(hx

41hy
4)

1g2hx
2hy

2 , where a2 ,b2 ,g2 are Landau coefficients, an
a2}(T2Tc8), whereTc8 is the temperature of the transitio
between the giant vortex state and the multivortex state
the casem53. Tc8 is determined by the condition (a/j)2

.56. This transition is unobservable becauseTc8 is lower
than the transition temperature for the first-order phase t
sition where the vorticitym changes fromm53 to m52
@compare Figs. 1~a! and 1~b!#.

The first-order phase transition between giant vor
states with different vorticity can be described qualitative
on the basis of a simple variational function for the ord
parameter. Spatial dependence of the order parameter in
giant vortex state with vorticitym can be approximated by
the function
-
h

FIG. 3. uc(x,y)u calculated at a fixed mag
netic field h57. Presented are solutions wit
lowest free energy calculated at (a/j)25100
~left! and (a/j)25120 ~right!. Contours are de-
fined as in Fig. 2.
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BRIEF REPORTS PHYSICAL REVIEW B 65 012509
c~r ,f!5H ~r /j!mexp~ imf! r ,j,

exp~ imf! r .j.
~6!

Substituting this function into the Ginzburg-Landau fun
tional and keeping only leading terms in (a/j)2, we obtain a
simple expression for the free energy:

F.
F0

2d

~8p!2l2
@m2ln~a2/pj2!/22F•m/F0#. ~7!

Minimization of Eq.~7! in the largem@1 limit provides the
expression for the vorticity:

m.
F

F0
/ln~a2/pj2!. ~8!

Minimization of Eq. ~7! at h55.5 leads to the estimate
value for the phase transition fromm53 to m52 at
(a/j)2528, which is lower than the calculated valu
(a/j)2543. Nevertheless, this rather naive variational f
mula provides a simple explanation of the transition with
change of vorticity in the giant vortex. It is interesting
note that due to a logarithmic term, Eq.~7! for the free en-
ergy is similar to the free energy of the rotating superflu
h-

ys

01250
-
e

liquid.11 This similarity appears becausel.a and all inte-
grals are cut ata, rather than atl. Moreover, Eq.~7! yields a
previously derived estimate forHc1,5 which represents the
field at which the first vortex appears in the sample. Sub
tuting m51 into Eq.~1! and solving the equationF(m51)
50 we obtain

Hc15
F0

2a2
• ln~a2/pj2!. ~9!

Note that this expression is similar to the expression for b
Hc1 ~Ref. 3! wherel2 is replaced bya2/p.

In conclusion we have solved the GLE in the limit ofk
→` for a thin square film. We have predicted a series
first- and second-order phase transitions with a change
temperature and magnetic field. On the basis of the sym
try we constructed a Landau functional for the second-or
transitions. First-order transitions are described on the b
of variational estimates.
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reading the manuscript.
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