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Classical phase diagram ofS=; Ising chains with long-range interactions: Finite-range scaling
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The classical phase diagram of an Ising chainder3 with long-range interaction in the form ofrd/ “ is
determined. The calculation is performed by using the exact value of the critical exponent of the correlation
length,v= 1/, given by the renormalzation-group technique in the classical region, and applying a searching
program based on the finite-range-scaling method. The results for the critical temperature in this approach are
in excellent agreement with those calculated by the extensive Monte Carlo technique. This is strong support for
the range-scaling method in the classical region.
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One of the methods used for the study of the critical propwheres;= —S, ... ,S andJ;;=J/|i—j|**“ in which the lat-
erties of spin chains with long-range interaction is the finite-tice spacing is one unit. TH& 2 factor in the Hamiltonian is
range-scalindFRS technique. This method, which was es- entered as a normalization factor such that the magnitude of
tablished by Glumac and Uzelac in 1988, is constructed irthe large value of each spin is normalized to one. Based on
analogy with finite-size-scalingFSS,* where the range of the FRS method, the critical exponent of the correlation
interaction, instead of the size, is scafeld. this technique a  length, vy, for the chain with a finite range of interactioh
spin chain with a finite range of interaction is exactly solvedcan be determined through the transfer matrjx
by using the transfer-matrix method, and then by the use of

scaling properties and a proper extrapolating technique, the (9 T|s')=8(s,,S1) 8(S3,S5) - - - S(Sn»SN—_1)

critical properties of the actual system are determined. The N

FRS method has been employed to study the critical proper- ,

ties of the one-dimension&=1% Ising modef g-state Potts xex m§=:l KN“mSmSNJ @

model? and recently for thes>2% Ising modet with long-

range interaction. This method can provide acceptable resuland is given as

for the critical temperature and critical exponent of the cor-

relation length for Ising systems with long-range interaction v = IN[EL(DTEL(DT/IN(NIM)—1, 3

in the form of 1f1* 7 in the classical (60<0.5) and the _ P, .

nonclassical (05 o<1) regions. WhereM |s_chosen aiN—1, K_i=(S ,BJ/|. ) and &’ is
In this report, the FRS method is exploited differently andthe derivative of the correlation lengi with respect tot

the phase diagram of th&=1 Ising chain in the classical =(T-T)/T,, in the V|C|n|ty. of the critical temperature of

region is determined with higher precision than in our lastthe System. For the correlation lengiy we have

report® In this approach, the exact critical exponent of the

correlation length in the classical region given by the En= 1

renormalization-groufRG) method (=1/0) is adopted, NTlIn(Ay/Ny)’

and a search through the FRS method for a proper value of )

the critical temperature, which leads to the precise value folVn€rék1 and, are the largest and second-largest eigenval-

the critical exponent, is performed. ues ofT, respectively.

The Hamiltonian of the system under consideration can be The critical exponents for the chain with an infinite
written as range of interaction can be obtained by the least-squares fit-

ting of the vys to the convergence relation

4

H= —572% ‘Jijsisj , (1) Valz V_1+A/NXV, (5)

TABLE |. The critical couplingK.(=1/T.) for different values ofo in the classical region for th&
=3 Ising chain by the traditional FRS methol$§" (Ref. 2 forN=9), K!?) (Ref. 5 for N=20), the more
recent FRS methol ), and by the Monte Carlo simulations methisd"® .

o K K@ K KME)

0.1 0.053307 0.0463 0.047570 0.0476168
0.2 0.094768 0.091583 0.092316 0.0922318)
0.3 0.1375 0.1359 0.13664 0.13610)
0.4 0.1823 0.18127 0.18248 0.1811(3)
0.5 0.2305 0.22947 0.2314 0.229165
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TABLE Il. The calculated value of the critical temperature for w1, g and 2 Ising chains by the more
recent FRS metho@{") and by the traditional FRS techniq@é" in the classical region.

S\o 0.1 0.2 0.3 0.4 0.5

Tg) -I-(CN) Tg) T(CN) T((:T) -I-((:N) -I-((:T) T((:N) Tg) T(CN)
1 14.0 14.06 7.32 7.2801 499 49561 3.78 3.748 3.026  2.991
% 11 11.730 6.03 6.0823 4.16 4.146 3.17 3.143 2.55 2.515
2 9.6 10.5604 5.4 5.47950 3.73 3.737 2.86 2.834 2.30 2.271

used in the FSS method, whekds a constant and,, is the  In the early investigation of the Ising systems using the FRS
convergence exponent of It is obvious that as the tempera- technique by Glumac and Uzelac, the convergence relation
ture in Eq.(3) approaches the actual transition temperature of5) was employed, but the low precision of the results, par-

the system, the critical exponent obtained by &g.through

ticularly for small values ofo, persuaded them to use an-

the fitting procedure approaches its real value. This way, onether convergence relation in the form '=B+A[(N
can design a searching computer program to obtain the tran-1)/N]*, where a better result was deduce@ur results as
sition temperature corresponding to the exact value of th@resented in Table |, which are calculated by employing the

critical exponent of the correlation length predicted by RG
technique in the classical region. Thus, the eigenvaluges
and\ , of the transfer matrix for th&= 3 Ising chain with an
accuracy of 107 are calculated and thefy for five differ-
ent values of the range of interaction up kb=20 is ob-
tained. The inverse transition temperaturgsitical cou-
pling), for different values ofc in the classical region,

FRS technique together with the convergence relat®n
clearly show that calculatingy through Eq.(3) at the exact
transition temperaturgthe temperature given by Monte
Carlo simulations leads to the exact value of d/for the
critical exponent of the correlation length (the value pre-
dicted by RG technigye This excellent agreement strongly
supports the applicability of the FRS technique together with

calculated by our method and those given by the extensive

Monte Carlo simulations technigdere presented in Table I. TABLE III. The calculated values of the critical temperature for
As is seen from the table, the results obtained by our methogmall values ofr by the more recent FRS method, together with the
are in good agreemefvith an uncertainty of less than 1%) corresponding values predicted by the real-space renormalization

with the best available results by the Monte Carlo techniqueyroup method fofa) S=3, (b) S=1, (c) S=3, and(d) S=2.

in the entire classical region, and they are in an excellent

agreementuncertainty is even less than 0.1%) for the lower

(@

half of this region. Although the results for the upper half of o T.(FRS 2lo
this region given by the traditional FRS method are more
accurate than those of our approach, they are not howevar®? 100.95 100.00
reliable in the other half of this region. This can be seen from?-04 sl.127 50.00
Table | where the transition temperature increases in a norf- 34.432 33.333
predictable way ag decreases, such that@t=0.1 it has a 26.059 25.000
value even larger than the upper limit value predicted by the (b)
mean-field theory. It is interesting to note that the results ((S+1)/39)2lr
given by this method, in contrast with those calculated by th . 67.08 66.66
traditional FRS method, are almost insensitive to the rangg o4 34.095 33.333
of interactionN for the lower half of the classical region. 0l06 22'992 22'222
Here the value of the critical temperature for=0.1 in- 0.08 17'415 16.666
creases only less thalh.01% (from 21.06 to 21.021land ' ’ '
approaches the Monte Carlo value as the range of interaction ©
is increased from 9 to 20, whereas this increase, under the (S+1)/39)2lo
same condition, is about 15% as is seen in Table |, where thgg2 55.78 55.55
traditional FRS method is employed. 0.04 28.39 27.77
As was discussed before, the FRS method was corggg 19.166 18.5185
structed in analogy with the finite-size-scaling techniqueg g 14.526 13.888
However, the FSS method is not applicable in the classical (d)
region where the size is an irrelevant scaling paranfeter, (S+1)/39)2ler
whereas the range of interaction is still a good scaling
parametet. Therefore, the similarity between the two tech- 0.02 50.28 50.00
niques disappears in the classical region. As a result, the.04 25.53 25.00
applicability of the convergence relatidb) which has been 0.06 17.245 16.666
proven in the process of establishing the FSS mettisthot  0.08 13.075 12.500

clearly verified by the FRS technique in the classical region
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the convergence relatiof®) in the classical region. In other lower half of the classical region f&> % by the more recent
words, the FRS method in the classical region is quite similamethod to be more reliable than those reported by the tradi-
to the FSS method in the nonclassical region. It should béonal FRS technique as they were 8+ 3 system. Another
mentioned that the large uncertainty in the results obtainegdvantage of the more recent method is with regard to the
by the use of relatior() in the early investigation could computational limit in the evaluation of the results. This limit
have been caused by the use of small valuebl @i those  gepends on the value &fand the range of the interactioN,
Investigation. L _ As the value ofSincreases one has to reduce the maximum
The results foiS>3 using the FRS method and the tradi- ange of the interaction in order to circumvent the problem

tional technique are presented in Table Il. Because of thgf approaching the limit. Since for small valueswothe FRS
limitation of the computer memoijthe required memory for method is less sensitive td, this method would be more

the transfer matrix is in the order of & 1)" units], five  gppjicable than the traditional FRS technique for systems
values forN with the highest values of 13, 10, and 9 r ith S>1 in the lower half of the classical region.
=1, 3, and 2 is considered, respectively. The uncertainty in  The high precision of this method for small valuescof
this calculation depends in a complicated way on the valuesncouraged us to check the predicted valu& & 2/ by a
of Sand o and reduces by decreasing them. The significanteal-space renormalization-group method for 83 Ising
digits of the data were determined by reducing the maximunthaini® The results have been presented in Tabl@)llAs is
value of the range of interaction frodto N— 1. As is seen  seen, our results successfully support this prediction. Similar
from Table I, the results for the small values @fare no- comparison was made for the system with other values of
ticeably different from those reported before using the tradi-The results forS=1 to S=2 are shown in Tables [lb)—
tional FRS technique. 11 (d), respectively. The results show that @sapproaches
Before opening the discussion about the resultsSter, zero, the transition temperature approacf(&st 1)/3S)2/c,
we should point out that, to the best of our knowledge, therevhich is expected in the classical limig,— 0, for different
is not any report on the phase diagramSof 3 Ising chains  values ofS, in analogy with the prediction of the real-space
with long-range interaction, except the one reported by ugroup method foiS= 3. In conclusion, in spite of the inval-
using the traditional FRS techniqd€onsidering the univer- idity of the finite-size scaling in the classical region, our
sality of v (its independence on)Sand the existence of the results with the finite-range-scaling technique strongly sup-
same convergence behavior in the extrapolation procedungort the validity of the FRS method in the classical region as
for different values ofS, one expects that the data in the the FSS does in the nonclassical region.
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