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Three-dimensional domain growth on the size scale of the capillary length:
Effective growth exponent and comparative atomistic and mean-field simulations
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The evolution of diffusively interacting nanoclusters is investigated by combined atomistic~kinetic lattice
Monte Carlo method based on the nearest-neighbor Ising model! and mean-field~numerical integration of the
governing reaction-diffusion equations! simulations. By expressing Monte Carlo parameters in terms of mac-
roscopic thermodynamic quantities a well-defined interface between both methods is derived. Based on exten-
sive Monte Carlo studies of the Gibbs-Thomson equation an explicit expression for the intrinsic capillary
length is presented. Starting with high-temperature quenches, the evolution of nanoclusters is first studied by
the atomistic model. The observed transient dynamics of coarsening is explained uniquely on the basis of the
ratio of the capillary length to the mean cluster size. Using input data from the atomistic model, Ostwald
ripening is also studied in parallel with the mean-field model. In a detailed study, the similarities and differ-
ences of both approaches are discussed and explained in terms of their statistical and deterministic natures. It
is demonstrated that in contrast to the commonly applied linearized version of the Gibbs-Thomson relation in
the mean-field approach only the use of the full exponential form provides a reasonable matching with the
atomistic model.
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I. INTRODUCTION

Recently, nanoclusters have attracted much interest du
their unique physical properties as essentially ze
dimensional objects. This is additionally motivated by th
use in new technological devices, which exploit size effe
on a nanometer scale. For instance, nonlinear optical pro
ties of metallic nanoclusters in insulators are based on
size dependence of the plasmon frequency.1 A further ex-
ample is the use of~semiconducting! nanoclusters in the
thin-gate oxide of conventional transistor structures for no
nonvolatile memory devices.2

A variety of techniques have been developed to prod
nanoclusters in different ambients, e.g., by ion beam syn
sis in near-surface layers of solids.3–5 In most of these meth
ods average properties of~finite! nanocluster ensembles lik
their mean sizêR& and their number densityn can be con-
trolled to a large extent. This knowledge of the general f
tures of nanocluster evolution has been obtained from ex
sive studies of various aspects of phase transforma
phenomena in homogeneous systems. A rather good un
standing of the concepts of nanocluster formation due to
decay of a metastable system has been developed from
oretical studies of~homogeneous! nucleation and growth
mechanisms of second-phase domains.6–8 This has been sup
ported by extensive computer simulations, especially w
Monte Carlo ~MC! methods.9 These atomistic approache
have been used to test the predictions of classical nuclea
theory as well as to study in detail the kinetics of the ea
stages of first-order phase transitions.10–12

The late stage of the evolution of isolated, diffusiona
interacting clusters is commonly described in the framew
of Ostwald ripening~OR!. This process is driven by th
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minimization of the surface energy associated with
precipitate-matrix interface, which causes large clusters
grow at the expense of small ones. A comprehensive the
of OR in three-dimensional~3D! space was first develope
by Lifshitz and Slyozov13 and independently by Wagner14

~LSW theory! in the limit of vanishing volume fractionf
→0 of the minority phase. LSW derived the time depe
dence of OR in the asymptotic limit, which, fort→`, reads
^R&}tm with m51/3 in the case of diffusion control~a simi-
lar relation with growth exponentm51/2 holds in the in case
of interface reaction control14!. Additionally, they predicted a
stationary form of the particle radius distribution~PRD! in
terms of the scaled cluster sizer5R/^R&. As a consequence
of the LSW theory in the late stage of phase separation
physical quantities should depend only on a single len
scalel, e.g., on the average domain size^R& ~scaling hypoth-
esis; see, e.g., the reviews of Furukawa15 and Bray16!. Essen-
tially all later work on coarsening refers to the LSW theo

Based on a global mean-field description, the LSW the
does not take into account explicitly the effects of diffusion
interactions among nanoclusters and the resulting modifi
tions of the governing kinetic equation of cluster growth.
variety of modifications of the original LSW theory hav
been proposed in order to tackle the peculiarities of OR
finite volume fractionsf.0.17–22 Although the derived
growth rates differ, all models agree that the growth exp
nentm does not change in the asymptotic limit. Recently,
an advanced coarsening experiment the predictions for~tran-
sient! OR, i.e., the coarsening rate and the growth expon
have been verified.23

The starting point for most numerical investigations
OR is the multiparticle diffusion equation which has to fulfi
appropriate boundary conditions at the precipitate-matrix
©2001 The American Physical Society22-1
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terfaces. Deriving a solution based on the monopole appr
mation of nanocluster interactions, which corresponds to
suming pointlike sources and sinks for the dissolved pha
the OR characteristics of ensembles of several thousand
cipitates has been studied.22,24–27 Despite particular differ-
ences in the numerical approaches in all these local m
field simulations the LSW-growth exponent for diffusio
controlled ripening has been verified. For appropri
modifications of the precipitate-matrix boundary conditio
also the LSW predictions for reaction-controlled OR ha
been checked.28–30

While MC simulations are the method of choice to stu
the kinetics of first-order phase transitions, there has be
long-standing discussion about the dynamics of these m
els, especially with respect to the predictions of the LS
theory. This is based on the fact that MC methods are c
putationally orders of magnitude more expensive than me
fields models; thus, especially in three dimensions, simula
systems hardly ever reach the coarsening stage, where
application of the LSW theory is justified.

Using the kinetic Ising model@usually restricted to
nearest-neighbor~NN! interactions# MC studies in two
~mostly on a square lattice! ~Refs. 31–34! and three~mostly
on a simple cubic lattice! ~Refs. 35–37 and 10! dimensions
of the growth of minority phase domains in systems w
conserved and nonconserved order parameters have
performed for many years~see, e.g., Guntonet al.9 for a
comprehensive review of the work up to 1983!. Motivated
by available experimental techniques, MC studies on thr
dimensional domain growth first focused on the properties
the structure function~the Fourier transform of the two
particle correlation function!, because phase separating s
tems have been mainly investigated by scattering exp
ments. With the upcoming advent of direct detection syste
for nanoclusters, in particular high-resolution transmiss
electron microscopy, characterizations of ensembles of na
clusters in terms of individual and mean sizes as well as
distributions have become more and more popular.

Using a simple cubic lattice gas model, Penroseet al.38

simulated cluster growth after a quench (T50.59Tc , where
Tc denotes the critical intrinsic temperature, above which
phase transition exists! below the coexistence curve into th
metastable region. For a system with a volume fractionf
50.075 they reported a linear dependence of the crit
nanocluster sizei ! on time for a run of 6000 MC steps
Further MC studies in three dimensions with explicit ana
sis according to the droplet model have been performed
instance, by Lebowitzet al.,10 Kalos et al.,11 and Penrose
et al.,12 who concentrated on a detailed kinetic description
the phase transition. Surprisingly, since the middle 1980s
ther work on domain coarsening in three dimensions us
the kinetic Ising model has been very hard to find.39,40 It is
also noteworthy that essentially all published studies h
concentrated on rather high intrinsic temperatures,
Tc/10&T'Tc . However, as will be shown below, fo
K3DLMC descriptions of a variety of physically and techn
logically interesting phase-separation systems, approp
intrinsic temperatures are in the rangeT,Tc/10.

The purpose of this work is twofold. First we would lik
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to revisit the kinetic lattice MC approach to thre
dimensional domain growth with respect to the dynam
and the effective growth exponentm. We reformulate the
problem by characterizing late-stage coarsening conditi
in terms of the ratioRc /^R&, whereRc denotes the capillary
length. More precisely we present evidence that the effec
growth exponent is a unique function of the ratioRc /^R&
only. Then, based on a well-defined interface between at
istic and mean-field simulation models, by simulating in p
allel the evolution of a particular ensemble of nanoclust
we present the similarities and differences of both a
proaches with respect to OR. It is demonstrated that in c
trast to the commonly applied linearized version of t
Gibbs-Thomson relation in the mean-field approach only
use of the full exponential form provides a reasonable ma
ing with the atomistic model.

The remainder of this paper is organized as follows. S
tion II starts with a description of the atomistic model whic
is followed by the gauging of the MC parameters and en
by an exploration of the Gibbs-Thomson equation and
derivation of an expression for the surface tension. The s
dard mean-field model of OR is introduced in Sec. III. T
results of MC simulations of three-dimensional doma
growth and its dynamic interpretation are presented in S
IV. This is followed by a detailed comparative study of th
evolution of a particular system by both methods.

II. KINETIC THREE-DIMENSIONAL LATTICE
MONTE CARLO METHOD

A. Basic description

In this kinetic 3D lattice Monte Carlo~K3DLMC! ap-
proach a homogeneous, chemically inert matrix is host
atoms of typeA ~the minority phase; quantitatively chara
terized by the volume fractionf), which can be found eithe
as dissolved monomers or as precipitated clusters. In
model the positions of the atoms are defined on a 3D lat
~we use the fcc lattice throughout this work! and for their
kinetics effective NN interactions betweenA atoms are taken
into account. This simplified effective-particle approach a
sumes that theA atoms are embedded in a positio
independent potential of the substrate, which includes all
complex interactions betweenA and matrix atoms.

The thermodynamic properties are described with the h
of the classical lattice gas model, i.e., in the framework
the NN Ising model.40 Here, the Hamiltonian is given byH
52J( i , jCiCj , with occupation variablesCiP$0,1% and a
bond strengthJ.0 effective only for NN pairs. Since any
NN bond is shared by two atoms, the potential energy o
particular atom is given byEp52nJ/2. This implies a bind-
ing energy of a bulk atomEb52jJ/2, wherej512 is the
fcc coordination number.

The activation energyEA denotes the diffusion barrie
governing a single NN jump of an impurity atom. In ou
model both the matrix diffusion of a free monomer and t
surface diffusion of an adatom on a precipitate surface
controlled by the same activation energyEA .

Using the Metropolis algorithm,41 the probability for an
atom to jump from sitei to an empty NN sitef is
2-2
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Wi f 5H t0
21exp$2EAb%, nf>ni ,

t0
21exp$2@EA1~ni2nf !J#b%, nf,ni ,

~2.1!

where G05t0
21 denotes the frequency of jump attemp

n( i , f ) represents the number of NN bonds at the two si
andb5(kBT)21.

In order to reduce simulation time it is convenient
allow every diffusion attempt, i.e., W̃i f 5Wi f /(t0

21

exp$2EAb%), which renormalizes just the time scale of th
model. With the notatione5Jb this leads to the dimension
less transition probability

W̃i f 5min„1,exp$2~ni2nf !e%…, ~2.2!

and the quantityt5t0exp$EAb% defines the time scale of
MC step. In cases whereni.nf holds~i.e., transitions, which
are energetically not favored!, the jumps are nevertheles
allowed if a random number chosen from the interval@0,1# is
less thanW̃i f .

In this work a MC step is defined by a sequence ofN
jump attempts of statistically independently chosen ato
out of the full set ofN atoms. If for a single jump attempt th
randomly determined NN siter f is already occupied, anothe
randomly chosen atom is checked for a possible jump.

Since each lattice site is completely defined by its oc
pation state, only a single bit is needed to represent e
position. Thus the K3DLMC method can be implement
very efficiently on the basis of bit manipulations42,43 in order
to perform jump attempts of atoms, the core procedure of
code. Furthermore, using a double-bookkeeping strateg
bit and coordinate space to keep track of the positions of
impurities, this code~not parallelized! allows the simulation
of reasonably sized systems on current top-level work
tions.

Constructing our fcc lattice from an underlying simp
cubic structure, our simulation cell has~100! symmetry. The
lengths of the sides of the simulation cell are expresse
terms of the fcc lattice constanta, i.e., Li52nja, j
P$x,y,z%. The discretization of the box volume in powers
2 has advantages concerning the implementation of peri
boundary conditions.40

For the extraction of simulation data~mainly the size and
space distribution of the nanoclusters! the whole simulation
volume is scanned for the lattice positions of the atoms.
instance, if a lattice site is occupied, a recursive proced
checks allj512 NN positions for further atoms. After th
scan the numbers of monomers, dimers, trimers,. . . , or any
agglomeration of interconnected atoms are known. Furt
more, the position of each nanocluster is calculated, whic
defined as the center of mass of its atoms~with appropriate
translations at periodic boundaries of the simulation box!.

In this work the size of a cluster is given by the numbei
of atoms it consists of. This standard Ising droplet mode
justified at low temperatures@T considerably below the in
trinsic critical temperatureTc , i.e., e considerably larger
thanec50.1021~Ref. 44!# and concentrations below the pe
colation threshold. Alternatively and more useful for t
comparison of K3DLMC results to the LSW theory, the si
24542
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of one ~equilibrated! nanocluster is approximated by the r
dius of the smallest possible sphere which allows one
accommodate the number of its atoms on regular lattice s
For a fcc lattice this relation is given by

4p

3
R35 iVa5 i

a3

4
, i @1, ~2.3!

whereVa denotes the atomic volume. However, the proble
arises to define a lower limiti l of nanocluster size, because
monomer can hardly be considered as a nanocluster. In
work the ~arbitrary, temperature-independent! choice i l56
has been used.

It should be noted that this procedure of a spherical cl
ter approximation does a very poor job in the case of t
coalescing precipitates. In this case the analysis of the ra
inhomogeneity of a nanocluster helps to some extent to
veal its shape. For this purpose the normalized mean-sq
distanced from the center of mass of the nanocluster h
been introduced, which is defined as~analogous to the mo
ment of inertia!

d5
1

R2 (
i 51

NNC

~r2r i !
2. ~2.4!

Here,R denotes the radius of the nanocluster@as determined
by Eq.~2.3!#, r is the center-of-mass coordinates of the clu
ter, and the summation is to be taken over all atoms c
nected to the cluster.

Recordingd for each nanocluster during the K3DLMC
simulation provides a means to check, for instance, the r
tive contribution of coagulation to nanocluster coarseni
This can be done, because in the case of two touching
cipitates the shape parameterd considerably exceeds th
value of an octahedral-like cluster,45 which is the low-
temperature equilibrium cluster shape on a fcc lattice.46

B. Gauging of simulation parameters

Modeling phase-separation phenomena by combined
mistic and mean-field simulations requires a well-defined
terface between both methods. Therefore, the free simula
parameters of the model, i.e., the activation energy for dif
sionEA and the energyJ of a NN bond between atoms, hav
to be defined in terms of macroscopic thermodynamic
pressions.

The basic length scale of our K3DLMC model is the la
tice constanta of the fcc lattice, on which the atoms diffus
and may condense to precipitates or form other kinds
nanostructures. For system-specific K3DLMC simulatio
the value ofa is accessible by x-ray diffraction measur
ments at samples containing reasonably large nanocluste
simply by taking tabulated bulk values.

1. Diffusion coefficient and time scale

The intrinsic diffusion coefficient of the K3DLMC
method and the time scalet of a MC step are coupled to th
experimentally measured diffusion coefficientDexpt

5D0exp$2EA
expt(T)b%. The last expression assumes that c
2-3
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tain temperature intervals exist, where diffusion is govern
by a single activation energyEA

expt(T). Both Dsim andt are
derived within the framework of the random walk theory
diffusion ~see, e.g., Ref. 47!, which assumes independence
successive diffusion steps. The diffusion coefficient for p
ticles on a lattice, which are only allowed to migrate to N
positions, is given by47

D latt5Ga2/j, ~2.5!

where G5t21 is the effective jump frequency andj512
denotes the corresponding coordination number of the
lattice. Note that the jump frequency is the product of t
frequency of jump attemptsG0 times a temperature
dependent probability, i.e.,G5G0exp$2EAb%.

It is convenient in kinetic MC simulations to normaliz
the event with the highest probability to unity, which in th
current model corresponds to allowing every possible~bulk
or surface! diffusion attempt. This reduces the normaliz
K3DLMC diffusion coefficient to a purely geometric quan
tity, i.e., Dsim5D latt /G5a2/j.

With the help of the Einstein relation47 the diffusion
lengths are related by

A2Dexptt5x5A2D latttk5A2Dsimk, ~2.6!

wherek denotes the number of MC steps. The last equa
is valid in the asymptotic limit, i.e., fork→`.

With the help of Eq.~2.6! the time constantt or, equiva-
lently, the jump frequencyG can be obtained:

t5
a2/j

D0exp$2EA
exptb%

. ~2.7!

Thus, due to the temperature-dependent diffusion coeffici
one MC step can correspond to time intervals, which m
differ by orders of magnitude. The total number of MC ste
times the duration of a single MC step determines the ph
cal time scale which can be modeled by the K3DLM
method, i.e.,t5tk.

2. Nearest-neighbor bond strength and solubility

Within the framework of the lattice gas model the value
the NN bond strengthJ can be gauged by the solubility o
the atoms in the matrix. In the following it is assumed th
the solubility can be described~at least in a well-defined
low-temperature regime! by an Arrhenius lawc`5c`

0 exp
$2ESb%, whereES is the activation energy for the dissolu
tion of one monomer andc`

0 a temperature-independent co
stant.

The underlying idea is to determine the temperatu
dependent concentrationc of dissolved atoms which are i
equilibrium with a flat interface of the bulk phase of th
material. The initial setup for this simulation approach co
sists of a layer of atoms, which acts as the conden
phase.48 If the layer extends fromz1 to z2, its ‘‘bulk’’ behav-
ior is achieved by keeping the atoms atz5z2 fixed at their
positions@see Fig. 1~a!#. Applying periodic boundary condi
tions in the x and y directions and preventing diffusio
through the boundary atz0, the minimization of the corre-
24542
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sponding thermodynamic potential drives the evolution
the system. This particular setup represents a canonica
semble~the simulation volumeV, the number of atomsN,
and the temperaturee are fixed!; thus the free energyF
5U2TS will be minimized. It follows that both subsystem
~i.e., the ‘‘gas’’ of dissolved monomers and the bulk phas!
evolve under the constraint of maintaining equal chemi
potentials, and thus phase equilibrium is obtained.

In a series of simulations for different values ofe the
averaged number of dissolved atoms65 is determined after the
configuration has reached equilibrium. For this purpose,
evolution of the system was followed for 43106 MC steps.
This period was divided into 500 equidistant time interva
where at the end of each of the last 400 intervals the num
of dissolved atoms was recorded. The corresponding a
aged concentrations normalized with respect to the fcc
cell are given in Fig. 1~b!.

The relation between concentration and scaled temp
ture has been established with the help of the Arrhenius fo

c`~e!5A exp$2Be%. ~2.8!

The fitted values of the constants readA5(4.0260.07)a23

andB5(5.9960.01). The fitted slopeB corresponds to half
the fcc coordination number (j512). Therefore, the tota
binding~i.e., sublimation! energy of a monomerEb52BJ is
equivalent to the activation energy2ES for its dissolution.
This allows us to gauge the NN bond strength according

J52ES/j, ~2.9!

which introduces an absolute temperature into the K3DLM
model. The last equation is expected to hold on other latti
~e.g., bcc or simple cubic lattices! as well, if the correspond-
ing lattice coordination numberj is adjusted properly.

Furthermore, we note that in the limitT→`, the bulk
density is reached, because the parameterA is equal to the
number of atoms per fcc unit cell. The extrapolation towa
T→` is only defined for temperatures below the intrins
critical temperatureTc , which is usually above the physica
melting or sublimation temperatures.

FIG. 1. Intrinsic solubility properties of the K3DLMC mode
The snapshot of~a! obtained after 23106 MC steps fore51.75
indicates the simulation setup in (100) geometry. The Arrhen
plot in ~b! shows the temperature dependence of the solubility
monomers.
2-4
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The nature of the coexistence of phases is defined by
thermodynamic properties of the interface. Since it is kno
that at a certain temperatureTR'Tc/2, there is a roughening
phase transition from a smooth to a rough interface~with
diverging interface correlation length; see, e.g., Refs. 49
50 and references therein!; the above check of the principl
of detailed balance is furthermore restricted to the reg
T,TR.

According to the critical temperature of the fcc kinet
Ising model in Fig. 1~b! the c(T) phase diagram has bee
computed in the~normalized! temperature range 0.0408Tc
,T,0.0817Tc far below any critical phase transition. I
this temperature regime physically reasonable solub
properties are observed. It should be noted that equilibr
conditionsindependentof the (100) phase boundaries ha
been achieved.

In order to apply the K3DLMC method for modeling th
evolution of physically and technologically interesting sy
tems~e.g., nanocluster formation of excess metallic or se
conducting impurity atoms in SiO2) reliable values of the
materials parameters have to be known. Taking the solub
as an example, typical values for the activation energy
dissolution are in the range 0.5 eV&ES&3.0 eV. For in-
stance, modeling a system characterized byES51.0 eV at
700 °C or 1000 °C, the corresponding scaled bond stren
reade'2 ande'1.5, respectively. Tabulated values of sol
bilities (c`

0 ,ES) are usually the result of fits to measured da
points within a restricted temperature regime. Therefore,
ues ofc`

0 differing from the bulk density by orders of mag
nitude @e.g., the widely accepted solubility of Co in crysta
line Si readsc`51026exp$2(2.83 eV)b% cm23 ~Ref. 51!#
are not contradictory, but provide difficulties with respect
gauging ofJ in K3DLMC simulation approaches.

C. Intrinsic properties of the model

1. Gibbs-Thomson relation

A connection between atomistic and thermodynam
quantities is established by the Gibbs-Thomson~GT! rela-
tion, Eq. ~2.10!, which defines the equilibrium monome
concentrationc around a spherical nanocluster of radiusR:

cGT~R!5c`expH Rc

R J , Rc52sVab. ~2.10!

The capillary lengthRc is proportional to the surface tensio
s.

In order to exploit Eq.~2.10! it has first to be shown tha
the K3DLMC method reproduces the GT relation. This h
been done by a series of simulations, where a nanoclust
a specific size~‘‘radius’’ R) is put in a simulation box of
volume V52nx1ny1nza3 with V1/3@R @Fig. 2~a! shows the
simulation setup#. Like in the case of the flat interface simu
lation, this highly artificial initial configuration will evolve a
finite temperatures to a state with phase equilibrium betw
dissolved monomers and thecurved bulk phase boundary
~see also Ref. 52!. For the analysis, averaged over a period
2.53106 MC steps@for the three highest values ofe in Fig.
2~b! the averaging was over 7.53106 MC steps# the number
24542
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of dissolved monomers is determined which are in equi
rium with this precipitate.53,54 For the following analysis the
radius of the nanocluster is derived according to Eq.~2.3!.

Figure 2~b! shows the averaged simulated equilibriu
monomer concentrations for several temperaturese as a
function of the cluster size. Two properties of the model c
be deduced.

~i! The K3DLMC method excellently reproduces the G
relation even for very small nanoclusters.

~ii ! By extrapolating for a givene the GT relation to a flat
interface~i.e., R→`) the intersection of a fit with they axis
determines the solidus concentration.

Furthermore, by plotting the values of the solidus vers
the simulation parametere @Fig. 3~a!# the solubility can be
derived. Applying Eq.~2.8! to the simulation results one ob
tainsAGT5(3.6460.08)a23 andBGT5(5.9360.02), which
is in good agreement with the results of the flat-interfa
analysis. While one could argue that the flat-interface sim
lations are influenced by the specific choice of (100) ph
boundaries, the agreement of both simulation results is
dence that the interface orientation of the phase bound
does not effect intrinsic properties of the K3DLMC mode

It should be noted that the GT relation is supposed to
valid also for concave interfaces. For instance, the mono

FIG. 2. In ~a! the GT simulation setup~volume of simulation
cell (64a)3, periodic boundary conditions! is shown. In~b! MC
simulation results are plotted~data points denote averages over
3106 MC steps!. From top (e51.25) to bottom (e52.5) the tem-
perature has been changed in intervals ofDe50.125.
2-5
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STROBEL, HEINIG, AND MÖLLER PHYSICAL REVIEW B 64 245422
concentration in a spherical cavity of radiusR within the
bulk phase should be given by Eq.~2.10! after performing
the transformationR→2R ~see Fig. 4!. In the particle pic-
ture, a positive~negative! curvature corresponds to a conve
~concave! phase boundary. In the vacancy picture, the eff
tive surface curvatures are reversed, i.e., convex↔ concave.
Furthermore, due to the symmetry of the Ising Hamilton
with respect to a particle-vacancy interchange@i.e., Ci→(1
2Ci)#,

66 the surface tension transforms appropriately. T
particle-vacancy symmetry is reflected in the GT relation
Fig. 4. As an implication, the product of the averaged mo
mer and vacancy concentrations outside and within a na
cluster is constant, i.e.,ccV5c`

2 .

FIG. 3. In ~a! the solubility properties are derived using resu
of the extrapolated solidus obtained by the GT simulations of Fig
In ~b! the fitted capillary lengths are plotted vse; the critical point
of the fcc lattice is denoted byec .

FIG. 4. Generalized GT relation of the Ising model relating t
equilibrium monomer and vacancy concentrationsc andcV to con-
vex and concave phase boundaries, respectively.
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2. Capillary length and surface tension

A further analysis of the GT data allows us to deri
explicit expressions for the capillary lengthRc and the effec-
tive surface tensions. Plotting the fitted capillary lengths
Rc

GT versus the scaled bond strengthe @see Fig. 2~b!# a linear
dependence is observed, i.e.,

Rc~e!5Rc01zae. ~2.11!

According to the least-squares fit the constants are given
Rc05(20.3260.09)a andz5(2.1960.05). The zero of the
capillary length at a finite temperature~more precisely atT
5Tc) is a prerequisite of the fact that the surface tens
vanishes at the critical point.55,56This condition is reasonably
satisfied by thelinear extrapolation of the simulation results
However, close to the critical point the surface tension
lattice models is known to vanish likes}(12T/Tc)

2n with
nÞ1/2 @for instance, the critical exponent for the simple c
bic lattice is known to ben'0.6 ~Ref. 56!#.

According to the standard terminologys denotes the in-
terface free energy per unit area. Therefore, the surface
sion cannot be obtained directly by counting the avera
number^NJ& of broken bonds of the cluster surface atom
and dividing this value by the mean~spherical! surface area
^S&. Having in mind that the surface tension is composed
an internals I and entropicsE part ~i.e., s5s I1sE), this
approach would just specifys I . The entropic partsE ac-
counting for the number of different states in phase spac
not accessible by this method.

With the help of the relationRc52sVab5(2sVa/J)e
@see Eq.~2.10!# for the capillary length, the surface tension
coupled to the NN bond strengthJ according to

s5
J

2Vae
~Rc01zae!5

2J

a2 S Rc0

ae
1z D , ~2.12!

where 4Va5a3 has been used. The last equation establis
a spherically averaged effective surface tension of a na
cluster, while usually macroscopically measured surface
sions are defined with respect to a specified interface or
tation. Moreover, the temperature dependence ofs ~at least
in the simulated temperature regime! is given by Eq.~2.12!,
indicating a limiting values→sT0

52zJ/a2 for vanishing
temperature. In comparison with the surface tensions of
principal fcc surfaces,sT0

is slightly larger than the zero

temperature values I(110)56/A2J/a2.
Within the framework of classical nucleation theory,6–8

Eq. ~2.12! can be used to calculate the critical size and
minimum reversible energy needed to form a cluster, giv
that the initial supersaturation is known.45

III. MESOSCOPIC MODELING OF OSTWALD RIPENING

A. Ostwald ripening: Basic theory

Here, a short summary of the LSW theory of OR
presented.13,14 In their global mean-field theory an ensemb
of nanoclusters is described by the time-dependent P
function f (R,t), wheref (R,t)dR denotes the number of par

.

2-6
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ticles per unit volume which have a radius betweenR and
R1dR. Accordingly, the nanocluster density, normalized
unit volume, is given byn(t)5* f (R,t)dR.

In the limiting case of a highly dilute system the precip
tates are assumed not to interact directly. This implies tha
clusters are embedded in thesameaverage monomer concen
tration c̄. In this case, the evolution of a single cluster~in the
regime of diffusion controlled OR! is given by

dR

dt
52

DVa

R
@ ĉ~R!2 c̄#. ~3.1!

Here, ĉ(R) denotes the equilibrium monomer concentrati
of a cluster of radiusR, for which usually the GT relation is
inserted. The mean concentrationc̄ is associated with a spe
cific nanocluster radiusR!, which can be expressed via th
GT relation as a function of the solubility and capilla
length. Since precipitates larger thanR! will grow, whereas
those being smaller will shrink, this radius is called the cr
cal radius of the ensemble. It should be noted that only in
case of diffusion-controlled OR, which we discuss here, d
the relation^R&5R! hold.14,28

With the help of the linearized GT relation

cLSW~R!5c`S 11
Rc

R D , ~3.2!

the single-cluster growth law, Eq.~3.1!, can be rewritten as

dR

dt
52

DVac`Rc

R2 S 12
R

R!D . ~3.3!

Combining Eq.~3.3! with the continuity equation forf in
size space and taking material conservation into acco
LSW derived the following power laws for the critical radiu
and the cluster density~in the limit of diffusion control! ~Ref.
13 and 14!:

^R&~ t !5^R&0S 11
t

tdiff
D 1/3

, ~3.4!

n~ t !}t21 for t@tdiff . ~3.5!

The characteristic time constant of diffusion-controlled O
is given bytdiff59^R&0

3/(4c`DVaRc), where^R&0 is the ini-
tial critical radius. Furthermore, the LSW theory predicts th
the PRD, if scaled by the mean radius^R&(t), has a charac-
teristic stationary form~see Refs. 13 and 14 for the corr
sponding analytical expressions!.

For nonvanishing volume fractions the LSW theory is
longer strictly valid, because the long-range diffusion fie
start to overlap. As a consequence, the monomer conce
tion around a nanocluster is now influenced by the prese
of neighboring precipitates, which modifies the single-clus
growth law, Eq.~3.1!. On the basis of extensive studies in t
casef.0 it has been shown,18,21,22that the power laws, Eqs
~3.4! and~3.5!, are still valid, whereas the characteristic tim
constanttdiff and the PRD become a function off.
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It should be stressed that the LSW theory is based on
linearization of the GT relation@see Eq.~3.2!#. Thus care has
to be taken by applying the LSW theory to systems, wh
^R&@Rc is not valid. As Fig. 5 indicates, the exact GT rel
tion gives much higher equilibrium concentrations forR
&Rc , thus nanoclusters in this regime tend to dissolve m
rapidly than the LSW theory predicts. Consequently, as w
be shown below, nanocluster ensembles with^R&&Rc are
governed by a~transient! dynamics, which may considerabl
differ from the LSW predictions, Eqs.~3.4! and ~3.5!.

B. Rate-equation simulation of Ostwald ripening

An appropriate framework for simulation studies of OR
a local mean-field description first derived by Voorhees a
Glicksman~VG!,24,25 who treated the interacting precipitate
as fixed-point-like sources characterized by a~fictitious! ra-
dius.

The starting point for this approach is to solve the statio
ary diffusion equation¹W 2c(r ,t)50 defined in the multiply
connected space outside the precipitated phase. The con
tration field has to fulfill appropriate boundary conditions f
the monomer concentration at each phase bound
c(r )u ur2r i u5Ri

5 ĉi and additionally limur u→`c(r )5cu . Con-
sidering the characteristic time scales one generally lose
information in neglecting the time derivative of the diffusio
equation. This is due to the fact that the time scale involv
in the precipitate growth is usually much larger than that
the diffusional accommodation of the monomer concen
tion to the existing precipitate pattern.

The concentration field can be expressed as a sum
multipole expansions,

c~r !5cu1
1

4pD (
i 51

N

(
l 50

`

(
m52 l

l Yl
m~u i ,f i !Mil

m

ur2r i u l 11
, ~3.6!

using the common notationYl
m to denote the spherical har

monics. The multipole momentsMil
m , which take into ac-

count the diffusional nanocluster interaction, can be obtai

FIG. 5. Comparison of the equilibrium monomer concentrat
of a nanocluster of radiusR according to the exact@Eq. ~2.10!# and
linearized@Eq. ~3.2!# GT relations.
2-7
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by integration over the~spherical! surface of thei th precipi-
tate using the orthogonal properties of the spherical harm
ics involved.

In this approach, like in the original VG model,24,25OR is
described on the basis of the monopole approximation of
~3.6!, which is a reasonable approximation for small volum
fractions@f,0.1 ~Ref. 57!# of the minority phase. Recently
more advanced approaches included higher-order~dipole,
. . . ) terms of nanocluster interaction, which account for m
gration and spherical shape deviations of precipitates.58,27

In the monopole approximation the source strengthsQi

5Y0
0Mi0

0 can be obtained from a linear system of equatio

Qi54pDRiF ĉ~Ri !2
1

4pD (
j Þ i

N
Qj

ur i2r j u
2cuG . ~3.7!

Please note that the last expression has been derived i
limit of diffusion-controlled ripening, whereas, more gene
ally, the source strengths can be obtained for any degre
diffusion or reaction control.29,30Additionally, for studies of
homogeneous OR one usually assumes material cons
tion, i.e.,( iQi50, which fixes the value of the free param
eter cu . In order to avoid boundary effects in studies
homogeneous OR, a three-dimensional periodic extensio
the nanocluster ensemble is considered. In this case,
source strengths are computed with the help of Ewald s
mation.

The individual source strengthsQi determine the evolu-
tion of the precipitates:

4p

Va
Ri

2~ t !
dRi~ t !

dt
52Qi . ~3.8!

Equation ~3.8! and the diffusion equation form a couple
system of differential equations controlling the evolution
the precipitates.

The local mean-field character of this approach is clea
seen in Eq.~3.7!, since the source strength of thei th precipi-
tate is proportional to the difference between its own eq
librium concentration and the superposition of the result
mean concentrationcu and the concentration fields caused
all other nanoclusters. The evolution of individual precip
tates is mainly determined by the diagonal elements of
~3.7!, whereas the off-diagonal elements account for the c
pling of nanoclusters. It should be noted that in the limitf
→0, i.e., ur i2r j u→`, the LSW growth law, Eq.~3.1!, for a
single precipitate is obtained.

While the linearization of the GT relation is an essent
ingredient of the LSW theory, in the numerical model eith
the linearized or exact form can be used for the implem
tation of Eq.~3.7!. In the former case all physical quantitie
can be absorbed into the time scale; thus OR is only dep
dent on the geometry, i.e., on the coordinates$r i% and radii
$Ri% of the nanoclusters. Using Eq.~2.10! in order to com-
pute the equilibrium monomer concentration of the nanoc
ters, the evolution of an ensemble of nanoclusters will
general depend on the capillary length, more precisely on
ratio Rc /R!(t).
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The rate-equation approach needs as essential inpu
coordinates$r i% and radii $Ri% of the nanoclusters. Taking
into account statistical properties of nanocluster ensem
~e.g., spatial correlations and size distributions! the input
data can be generated artificially. However, a more prom
ing option is to use data sets obtained from a subseq
K3DLMC simulation.53

The simulation is discrete in time; i.e., at each time s
Dt, first the linear system of equations~3.7! extended by one
equation fixingcu is solved. Then the change in radius due
the actual value of the source strengths is evaluated with
help of a linear approximation of Eq.~3.8!. With the new
radii obtained the procedure is repeated. The time intervaDt
can be chosen to some extent arbitrarily as long as mat
conservation is not violated.59

At the end of this section we would like to make a com
ment concerning finite-size effects, since in the course o
OR simulation run the density of clusters decreases. Wit
an ensemble of nanoclusters, the diffusional screen
length60

lD~ t !5
1

A4pn~ t !^R&~ t !
~3.9!

defines the length scale of nanocluster interactions. Sin
monomer detaching from a nanoclusters is very likely
migrate to a nearby precipitate on his random walk,lD de-
notes the distance beyond which the diffusional interactio
screened by the remaining ensemble a nanocluster is em
ded in. Thus the OR simulations have to be checked
self-interactions of nanoclusters are avoided in cases w
periodic boundary conditions are applied.

IV. SIMULATION RESULTS AND DISCUSSION

A. Monte Carlo simulations of homogeneous Ostwald ripening

1. Conventional coarsening analysis

In order to analyze the properties of the K3DLMC mod
with respect to OR, in a series of simulations on a fcc latt
systems with volume fractionsf50.01 have been studied
We used a system size ofV5(128a)3 and applied periodic
boundary conditions. Starting with instantaneous hig
temperature quenches to five different temperatures~namely,
eP$1.25,1.5,1.75,2.0,2,25%) the evolution of the atoms ha
been monitored over a period of 43106 MC steps.

Figure 6 shows the evolution of the nanocluster dens
n(t) and the mean radiuŝR&(t). In these plots for each
value of e the average of five independent runs has be
used. Size-dependent effects should not have influen
these simulations, since the largest diffusional screen
length of this series@as obtained by Eq.~3.9!# for e51.25 is
lD'42a. This value is considerably below the linear dime
sion of the simulation volume; thus self-interaction effec
are negligible.

Care has to be taken in order to extract the growth beh
ior, since a fit assuminĝR&}tm is only justified for late
times of phase separation. According to Eq.~3.4! this implies
that the analysis should start at timest@tdiff from which the
2-8
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relation^R&(t)@^R&0 follows. Due to the quench, the initia
system consisted entirely of monomers; thus for an appl
tion of the LSW theory the mean radius has to be large w
respect toR0'0.39a. Assuming that this requirement is fu
filled ~at least in the end of the simulations!, least-squares fits
performed in the time interval 13106,t,43106 MC steps
yield growth exponentsm(e51.25)50.19, m(e51.5)
50.26, m(e51.75)50.23, m(e52.0)50.19, and m(e
52.25)50.17, respectively. These results would indicate
temperature dependence of ripening~the data fore51.25
show a very bad statistics!, which is not predicted in the
LSW theory@Eq. ~3.4!#.

More insight into the dynamics of the K3DLMC metho
is gained by plotting the widths of the PRDs, defined as

v~ t !5A^@R/^R&~ t !21#2&, ~4.1!

as can be seen in Fig. 7~a!. Figure 7~b! shows the PRD for
e52 obtained after 23106 MC steps. While the size distri
bution is in reasonable accordance with the stationary fo
~LSW! of the PRD of diffusion-limited OR, it is on the av
erage somewhat smaller and seems to be more symm
Since the quasistationary form of the PRD is directly coup
to the growth law, the on-the-average smaller widthv as
compared to the result of the diffusion-controlled LSW r
gime is in line with the observationm,1/3. But how can the
observed OR behavior be explained consistently?

FIG. 6. Using double-logarithmic scales the evolution of t
density of nanoclusters and of the mean radius are shown in~a! and
~b!, respectively. In the ln(n)-ln(t) plot, from bottom to top the
curves correspond toe5$1.25,1.5,1.75,2.0,2.25%, whereas the re-
versed order is valid in the ln(^R&)-ln(t) plot.
24542
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2. Effective growth exponent

A more careful analysis reveals that the simulated coa
ening data cannot be analyzed in the framework of the s
dard LSW theory, because Eq.~3.3! is based on the linear
ization of the GT equation@i.e., use of Eq.~3.2! rather than
Eq. ~2.10!; see also Fig. 5#. This is, however, not justified for
the rather small nanoclusters of the current simulatio
which becomes obvious by comparing the range of the m
nanocluster radiuŝR&, as obtained by the simulations, to th
corresponding capillary lengths. According to Eq.~2.11! the
capillary length varies betweenRc(e51.25)'2.42a and
Rc(e52.25)'4.61a. Thus for the lowest temperature of th
simulation series (e52.25), the mean domain size has on
grown up to the order of the capillary length, whereas for
highest temperature (e51.25) the ratioRc /^R& has become
small at the end of the simulation; a linearization of the G
relation would be justified in modeling this ensemble atlater
times.

Since in all simulations of this series the LSW requir
ment Rc /^R&!1 is not satisfied, coarsening should be an
lyzed with respect to an effective growth exponent accord
to the growth laŵ R&(t)5A1Bt1/3. This approach has bee
motivated by domain growth studies in the two-dimensio
case.33,34 Without discussing the capillary length of th
square lattice, these authors proposed an effective gro
exponent

FIG. 7. In ~a! the evolution of the widthsv of PRD’s corre-
sponding to the simulations for the three lowest temperature
Fig. 6 are shown. As a reference the widths of both the limit
distributions of the LSW theory~Refs. 13 and 14! are added, which
readvdiff50.215 andv reac50.333, respectively. In~b! a histogram
of the PRD of a single run fore52 obtained after 23106 MC steps
is shown~with r5R/^R&; both stationary PRD’s of the LSW theor
have been added!.
2-9
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meff5
1

3
2

C

^R&~ t !
:5

d$ ln@^R&~ t !#%

d@ ln~ t !#
. ~4.2!

Thus an analysis of the growth behavior has been perfor
using an appropriate implementation of Eq.~4.2!, i.e.,
meff(t f)5 ln@^R&(tf)/^R&(ti)#/ln(tf /ti) with t f /t i5k. The value
of k is not predefined; it should be chosen in a way to
clude fluctuations, but guarantee ‘‘local’’ time in this discre
implementation of the derivative of Eq.~4.2!.34 Figure 8~a!
shows the results of the corresponding analysis fork54.
Although there is an unequivocal trend towards the va
m(^R&→`)51/3, unfortunately the large scatter in the da
can only provide evidence for this limiting theoretical valu
Please note that the scatter in the data qualitatively rem
unchanged in the tested regimekP$2,3,4,5,6%.

Obviously a good statistics is needed in order to obtai
smooth dependence of^R& on t ~Amar et al.34 used 100 in-

FIG. 8. Effective domain growth exponentsmeff of the
K3DLMC model for k54 with data points in the ranget>5
3105 MC steps.~a! Simulation results based on Eq.~4.2!. ~b! Re-
plot of meff as a function of the dimensionless parameterRc /^R&.
~c! Exponential as well as linear and quadratic fits accord
to Eq. ~4.3!.
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dependent runs in their study of the two-dimensional ca!.
In the present study, however, averaging over five indep
dent runs per temperaturee does not even provide a mono
tonically increasing mean cluster size.

Having a closer look on Fig. 8~a! one observes that th
effective growth exponents seem to depend on tempera
i.e., do not tend to converge onto a single curve. More p
cisely, for a given mean cluster size^R&0, the larger the
temperatureT, the larger is the exponentmeff . This tempera-
ture behavior is similar to that of the inverse capillary leng
so it is tempting to assumeC}Rc . In Fig. 8~b! the effective
growth exponents are replotted as a function ofRc /^R&. Two
features can be observed:~i! Despite the considerable scatt
in the available data all points seem to converge onto a sin
curve;~ii ! the effective growth exponent has a nonlinear d
pendence onRc /^R& in the computationally explored regim
Rc /^R&*1/2.

At a first glance, the dependence ofmeff on Rc /^R& looks
like an exponential decay. However, a fit according tomeff
51/3exp$2C8(Rc /^R&)% provides only a very poor approxi
mation, only slightly better than a linear fit@see
Fig. 8~c!#. Therefore, using the notationC̃i5Ci /Rc

i and R̃i

5@^R&/Rc#
i , the effective growth exponent is approximate

as

meff5
1

3
2(

i 51

M
C̃i

@R̃~ t !# i

. ~4.3!

Figure 8~c! shows the result of a least-squares fit to the d
using Eq.~4.3! up to second order (M52). Obviously, a
much better accordance is obtained as compared to a li
model. However, this attempt resulted in a coefficientC̃2
,0 which would indicate the existence of a minimum of t
effective growth exponent. This is not supported by the c
rent data nor is there any physical reason known to the
thors assuming such a behavior.

Nevertheless, it would be of interest to study the dyna
ics of coarsening at very low temperatures, i.e., in the reg
Rc /^R&@1. Such large values can be extrapolated beca
in this regimeRc is roughly proportional to 1/T @see Eq.
~2.11!# and the stable cluster size decreases with decrea
temperature~with a dimer as the logical lower bound!. At
least as long as the GT relation@Eq. ~2.10!# describes cor-
rectly the equilibrium monomer concentration of a clust
the dynamic growth exponent can be expected to decre
further with an increasing value ofRc /^R&.

In conclusion, Figs. 8~b! and 8~c! provide evidence tha
the effective growth exponent is a unique function of t
ratio Rc /^R&. In reverse, this means that a measure ofmeff in
a homogeneous system of diffusively interacting nanocl
ters provides some hint onto the value of the capillary leng
For instance, from a valuemeff'0.2 it follows ~see Fig. 8!
that the mean size of the clusters is approximately equa
the value ofRc . Furthermore, in this regime characterist
PRD’s are on the average smaller and more symmetric t
the corresponding LSW-PRD of the diffusion limited ca
~see Fig. 7!.

g
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THREE-DIMENSIONAL DOMAIN GROWTH ON THE SIZE . . . PHYSICAL REVIEW B 64 245422
In addition to further theoretical efforts more simulatio
data are needed to address such questions as~i! the behavior
of meff in the regimeRc /^R&.1 and~ii ! the physical inter-
pretation of the constantC1 /Rc in the limit Rc /^R&→0. This
temperature-independent quantity might have the meanin
a geometrical constant. Similar simulations in other dim
sions, and their consistent interpretation, could help to cla
this conjecture.

3. Discussion of alternative phase-separation models

Although the dependence of the effective coarsening
namics on the ratioRc /^R& seems to offer a reasonable e
planation for the observed growth exponents, there migh
additional factors influencing the system evolution. Since
K3DLMC method automatically includes the migration
nanoclusters, it is tempting to analyze, if the nanocluster
namics can be brought into accordance with the Bind
Stauffer theory of cluster growth.61–63 In their model the
cluster evolution proceeds mainly via coagulation rather t
monomer evaporation and condensation. Therefore, coar
ing occurs via coalescence of diffusing nanoclusters an
thus determined by the effective diffusion coefficientDNC( i )
of nanoclusters. Depending on the detailed atomistic mec
nism by which the center of mass of a nanocluster mo
~e.g., surface diffusion, diffusion of a vacancy within th
nanocluster or evaporation of a monomer and recondensa
at a different surface site!, a growth law is derived, which in
three dimensions varies between the regimes^R&}t1/6, ^R&
}t1/5, and ^R&}t1/4, respectively. For instance, Toral an
Marro64 interpreted the change of the evolution of the n
malized excess energy,DE/J}^R&21 ~which is proportional
to the surface energy, i.e., the driving force for coarsenin!,
from a m51/6 to a m51/3 growth regime with a chang
from the cluster coagulation to the OR coarsening mec
nism.

In order to prove whether this cluster growth mode infl
ences the observed time dependences, the K3DLMC re
have to be checked for the motion of nanoclusters and
deviations from the quasiequilibrated shape of faceted o
hedras due to coalescence events. This is done by meas
in intervals of Dt55000t the minimum distance betwee
any two precipitates defined asdmin5ur i2r j umin2Ri2Rj . As
the plateaulike behavior ofdmin in Fig. 9~a! indicates, no
evidence for diffusional encounters of nanoclusters can
detected. Furthermore, the minimum observed distance
approximately 5a is larger than the maximum analyzed clu
ter diffusion lengthDr max'4a for the whole coarsening pro
cess@the topic of cluster diffusion will be discussed in mo
detail below; see also Fig. 12~b!#. The slightly negative slope
of the plateaus is not necessarily due to nanocluster d
sion; also nanocluster growth~see definition ofdmin) can
explain this observation. Consequently, in the recorded d
of the nanocluster shape parameterd @Eq. ~2.4!# no signifi-
cant deviations can be observed except for the smallest n
clusters shortly to their dissolution@see Fig. 9~b!#. Thus it
can be concluded that in the studied system cluster coag
tion did not influence the coarsening dynamics.
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B. Comparison of K3DLMC and mean-field simulations
of Ostwald ripening

The mean-field approach to OR verifies the LSW pred
tions provided thatRc /^R&@1 holds,25,29 thus it is interest-
ing to apply the mean-field method to systems character
by Rc /^R&'O(1). Thedirect comparison to the K3DLMC
method reveals, furthermore, the similarities and differen
of the atomistic and thermodynamic descriptions of dom
growth.

Therefore, after a K3DLMC run over 43105 MC steps of
a system quenched toe51.75, the further evolution of the
nanocluster ensemble was followed also in parallel with
mean-field description in the diffusion controlled regime~see
Sec. III!. This has been done by using geometrical data~i.e.,
the positions$r i% and sizes$Ri% of the nanoclusters! obtained
from the K3DLMC simulation as input for the mean-fie
simulation. Please note that in order to do this data transf
physically reasonable~but arbitrary value! has been assigne
to the MC lattice constanta. While it is obviously necessary
to choose in both methods the same value forRc the actual
value of the remaining materials parameters~solubility and
diffusion coefficient! influences essentially only the absolu
time scale of OR.

Figure 10 shows the corresponding results after
3106 MC steps. At a first glance both simulation resu
seem to be very similar. This becomes obvious by compa
Figs. 10 (b8) and 10 (c8), the respective spherical cluste
representations of the K3DLMC simulation, with the corr
sponding mean-field simulation results shown in Figs. 10~d!

FIG. 9. In ~a! the evolution of the mean nanocluster distan
given by the inverse cubic root of the density is compared to
minimum nanocluster distance in the ensemble. In~b! the spectrum
of the nanocluster shape parameterd during OR (43105t,t,4
3106t), as recorded every 23105 MC steps, is plotted.
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FIG. 10. Comparison of OR
simulations with K3DLMC and
mean-field methods of a fcc sys
tem with volume fraction f
50.01 quenched toe51.75. Up-
per row @panels ~a!–~c!#: snap-
shots from the K3DLMC sim-
ulation. Middle row @panels
(a8) –(c8)#: the corresponding
spherical cluster representation
The mean-field~MF! simulation
starts with K3DLMC input data as
recorded att543105 MC steps.
Lower row @panels ~d!–~f!#: the
ensemble is shown at equal nan
cluster densities, i.e.,nMF5nMC .
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and 10~f!. However, a closer inspection reveals certain d
ferences of the microscopic evolution~positions and sizes o
remaining nanoclusters!, which will be discussed below.

In order to compare the dynamics of both simulati
methods, Fig. 11 shows the evolution of the nanocluster d
sities, which obey a quite similar behavior. For this compa
son the absolute time scales of coarsening have been no
ized properly by multiplicative factors. Noting that the me
cluster size is coupled to the cluster density via material c
servation, it can be concluded that the effective growth
ponents seem to be in accordance. In contrast, the addit
plot of n(t) obtained by the mean-field method using t
linearized GT equation@LSW approximation, Eq.~3.2!# is
clearly governed by a different exponent. This exhibits
influence of the choice of the driving force on the dynam
of OR.

The differences in the dynamics of both mean-field sim
lations is also reflected in the absolute time scales of co
ening. For the particular comparison presented in Fig. 11
durations of ripening~measured in units oftdiff) are related
by DtLSW'3DtGT. In general, this time difference is a func
tion of the ratiosRc /^R& i and Rc /^R& f for the initial and
24542
-

n-
-
al-

-
-
al

e
s
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e

final mean radii and vanishes forRc /^R&→0. Since the
K3DLMC method excellently reproduces the GT relatio
~see Fig. 2!, it is obvious that a parallel or subsequent mea

FIG. 11. Comparison of the evolution of the density of nan
clusters obtained by the K3DLMC and mean-field~MF! methods in
the normalized time interval betweent i543105 t and t f53.6
3106 t ~see Fig. 9!. The coarsening times of the MF simulation
have been scaled with respect to the K3DLMC nanocluster de
ties at botht i and t f .
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field simulation should be based on an implementation of
exact GT relation rather than the LSW approximation~which
ensures identical dynamical descriptions!.

As already pointed out, a more detailed analysis reve
that the sequence of dissolving nanoclusters depends on
simulation approach. Figure 12~a! shows the differences o
the evolution of the ensemble in the parallel treatments
directly comparing the nanocluster sizes. While all da
points would lie on a single line with unit slope in the case
identical evolutions, the scattered data indicate the differ
evolution of individual nanoclusters in both methods. The
differences with respect to the detailed evolution within ea
simulation method are not really surprising, because
mean-field simulation is deterministic once the input d
($r i%,$Ri%) have been fixed, while the K3DLMC simulatio
is stochastic in nature. In particular, statistical fluctuations
the atomistic model can influence the growth behavior o
single nanocluster.

A further analysis with respect to the movement of nan
clusters inherently included in the K3DLMC method
shown in Fig. 12~b!. In this plot for each surviving nanoclus
ter of the MC simulation the nearest remaining nanoclus

FIG. 12. Comparison of the evolution of nanoclusters obtain
by the K3DLMC and mean-field~with GT! methods. In~a! the radii
as obtained by both methods are directly compared. In~b! for each
remaining nanocluster of the K3DLMC ensemble the distance
the nearest remaining nanocluster of the mean-field ensemb
determined.
u

s
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in the mean-field simulation is determined~note that the
monopole approximation used in the mean-field method d
not allow for nanocluster diffusion;27 they remain fixed at
their positions!. While a majority of the nanoclusters ha
moved at mostDr 5ur f2r i u'4a, the few with no close re-
maining counterpart can easily be explained by the diff
ence in the sequence of nanocluster dissolution of both
scriptions. In particular, if nanocluster diffusion an
coagulation would have dominated the coarsening kine
~see discussion above!, a different distribution of cluster dif-
fusion lengths would have been expected.

In conclusion, despite model-specific differences in
detailed evolution both the atomistic and mean-field mod
describe the same overall domain-growth dynamics. With
spect to the movement of nanoclusters observed in
K3DLMC it would be interesting to check the range of nan
clusters diffusion of corresponding mean-field approac
extended to the dipole approximation~which take into ac-
count nanocluster migration as well as shape deviation!.27

V. SUMMARY

A kinetic 3D lattice Monte Carlo model with neares
neighbor interactions and a mean-field model have been
to study coarsening of a diluted system of nanoclusters
has been shown that knowledge of the capillary lengthRc ,
consistently derived with in the Monte Carlo model, is e
sential for understanding and correctly interpreting the
namics of domain growth. Moreover, evidence has been
sented that the effective growth exponent is a uniq
function of the ratioRc /^R&. In a comparative study it ha
been shown that both the atomistic and mean-field sim
tion models result in the same cluster dynamics, provided
same driving forces are applied@use of the appropriate~i.e.,
exact or linearized! Gibbs-Thomson relation in the mean
field approach#. This also implies that the kinetic lattic
Monte Carlo method would model the late stage of ph
separation according to the Lifshitz-Slyozov-Wagner pred
tions if the computation power would allow for long-lastin
simulations. The differences in the detailed evolution of o
system in both models have been discussed in terms o
stochastic and deterministic nature of both approaches. H
ing shown that a well-defined interface exists between b
models, in a hierarchical approach future multiscale simu
tions in materials science of phase-separating systems
use consistently the power of both the atomistic and me
field descriptions.
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