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The evolution of diffusively interacting nanoclusters is investigated by combined atoithkistétic lattice
Monte Carlo method based on the nearest-neighbor Ising maddlmean-fieldnumerical integration of the
governing reaction-diffusion equationsimulations. By expressing Monte Carlo parameters in terms of mac-
roscopic thermodynamic quantities a well-defined interface between both methods is derived. Based on exten-
sive Monte Carlo studies of the Gibbs-Thomson equation an explicit expression for the intrinsic capillary
length is presented. Starting with high-temperature quenches, the evolution of nanoclusters is first studied by
the atomistic model. The observed transient dynamics of coarsening is explained uniquely on the basis of the
ratio of the capillary length to the mean cluster size. Using input data from the atomistic model, Ostwald
ripening is also studied in parallel with the mean-field model. In a detailed study, the similarities and differ-
ences of both approaches are discussed and explained in terms of their statistical and deterministic natures. It
is demonstrated that in contrast to the commonly applied linearized version of the Gibbs-Thomson relation in
the mean-field approach only the use of the full exponential form provides a reasonable matching with the
atomistic model.
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[. INTRODUCTION minimization of the surface energy associated with the
precipitate-matrix interface, which causes large clusters to
Recently, nanoclusters have attracted much interest due grow at the expense of small ones. A comprehensive theory
their unique physical properties as essentially zeroof OR in three-dimensiona3D) space was first developed
dimensional objects. This is additionally motivated by theirby Lifshitz and Slyozo!® and independently by Wagrér
use in new technological devices, which exploit size effect§LSW theory in the limit of vanishing volume fractiorp
on a nanometer scale. For instance, nonlinear optical proper~0 of the minority phase. LSW derived the time depen-
ties of metallic nanoclusters in insulators are based on thdence of OR in the asymptotic limit, which, for o, reads
size dependence of the plasmon frequenéyfurther ex- (R)oct™ with m=1/3 in the case of diffusion contréa simi-
ample is the use ofsemiconducting nanoclusters in the lar relation with growth exponemh=1/2 holds in the in case
thin-gate oxide of conventional transistor structures for novebf interface reaction contrtf). Additionally, they predicted a
nonvolatile memory devices. stationary form of the particle radius distributigRRD) in
A variety of techniques have been developed to producgerms of the scaled cluster size= R/(R). As a consequence
nanoclusters in different ambients, e.g., by ion beam synthesf the LSW theory in the late stage of phase separation all
sis in near-surface layers of solitiS.In most of these meth- physical quantities should depend only on a single length
ods average properties @fnite) nanocluster ensembles like scalel, e.g., on the average domain s{®) (scaling hypoth-
their mean siz€R) and their number density can be con- esis; see, e.g., the reviews of Furukdnend Bray®). Essen-
trolled to a large extent. This knowledge of the general featially all later work on coarsening refers to the LSW theory.
tures of nanocluster evolution has been obtained from exten- Based on a global mean-field description, the LSW theory
sive studies of various aspects of phase transformatiodoes not take into account explicitly the effects of diffusional
phenomena in homogeneous systems. A rather good undénteractions among nanoclusters and the resulting modifica-
standing of the concepts of nanocluster formation due to théons of the governing kinetic equation of cluster growth. A
decay of a metastable system has been developed from theariety of modifications of the original LSW theory have
oretical studies of(homogeneoysnucleation and growth been proposed in order to tackle the peculiarities of OR at
mechanisms of second-phase domé&irfsThis has been sup- finite volume fractions¢>0.1""22 Although the derived
ported by extensive computer simulations, especially withgrowth rates differ, all models agree that the growth expo-
Monte Carlo(MC) methods’ These atomistic approaches nentm does not change in the asymptotic limit. Recently, in
have been used to test the predictions of classical nucleatican advanced coarsening experiment the prediction&riam-
theory as well as to study in detail the kinetics of the earlysien) OR, i.e., the coarsening rate and the growth exponent,
stages of first-order phase transitidfis'? have been verifiet®
The late stage of the evolution of isolated, diffusionally The starting point for most numerical investigations of
interacting clusters is commonly described in the frameworkOR is the multiparticle diffusion equation which has to fulfill
of Ostwald ripening(OR). This process is driven by the appropriate boundary conditions at the precipitate-matrix in-
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terfaces. Deriving a solution based on the monopole approxto revisit the kinetic lattice MC approach to three-
mation of nanocluster interactions, which corresponds to agdimensional domain growth with respect to the dynamics
suming pointlike sources and sinks for the dissolved phasénd the effective growth exponem. We reformulate the
the OR characteristics of ensembles of several thousand preroblem by characterizing late-stage coarsening conditions
cipitates has been studié8*~2" Despite particular differ- in terms of the ratidR./(R), whereR_ denotes the capillary
ences in the numerical approaches in all these local meafength. More precisely we present evidence that the effective
field simulations the LSW-growth exponent for diffusion- growth exponent is a unique function of the ra/(R)
controlled ripening has been verified. For appropriateonly. Then, based on a well-defined interface between atom-
modifications of the precipitate-matrix boundary conditionsistic and mean-field simulation models, by simulating in par-
also the LSW predictions for reaction-controlled OR haveallel the evolution of a particular ensemble of nanoclusters
been checketf—3° we present the similarities and differences of both ap-
While MC simulations are the method of choice to studyProaches with respect to OR. It is demonstrated that in con-
the kinetics of first-order phase transitions, there has beenti@st to the commonly applied linearized version of the
long-standing discussion about the dynamics of these mod3ibbs-Thomson relation in the mean-field approach only the
els, especially with respect to the predictions of the LSwuse of the full exponential form provides a reasonable match-
theory. This is based on the fact that MC methods are coming with the atomistic model.
putationally orders of magnitude more expensive than mean- The remainder of this paper is organized as follows. Sec-
fields models; thus, especially in three dimensions, simulatetion Il starts with a description of the atomistic model which

systems hardly ever reach the coarsening stage, where tiefollowed by the gauging of the MC parameters and ends
application of the LSW theory is justified. by an exploration of the Gibbs-Thomson equation and the

Using the kinetic Ising modelusually restricted to derivation of an expression for the surface tension. The stan-
nearest-neighbor(NN) interaction$ MC studies in two dard mean-field model of OR is introduced in Sec. Ill. The
(mostly on a square lattigéRefs. 31-3#and thregmostly results of MC simulations of three-dimensional domain
on a simple cubic lattige(Refs. 35—37 and 20dimensions growth and its dynamic interpretation are presented in Sec.
of the growth of minority phase domains in systems with!V. This is followed by a detailed comparative study of the
conserved and nonconserved order parameters have be@yplution of a particular system by both methods.
performed for many year¢see, e.g., Guntoet al® for a
comprehensive review of the work up to 1988/otivated Il. KINETIC THREE-DIMENSIONAL LATTICE
by available experimental techniques, MC studies on three- MONTE CARLO METHOD
dimensional domain growth first focused on the properties of
the structure functionthe Fourier transform of the two-
particle correlation function because phase separating sys- In this kinetic 3D lattice Monte CarldK3DLMC) ap-
tems have been mainly investigated by scattering experiproach a homogeneous, chemically inert matrix is host of
ments. With the upcoming advent of direct detection systematoms of typeA (the minority phase; quantitatively charac-
for nanoclusters, in particular high-resolution transmissiorterized by the volume fractiog), which can be found either
electron microscopy, characterizations of ensembles of nan@s dissolved monomers or as precipitated clusters. In our
clusters in terms of individual and mean sizes as well as sizenodel the positions of the atoms are defined on a 3D lattice
distributions have become more and more popular. (we use the fcc lattice throughout this wor&nd for their

Using a simple cubic lattice gas model, Penresal®®  kinetics effective NN interactions betwedratoms are taken
simulated cluster growth after a quench=0.59T;, where into account. This simplified effective-particle approach as-
T. denotes the critical intrinsic temperature, above which nsumes that theA atoms are embedded in a position-
phase transition existdelow the coexistence curve into the independent potential of the substrate, which includes all the
metastable region. For a system with a volume fracifon complex interactions betweefand matrix atoms.
=0.075 they reported a linear dependence of the critical The thermodynamic properties are described with the help
nanocluster sizé* on time for a run of 6000 MC steps. of the classical lattice gas model, i.e., in the framework of
Further MC studies in three dimensions with explicit analy-the NN Ising modef® Here, the Hamiltonian is given bjt
sis according to the droplet model have been performed, for —JZ;-;C;C;, with occupation variable€; {0,1} and a
instance, by Lebowitzt al.X® Kalos et al,!! and Penrose bond strengthl>0 effective only for NN pairs. Since any
et al,*? who concentrated on a detailed kinetic description ofNN bond is shared by two atoms, the potential energy of a
the phase transition. Surprisingly, since the middle 1980s furparticular atom is given bf,= —nJ/2. This implies a bind-
ther work on domain coarsening in three dimensions usingng energy of a bulk atonkt,= — £J3/2, whereé=12 is the
the kinetic Ising model has been very hard to fii®It is  fcc coordination number.
also noteworthy that essentially all published studies have The activation energye, denotes the diffusion barrier
concentrated on rather high intrinsic temperatures, i.egoverning a single NN jump of an impurity atom. In our
TJ10=T~T.. However, as will be shown below, for model both the matrix diffusion of a free monomer and the
K3DLMC descriptions of a variety of physically and techno- surface diffusion of an adatom on a precipitate surface are
logically interesting phase-separation systems, appropriateontrolled by the same activation energy.
intrinsic temperatures are in the range T/10. Using the Metropolis algorithrftt the probability for an

The purpose of this work is twofold. First we would like atom to jump from sité to an empty NN sitd is

A. Basic description
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rglexp{— EAB}, ne=n;, of one (equilibrated nanocluster is approximated by the ra-
= dius of the smallest possible sphere which allows one to
accommodate the number of its atoms on regular lattice sites.
2.1 For a fcc lattice this relation is given by
where I'y= 751 denotes the frequency of jump attempts,
N r represents the number of NN bonds at the two sites, 4—7TR3=iV =i
and 8= (kgT) L. 3 a
In order to reduce simulation time it is convenient to
allow every diffusion attempt, i.e., Wii=W;/(7o*
exp{—EaB}), which renormalizes just the time scale of the
model. With the notatiore=Jg this leads to the dimension-
less transition probability

7o 'exp{—[Ea+(ni—np)J1B},  n<n;,

G i>1 2.3
7 1zl 2.3
whereV, denotes the atomic volume. However, the problem
arises to define a lower limit of nanocluster size, because a
monomer can hardly be considered as a nanocluster. In this
work the (arbitrary, temperature-independermhoice i;=6
has been used.
T o It should be noted that this procedure of a spherical clus-
Wit =min(Lexd = (ni—ny)e}), (22 ter approximation does a very poor job in the case of two
and the quantityr=roexp{E,/3} defines the time scale of a coalescing precipitates. In this case the analysis of the radial
MC step. In cases wherg>n; holds(i.e., transitions, which ~ inhomogeneity of a nanocluster helps to some extent to re-
are energetically not favorgdthe jumps are nevertheless veal its shape. For this purpose the normalized mean-square
allowed if a random number chosen from the intef@ll] is  distanceé from the center of mass of the nanocluster has
less than\7\lif _ been introduced, which is defined @nalogous to the mo-

In this work a MC step is defined by a sequenceNof Ment of inertia
jump attempts of statistically independently chosen atoms
out of the full set ofN atoms. If for a single jump attempt the
randomly determined NN sitg is already occupied, another
randomly chosen atom is checked for a possible jump.

Since each lattice site is completely defined by its occuHere,R denotes the radius of the nanocludi@s determined
pation state, only a single bit is needed to represent eadpy Eq.(2.3)], r is the center-of-mass coordinates of the clus-
position. Thus the K3DLMC method can be implementedter, and the summation is to be taken over all atoms con-
very efficiently on the basis of bit manipulatidAé®in order  nected to the cluster.
to perform jump attempts of atoms, the core procedure of the Recordingd for each nanocluster during the K3DLMC
code. Furthermore, using a double-bookkeeping strategy isimulation provides a means to check, for instance, the rela-
bit and coordinate space to keep track of the positions of théve contribution of coagulation to nanocluster coarsening.
impurities, this codénot parallelized allows the simulation This can be done, because in the case of two touching pre-
of reasonably sized systems on current top-level workstagipitates the shape parametérconsiderably exceeds the
tions. value of an octahedral-like clust&,which is the low-

Constructing our fcc lattice from an underlying simple temperature equilibrium cluster shape on a fcc lattfce.
cubic structure, our simulation cell h&s00) symmetry. The
lengths of the sides of the simulation cell are expressed in B. Gauging of simulation parameters
terms of the fcc lattice constand, i.e., L;=2"a, j . . .
e{X,y,z}. The discretization of the box volume in powers of Modeling phase-separation phenomena by combined ato-

2 has advantages concerning the implementation of periodi'g‘IStIC and mean-field simulations requires a weII-deflned In-
boundary condition&’ terface between both methods. Therefore, the free simulation

For the extraction of simulation dafenainly the size and parameters of the model, i.e., the activation energy for diffu-
space distribution of the nanoclustetse whole simulation SI°NEa and the energy of a NN bond between atoms, have

volume is scanned for the lattice positions of the atoms. Fol° be defined in terms of macroscopic thermodynamic ex-

instance, if a lattice site is occupied, a recursive procedur8€SSIons. .
checks allé=12 NN positions for further atoms. After the . The basic length scale O.f our K3D|.‘MC model is the lat-
scan the numbers of monomers, dimers, trimers,, or any tice constant of the fcc lattice, on which the atoms diffuse

agglomeration of interconnected atoms are known. Furthel"Zlnd rrlay tconder|1:se to p;rempnate_i o[(;(z)rlr_nMgthe_r klln(;l.s of
more, the position of each nanocluster is calculated, which i anostructures. For systém-specific simuiations

defined as the center of mass of its atafwith appropriate e value ofa is accesgple by x-ray diffraction measure-
translations at periodic boundaries of the simulation)box ments at sam_ples containing reasonably large nanoclusters or
In this work the size of a cluster is given by the number SIMPIY by taking tabulated bulk values.
of atoms it consists of. This standard Ising droplet model is
justified at low temperaturgsl considerably below the in-
trinsic critical temperaturel., i.e., e considerably larger The intrinsic diffusion coefficient of the K3DLMC
thane,=0.1021(Ref. 44] and concentrations below the per- method and the time scateof a MC step are coupled to the
colation threshold. Alternatively and more useful for the experimentally measured diffusion coefficienD gy
comparison of K3DLMC results to the LSW theory, the size =D exp{—ES(T)8}. The last expression assumes that cer-

Nnc

1
— —_r\2
o= - i:§1 (r—ry~. (2.4

1. Diffusion coefficient and time scale
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tain temperature intervals exist, where diffusion is governed(a)\ > | %0 (b) T . T
by a single activation energg>®(T). Both Dy, and 7 are : . 1E-3
derived within the framework of the random walk theory of :
diffusion (see, e.g., Ref. 47which assumes independence of p—
successive diffusion steps. The diffusion coefficient for par- S
ticles on a lattice, which are only allowed to migrate to NN ! =
positions, is given bY/ : LE-5 -
Djar=Ta%¢, (2.5 e
whereI'=7"1 is the effective jump frequency ang=12 :
denotes the corresponding coordination number of the fcc ' .
lattice. Note that the jump frequency is the product of the
frequency of jump attemptd’, times a temperature- FIG. 1. Intrinsic solubility properties of the K3DLMC model.
dependent probability, i.el; =T gexp{—Ex/3}. The snapshot ofa) obtained after X 10° MC steps fore=1.75

It is convenient in kinetic MC simulations to normalize indicates the simulation setup in (100) geometry. The Arrhenius
the event with the highest probability to unity, which in the plot in (b) shows the temperature dependence of the solubility of
current model corresponds to allowing every possiblgk = Monomers.
or surface diffusion attempt. This reduces the normalized
K3DLMC diffusion coefficient to a purely geometric quan- SPonding thermodynamic potential drives the evolution of

tity, i.e., D= Djae/T =a%/ £. the system. This particular setup represents a canonical en-
With the help of the Einstein relatiéh the diffusion ~ Semble(the simulation volumev, the number of atoms,
lengths are related by and the temperature are fixed; thus the free energy§
=U—TSwill be minimized. It follows that both subsystems
V2D gyt = X= V2D gu7k = 2D girK, (2.6)  (i.e., the “gas” of dissolved monomers and the bulk phase

evolve under the constraint of maintaining equal chemical
rE)otentials, and thus phase equilibrium is obtained.

In a series of simulations for different values efthe
averaged number of dissolved atdftis determined after the
configuration has reached equilibrium. For this purpose, the
evolution of the system was followed for41(® MC steps.

wherek denotes the number of MC steps. The last equatio
is valid in the asymptotic limit, i.e., fok—oo.
With the help of Eq(2.6) the time constant or, equiva-
lently, the jump frequency' can be obtained:
a’l¢ , . A o e
. E— (2.77  This period was divided into 500 equidistant time intervals,
Doexp{ — EZP'B} where at the end of each of the last 400 intervals the number

Thus, due to the temperature-dependent diffusion coefficien f dissolved atoms was recorded. The corresponding aver-
' P pe . : ged concentrations normalized with respect to the fcc unit
one MC step can correspond to time intervals, which may

) ; cell are given in Fig. (b).
differ by orders of magnitude. The total number of MC steps The relation between concentration and scaled tempera-

times the duration of a single MC step determines the physi- . . .
cal time scale which can be modeled by the K3DLMCture has been established with the help of the Arrhenius form

method, i.e.t=7k. C..(€)=Aexp{—Be}. (2.9

2. Nearest-neighbor bond strength and solubility The fitted values of the constants reAe (4.02+0.07)a "3

Within the framework of the lattice gas model the value ofandB = (5.99+0.01). The fitted slop® corresponds to half
the NN bond strengtld can be gauged by the solubility of the fcc coordination numberéE12). Therefore, the total
the atoms in the matrix. In the following it is assumed thathinding (i.e., sublimation energy of a monomeE,= —BJ is
the solubility can be describett least in a well-defined equivalent to the activation energyEs for its dissolution.
low-temperature regimeby an Arrhenius lawc..=c2exp  This allows us to gauge the NN bond strength according to
{—EgB}, whereEg is the activation energy for the dissolu-
tion of one monomer anc®. a temperature-independent con- J=2E¢/¢, (2.9
stant.

The underlying idea is to determine the temperaturewhich introduces an absolute temperature into the K3DLMC
dependent concentratianof dissolved atoms which are in model. The last equation is expected to hold on other lattices
equilibrium with a flat interface of the bulk phase of this (e.g., bcc or simple cubic latticeas well, if the correspond-
material. The initial setup for this simulation approach con-ing lattice coordination numbef is adjusted properly.
sists of a layer of atoms, which acts as the condensed Furthermore, we note that in the limit—c, the bulk
phase® If the layer extends frora; to z,, its “bulk” behav-  density is reached, because the paramates equal to the
ior is achieved by keeping the atomszat z, fixed at their  number of atoms per fcc unit cell. The extrapolation towards
positions[see Fig. 1a)]. Applying periodic boundary condi- T—x is only defined for temperatures below the intrinsic
tions in the x and y directions and preventing diffusion critical temperaturd ., which is usually above the physical
through the boundary &, the minimization of the corre- melting or sublimation temperatures.
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The nature of the coexistence of phases is defined by the N
thermodynamic properties of the interface. Since it is known (2) \ . % 4
that at a certain temperatufg~T/2, there is a roughening : g
phase transition from a smooth to a rough interféséh
diverging interface correlation length; see, e.g., Refs. 49 and .
50 and references thergjrihe above check of the principle N o .
of detailed balance is furthermore restricted to the regime . c -
T<Tg. N 6 alC

According to the critical temperature of the fcc kinetic . L
Ising model in Fig. 1b) the c(T) phase diagram has been S S e O
computed in thenormalized temperature range 0.0408 ay \
<T<0.0817T, far below any critical phase transition. In
this temperature regime physically reasonable solubility
properties are observed. It should be noted that equilibrium (b)
conditionsindependenbdf the (100) phase boundaries have
been achieved.

In order to apply the K3DLMC method for modeling the

\\\

evolution of physically and technologically interesting sys- o
tems(e.g., nanocluster formation of excess metallic or semi- § 1E-4

conducting impurity atoms in Si) reliable values of the
materials parameters have to be known. Taking the solubility
as an example, typical values for the activation energy of 1E-5 E
dissolution are in the range 0.5 e\Eg<3.0 eV. For in- -
stance, modeling a system characterizedBHay 1.0 eV at
700°C or 1000 °C, the corresponding scaled bond strengths 1E6 [ {

reade~2 ande~1.5, respectively. Tabulated values of solu- 0 0.2 0.4 0.6
bilities (c? ,Eg) are usually the result of fits to measured data 1/R (1/a)
points within a restricted temperature regime. Therefore, val-

ues ofc? differing from the bulk density by orders of mag-  giG. 2. In (a) the GT simulation setugvolume of simulation
nitude[e.g., the widely accepted solubility of Co in crystal- cell (64a)3, periodic boundary conditionss shown. In(b) MC
line Si readsc..=10%%exp{—(2.83 eV)8} cm 3 (Ref. 5)]  simulation results are plotte@iata points denote averages over 2
are not contradictory, but provide difficulties with respect to x 10° MC steps. From top = 1.25) to bottom &= 2.5) the tem-
gauging ofJ in K3DLMC simulation approaches. perature has been changed in intervals\ef=0.125.

C. Intrinsic properties of the model ) ) ) ) ) -
of dissolved monomers is determined which are in equilib-

1. Gibbs-Thomson relation rium with this precipitate®®* For the following analysis the
A connection between atomistic and thermodynamigadius of the nanocluster is derived according to €¢3).
quantities is established by the Gibbs-Thoms&T) rela- Figure 2b) shows the averaged simulated equilibrium

tion, Eq. (2.10, which defines the equilibrium monomer Monomer concentrations for several temperatweas a

concentratiorc around a Spherica' nanocluster of radRis function of the cluster size. Two properties of the model can
be deduced.

or R. (i) The KSDLMC method excellently reproduces the GT
¢ (R)=c.exp 1, Re=20VaB. (210 relation even for very small nanoclusters.
(i) By extrapolating for a giver the GT relation to a flat
The capillary lengttR. is proportional to the surface tension interface(i.e., R—«) the intersection of a fit with thg axis
0. determines the solidus concentration.

In order to exploit Eq(2.10 it has first to be shown that Furthermore, by plotting the values of the solidus versus
the K3DLMC method reproduces the GT relation. This hasthe simulation parameter [Fig. 3(@)] the solubility can be
been done by a series of simulations, where a nanocluster derived. Applying Eq(2.8) to the simulation results one ob-

a specific size(*radius” R) is put in a simulation box of tainsA®T=(3.64+0.08)a 2 andB®"=(5.93+0.02), which
volume V=2"""y*""z53 with VI®>R [Fig. 2@ shows the is in good agreement with the results of the flat-interface
simulation setup Like in the case of the flat interface simu- analysis. While one could argue that the flat-interface simu-
lation, this highly artificial initial configuration will evolve at lations are influenced by the specific choice of (100) phase
finite temperatures to a state with phase equilibrium betweeboundaries, the agreement of both simulation results is evi-
dissolved monomers and theurved bulk phase boundary dence that the interface orientation of the phase boundary
(see also Ref. 52For the analysis, averaged over a period ofdoes not effect intrinsic properties of the K3DLMC model.
2.5xX 10° MC steps[for the three highest values efin Fig. It should be noted that the GT relation is supposed to be
2(b) the averaging was over 75L0° MC stepg the number  valid also for concave interfaces. For instance, the monomer
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(a) 2. Capillary length and surface tension
1E-3 - A further analysis of the GT data allows us to derive
explicit expressions for the capillary leng® and the effec-

- tive surface tensionr. Plotting the fitted capillary lengths
. RS versus the scaled bond strengtfsee Fig. 2b)] a linear

dependence is observed, i.e.,

§ 154 |

8
© 1E5 |
R.(€)=Rg+ {ae. (2.11

1E-6 -

1 1_;5 1!5 1_|75 ; 2_|25 2!5 275 According to the least-squares fit the constants are given by
Reo=(—0.32-0.09)a and{=(2.19+0.05). The zero of the
capillary length at a finite temperatutmore precisely af

1 T T T I =T, is a prerequisite of the fact that the surface tension
- RIT ¢ Pl vanishes at the critical point:>® This condition is reasonably

n 4 satisfied by thdinear extrapolation of the simulation results.
However, close to the critical point the surface tension in
lattice models is known to vanish likeo(1—T/Tg)?" with

- . v# 1/2 [for instance, the critical exponent for the simple cu-
bic lattice is known to ber~0.6 (Ref. 56].

According to the standard terminology denotes the in-
Ao - terface free energy per unit area. Therefore, the surface ten-
€ 05 1 15 2 25 sion cannot be obtained directly by counting the average
number(N;) of broken bonds of the cluster surface atoms
and dividing this value by the medspherical surface area

FIG. 3. In(a) the solubility properties are derived using results (S). Having in mind that the surface tension is composed of
of the extrapolated solidus obtained by the GT simulations of Fig. 2an internalo, and entropicog part (i.e., o=0o,+ o), this
In (b) the fitted capillary lengths are plotted ¥s the critical point approach would just specify,. The entropic pariog ac-

€

(a

o = [\V] W e (433
T
1

of the fcc lattice is denoted by . counting for the number of different states in phase space is
not accessible by this method.
concentration in a spherical cavity of radi®&within the With the help of the relatiorR.=20V 8= (20V,/J)e

bulk phase should be given by E@.10 after performing [S€e Eq(2.10] for the capillary length, the surface tension is
the transformatiorR— —R (see Fig. 4 In the particle pic- couPled to the NN bond strengthaccording to

ture, a positivgnegative curvature corresponds to a convex

(concavé phase boundary. In the vacancy picture, the effec- o= L(R +fae)= 2_‘]
tive surface curvatures are reversed, i.e., converoncave. 2V O a?

Furthermore, due to the symmetry of the Ising Hamiltonian 3 ] .
with respect to a particle-vacancy intercharige., C,— (1 where 4&/,=a” has been used. The last equation establishes

— ;)15 the surface tension transforms appropriately. This® spherically averaged effective surface tension of a nano-

particle-vacancy symmetry is reflected in the GT relation ofC!USter’ whlle_usually macroscopically me_a_lsur_ed surface ten-
sions are defined with respect to a specified interface orien-

Fig. 4. As an implication, the product of the averaged mono-"_".
9 P P g ation. Moreover, the temperature dependence ¢at least

mer anq vacancy cgncentrat;ons outside and within a nanc%n the simulated temperature reginis given by Eq.(2.12,
cluster is constant, i.eccy=cs, .

indicating a limiting valuea—>aTO=2§J/a2 for vanishing
temperature. In comparison with the surface tensions of the

Reo
—+
ae ¢

. (212

wo kT T4 principal fcc surfacesgr is slightly larger than the zero-
[ N e ] temperature value-(110)=6/\2J/a2.
10 F 3 Within the framework of classical nucleation the8ry,

R - . EqQ. (2.12 can be used to calculate the critical size and the
> 1 E minimum reversible energy needed to form a cluster, given

01 L h that the initial supersaturation is knofn.

0L0LFT VO Ill. MESOSCOPIC MODELING OF OSTWALD RIPENING

4 -2 0 2 4

A. Ostwald ripening: Basic theory
R./R .
/ Here, a short summary of the LSW theory of OR is

FIG. 4. Generalized GT relation of the Ising model relating the presented?**In their global mean-field theory an ensemble
equilibrium monomer and vacancy concentratiorandcy, to con- ~ Of nanoclusters is described by the time-dependent PRD
vex and concave phase boundaries, respectively. functionf(R,t), wheref(R,t)dR denotes the number of par-
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ticles per unit volume which have a radius betwdemand
R+ dR. Accordingly, the nanocluster density, normalized to
unit volume, is given byn(t)=[f(R,t)dR.

In the limiting case of a highly dilute system the precipi-
tates are assumed not to interact directly. This implies that all
clusters are embedded in themeaverage monomer concen-

trationc. In this case, the evolution of a single clusterthe
regime of diffusion controlled ORis given by

dR DV, . — 0 o
T _ 1 2 3 4 5
T R [c(R)—c]. (3.1

Here,c(R) denotes the equilibrium monomer concentration  F|G. 5. Comparison of the equilibrium monomer concentration
of a cluster of radiug, for which usually the GT relation is of a nanocluster of radiug according to the exa¢Eq. (2.10] and
inserted. The mean concentratioris associated with a spe- linearized[Eq. (3.2] GT relations.
cific nanocluster radiuR*, which can be expressed via the
GT relation as a function of the solubility and capillary
length. Since precipitates larger th& will grow, whereas It should be stressed that the LSW theory is based on the
those being smaller will shrink, this radius is called the criti- linearization of the GT relatiofsee Eq(3.2)]. Thus care has
cal radius of the ensemble. It should be noted that only in thgo be taken by applying the LSW theory to systems, where
case of diffusion-controlled OR, which we discuss here, doez$R>>R is not valid. As Fig. 5 indicates, the exact GT rela-
the relation(R)=R* hold1*?8 tion gives much higher equilibrium concentrations far
With the help of the linearized GT relation =R, thus nanoclusters in this regime tend to dissolve more
rapidly than the LSW theory predicts. Consequently, as will
be shown below, nanocluster ensembles Wi)<R, are
governed by dtransient dynamics, which may considerably

_ . differ from the LSW predictions, Eq$3.4) and(3.5).
the single-cluster growth law, E3.1), can be rewritten as

(3.2

R
LSW, oy — +
cY(R) Cw( 1 R/

R B. Rate-equation simulation of Ostwald ripening

B E) . (33 An appropriate framework for simulation studies of OR is
a local mean-field description first derived by Voorhees and

Combining Eq.(3.3) with the continuity equation fof in GIic_ksman(_\/G)_,24'25who treated the interacting precipitates
size space and taking material conservation into accounfS fixed-point-like sources characterized bifietitious) ra-
LSW derived the following power laws for the critical radius 9'US: _ _ _ _ _
and the cluster densityn the limit of diffusion contro) (Ref. The starting point for this approach is to solve the station-
13 and 14 ary diffusion equatioriv2c(r,t)=0 defined in the multiply
connected space outside the precipitated phase. The concen-

dR_ DVe.R[
Ca

3 tration field has to fulfill appropriate boundary conditions for
<R>(t)=<R>o(1+m) , (34  the monomer concentration at each phase boundary
c(Njr-r,=r =C; and additionally liny_..c(r)=c,. Con-
n(tyct™ for t> 7y . (3.5  sidering the characteristic time scales one generally loses no

information in neglecting the time derivative of the diffusion
The characteristic time constant of diffusion-controlled ORequation. This is due to the fact that the time scale involved
is given by 74 =9(R)3/(4c.DV,R,), where(R)q is the ini-  in the precipitate growth is usually much larger than that of
tial critical radius. Furthermore, the LSW theory predicts thatthe diffusional accommodation of the monomer concentra-
the PRD, if scaled by the mean radi{R)(t), has a charac- tion to the existing precipitate pattern.
teristic stationary formsee Refs. 13 and 14 for the corre-  The concentration field can be expressed as a sum over
sponding analytical expressions multipole expansions,
For nonvanishing volume fractions the LSW theory is no
longer strictly valid, because the long-range diffusion fields N Ym(a 5OM
i

start to overlap. As a consequence, the monomer concentra- z
I+1
—ril

tion around a nanocluster is now influenced by the presence c(r)=cy + D
of neighboring precipitates, which modifies the single-cluster

growth law, Eq(3.1). On the basis of extensive studies in the

caseg>0 it has been showtf:?1?*that the power laws, Eqs. Using the common notatio¥" to denote the spherical har-
(3.4) and(3.5), are still valid, whereas the characteristic time monics. The multipole moments!{]', which take into ac-
constantrg¢ and the PRD become a function ¢f count the diffusional nanocluster interaction, can be obtained

>

0 m=-—I

(3.6

=11
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by integration over théspherical surface of thath precipi- The rate-equation approach needs as essential input the
tate using the orthogonal properties of the spherical harmoreoordinates{r;} and radii{R;} of the nanoclusters. Taking
ics involved. into account statistical properties of nanocluster ensembles

In this approach, like in the original VG mod&?°OR is  (e.g., spatial correlations and size distributiotise input
described on the basis of the monopole approximation of Ecdata can be generated artificially. However, a more promis-
(3.6), which is a reasonable approximation for small volumeing option is to use data sets obtained from a subsequent
fractions[ ¢< 0.1 (Ref. 57] of the minority phase. Recently, K3DLMC simulation®?

more advanced approaches included higher-ofdgole, The simulation is discrete in time; i.e., at each time step
... ) terms of nanocluster interaction, which account for mi-At, first the linear system of equatio(3.7) extended by one
gration and spherical shape deviations of precipitztés. equation fixingc,, is solved. Then the change in radius due to

In the monopole approximation the source strendgfhs the actual value of the source strengths is evaluated with the

=YIM?, can be obtained from a linear system of equationshelp of a linear approximation of Eq3.8). With the new
radii obtained the procedure is repeated. The time inteéxval

A N Q. can be chosen to some extent arbitrarily as long as material
Q=47DR|¢(R)— —= > ————c,|. (3.7  conservation is not violated.
47D {7 |ri—r;| At the end of this section we would like to make a com-

] ] ~ment concerning finite-size effects, since in the course of an
Please note that the last expression has been derived in tig: simulation run the density of clusters decreases. Within

limit of diffusion-controlled ripening, whereas, more gener- 5 ensemble of nanoclusters, the diffusional screening
ally, the source strengths can be obtained for any degree @f, 0

diffusion or reaction contro?®3° Additionally, for studies of

homogeneous OR one usually assumes material conserva- 1
tion, i.e.,2;Q;=0, which fixes the value of the free param- Ap(t) = —— 3.9
eterc,. In order to avoid boundary effects in studies of vamn(t)(R)(t)

homogeneous OR, a three—d_lmenspnal periodic gxtensmn %Iefines the length scale of nanocluster interactions. Since a
the nanocluster ensemble is considered. In this case, th

source strengths are computed with the help of Ewald sum- onomer detaching from a nanocIL_Jsters is very likely to
mation. migrate to a nearby precipitate on hls_ranQOm \_Nalg,de_- _
S : notes the distance beyond which the diffusional interaction is
The individual source strengthd; determine the evolu- L .
tion of the precipitates: scregned by the remaining en§emble a nanocluster is embed-
ded in. Thus the OR simulations have to be checked that
self-interactions of nanoclusters are avoided in cases where
4_7"R_2 dRi(t) -0 (3.9 periodic boundary conditions are applied.
V, dt a '
. . . . IV. SIMULATION RESULTS AND DISCUSSION
Equation (3.8) and the diffusion equation form a coupled
system of differential equations controlling the evolution of A. Monte Carlo simulations of homogeneous Ostwald ripening
the precipitates.

The local mean-field character of this approach is clearly
seen in Eq(3.7), since the source strength of tita precipi- In order to analyze the properties of the K3DLMC model
tate is proportional to the difference between its own equiwith respect to OR, in a series of simulations on a fcc lattice
librium concentration and the superposition of the resultingsystems with volume fractiong=0.01 have been studied.
mean concentratiog, and the concentration fields caused by We used a system size b= (128a)° and applied periodic
all other nanoclusters. The evolution of individual precipi- boundary conditions. Starting with instantaneous high-
tates is mainly determined by the diagonal elements of Eqtemperature quenches to five different temperattramely,
(3.7), whereas the off-diagonal elements account for the coue e {1.25,1.5,1.75,2.0,2,25 the evolution of the atoms has
pling of nanoclusters. It should be noted that in the liggit been monitored over a period 0&410° MC steps.

—0, i.e.,|rj—rj| =%, the LSW growth law, Eq(3.1), for a Figure 6 shows the evolution of the nanocluster density
single precipitate is obtained. n(t) and the mean radiuéR)(t). In these plots for each

While the linearization of the GT relation is an essentialvalue of e the average of five independent runs has been
ingredient of the LSW theory, in the numerical model eitherused. Size-dependent effects should not have influenced
the linearized or exact form can be used for the implementhese simulations, since the largest diffusional screening
tation of Eq.(3.7). In the former case all physical quantities length of this seriefas obtained by Eq3.9)] for e=1.25 is
can be absorbed into the time scale; thus OR is only depenp~42a. This value is considerably below the linear dimen-
dent on the geometry, i.e., on the coordingte$ and radii  sion of the simulation volume; thus self-interaction effects
{R;} of the nanoclusters. Using E(R.10 in order to com- are negligible.
pute the equilibrium monomer concentration of the nanoclus- Care has to be taken in order to extract the growth behav-
ters, the evolution of an ensemble of nanoclusters will inior, since a fit assumingR)>t™ is only justified for late
general depend on the capillary length, more precisely on thémes of phase separation. According to Ej4) this implies
ratio R./R*(t). that the analysis should start at times 7y from which the

1. Conventional coarsening analysis
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FIG. 6. Using double-logarithmic scales the evolution of the FIG. 7. In (@) the evolution of the widthss of PRD's corre-
density of nanoclusters and of the mean radius are shovia and  sponding to the simulations for the three lowest temperatures of
(b), respectively. In the Im)-In(t) plot, from bottom to top the Fig. 6 are shown. As a reference the widths of both the limiting
curves correspond te={1.25,1.5,1.75,2.0,2.25 whereas the re- distributions of the LSW theor{Refs. 13 and I4are added, which
versed order is valid in the I(R))-In(t) plot. readwyis=0.215 andw,.,= 0.333, respectively. Ifb) a histogram

of the PRD of a single run fog=2 obtained after X 10° MC steps
is shown(with p=R/(R); both stationary PRD’s of the LSW theory

relation(R)(t)>(R), follows. Due to the quench, the initial have been addgd

system consisted entirely of monomers; thus for an applica-
tion of the LSW theory the mean radius has to be large with 2. Effective growth exponent
respect tdRy~0.3%. Assuming that this requirement is ful-
filled (at least in the end of the simulatign&east-squares fits
performed in the time intervalXt 10°<t<4x 10° MC steps
yield growth exponentsm(e=1.25)=0.19, m(e=1.5)
=0.26, m(e=1.75)=0.23, m(e=2.0)=0.19, and m(e
=2.25)=0.17, respectively. These results would indicate
temperature dependence of ripeniftge data fore=1.25
show a very bad statistigswhich is not predicted in the
LSW theory[Eq. (3.4)].

More insight into the dynamics of the K3DLMC method
is gained by plotting the widths of the PRDs, defined as

A more careful analysis reveals that the simulated coars-
ening data cannot be analyzed in the framework of the stan-
dard LSW theory, because E.3) is based on the linear-
ization of the GT equatiofi.e., use of Eq(3.2) rather than
Eq.(2.10; see also Fig. b This is, however, not justified for

%he rather small nanoclusters of the current simulations,
which becomes obvious by comparing the range of the mean
nanocluster radiu&R), as obtained by the simulations, to the
corresponding capillary lengths. According to Eg.11) the
capillary length varies betweeR (e=1.25)~2.42a and
R.(e=2.25)~4.61a. Thus for the lowest temperature of the
simulation series {=2.25), the mean domain size has only

w(t)= \/<[R/<R)(t)— 173, (4.1) grown up to the order of the capillar)_/ length, whereas for the
highest temperaturee 1.25) the ratioR./(R) has become
small at the end of the simulation; a linearization of the GT
as can be seen in Fig(g. Figure 1b) shows the PRD for relation would be justified in modeling this ensembldadér
e=2 obtained after X 10° MC steps. While the size distri- times.

bution is in reasonable accordance with the stationary form Since in all simulations of this series the LSW require-

(LSW) of the PRD of diffusion-limited OR, it is on the av- mentR./{R)<1 is not satisfied, coarsening should be ana-

erage somewhat smaller and seems to be more symmetrigzed with respect to an effective growth exponent according

Since the quasistationary form of the PRD is directly coupledo the growth law(R)(t) = A+ Bt'2. This approach has been

to the growth law, the on-the-average smaller widihas  motivated by domain growth studies in the two-dimensional
compared to the result of the diffusion-controlled LSW re-case®*3* Without discussing the capillary length of the
gime is in line with the observatiom<1/3. But how can the square lattice, these authors proposed an effective growth
observed OR behavior be explained consistently? exponent
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(a) LE T T T T ] dependent runs in their study of the n{vo-dimensiongl case
03 €€==1-122 — In the present study, however, averaging over five indepen-
e=1.75---- dent runs per temperatueedoes not even provide a mono-
- = W'\)x 66==2_22:g T tonically increasing mean cluster size.
£ f T Having a closer look on Fig.(8 one observes that the
02 T -1 effective growth exponents seem to depend on temperature,
o i.e., do not tend to converge onto a single curve. More pre-
K BN cisely, for a given mean cluster siZ&),, the larger the
01 L L 1 1 L temperaturd, the larger is the exponenigs. This tempera-
0 0.2 0.4 0.6 ture behavior is similar to that of the inverse capillary length,
1/ (R) (1/ase) so it is tempting to assum@«=R;. In Fig. 8b) the effective
growth exponents are replotted as a functiofRgf(R). Two
(b) sE ' L _ 1_'25 A features can be observegd: Despite the considerable scatter
0.3 f e=15--- - in the available data all points seem to converge onto a single
w\{ € 6==1-27_8 o curve; (i) the effective growth exponent has a nonlinear de-
5 B o, €=225 —— 7 pendence oRR./(R) in the computationally explored regime
5 el M . | RJ/(R)=1/2.
' " At a first glance, the dependencernf; on R./{R) looks
R e like an exponential decay. However, a fit accordingrigy
) =1/3exd—C'(R./(R))} provides only a very poor approxi-
01 0'5 i 1'5 é 2'5 mation, only slightly better than a linear fi{see
Rc/(.R) Fig. 8c)]. Therefore, using the notatiod;=C;/R; and R;
=[(R)/R.]', the effective growth exponent is approximated
1 I I I | | ] as
(¢ 3 exponential ----
0.3 linear -—— -
quadratic — M -
= 0 M=z =S, = 43
* o02f "3 AR,
B \ T Figure 8c) shows the result of a least-squares fit to the data
| | | \|\ | using Eq.(4.3 up to second orderM =2). Obviously, a
0.1 0 05 1 15 2 925 much better accordance is obtained as compared to a linear
R,/ (R) model. However, this attempt resulted in a coeffici€ht

<0 which would indicate the existence of a minimum of the
FIG. 8. Effective domain growth exponents,; of the  effective growth exponent. This is not supported by the cur-
K3DLMC model for k=4 with data points in the range=5  rent data nor is there any physical reason known to the au-
X 10° MC steps.(a) Simulation results based on E@.2). (b) Re- thors assuming such a behavior.

plot of mey; as a function of the dimensionless paraméeK(R). Nevertheless, it would be of interest to study the dynam-
(c) Exponential as well as linear and quadratic fits accordingjcg of coarsening at very low temperatures, i.e., in the regime
to Eq.(4.3. R./(R)>1. Such large values can be extrapolated because

in this regimeR. is roughly proportional to I/ [see Eq.
(2.11)] and the stable cluster size decreases with decreasing
temperaturgwith a dimer as the logical lower boundAt
least as long as the GT relatig&q. (2.10] describes cor-
Thus an analysis of the growth behavior has been performeggctly the equilibrium monomer concentration of a cluster,
using an appropriate implementation of E(.2), i.e., the dynamic growth exponent can be expected to decrease
Meg(tr) = IN[(R)(t)/(R)(t)/In(t /t) with t;/tj=«. The value further with an increasing value &./(R).
of k is not predefined; it should be chosen in a way to ex- In conclusion, Figs. &) and &c) provide evidence that
clude fluctuations, but guarantee “local” time in this discretethe effective growth exponent is a unique function of the
implementation of the derivative of E¢4.2).>* Figure 8a)  ratio R./(R). In reverse, this means that a measurengf in
shows the results of the corresponding analysis der4. a homogeneous system of diffusively interacting nanoclus-
Although there is an unequivocal trend towards the valueers provides some hint onto the value of the capillary length.
m((R)—)=1/3, unfortunately the large scatter in the dataFor instance, from a valum.z~0.2 it follows (see Fig. 8
can only provide evidence for this limiting theoretical value.that the mean size of the clusters is approximately equal to
Please note that the scatter in the data qualitatively remairtse value ofR.. Furthermore, in this regime characteristic
unchanged in the tested regime={2,3,4,5,8. PRD’s are on the average smaller and more symmetric than
Obviously a good statistics is needed in order to obtain @ahe corresponding LSW-PRD of the diffusion limited case
smooth dependence ¢R) ont (Amar et al3* used 100 in- (see Fig. 7.

1 C  dn(RMO]

Me=3 " (R)®' d[In(D)] 42
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In addition to further theoretical efforts more simulation
data are needed to address such questiofis e behavior
of mgy in the regimeR./(R)>1 and(ii) the physical inter-
pretation of the constai@, /R. in the limit R./(R)—0. This
temperature-independent quantity might have the meaning of
a geometrical constant. Similar simulations in other dimen-

.........

sions, and their consistent interpretation, could help to clarify 10 _,,,w',rw\»»,«/r
this conjecture. B 7]
| | | | | | |
1 2 3 4
3. Discussion of alternative phase-separation models ¢ (10 7)

Although the dependence of the effective coarsening dy- I 1r1rrTrTTTTrT
namics on the ratidR./(R) seems to offer a reasonable ex- (b)
planation for the observed growth exponents, there might be 09 I N
additional factors influencing the system evolution. Since the 08 k- i
K3DLMC method automatically includes the migration of o
nanoclusters, it is tempting to analyze, if the nanocluster dy- 07k -
namics can be brought into accordance with the Binder-
Stauffer theory of cluster growfH % In their model the 06 I 7
cluster evolution proceeds mainly via coagulation rather than 0.5 L i
monomer evaporation and condensation. Therefore, coarsen- 0 6

ing occurs via coalescence of diffusing nanoclusters and is
thus determined by the effective diffusion coeffici@njc(i) ) _
of nanoclusters. Depending on the detailed atomistic mecha- FIG- 9. In(a) the evolution of the mean nanocluster distance

nism by which the center of mass of a nanocluster move§iven by the inverse cubic root of the density is compared to the
(e.g., surface diffusion, diffusion of a vacancy within the minimum nanocluster distance in the ensemblegbrthe spectrum

. " of the nanocluster shape paramefeduring OR (4x 10Pr<t<4
nanocluster or evaporation of a monomer and recondensatm)QlOGT) as recorded every210° MC steps, is plotted

at a different surface sitea growth law is derived, which in
three dimensions varies between the regif®Rs<t6, (R)
«tYS and (R)=t" respectively. For instance, Toral and B. Comparison of K3DLMC ar_1d mean-field simulations
Marro® interpreted the change of the evolution of the nor- of Ostwald ripening
malized excess energyE/J(R) "1 (which is proportional The mean-field approach to OR verifies the LSW predic-
to the surface energy, i.e., the driving force for coarsening tions provided thaR./(R)>1 holds?>? thus it is interest-
from a m=1/6 to am=1/3 growth regime with a change ing to apply the mean-field method to systems characterized
from the cluster coagulation to the OR coarsening mechaby R./(R)~O(1). Thedirect comparison to the K3DLMC
nism. method reveals, furthermore, the similarities and differences
In order to prove whether this cluster growth mode influ-of the atomistic and thermodynamic descriptions of domain
ences the observed time dependences, the K3DLMC resultgowth.
have to be checked for the motion of nanoclusters and for Therefore, after a K3DLMC run over410° MC steps of
deviations from the quasiequilibrated shape of faceted octea system quenched te=1.75, the further evolution of the
hedras due to coalescence events. This is done by measuringnocluster ensemble was followed also in parallel with the
in intervals of At=50007 the minimum distance between mean-field description in the diffusion controlled regifsee
any two precipitates defined al$mn=|ri—rj|min—R1-—Rj .As  Sec. lll). This has been done by using geometrical daéa,
the plateaulike behavior odi,, in Fig. Y@ indicates, no the positiondr;} and size§R;} of the nanoclustejobtained
evidence for diffusional encounters of nanoclusters can b&om the K3DLMC simulation as input for the mean-field
detected. Furthermore, the minimum observed distance afimulation. Please note that in order to do this data transfer a
approximately % is larger than the maximum analyzed clus- physically reasonabléut arbitrary valughas been assigned
ter diffusion lengthAr ,,~4a for the whole coarsening pro- to the MC lattice constard. While it is obviously necessary
cess[the topic of cluster diffusion will be discussed in more to choose in both methods the same valueRgithe actual
detail below; see also Fig. ®]. The slightly negative slope value of the remaining materials parametésslubility and
of the plateaus is not necessarily due to nanocluster diffudiffusion coefficient influences essentially only the absolute
sion; also nanocluster growttsee definition ofd,,,,) can time scale of OR.
explain this observation. Consequently, in the recorded data Figure 10 shows the corresponding results after 3.6
of the nanocluster shape paramedefEq. (2.4)] no signifi- X 10° MC steps. At a first glance both simulation results
cant deviations can be observed except for the smallest nanseem to be very similar. This becomes obvious by comparing
clusters shortly to their dissolutiofsee Fig. %)]. Thus it  Figs. 10 () and 10 (&), the respective spherical cluster
can be concluded that in the studied system cluster coagulaepresentations of the K3DLMC simulation, with the corre-
tion did not influence the coarsening dynamics. sponding mean-field simulation results shown in FiggdL0
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4 x 10° MC steps . 1.6 x 10° MC steps 3.6 x 108 MC steps

FIG. 10. Comparison of OR
simulations with K3DLMC and
mean-field methods of a fcc sys-
tem with volume fraction ¢
=0.01 quenched te=1.75. Up-
per row [panels (a)—(c)]: snap-
shots from the K3DLMC sim-
ulation. Middle row [panels
(@)—(c)]: the corresponding
spherical cluster representation.
The mean-field(MF) simulation
starts with K3DLMC input data as
recorded att=4x10° MC steps.
Lower row [panels (d)—(f)]: the
ensemble is shown at equal nano-
cluster densities, i.enye=nNyc -

and 1@f). However, a closer inspection reveals certain dif-final mean radii and vanishes f&./(R)—0. Since the
ferences of the microscopic evolutigpositions and sizes of K3DLMC method excellently reproduces the GT relation

remaining nanoclustefswhich will be discussed below.  (see Fig. 2, it is obvious that a parallel or subsequent mean-
In order to compare the dynamics of both simulation

methods, Fig. 11 shows the evolution of the nanocluster den-
sities, which obey a quite similar behavior. For this compari- 1504 k
son the absolute time scales of coarsening have been normal-
ized properly by multiplicative factors. Noting that the mean
cluster size is coupled to the cluster density via material con-
servation, it can be concluded that the effective growth ex-
ponents seem to be in accordance. In contrast, the additional
plot of n(t) obtained by the mean-field method using the
linearized GT equatioflLSW approximation, Eq(3.2)] is 5E-5
clearly governed by a different exponent. This exhibits the
influence of the choice of the driving force on the dynamics 0 0.5 L
of OR. time

The differences in the dynamics of both mean-field simu- g1 17, comparison of the evolution of the density of nano-

lations is also reflected in the absolute time scales of coargyysters obtained by the K3DLMC and mean-fiélF) methods in
ening. For the_ par_tlcular comparison _presented in Fig. 11 thghe normalized time interval between=4x10° 7 and t;=3.6
durations of ripeningmeasured in units of ) are related  x10° 7 (see Fig. 9. The coarsening times of the MF simulations
by At sw=~3Atgr. In general, this time difference is a func- have been scaled with respect to the K3DLMC nanocluster densi-
tion of the ratiosR./(R); and R./(R); for the initial and ties at botht; andt; .

1E-4

n (1/a®)
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T T T S in the mean-field simulation is determinddote that the
(@ 5} © 80 0‘9@ P monopole approximation used in the mean-field method does
®° ’ e not allow for nanocluster diffusioft: they remain fixed at
T 4F % % o g o their positions. While a majority of the nanoclusters has
a o PR N moved at mostAr =|r;—r;|~4a, the few with no close re-
& 3 e %o N maining counterpart can easily be explained by the differ-
5 | //’ P 1 ence in the sequence of nanocluster dissolution of both de-
e scriptions. In particular, if nanocluster diffusion and
1 2 I L2 coagulation would have dominated the coarsening kinetics
1 2 3 4 5 (see discussion aboye different distribution of cluster dif-
Ruc (a) fusion lengths would have been expected.
40 — — In_ concluspn, despite modeljspecmc dlﬁerences in the
detailed evolution both the atomistic and mean-field models
(b) I describe the same overall domain-growth dynamics. With re-
30 7] spect to the movement of nanoclusters observed in the
0 K3DLMC it would be interesting to check the range of nano-
< 20 | N clusters diffusion of corresponding mean-field approaches
extended to the dipole approximatigwhich take into ac-
10 | - count nanocluster migration as well as shape deviafion
0 I ==t == § = i =
0 10 20 30 V. SUMMARY
7f = Tilmin () A kinetic 3D lattice Monte Carlo model with nearest-

FIG. 12. Comparison of the evolution of nanoclusters obtaine eighbor mteractl_ons and a.mean-fleld model have been used

o c o o study coarsening of a diluted system of nanoclusters. It
by the K3DLMC and mean-fiel@vith GT) methods. In(a) the radii has been shown that knowledge of the capillary lerRgh
as obtained by both methods are directly comparedb)irior each - . S c
remaining nanocluster of the K3DLMC ensemble the distance tocons.'Stently derived W.Ith in the Monte (.:arlo quel, IS €s-
the nearest remaining nanocluster of the mean-field ensemble %ent[al for understandlng and correctly. interpreting the dy-
determined. namics of domain growth. Moreover, evidence has been pre-

sented that the effective growth exponent is a unique

function of the ratioR./(R). In a comparative study it has
field simulation should be based on an implementation of théeen shown that both the atomistic and mean-field simula-
exact GT relation rather than the LSW approximatiahich ~ tion models result in the same cluster dynamics, provided the
ensures identical dynamical descriptipns same driving forces are appli¢dse of the appropriaté.e.,

As already pointed out, a more detailed analysis reveal$gxact or linearized Gibbs-Thomson relation in the mean-
that the sequence of dissolving nanoclusters depends on tfield approach This also implies that the kinetic lattice
simulation approach. Figure (& shows the differences of Monte Carlo method would model the late stage of phase
the evolution of the ensemble in the parallel treatments byeparation according to the Lifshitz-Slyozov-Wagner predic-
directly comparing the nanocluster sizes. While all datations if the computation power would allow for long-lasting
points would lie on a single line with unit slope in the case ofsimulations. The differences in the detailed evolution of one
identical evolutions, the scattered data indicate the differinggystem in both models have been discussed in terms of the
evolution of individual nanoclusters in both methods. Thesestochastic and deterministic nature of both approaches. Hav-
differences with respect to the detailed evolution within eacting shown that a well-defined interface exists between both
simulation method are not really surprising, because thé&odels, in a hierarchical approach future multiscale simula-
mean-field simulation is deterministic once the input datdions in materials science of phase-separating systems can
({ri}.{R;}) have been fixed, while the K3DLMC simulation Use consistently the power of both the atomistic and mean-
is stochastic in nature. In particular, statistical fluctuations irfield descriptions.
the atomistic model can influence the growth behavior of a
single nanocluster._ _ ACKNOWLEDGMENT
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