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Dimer diffusion as a driving mechanism of the step bunching instability
during homoepitaxial growth
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The impact of ad-dimer diffusion on the morphology of an epitaxially growing stepped surface is studied
analytically and by kinetic Monte Carlo simulations. It is shown that if diffusing adatoms are hindered by an
Ehrlich-Schwoebel barrier at step edges, ad-dimer diffusion gives rise to a step bunching instability, provided
that the corresponding Ehrlich-Schwoebel barrier for ad-dimers is small or vanishing.
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I. INTRODUCTION

When growing a crystal, it is important for most applic
tions to control the shape of the growing surface. In parti
lar, a central problem is to understand the microscopic or
of morphological instabilities. For instance, recent expe
ments on semiconductor@e.g., Si~Ref. 1!, GaAs~Ref. 2!, InP
~Ref. 3!, SiC ~Ref. 4!# as well as on metal vicinal surface
@such as Cu~Ref. 5!# show that, depending on the grow
parameters these surfaces undergo one of the two typ
morphological instabilities. These are the so-called step
andering or Bales-Zangwill instability6 and the step bunch
ing. The former type of instability is usually thought to a
pear on vicinal surfaces due to the Ehrlich-Schwoebel~ES!
barrier,7,8 i.e., an additional energy required for a diffusin
atom to step down a monatomic step. Several theoretical
experimental works have been produced with the aim of
termining the ES barrier,9–13 yielding qualitatively the same
result: the rate of adatom incorporation into the step is hig
from the lower terrace then from the upper one. On the ot
hand, Schwoebel has shown that the distribution of terr
widths on a vicinal surface is stabilized during growth in t
presence of an ES barrier.8 This barrier thus hinders th
bunching of steps. In the same work, Schwoebel has sh
that bunching may be caused by preferential incorporatio
particles into steps from the upper terrace, i.e., when adat
incorporating into the step from the lower terrace encoun
an additional energy barrier. We will call this phenomen
inverse Schwoebel effect~ISE!. Since step bunching durin
growth is frequently observed, the ISE has often been
voked as its microscopic cause. In one case, kinetic Mo
Carlo ~KMC! simulations based on the ISE seem to fit t
experimental data well.14,15 However, justifying the ISE it-
self appears to be a hard task. Indeed, the ISE implies
adatoms do not easily incorporate at kinks, unless they h
to step down a monatomic step to do it. This scenario se
to contradict the customary assumptions of crystal grow
which might however be too simplistic to describe reco
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structed steps observed on semiconductor surfaces. To m
things more complicated, the occurrence of step meande
and step bunching in the same system, has been reporte2,16

In such cases, one would be forced to assume that an
barrier can coexist with an inverse Schwoebel effect, i
that a system may switch from ES to ISE behavior wh
changing the growth regime.2

Another kinetic mechanism, alternative to ISE, has
cently been predicted to give rise to step bunching, nam
an enhanced adatom diffusion along step edges, with res
to surface diffusion.17 This mechanism depends on the cry
tallographic orientation of the steps; on a~100! surface, for
instance, it should be operative for@110# steps, but not for
@010# ones.17 Finally, in multicomponent systems, such
compound semiconductors, or semiconductors grown
chemical epitaxy invoking precursor molecules, the coupl
between the surface densities of the diffusing species
been shown to cause step bunching, as well as step mea
ing, depending on the growth conditions.18,19The goal of the
present paper is to propose a microscopic, purely kin
mechanism explaining the coexistence of step bunching
step meandering in simple systems. We stress that we
dress situations in which step bunching is due to deposi
and growth, that is, to the surface being out of equilibriu
and does not persist if the surface is annealed. This contr
with the step bunching obtained during annealing, who
driving force is in general the minimization of local bondin
energies.20,21 Thus, we show here that the coupling betwe
adatom and ad-dimer~or cluster! densities, which exists in
single-componentsystems~such as Cu on Cu, or Si on Si!,
yields a novel kinetic pathway for the appearance of the s
bunching instability during single component epitax
growth.

The paper is organized as follows. We first introduce
step-flow growth model, which accounts for ad-dimers f
mation and diffusion. The model is described by a couple
nonlinear differential equations. In the second part we line
ize these equations and study the stability of the step-fl
growth with respect to the step bunching in the framework
the linearized model.The results are compared with the
©2001 The American Physical Society20-1
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sults of the multicomponent model of Refs. 18 and 19 a
discussed in terms of the surface current. In the third part,
perform one-dimensional KMC simulations of the grow
process, taking into account dimer formation and diffusi
The results are then compared with the results obtained
the basis of the linearized model. Finally, the limits of t
present step-flow growth model applied to systems with
particles diffusion are discussed.

II. STEP-FLOW MODEL
FOR ADATOMS AND AD-DIMERS

Let us consider deposition of atoms at a rateF on a
vicinal surface of average terrace widthl. When l is small
enough, or the ratioF/D1 is small enough, all atoms ar
captured by steps. Here

D15D0
atexp@2Es

at/kBT#, ~1!

is the adatom diffusion constant,Es
at the surface diffusion

activation energy for an isolated adatom,D0
at the attempt fre-

quency,T the temperature, andkB the Boltzmann constant
This is the classical step-flow growth model as described
Burton, Cabrera, and Frank22 ~BCF!. This model disregards
adatom-adatom interactions; in particular, it neglects the p
sibility of two adatoms meeting and forming a dimer. Wh
the temperature is reduced at fixedF, the density of adatoms
on the terraces increases, and dimers must eventually fo

If dimers are immobile, dimer formation is the startin
point of island nucleation.23 However, dimers may
move.24–29. Indeed, in special cases the dimers may e
have a smaller diffusion energy barrier than free adatom30

We shall now assume that the dimers also diffuse, wit
diffusion constant

D25D0
dimexp@2Es

dim/kBT#, ~2!

Es
dim and D0

dim being the activation energy and the attem
frequency for dimer diffusion, respectively. When attempti
to cross step edges, both adparticles experience, in gen
an additional diffusion barrier, the ES barrier discuss
above.

It is clear that if both adatoms and dimers experienc
strong ES barrier, no step bunching is expected, since s
receive matter mostly from the terrace in front, and theref
the bunching is suppressed.8 On the other hand, by analog
with the two-species model discussed in Ref. 18, we exp
that step bunching can be seen in the presence of a va
ingly small ES barrier for dimers, and of a significant E
barrier for adatoms. Thus, we assume that the ES barrie
the diffusing dimers is significantly smaller than that for t
adatoms. This assumption is discussed in more detail be
Let us first investigate the implications of this assumptio
The classical BCF picture can be easily modified to acco
for dimers. Indeed, dimer formation takes place at a r
proportional toD1c1

2, wherec1(x) is the adatom density an
x is the coordinate orthogonal to the step direction. Call
c2(x) the dimer density, and performing as usual the
called quasistatic approximationċ15 ċ250, the various pro-
24542
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cesses of deposition, adatom diffusion, and dimer forma
and diffusion are described by the following two coupl
nonlinear equations:

D1¹2c122D1c1
21F50,

D2¹2c21D1c1
250, ~3!

with appropriate boundary conditions at steps. In the extre
case of a vanishing ES barrier for dimers, we have

c1ux52 l /250,

c2ux52 l /250 ~4!

at the ascending step and

D1¹c1ux5 l /252nc1ux5 l /2 ,

c2ux5 l /250 ~5!

at the descending step edge. These boundary condition
count for a nonvanishing ES barrier for adatomsEES through
the kinetic parametern in Eq. ~5!, n being defined asn
5D0 exp@2(Es1EES)/kBT#. Contrary to the classical BCF
model, Eqs.~3! with the boundary conditions given by Eq
~4! and~5!, are nonlinear, and an analytic solution cannot
found. We have then to resort to a numerical treatment. H
ever, we can get a feeling of the exact behavior if we fi
linearize Eqs.~3! and solve the linearized equations analy
cally. We will see shortly that the linearized model is equiv
lent to the two-particle model of Ref. 18, so that the conc
sions of that work qualitatively apply to the present case

III. LINEARIZED MODEL

To linearize Eqs.~3! we write the squarec1
2(x) asc̄1c1(x)

and look for the solutionc1(x) of the linear system

D1¹2c122D1c̄1c11F50,

D2¹2c21D1c̄1c150, ~6!

where the ‘‘average adatom density’’c̄1 is defined self-
consistently as

c̄15
1

l E2 l /2

l /2

c1~x; c̄1!dx. ~7!

In Eqs.~6!, 2D1c̄1 has the meaning of the inverse lifetime

an adatom before dimer formation, or equivalently,A1/(2c̄1)
plays the role of a diffusion lengthl for the adatoms. On the
other hand, when adatoms disappear dimers are produc
a rateD1c̄1c1.

Of course, this linearization scheme is rather arbitrary.
main usefulness consists of showing that step bunching i
principle possible through the ‘‘dimer diffusion’’ mechanism
Our choice is motivated by the formal analogy with Re
18—the roles of ‘‘precursors’’ and ‘‘growth units’’ of Ref. 18
being played here by adatoms and dimers, respectively.
deed, the analogy requires that the dimer production rate
0-2
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the adatom vanishing rate concide. This is true if in Eqs.~6!
the second equation is multiplied throughout by 2. Then
anticipated, Eq.~6! formally coincides with the differentia
equations describing a two-component system in Ref.
provided the diffusion constant of the growth units,DA , is
set equal to twice the diffusion constant of the dimers,DA
52D2. Since the result of the linear stability analysis p
formed in Ref. 18 is independent ofDA , it applies com-
pletely to the present situation. We conclude that a vici
surface growing by step flow is unstable with respect to s
bunching if the adatom diffusion lengthl satisfies

l.1.51l , ~8!

provided that the ES barrier is infinite for the adatoms a
vanishing for the dimers. A schematic kinetic phase diagr
in the dimensionless parameter space (F/D1 ,l ) is shown in
Fig. 1. The boundary resulting from the conditionl51.51l
is drawn as a dashed line. It separates the region of line
stable step-flow~lower region! from the region of linearly
unstable step-flow~upper region!, with respect to the step
bunching instability. To obtain this result we set the tempe
ture toT5723 K and the hopping rates and diffusion bar
ers to D0

at5D0
dim51013s21 and ES

at5ES
dim51 eV, respec-

tively. We then vary the incident fluxF for each value of
average terrace widthl.

It is essential to note that relevant parameters control
the surface stability versus step bunching are the ratioF/D1
and l. This is due to the fact that only the adatom~not ad-
dimer! diffusion constant matters in determining stabilit
instability of step flow. Indeed, it is easy to show thatc̄1
'F l 2/D1, so that the stability boundary can be written
l' l c'(D1 /F l 2)1/2, or

F/D1' l c
24 . ~9!

Owing to this scaling form, the location of the boundary
the (F/D1 ,l ) parameter space does not depend on the t
perature and can be computed numerically using a fixed t
perature.

FIG. 1. Kinetic stability diagram at 723 K obtained from th
linearization procedure~solid and dashed lines for 1D and 2D su
faces, respectively!, and from 1D KMC simulations~open squares!.
Solid circles indicate the growth parameters corresponding to
simulated surface profiles shown in Fig. 2.
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To get a qualitative argument explaining the dimer
duced instability, one should bear in mind that the stabi
criterion given by Eq.~8! is obtained by looking at the sign
of the derivativeof the net average diffusion current of ad
particles on the surface, as a function of the average ter
width.35 The average current is defined as the difference
tween the number of particles that are incorporated into
descending step, and those that are incorporated into the
cending one. Then, a positive value is assigned to the cur
flowing in the downhill direction—that is, more atoms inco
porating into the descending step than into the ascend
one. The net surface current vanishes in the absence of
riers since in this case as many particles are incorporated
the ascending step as into the descending one. Let us d
mine the behavior of the current qualitatively. Consider
terrace whose width is smaller than the single-atom diffus
lengthl. Only few dimers form, and most diffusing particle
are adatoms that experience an ES barrier at the descen
step and incorporate at the ascending step. This yields a
vanishing negative~uphill! current, which decreases~be-
comes more negative! as the terrace width initially increase
If a terrace is much wider thanl, the situation is more com
plicated. The adatoms on the terrace may have three diffe
fates:

~i! Adatoms falling within a distancel from an ascending
step are incorporated there. The adatom density in this re
may be estimated asc1'Fl2/D1, which yields a currentJ
'2D1c1 /l'2Fl.

~ii ! Adatoms falling near the center of the terrace tra
form into dimers and diffuse half to the ascending and hal
the descending step. They do not contribute to the net
rent.

~iii ! Adatoms falling within a distancel from the de-
scending step try to step down, but are repelled by the
barrier. However, sincel @l, they are more likely to try to
step down again instead of diffusing to the ascending s
Indeed, the likelihood of a random walker to hop over
distancel in a given direction being proportional to 1/l , only
a fraction 1/l of such adatoms is expected to reach the
cending step. The rest eventually transform into dimers
step down, so that they approximately cancel the curren
the adatoms from the lower terrace, leaving only a contri
tion 2Fl/ l to the net current.

Summarizing, the adparticle current on a terrace is alw
negative for any terrace width, but it vanishes as21/l at
large l, which implies an instability versus step bunching23

Moreover, in agreement with the analytic results of Ref. 2
the stability boundary is determined by the relation betwe
l and l only. As such, it is independent of the value of th
diffusion constant of the dimers, provided the latter does
vanish altogether, again in agreement with the analytic re
@cf. Eq. ~9!#. To complete the discussion, we tested by KM
simulations that the instability, if it appears whenD25D1, is
not suppressed by increasing or decreasingD2 by a factor of
10. The same variation ofD2 does not make the instability
appear, if it is absent forD25D1. However, the dimer dif-
fusion constant does matter when island formation on

e
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terraces is concerned. Step flow is then favored by fast di
diffusion, and step flow is an obvious prerequisite for s
bunching.

IV. KMC SIMULATIONS

We turn now to the kinetic Monte Carlo simulations of th
growth process. We use the standard KMC algorithm as
scribed by Kellogg.31 Atoms are deposited on a one
dimensional~1D! lattice with different deposition ratesF.
This lattice represents a vicinal surface with average terr
width l.32 Adatoms then perform a random walk with ho
ping rateD1. They are either incorporated at steps or m
pairwise to form dimers. Once formed, the dimers also d
fuse at a rateD2 until they are incorporated at a step edg
The values of diffusion parameters and the temperature
chosen as reported in Sec. III. The incorporation at step
both adparticles is assumed to be irreversible. The disso
tion of dimers on the terrace is forbidden as well as
formation of clusters larger than dimers. Thus, the validity
the model is restricted to the step-flow growth regime. T
presence of the ES barrier at upper step edges is accou
for by lowering the probability of hopping down a step by
factor exp(2EES/kBT), and we start with the most favorab
case: an infinite ES barrier for adatoms (EES

at 51 eV) and a
vanishing barrier for dimers (EES

dim50). In order to locate the
boundary between stable step flow and step bunching,
proceed in the following way: for each vicinal surface with
given average terrace widthl we start with a high deposition
rate, where step bunching is seen after depositing 5
monolayers~ML !. We then progressively lower the depos
tion rate in steps of one unit in a logarithmic scale~i.e., from
400 to 300 ML/s, or from 20 to 10 ML/s, and so on! until
step bunching is lost. In the phase diagram of Fig. 1
report the smallest tested value of the deposition rate wh
bunching is observed~open squares!.

Figure 2 illustrates the surface profiles, resulting fro
stable~a! and unstable~b,c! growth regimes. In the param
eter space (l ,F/D1) ~Fig. 1! these regimes are represent
by filled circles. When the average step distance isl 520 and
F/D15431024 @Fig. 2~a!#, which falls in the stable step
flow region, the step train remains rather uniform even a
deposition of 5000 ML. The correspondent terrace width d
tribution ~TWD! that gives the probability of finding a ter
race of a given width on the surface@Fig. 2~a!, inset# can be
fitted with a Gaussian centered atl 0520 with standard de-
viation s55. Keepingl 520 but increasing the depositio
rate so thatF/D15831024 puts the system in the unstab
region. The resulting surface morphology is characterized
the coexistence of high and low step density regions. T
bimodal character of the corresponding TWD@Fig. 2~b!, in-
set#, is a signature of the step bunching instability.33 Indeed,
this TWD can be fitted with the weighted sum of two Gau
sians. These curves are shown in the inset of Fig. 2~b! by
solid lines. The fitting parameter values are as follows: m
value l 0512 (26), standard deviations516 (8) and area
a50.4 (0.6) for Gaussians describing short~large! terrace
width distribution. Finally, step bunching also appears wh
the ratioF/D1 is set to 431024 as in Fig. 2~a!, and l to 50
24542
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@Fig. 2~c!#. Again, the TWD@Fig. 2~c!, inset# exhibits two
components. Fitting with the sum of two Gaussians giv
mean valuel 0532 (72), standard deviations513 (35),
and areaa50.56 (0.44) for short~large! terrace distribu-
tion.

Finally, we compare the simulations with the analytic r
sults. A word of caution is needed at this point. The instab
ity boundary ~9! ~dashed line in Fig. 1! is obtained for a
two-dimensional~2D! surface, while the simulations are pe
formed on a 1D lattice. On the other hand, it is known th
the adatom pairing rate depends on the surface dimensio34

One can show that the diffusion length of adatoms bef
dimer formation isl51/c̄1

2 in two dimensions, whilel

51/c̄1 in the 1D case. Thus, from the criterion~8! we obtain
the scaling relation for the instability boundary in the 1
case:

F/D1' l c
23. ~10!

FIG. 2. Surface profiles resulting from KMC simulations aft
deposition of 5000 ML at 723 K,EES

at 51 eV, D0
at5D0

dim

51013 s21, ES
at5ES

dim51 eV. The average terrace widthl 520
~a,b! and l 550 ~c!, the ratio between the deposition and adato
diffusion rates isF/D15431024 ~a,c! and F/D15831024 ~b!.
The insets show the TWD on the surface together with its fit b
single ~a! or double~b,c! Gaussian distribution. The correspondin
points of the (l ,F/D1) parameter space are marked by solid circ
in Fig. 1.
0-4
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This relation is shown in Fig. 1 as a solid line and describ
rather well the instability boundary obtained from 1D KM
simulations.

V. DISCUSSION AND SUMMARY

The results described in the previous sections show
the proposed adatom-dimer mechanism is indeed abl
make a vicinal surface unstable with respect to step bun
ing, when it is growing in a step-flow mode. However,
obtain a realistic model, four main elements should
added:~i! the 2D character of a real surface,~ii ! the possi-
bility of island nucleation on the terraces between steps,~iii !
dimer dissociation on the open terraces, and~iv! physically
relevant ES barriers for adparticles.

The first point is not expected to introduce any qualitat
change. The characteristics of step bunching in the pre
model are essentially the same as in the fully 2D mo
studied in Ref. 19. In particular, a clear ‘‘phase separatio
between a step-rich and a step-poor region is seen in 1
well as 2D space.

Accounting for island nucleation~ii ! is a more delicate
point. It is clear that island nucleation is favored when t
ratio F/D1 is large, and/or the terraces are wide—which
just what bunching requires to be seen. Therefore, at v
high deposition rates, or very high temperatures, growth
island formation ultimately takes over the step-flow regim
the BCF approach loses its validity, and Eqs.~3! no longer
describe the growing surface.

However, the threshold for island nucleation is a mater
dependent property. It will depend on the surface symme
and, especially for semiconductors, on the presence
reconstruction-driven anisotropies of sticking, diffusion, e
It will also depend, of course, on the presence of stron
diffusing dimers, or larger clusters.36 As we said in the In-
troduction, too little is known about dimer and cluster diff
sion to be of help. To understand the difficulty, consider t
in order to make an estimate one should be able to com
the scaling relation for the instability boundary,l c'F21/4,
with the scaling relation linking the average distance
tween islands,l s , with the deposition rate. The latter
known in a few cases: it is of the forml s'F22/5 when dimer
diffusion is isotropic,34 and of the forml s'F21/4 when clus-
ters of all sizes diffuse.37 In both cases, whether island
nucleate before the steps bunch or not depends on the
factors, and those in turn depend on the specific material
are in general not known.

Another effect of increasing the temperature is the dis
ciation of dimers~iii !. Therefore, it is necessary to verify th
the step bunching instability persists in case when dimer
mation is reversible, that is, when dimers break up into a
toms after a certain time, on average. We can roughly e
mate that the instability induced by the diffusion of stab
dimers is not destroyed by the dissociation if the dimer d
fusion length exceeds the average terrace width. Thus, de
ing the dimer binding energy asEb so that the dimer diffu-
sion length isldim' exp(Eb /kBT) we obtain the condition
Eb.kBT ln(l) on the dimer binding energy. If this conditio
is satisfied, the mechanism proposed in the present work
24542
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comes operative. Using KMC simulations we check this co
dition in the particular case of the growth regime illustrat
in Fig. 2~b! ( l 520, T5723 K). The step bunching appea
if Eb is set to 0.2 eV, while the surface remains stable
Eb50.1 eV, in agreement with our estimation.

Finally we discuss the choice ofEES for the adparticles
~iv!. In Ref. 18 the linear stability analysis is performed al
in the case of more general boundary conditions for the
types of particles:~a! finite Schwoebel effect for the adatom
and vanishing one for the dimers;~b! infinite Schwoebel ef-
fect for the adatoms and finite one for the dimers. In bo
cases it is shown that the bunching instability persists
physically relevant values of the barriers. In particular, it
always found in case~a!, while it is found in case~b! only for
not-too-high ES barriers for the dimers. In fact, it is clear th
in the presence of high barriers for both adatoms and dim
the present model would be the analog of a one-part
model with ES barriers, which does not exhibit step bun
ing. A useful criterion for deciding whether a given ES ba
rier is high or not~equivalently, whether a given ES effect
strong or not! is to compute the lengthl ES5exp(EES/kBT),
and to compare it with the terrace widthl. A strong ES effect
~a high barrier! is implied by l ES@ l , and vice versa. For
example, using our criterion forl 550 andT5723 K, we
find that a barrier is high if it is bigger than 0.25 eV, an
low otherwise. We have checked this criterion numerica
Once the parameter set is chosen in the unstable regio
Fig. 1, steps eventually bunch for any finite ES barrier for
adatoms and a vanishing barrier for dimers. ChoosingEES
50.5 eV for the adatoms~a high but not unphysical value!,
bunching appears when the dimers’ ES barrier is 0.1 eV
does not appear when the barrier is 0.3 eV, in agreement
our estimation.

In conclusion, we have proposed a mechanism that m
be responsible for the step bunching instability observed d
ing elemental homoepitaxial growth on vicinal surfaces. T
main role is played by diffusing dimers, which are assum
to experience a small ES barrier when crossing ste
whereas diffusing adatoms experience a strong ES barrie
step edges. This assumption is, e.g., justified for the Si~001!
surface, where the absence of the ES barrier for dimer
predicted.10 In the framework of the present model we ca
distinguish three growth regimes. The step-flow growth~i!
takes place when the adatoms are incorporated at step e
before forming dimers or nucleating islands. If this is t
case, our model is just a one-particle model in the prese
of an ES barrier at the step edge. As shown by Schwoeb8

this implies that a vicinal surface is stable against s
bunching and unstable against step meandering. Step bu
ing appears in the intermediate regime~ii ! when the step
advancement is mainly due to the incorporation of diffusi
dimers. At higher deposition rates~depending on the terrac
width! growth by island formation eventually takes over~iii !,
and the model behaves again as a standard one-particle
tem with a step-edge barrier. Thus, combining analytic c
culations in the framework of the BCF model with KMC
simulations, we have shown that the diffusion of dimers
the vicinal surface may lead to step bunching, when the
erage terrace width is larger than a critical value that depe
on the deposition rate and the growth temperature.
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