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Resolution enhancement and improved data interpretation in electrostatic force microscopy
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Departamento de Fı´sica de la Materia Condensada, Facultad de Ciencias, Universidad Auto´noma de Madrid, E-28049 Madrid, Spain

~Received 24 February 2001; revised manuscript received 6 August 2001; published 28 November 2001!

The electrostatic interaction between a model probe and a sample in a scanning probe microscope is
analyzed. A simple model for a real experimental setup is proposed and solved by means of an appropriate
approximation. In addition, a quantitative definition for resolution is presented. We find that generally the total
force between tip and sample is dominated by contributions which are not confined to a nanometer-sized region
under the tip apex. From our analysis we conclude that such a confinement is only obtained either with
specially designed probes or by using the force gradient as signal source. We show that reliable experimental
data acquired by local Kelvin probe microscopy can only be obtained if these considerations are taken into
account. Finally, we propose an experimental setup which optimizes resolution and gives the correct local
surface potential in the case of Kelvin probe microscopy.
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I. INTRODUCTION

The interaction of electric charges is without doubt t
fundamental force that is best understood, and the one
has been verified experimentally with highest precisi
Electrical forces govern most physical and chemical p
cesses and, correspondingly, most technological applicat
are based on them. The modern computer industry patt
the electrical properties of materials on a~sub!micrometer
scale to build operative devices. Also for the next step
miniaturization—namely, nanotechnology—electrostatic
teraction is important. In the past decade the progress in
field has been remarkable. Part of this progress has b
driven by the development of scanning probe microscop1

which allows not only imaging and characterization of s
faces, but also their manipulation on a nanometer and e
atomic scale. Among these techniques the scanning f
microscope2 ~SFM! is probably the most versatile, since
allows different kinds of forces to be measured and in p
ticular forces due to electric charges. If electrostatic for
are the main contribution to the total interaction in an SF
setup, one generally speaks of electrostatic force microsc
~ESFM!. ESFM has been used to image charges,3,4 dopant
properties of semiconductors,5 local surface potentials,6,7 and
even the adsorption of molecularly thin films of water
solid substrates.8 In ultrahigh vacuum extremely high reso
lution of the local charge distribution and surface poten
has been obtained.9 We believe that this is not incidental, bu
related to the fact that in ultrahigh vacuum SFM experime
generally the frequency is used as an interaction signal.10,11

As will be discussed in this work, this has important con
quences for ESFM.

As on a larger scale, electrostatic interaction on a nan
eter scale is the one with the highest strength, as well as
longest range compared to other relevant forces such as
der Waals or so-called ‘‘chemical’’ forces. A thorough discu
sion of the relative strengths and of the range of the differ
interactions relevant in SFM is given in Ref. 12. For t
simplest cases of two infinite and parallel plates we find
the relation of van der Waals to electrostatic forc
FvdW /Fel5A/(6p«0U2d). In this case the electrostatic in
0163-1829/2001/64~24!/245403~11!/$20.00 64 2454
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teraction falls off faster than van der Waals interaction. A
distance of 2 nm the electrostatic interaction is stronger
voltages greater than about 0.5 V~a typical Hamaker con-
stantA.10219 J is assumed!. However, parallel plates ar
not a very physical model for an ESFM setup. Consider
the more physical example of a cone we find thatFvdW
;1/d, while Fel; ln(h/d), where h is the height of the
cone.13 We note that to calculate the electrostatic force for
infinite object some cutoff length of the system is need
~hereh); otherwise, the electrostatic interaction diverges d
to the slow decay with distance. As will be discussed in t
work, both its great strength and its large range lead to
ficulties in understanding the details of this interaction
well as in interpretating data when electric forces are imp
tant in an SFM setup.

The purpose of the present paper is to present a real
model to describe electrostatic interaction in a typical SF
setup. A definition of resolution in an ESFM is presented a
applied to different experimental setups. As a result, app
priate operating conditions can be obtained which optim
resolution and greatly simplify data interpretation. In ad
tion, we will show that when operating the ESFM in th
so-called Kelvin probe mode, the classical measurem
scheme may result in misinterpretation of experimental d
Finally we will propose an experimental setup based on
measurement of frequency shifts induced by electrostatic
teraction which enhances resolution and yields correct va
for the local surface potential. Although a similar idea h
been applied already for the measurement of charges
surfaces3 and is also used in ultrahigh vacuum,9 we believe
that right now its importance has not yet been recogni
generally in ESFM. Moreover, to the best of our knowled
the scheme proposed here has not been applied to the
characterization of surface potentials. Without doubt
problems related to the classical detection scheme base
force measurements has slowed progress in a number o
portant nanoscale applications where ESFM is a fundame
tool.

II. MODELING THE PROBE-SAMPLE SYSTEM

One of the problems for modeling the electrostatic int
action in ESFM is its complexity. Therefore some simplifie
©2001 The American Physical Society03-1
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model system is used to describe the complex ESFM se
In general the sample is assumed flat and some geom
entity is assumed as a ‘‘tip.’’ A simple charge,14 a sphere,3,15

or a cone13 are the most used shapes. In some cases m
sophisticated ‘‘tips’’ are proposed such as a spherical
connected to a tip cone16,17 or a sphere connected to a ma
roscopic cantilever.18 Most studies assume a metallic tip an
sample. The important case of dielectric samples is alm
never treated due to its even greater complexity. Interes
approaches in this context are numerical calculations
thick dielectric samples19 and a perturbative treatment20

which can be applied for thin dielectric films on metall
samples.

In every setup, adequate modeling of the probe is fun
mental. In our opinion the most appropriate assumption
such a probe in a real ESFM setup is a macroscopic can
ver, a mesoscopic tip cone, and a nanometer-sized tip a
~see Fig. 1!. The latter is the relevant object for nanosca
experiments. However, all three components of the tip-le
system interact with the sample. Due to the slow decay of
interaction, the force induced by the mesoscopic tip cone
the cantilever will be in most cases greater than the fo
induced by the small tip apex, even though the latter is m
closer to the sample. If the force induced by the tip apex
small compared to that induced by the lever and the tip co
then ESFM is no longer a nanoscale measuring instrumen
manipulation tool.

Another difficulty in modeling electrostatic interaction
that the distance dependence of the force cannot be ca
lated by adding the pairwise interaction of static charges
known positions. Such an approach makes the calculatio
van der Waals forces comparatively easy: once the van
Waals ‘‘charge density’’ is specified through the Hamak
constantA(x), the total interaction can be calculated by ad
ing the pairwise interaction between different parts of
tip-sample system~see, for example, Refs. 21 and 22!. In the
case of electrostatic SFM, at least the tip is conductin23

therefore, as the tip-sample distance is varied, the charge
the tip can rearrange to minimize the total electrostatic
ergy of the system. The difference between the calculatio
electrostatic forces and van der Waals forces is thus es
tially related to the fact that electric charges can flow as
tip-sample distance is varied, while ‘‘van der Waals charg
are determined by the material of tip and sample and
fixed with respect to them.

FIG. 1. Sketch of the model probe proposed for an ESFM se
This probe is composed of three basic units: a cantilever of lengl
with tilting angle q lever with respect to the sample, a mesoscop
tip cone of heighth, and ~full ! opening angleq t ip , as well as a
parabolic tip apex of radiusr.
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Once the electric field distributionE(x) is known, the
electrostatic interaction energyW(d) between tip and sample
can be calculated as24

W~d!5E
V(d)

dV
«0

2
E~x!2, ~1!

whereV(d) is the volume with nonvanishing electric field
As just discussed, when the tip-sample distance is var
charges can flow and accordingly the field distributionE(x)
changes. Therefore, to solve the integral~1!, first the field
distribution has to be determined. For an SFM setup wh
the tip and sample are metallic the electrostatic field
uniquely defined by the boundary condition that tip a
sample be at well-defined potentials. In fact, if no addition
charges are present between the conductors then for
tip-sample distanced the electric potential can be calculate
from the boundary condition on the tip and sample and
differential equationDU(x;d)50 everywhere outside the
conductors. The electric field is directly calculated
E(x;d)5¹xU(x;d) for each tip-sample distanced. If
charges are present in the setup, then the calculation o
electrostatic force is less straightforward. In particular,
polarization of the charges between the metal surfaces ha
be taken into account. A detailed analysis is found in Ref.

In the present work we use a different approach to find
force between a metallic tip and a metallic sample by me
of an approximation.17,26 If the tip and sample are metallic
the field lines are aligned perpendicular to the conduct
surfaces. To calculate the forces between tip and sample
will assume that the field lines can be approximated by s
ments of circles and that the electric potential decays line
along these circular segments. In the present context,
sampleS is flat and at the origin:S5(x,y,0). The magnitude
of the electric field on the sample is assumed to be sim
Eapprox(x,y,d)5U/a(x,y,d), where U is the voltage be-
tween tip and sample anda(x,y,d) the arc length of the
circular segment coming from the tip and ending on a po
~x,y! of the surface. This assumption is valid if the distan
between the two conducting objects is not larger than th
physical dimension.27 Since ESFM is intrinsically a near
field technique, we will assume that this assumption is c
rect~see, however, the discussion in the Appendix!. The elec-
trostatic force between tip and sample is then

F~d!5E
S
dS

«0

2
E~x,y,d!2.

«0U2

2 E
S
dS

1

a~x,y,d!2
.

~2!

The first equation is exact and can be deduced by noting
the term«0E2/2 is the Maxwell stress—and thus a tensi
~unit:N/m2)—acting on each point of the surface. Therefo
the surface integral over this tension gives the total fo
acting on the surface due to the electrostatic interaction
tween tip and sample. The second term in relation~2! is
obtained from the approximation discussed above, which
believe to be sufficiently good for typical experimental a
plications.

p.
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FIG. 2. Electrostatic force be
tween a typical SFM probe and
flat metallic surface as a function
of tip-sample distance. The thick
line shows the total force; the thin
solid line, short dotted line, and
long dotted line correspond to th
contributions from the tip apex
tip cone and cantilever respec
tively. The forces have been ca
culated for U51 V and l
5100 mm, w520 mm, q lever

5p/8, h510 mm, q t ip5p/8,
and r 520 nm.
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To model electrostatic forces within a typical SFM set
we will assume that the tip-lever system has three eleme
building blocks: a lever, a tip cone and a tip apex. The le
is characterized by its lengthl, its width w, and an angle
q lever with respect to the sample surface. The tip is a tru
cated cone of heighth and opening angleq t ip which ends
smoothly in a paraboloidal tip apex of radiusr ~see Fig. 1!.
For this geometry, the shape and lengtha(x,y) of the circu-
lar segments connecting the probe and the sample ca
calculated and relation~2! can be solved to obtain the fo
lowing forces as a function of the distanced between the
surface and the tip apex~see the Appendix!:

Flever~d!

5 f lev«0U2
l w

h2

1

~11d/h!$11@d12l tan~q lever/2!#/h%
,

~3!

Fcone~d!5 f cone«0U2F lnS d2d/21h

d1d/2 D
2sin~q t ip/2!

h2d

d2d/21h

d2d/2

d1d/2G , ~4!

Fapex~d!

.
p «0U2

11 f ~q t ip!~d/r !2 S r 1d/2

r 22d D 2S r 22d

d@112 tan2~q t ip/2!d/r #

12 ln
4d

2d1r 1~r 22d!cos~q t ip! D , ~5!

where f lev52 tan2(q lever/2)/q lever
2 and f cone54p/(p

2q t ip)2 are geometrical factors,f (q t ip)5 ln@1/sin(qtip/2)#/
$@12sin(qtip/2)#@31sin(qtip/2)#%, and d5r /tan2(q t ip/2) is
the height of the truncated part of the cone~see the Appen-
dix!. We recall that the force between two conducting bod
is related to the derivative of the capacitance:F(d)
24540
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5C8(d)U2/2, whereC(d) is the capacitance of the two con
ducting bodies. Therefore from Eqs.~3!–~5! the capacitances
of the different components of the probe with respect to
sample can be obtained directly. The total capacitance of
ESFM setup is the sum of these individual capacitanc
which means that the total capacitance of the system ca
interpreted as individual capacitors in parallel.28,29

Figure 2 shows the total electrostatic force between
typical metallized model probe and a metallic flat sample.
addition, the individual contributions from the lever, con
and tip apex are also shown. As can be seen from the gr
the contribution from the tip apex dominates only for d
tances smaller than about 3 nm. For larger distances the
interaction is dominated byFlever or Fcone, and will there-
fore not yield any nanometer-scale resolution, since
sample is then probed by the mesoscopic tip cone and/or
macroscopic lever. In fact, in most experimental conditio
the latter dominates and the resolution is of the order of
width of the cantilever—that is, several micrometers.

III. DEFINITION OF RESOLUTION

The reasoning just discussed gives a qualitative estim
of resolution. For a quantitative analysis of resolution first
appropriate definition is needed. In this context we recall t
the integrand«0E2(x,y,d) of Eq. ~2! is the Maxwell tension
which acts on each surface element of the sample. There

d f orce~A,d![

E
A
dS E2~x,y,d!

E dS E2~x,y,d!

5

«0E
A
dS E2~x,y,d!

2 F~d!

is the relative contribution of an arbitrary areaA to the total
interaction. We now define resolution as the radiusr of the
3-3
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FIG. 3. As explained in the main text, the curve describing the lateral variation of the tension can be used to define an aperture
as well as a resolution. Graph~a! shows these~normalized! aperture functions for different tip-sample distances. Each curve has been
with respect to the main origin of the graph by its corresponding tip-sample distance. The horizontal axis represents the distan
symmetry axis of the system while the vertical axis is either the strength of the tension~in arbitrary units! or the tip-sample distance~offset
for each tension curve!. ~b! The resolution resf orce(d) has been calculated for the following tip-sample distances:d
52, 5, 20, 40, 60, . . . ,180, and 200 nm. The same parameters for the probe have been assumed as those applied for the calcul
in Fig. 2: U51 V, and l 5100 mm, w520 mm, q lever5p/8, h510 mm, q t ip5p/8 andr 520 nm.
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circle under the tip that contributes 1/2 to the to
interaction:

resf orce~d![radiusr such thatd f orce~pr2,d!51/2.
~6!

Figure 3 shows the~normalized! tensions as well as the reso
lution resf orce(d) which have been calculated for differe
experimentally relevant tip-sample distances. We note
high resolution implies a low value for resf orce(d). The same
parameters for the probe have been used as those applie
the calculation of the forces shown in Fig. 2. Each cu
representing the tension has been normalized with respe
the total force at that distance. In addition to the tensions,
lateral resolution has been calculated as defined by rela
~6!. As expected from the discussion based on the rela
contribution of the forces induced by the different parts
the cantilever, the lateral resolution is of the order of m
crometers for most tip-sample distances which are relev
@2 –200 nm5(0.1–10)r #. Only for distances smaller tha
about 2 nm is the central peak of the tension induced by
interaction of the tip apex large enough to compensate for
rest of the tension induced by the long-range interaction
the tip cone and the cantilever. In fact, a more detailed an
sis demonstrates that in the case shown the dominant i
action comes from the tension produced by the macrosc
cantilever rather than the tip cone~see also Fig. 2!. This
explains the low resolution and the fact that it is of the ord
of the width of the cantilever.

In conclusion, for typical cantilevers we find that the res
lution is rather in the micrometer than in the nanome
range. Theoretically, nanometer resolution can be obta
24540
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for tip-sample distances smaller than about 2 nm. Howe
we believe that from an experimental point of view the me
surement of electrostatic interaction at such small distan
is an extremely difficult task. The required precise control
tip-sample distance without touching the surface is diffic
in itself. In addition, for such small distances the electrosta
interaction induced by applying small voltages may indu
snap-to contact and in air also condensation of water
tween tip and sample. Therefore, some other means of
proving resolution has to be implemented.

IV. ENHANCEMENT OF RESOLUTION

A. Cantilever design

Relations~3!–~5! as well as the arguments just discuss
guide the way to improving resolution: reduction of th
‘‘long-range’’ interaction area. This means that good elect
static probes should have a small cantilever width, a sm
cone opening angleq t ip , and a tip height of roughly the
same value as the cantilever width:w'h. In addition, even
though it may seem counterintuitive, a large tip radius w
also increase resolution at intermediate distances, sinc
will increase the relative strength ofFapex with respect to the
other two forces.29 Of course the price for this increase
resolution at an intermediate distance is a decreased on
very small distances. A second possibility to improve reso
tion is to use normal dielectric cantilevers patterned with
conductive layer on the tip side in an appropriate wa
namely, a narrow conducting path covering the tip apex. F
ure 4 shows the forces obtained for such a cantilever. For
parameters used the contribution of the lever to the to
3-4
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FIG. 4. Electrostatic force as a
function of tip-sample distance fo
a cantilever which has been opt
mized for ESFM. As in Fig. 2, the
thick line shows the total force
The thin solid line, short dotted
line and long dotted line corre
spond to the contributions from
the tip apex, tip cone, and cantile
ver, respectively. The paramete
corresponding to the effective me
tallic probe interacting with the
surface are U51 V, and l
5100 mm, w51 mm, q lever

5p/8, h52.5 mm, q t ip5p/8,
and r 520 nm.
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force has been reduced by a factor of 5 and that of the
cone by a factor of 2 with respect to the cantilever mode
in Fig. 2.

B. Measurement of the force gradient

Another, even more drastic way of increasing the reso
tion of ESFM and to greatly simplify data interpretation is
change the signal source of the interaction. In fact, if
force gradient is measured instead of the force, the rela
contribution of the tip apex to the total interaction is i
creased dramatically. This is shown in Fig. 5, where the to
force gradient as well as the individual contributions of t
cantilever, tip cone, and tip apex are computed for the sa
experimental system as that corresponding to Fig 2. If
force gradient is used to measure the interaction, relat
~3!–~5! lead to the result that the contributions of the lev
and tip cone are strongly reduced. The precise reduction
tor is determined by the relative slope of the forcesFlever(d)
and Fcone(d) with respect toFapex(d) at small distances
24540
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(d.0). The reason for the strong reduction of the interact
induced by the lever and the tip is the low distance dep
dence ofFlever(d) andFcone(d) on the range that is experi
mentally important. These large but constant force contri
tions are thus ‘‘differentiated away’’ when the force gradie
is measured; therefore, only the termFapex(d) with the pole
1/d ‘‘survives.’’

Again, in addition to the qualitative discussion just pr
sented, we have tried to find a quantitative definition of re
lution. In analogy to the reasoning leading to relation~6!, the
integrand of

F8~h!5
«0

2 E dS
d

dh
E2~x,y,h! ~7!

can be used to define an aperture function. We note tha
this case the integrand of relation~7! is not a tension as for
the case of relation~2! but rather is in units of N/m3. The
relative contribution of an areaA to the total force gradient is
-
s

-

e

FIG. 5. Force gradient vs dis
tance curve for the same probe a
that used in Fig. 2 for the compu
tation of the interaction force (U
51 V, and l 5100 mm, w
520 mm, q lever5p/8, h
510 mm, q t ip5p/8, and r
520 nm). For small tip-sample
distances (d&50 nm) the only
relevant interaction is due to th
tip apex~thin solid line!.
3-5
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FIG. 6. ~a! Aperture functions and~b! resolution resf g(d) if the force gradient is used to measure the electrostatic interaction. T
curves are analogous to those shown in Fig. 3. In~a! the horizontal axis represents the distance to the symmetry axis of the system,
the vertical axis is either the strength of the aperture function~in arbitrary units! or the tip-sample distance~offset for each aperture function!.
In ~b! the horizontal axis represents tip-sample distance and the vertical axis the resolution. Note that the resolution is greatly en
compared to the case shown in Fig. 3.
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d f g~A,h![

E
A

dS
d

dh
E2~x,y,h!

E dS
d

dh
E2~x,y,h!

5

«0E
A
dS

d

dh
E2~x,y,h!

2 F8~h!
,

and the resolution for the force gradient is defined as

resf g~d![radiusr of the circle under the tip such that

d f g~pr2,d!51/2.

Figure 6 shows the lateral variation of the aperture funct
and the resolution resf g(d) as a function of tip-sample dis
tance. The same parameters for the probe have been us
those applied for the calculation shown in Figs. 2, 3, and
As can be seen by comparing Figs. 6 and 3 the resolutio
greatly enhanced if the force gradient instead of the forc
used to measure tip-sample interaction. For typical pr
systems and typical tip-sample separations~10–20 nm! the
resolution is increased by about 2 orders of magnitude.

An interesting feature which is observed in Figs. 3 and
is the sharp variation of resolution at some tip-sample d
tances. In Fig. 3 we find that at a distance of about 2 nm
resolution varies from about 10mm to 100 nm. In Fig. 6 we
find a transition of resolution at a tip-sample distance
about 80 nm. This is not an artifact of our calculation, b
due to the fact that at these distances a different part of
probe becomes dominant. Indeed, as can be seen in Fi
and 5, at distances larger than about 2 nm the force co
bution from the cantilever starts to become greater than
of the tip apex~Fig. 2!, while at distances larger than 100 n
the variation of the force gradient due to the tip cone is m
important than that from the tip apex~Fig. 5!. This is con-
sistent with the sudden changes in resolution which we
at about the same distances in Figs. 3 and 6. Finally, we
that for all tip-sample distances the order of magnitude of
resolution is about the size of the geometric object which
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dominant in the total interaction. We thus believe that
understand the details of how and why tip-sample interac
and resolution vary with tip-sample distance.

V. RESOLUTION AND KELVIN PROBE MICROSCOPY

In the discussion presented so far it may be argued
with regard to resolution the contributions due toFlever and
Fcone are not so critical since they only give large offs
forces to the resolution carrying termFapex. Therefore it
could be argued that only the signal to noise ratio is lowe
and not the resolution itself. However, in the so-call
Kelvin probe microscopy~KPM!, the contributions of the tip
cone and the lever will induce severe errors in the meas
ment, as will now be discussed. We recall that the idea
KPM is to locally measure the surface potential.6,7,28,30–32

KPM works by applying an adjustable bias voltag
Ubias(t)5Utip1Uacsin(vet) between a conducting tip an
the sample. Since the force is quadratic in the voltage,
measured force has components varying with the frequen
ve and 2ve in addition to a static force. It is assumed ge
erally that the total force can be written as

Ftot~d!5
1

2
C8~d!@Ubias2Usample#

2

5
1

2
C8~d!@DU21Uac

2 /2

12 DU Uac sin~vet !2Uac
2 cos~2vet !/2#,

~8!

whereDU5Utip2Usample, with Usample the local voltage
of the sample, is the~static! voltage difference between tip
and sample andC8(d) is the derivative of the capacitance o
3-6
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RESOLUTION ENHANCEMENT AND IMPROVED DATA . . . PHYSICAL REVIEW B64 245403
the tip-sample system which depends on the geometric p
erties of the tip-sample system and can be determined f
relations~3!–~5!. In KPM a known voltageUtip is applied to
the tip so that the componentFv5C8(d) DU Uacsin(vet)
vanishes. This seems to implyUtip5Usample and thus that
the local surface potential is measured. Relation~8! is, how-
ever, incorrect if the total force has contributions from d
ferent parts of the tip-lever system and if the surface pot
tial varies locally—that is, ifUsample5Usample(x,y). Then,
Eq. ~2! has to be solved exactly. In the following, we w
assume that tip and sample are conducting and that l
variations of the surface potential are due to different me
lic materials or to a very thin layer of dielectric material.20,33

The approximation in relation~2! can then be generalize
and the total force is computed as

F~d!5
«0

2 E
S
dS

@Utip2Usample~x,y!1Uac~ t !#2

a~x,y!2
. ~9!

The local surface potential as well as the applied alterna
voltage therefore contribute to the total force in a nontriv
way and cannot be factored out. In particular we note th
surface potential distribution whose mean value vanis
(*dSDU50) does necessarily mean that the electrical fo
also vanishes. To further illustrate the consequences of r
tion ~9! in an experimentally realistic situation we will as
sume that an average global surface potential can
defined34 and that the two relevant contributions to the to
force are only due to the lever and the tip apex. Then
generalized relation~9! can be evaluated and yields for th
componentFv

Fv~d!5$Clever8 ~d!@Utip2Uglobal#

1Capex8 ~d!@Utip2Usample~x,y!#%Uac sin~vact !,

~10!

whereClever and Capex are the capacitances between lev
and sample, and between tip apex and sample, respect
@see relations~3! and ~5!#. This force componentFv will
vanish for28,29

Utip5@Clever8 Uglobal1Capex8 Usample~x,y!#/

~Clever8 1Capex8 !, ~11!

which is a weighted average of the global and the local s
face potential, and not the true local potential. Even m
discouraging, sinceClever8 (d)@Capex8 (d) for d.r , Utip will
be much closer toUglobal than to Usample(x,y) for most
tip-sample distances. As discussed previously,Clever is al-
most constant for very small tip-sample distances wh
Capex has a pole atd50, and thus varies very considerab
Correspondingly, when tip-sample distance is very small
voltage needed to haveFv50 is strongly distance depende
and thus meaningless.

A better measurement of local surface potential can
achieved again either by using a specially designed can
ver or by using the force gradient as interaction signal. In
latter case, a relation analogous to Eq.~10! is obtained for
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the force gradient component varying with sin(vet), but with
the termsClever8 (d) and Capex8 (d) substituted byClever9 (d)
andCapex9 (d):

Fv8~d!5$Clever9 ~d!@Utip2Uglobal#

1Capex9 ~d!@Utip2Usample~x,y!#%Uac sin~vet !

'Capex9 ~d!@Utip2Usample~x,y!#Uac sin~vet !.

As discussed in detail above, the contribution from the le
through Clever9 (d) is then negligible with respect to
Capex9 (d). Therefore applying the Kelvin method we no
obtainUtip'Usample(x,y), which is what is wanted experi
mentally.

VI. RESOLUTION ENHANCEMENT: EXPERIMENTAL
REALIZATION

The results on electrostatic interaction in a real SFM se
discussed so far lead to the conclusion that this interac
should generally be measured by relating it to the force g
dient rather than to the force itself. The question is now h
this can be realized experimentally. We propose to us
double lock-in detection scheme in which the cantilever
oscillated mechanically at its resonant frequencyvm and the
frequency variation of the system due to a time-varying el
tric voltageUac sin(vet) is measured. As is well known in
SFM, a force gradient will induce a shift of the free resona
frequency according to35

vm5Ac2]F~d!/]d

me f f
'vmS 12

1

2

]F~d!/]d

c D ,

where in the present contextF(d) is the electrostatic force
between tip and sample just discussed,me f f an effective
mass, andc the force constant of the cantilever. This relatio
follows from modeling the tip-sample system as a harmo
oscillator and is only correct if the oscillation amplitude
the tip is small compared to the range over which the pot
tial varies significantly.36 If the frequenciesvm and ve as
well as the time constantt of the lock-in detector associate
with vm are adjusted appropriately ~namely,
vm.1/t.ve—for example,vm'10/t'100ve), then the
frequency shiftDvm(t) of the mechanical oscillation can b
determined very precisely with a second lock-in detec
locked to ve . This second lock-in detector monitors th
variation of the mechanical resonance frequency induced
the time-varying electrostatic field between tip and samp
The Kelvin method is implemented almost as in the us
way: an adjustable voltageUtip as well as the additiona
harmonic voltageUac sin(vet) is applied to the tip. However
not the force, but the time-varying signal corresponding
the frequency shiftDvm(t) is monitored and analyzed with
the help of the second lock-in detector. A feedback sig
adjusts the tip voltageUtip in such a way that the outpu
related to theve component of the frequency variatio
Dvm(t) vanishes.37 Then the tip voltageUtip is equal to the
true local surface potential. We note that, in addition to
surface potential, also the local capacitance of the tip-sam
3-7
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FIG. 7. Auxiliary sketches of~a! the lever-sample,~b! the cone-sample, and~c! the tip apex-sample system showing the parameters
are relevant for the calculation of the corresponding forces.
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system can be measured with very high resolution. For t
the 2ve component of the frequency variationDvm(t) has to
be determined with the second lock-in amplifier, in analo
to the classical KPM setup. This component is then prop
tional to Capex9 Uac

2 and thus to the true local capacitance
the tip-apex system. The spatial resolution of the surf
potential as well as for the local capacitance when meas
as proposed along these lines is determined by the re
shown in Fig. 6.

VII. CONCLUSION

In summary, we have presented a simple model for
SPM probe interacting with a flat sample surface. This mo
takes into account the contributions of the macroscopic c
tilever, the mesoscopic tip cone as well as of the nanome
tip apex. Using an appropriate approximation, the force
tween this probe and the sample is calculated analyticall
a function of tip-sample distance. We have found that o
for very small tip-sample distances the total force is dom
nated by contributions from the tip apex. To improve reso
tion we propose to use either specially shaped cantilever
the force gradient as signal source for the interaction.
addition, our analysis has shown that the common way
acquiring data in KPM leads to severe errors when the lo
surface potential is measured. Finally, we have propose
SFM setup to implement quantitative local ESFM and
particular true local KPM, which is based on the measu
ment of the force gradient rather than of the force. We
lieve that the results discussed in the present work will le
to both a significant increase in electrostatic resolution
well as a quantitative determination of electrical propert
on a nanometer scale.
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APPENDIX

In what follows we will explain how Eqs.~3!–~5! have
been obtained for the different individual components of
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model probe system—namely, the macroscopic lever,
~truncated! tip cone, and the parabolic tip apex~see Figs. 1
and 7!. As discussed in the main text, the idea of the appro
mation used in the present work is to connect each p
between the model probe with circular segments which e
perpendicular into tip and sample~both are assumed meta
lic!. The main difficulty with this approach is to find a rela
tion for the arc lengtha(x,y) which can be integrated ana
lytically. Each part of the model system will be treate
individually.

1. Lever

The lever is assumed rectangular of widthw and lengthl
and tiltedq lever with respect to the sample@see Fig. 7~a!#.
Lines passing through the lever and the sample join at a p
which is assumed to be the origin of the coordinate syst
We note that the system is symmetric with respect to a
passing through the origin with an angleq lever/2. Due to this
symmetry, in the present context it is more natural to m
sure distances perpendicular to the symmetry line
the system ~termed d̃). From Fig. 7~a! one finds d̃
5dl cos(qlever/2) for the closest distance between lever a
sample. The radius of the arc connecting this closest en
the lever with the sample is given byr 05d̃/@2sin(qlever/2)#
5dl cot(qlever/2)/2 and the corresponding arc length isa0
5r 0q lever . For an arbitrary point of the sample we find a
arc length

a~x,y!5xq lever with r 0<x<r 01 l and 2w/2<y<w/2.

The total force is thus given by

Flever~dl !5
1

2
«0U2E

2w/2

1w/2E
r 0

r 01 l

dxdy
1

x2q lever
2

5
2 tan2~q lever/2!

q lever
2

«0U2

3
l w

dl
2

1

112l tan~q lever/2!/dl

.
1

2
«0U2

wl

dl
2

1

11 l q lever /dl
.

The approximation is valid for small tilting angles. We no
that in the limitq lever→0 the relation for the parallel capac
tor is obtained correctly.
3-8
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2. Cone

The tip is assumed a circular cone of heighth and ~full !
opening angleq t ip @see Figs. 1 and 7~b!#. The origin is on
the symmetry axis of the system. The radius of the arc le
ing the tip end isr 05dc /cos(qtip/2) and the correspondin
center of the arc is (x0,0), with x052dc tan(q t ip/2). The
position on the surface where this arc ends isr05x01r 0
5dc@12sin(qtip/2)#/cos(qtip/2). Similarly, the position on
the surface where the arc from the top of the cone end
r15dc@12sin(qtip/2)1h/dc#/cos(qtip/2). Since the radius
of the arc increases linearly with distance on the sample
face, we find for this radiusr arc and for the arc lengtha

r arc~r!5r 01~r2r0! and a~r!5S p

2
2

q t ip

2 D r ~r!.

For the force acting on the cone we obtain

F̃cone~dc!5
1

2
«0U22pE

r0

r1
rdr

1

a~r!2

5
4p

~p2q t ip!2
«0U2F ~r02r 0!~r12r0!

r 0~r12r01r 0!

1 lnS 11
r12r0

r 0
D G

5
4p

~p2q t ip!2
«0U2S ln

dc1h

dc
2sin~q t ip/2!

h

h1dc
D

.
4p

~p2q t ip!2
«0U2S ln

h

dc
2sin~q t ip/2! D ,

where the expressions forr 0 , r0, and r1 discussed above
have been used. The approximation is valid fordc!h. Fi-
nally, if the tip is not a sharp cone but a truncated one wh
a heightd of the tip end has been removed, then the low
limit of the integral is notr0, but r trunc5dc@12sin(qtip/2)
1d/dc#/cos(qtip/2), and the corresponding force is

Fcone~d!

5
1

2
«0U22pE

r trunc

r1
rdr

1

a~r!2

5
4p

~p2q t ip!2
«0U2S ln

dc1h

dc1d

2sin~q t ip/2!
h2d

dc1h

dc

dc1d D
.

4p

~p2q t ip!2
«0U2S ln

h

dc1d
2sin~q t ip/2!

1

11d/dc
D .

Again, the approximation is valid fordc!h. We note that
tip-sample distance is nowdc1d and not simplydc as for a
sharp cone. In particular, the force does not diverge fordc
50, but for dc52d. Instead, fordc→0 we find a constan
24540
v-

is
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force Fcone54p«0U2ln(h/d)/(p2qtip)
2. This behavior is

reasonable since the truncated cone is touching the sur
only for dc52d.

3. Parabolic apex

The tip apex is assumed to be a parabolic cap which jo
smoothly with the truncated cone@see Fig. 7~c!#. Thus the
slope of the line defining the cone and the slope of the pa
bolic cap have to be equal. From this, the equation desc
ing the parabolic capc(x) follows as

c~x!5
1

2r
x21d with uxu,

r

tan~q t ip/2!
.

At each pointx0 of the tip apex its tangent has a slopex0 /r
and the equation describing this tangent is

tx0
~x!5S x0

r D ~x2x0!1c~x0!.

The corresponding intersection point with the sample
found to bexint(x0)5x0/22d r/x0. With this point the ra-
dius of the arcr arc(x0) as well as the arca(x0) itself is

r arc
2 ~x0!5~x02xint~x0!!21c~xo!2

and

a2~x0!5S x0

r D 2

r arc
2 ~x0!.

This relation expresses the arc length as a function ofx, that
is, the projection of the parabola onto thex axis, and not as a
function of the positionr where the arc leaving the apex hi
the sample. This position is found to ber(x0)5xint(x0)
1r arc(x0). Unfortunately we have not been able to find
simple relation for the arc lengthr arc as a function ofr to
solve the correct integral~2! analytically. Therefore we have
approximated the correct integral by assuming a linear r
tion betweenr andx. We then have

F̃apex~d!5
1

2
«0U22pE

0

rmax
rdr

1

a~r!2

5p «0U2E
0

x(rmax)

dr
r~x!

a„r~x!…2
dr

dx
dx

.p «0U2 ~11d/2r !2E
0

x(rmax)

dx
x

a~x!2

5p «0U2S r 1d/2

r 22d D 2S 1

d

r 22d

112d tan2~q t ip/2!/r

12 ln
4d

2d1r 1~r 22d!cos~q t ip! D
.p «0U2

r

d
, ~A1!

where the relationr(x).x(11d/2r ) has been used and th
approximation is valid again for very short distances, in t
3-9
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case ford!r . The asymptotic limit ofF̃apex(d) is thus the
same as the limit which is obtained from the exact solut
of a conducting sphere over a conducting infinite surfac38

We note that ford→r /2 relation~A1! does not diverge, in-
stead we find F̃apex(r /2)5p«0U2(5/4)2cos2(qtip/2)
3@32cos(qtip)#/2 and thatF̃apex(`)5p «0U2 ln@1/sin(qtip/
2)#/4. The latter limit is in contradiction to the limit which i
obtained from the exact relation. This behavior is related
the fact that, as discussed in Sec. II, Eq.~2! is only valid in
the near-field regime. In case of the tip apex this implier
&d. However, in an ESFM setup ranges larger than this
also of experimental relevance. Therefore we propose
following empirical relation for the electrostatic force on th
tip apex:

Fapex~d!.
p «0U2

11 f ~q t ip!~d/r !2 S r 1d/2

r 22d D 2

3S r 22d

d@112 tan2~q t ip/2!d/r #

12 ln
4d

2d1r 1~r 22d!cos~q t ip! D , ~A2!

with f (q t ip)5 ln@1/sin(qtip/2)#/$@12sin(qtip/2)#@3
1sin(qtip/2)]%. The additional factor 1/@11 f (q t ip) (d/r )2#

in Fapex(d) as compared toF̃apex(d) does not vary the short
range behavior and gives the correct limit ford@r .

4. Composite system: Lever-cone-parabolic cap

The forces between the individual components of
model probe have been determined as a function of dista
However, when assembling these individual components
the model probe as shown in Fig. 1 it is important to redefi
the distances correctly for each component. For the mo
probe we define tip-sample distanced as the separation be
tween the paraboloidal apex and the sample; thusd
5dapex, wheredapex is the separation discussed in the p
vious section.
et

ev

-

l. B
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The height of the truncated part of the cone isd
5r /tan2(q t ip/2). However, in the case of the conical tip th
distancedc was calculated from the end of a sharp conic
tip, which is not the distanced. From elementary geometr
@see Fig. 7~c!# we find

dc1d5d1
1

2r S r

tan~q t ip/2! D
2

5d1
d

2
.

Finally the distance between the surface and the lever is s
ply dl5dc1h.d1h, with h tip height. The forces on the
cone and the lever in our model system are therefore

Flever~d!5
2tan2~q lever/2!

q lever
2

«0U2

3
l w

~d1h!2

1

112l tan~q lever/2!/~d1h!

.
2 tan2~q lever/2!

q lever
2

«0U2

3
w

h

1

h12l tan~q lever/2!
,

Fcone~d!5
4p

~p2q t ip!2
«0U2F lnS d2d/21h

d1d/2 D
2sin~q t ip/2!

h2d

d2d/21h

d2d/2

d1d/2G
.

4p

~p2q t ip!2
«0U2F lnS 2h

d D1sin~q t ip/2!G .
Again, the approximations are valid for very small tip
sample distances (d!r and d!h). The force on the apex is
given by relation~A2!.
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