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We derive a nonsymmetrized eight-band effective-mass Hamiltonian for quantum dot heterostructures
(QDH?'s) in Burt's envelope-function representation. The 8 radial Hamiltonian and the boundary conditions
for the Schrdinger equation are obtained for spherical QDH’s. Boundary conditions for symmetrized and
nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are com-
monly used to match the wave functions found from the Hulg Hamiltonians of two adjacent materials.
Electron and hole energy spectra in three spherical QDH’s, HgS/CdS, InAs/GaAs, and GaAs/AlAs, are calcu-
lated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized
8X 8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions
of an electron and a hole and, consequently, the energies of both intraband and interband transitions.
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[. INTRODUCTION functions of coordinates. But, at the heterointerfaces of the
multilayer nanostructures, there occurs an abrupt change of

The 4x4 k-p hole Hamiltonian for the wave-function en- effective-mass parameters from their values in one material
velopes (so-called effective-mass Hamiltonjanthat takes to those in the adjacent material. Inside a thin transitional
into account mixing of the light- and heavy-hole bands, wadayer that contains the heterointerface, the ordering of the
obtained in Ref. 1 using perturbation theory. This multibanddifferential operators and coordinate-dependent effective-
Hamiltonian has been employed for description of the holamass parameters in the multiband Hamiltonian becomes cru-
states in bulk crystafsas well as in low-dimensional struc- cial. In QD’s with an infinitely high confining potential for
tures, in particular, in free-standing homogeneous quanturalectrons and holes, all components of the wave function
dots (QD’s).>* The inclusion of the mixing with the spin- vanish at the heterointerface, and there remains a possibility
orbit split-off hole band leads to thex® k-p Hamiltonian  of applying the bulk multiband k-p Hamiltonian
which has also been applietito QD’s. To consider the non-  straightforwardly’~48-* There are two ways to proceed
parabolicity of the electron dispersion in narrow- andfrom QD’s to QDH's.
medium-gap semiconductors, it is necessary to take into ac- (i) The first way is to use an appropriate bulk multiband
count the coupling of the conduction and valence bands. UsHamiltonian for each constituent material separately, and
ing thek- p perturbation theory for bulk semiconductors with then to match the obtained homogeneous solutions at the
cubic lattice symmetry, the>88 k-p model was developed in abrupt heterojunctions applying the connection ryleR’s)

Ref. 7. This model explicitly includes eight bands around thethat are usually obtained by imposing the continuity of the
I' point of the Brillouin zone, namely, electron, heavy-, wave-function envelopes and of the normal to the heteroint-
light-, and spin-orbit split-off hole bandgach of them is erface component of the velocity2® It should be underlined
twice degenerate due to the spiand treats all other bands that this way is heuristic and nonunique. In Ref. 18 the gen-
as remote. Along with more simple models, the@8k-p  eral CR’s, that do not even require the continuity of the
Hamiltonian has been used to investigate different GBee, wave-function envelopes, have been proposed for planar het-
e.g., Refs. 8-11 erostructures.

Recently, experimentalists have begun to apply multiband (ii) The second waycf. Refs. 19—21is to derive a multi-
effective-mass Hamiltonians to investigate elastic, electronichand Hamiltonian valid for the entire heterostructure, includ-
and optical properties of multilayer nanostructures such amg the heterointerfaces, and then, if material parameters
quantum dot heterostructures(QDH’s) CdS/HgS:  change abruptly at some interfaces, to find the boundary con-
InAs/GaAs?13 GaAs/ALGa,_ As41° and ditions (BC’s) for the solutions of the envelope-function
CdS/HgS/CdS/k0 151 However, it should be emphasized equation. To find these BC's, one should use the multiband
that multibandk-p Hamiltonians are derived for homoge- envelope-function equationi(— E)¥ =0 at any point of the
neous bulk materials, i.e., under the assumption that akheterostructure, including the heterointerfaces, and integrate
effective-mass parameters acenstant This is important, this equation over the volume of an infinitely thin layer,
because at a certain step of the derivation, wave numberswhich includes the considered heterointerface. Thus, the
are declared as operatqﬁ»éh that do not commute with the BC's are derived starting from the requirement of continuity
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of the components of the wave function at the heterointermetrized effective-mass Hamiltonians, it has been shown that
face. the former BC's give physically reasonable results, while the
One can always choose the CR’s physically equivalent tdatter BC's can produce nonphysical solutidfi$® More re-
the BC's??> Both approachesi) and (i) are usually used cently, these two sets of BC's for a planar quantum well have
when the wave function inside each layer of a heterostructurbeen examined within the tight-binding approd¢fhe re-
can be found analytically, for example in planar or sphericakult of the comparison allowed to give preference to the non-
heterostructures. In case of an arbitrary shape of the hetereaymmetrized model resulting from Burt's derivation of the
interface, approackii) can still be used because, when theenvelope-function Hamiltonian, which was shown to give
Hamiltonian is known for the entire heterostructure, one cameliable results even when the well and barrier effective-mass
find an overall numerical solution of the ScHinger equa- parameters were very dissimilar.
tion. In the present paper the envelope-function representation
A commonly used heuristic method to obtain a multibandof Refs. 19-21 is used to construct the nonsymmetrized
effective-mass Hamiltonian for heterostructures use®ight-band Hamiltonian for an arbitrary three-dimensional
symmetrizatio>~%’ of the correspondind- p Hamiltonian.  heterostructure. As an application, the electronic structure of
This method consists of the symmetrical arrangement of théwo-layer HgS/CdS, InAs/GaAs, and GaAs/AlAs spherical
components of the momentum operator, that ensures the HERDH's is investigated as a function of the dot radius.

micity of the resulting Hamiltonian. Namelgp—[B(r)p ( It _ﬁh(?md e mentiodned that g‘;%ug_zus s%lutions

- o o Ao - “oscillating” °° states and “gap” stat id not become
+pB(r)1/2 and Bpip;—[piB(r)p;+p;B(r)pil/2, where - . ,
B(r) is a spatially varying effective-mass or other material-2PParent in the afc;remeg%onedtQDtH fs Howevter, such solu-
dependent parameter which is usually considered a piecewié'(-f‘)r_}_sh may aﬁpeafr tﬁr a II elretf‘ Set of parame grs'.th th
constant, because in each layer of a heterostructure it has th%t e (;efsu S tﬁ € ca ctu_a gT(BaLe cqlrtr1p§1re TV;/\I ?se
value for a corresponding bulk material. The symmetrization0 amned from the symmetrize amiftonian. the rest
has been applied to QDH's in Refs. 12, 13, and 17. An espf the paper is orggmzeq as follows. In Sec._ Il the denvathn
sential fault of the symmetrization is that it is nohacessary of the nonsymmedtrized eight-band Hamiltonian for a QDH is

condition for the multiband Hamiltonian to be Hermitian. presented. The corresponding radial Hamiltonian for a

Besides that, as will be seen below, some intrinsic propertie pherical QDH is obtained in Sec. lll. In Sec. [Vithe BC's for
of the heterointerface, such as reducing the symmetry of th oth symmetrized and nonsymmetrized radial Hamiltonians

problem and smoothing the abrupt change of the effective‘:"re, compared with each other and with .commonly u.sed
mass parameters at a heterojunction, are completely n “R’s. The results of the numerical calculation for spherical
glected in the symmetrized Hamiltonian, DH'’s are obtained and discussed in Sec. V. Conclusions are
Burt has derivetf~2! the exact envelope-function equa- 91Ven in Sec. VI. The X2 electron and &6 hole energy-
tions for a heterostructure. The order of the components Oqlepengdent ”Of‘symmet”ze‘j Ham|lton|a.ns for ? QDH, as We."
;s radial Hamiltonians and corresponding BC's for a spheri-

the momentum operator arises as a part of that derivatiort. . ) .
This theory has been used by Foreman to explicitly write the¢al QDH, are found in Appendix B from the nonsymmetrized

6X6 (Ref. 28 and 8x8 (Ref. 29 effective-mass Hamilto- eight-band Hamiltonians.

nians for planar heterostructures. General rules for construct-

ing the valence-band effective-mass Hamiltonians with a cor-

rect operator ordering haye been described in Ref.. 30 fqr the || NONSYMMETRIZED EIGHT-BAND HAMILTONIAN
heterostructures with arbitrary crystallographic orientations.

In Refs. 31 and 32, correct boundary conditions for planar We begin our derivation with the nonsymmetrized eight-
heterostructures with wurtzite symmetry have been preband effective-mass Hamiltonian for a heterostructure, when
sented. Comparing the conduction- and valence-subband diiie spin-orbit coupling is “turned off.” In the Bloch function
persion of a planar quantum well, calculated using the BC's)asis|S),|X),|Y2},|Z> this Hamiltonian is represented in the
following from the exact nonsymmetrized and from the sym-following form:*

i A~ i A~ A i A~ o~
e+ kak E(vlkx+ Kyo) E(Ulky"' Kyv2) E(Ulkz"’ k,v5)
72 E(UZRX+ va 1) 8:;_ kXIBIRx_ Riﬁhﬁi _3(Rx7;Ry+ Ry')’.’;T Rx) _3(Rx7; kz"" Rz')’:;Rx)
|:|4=2—mo i . (D)
E(Uzky‘F I(yUl) —3(kyys ky+ ky'yg—kx) 81’;_ kyﬁlky_ kil-ﬁhkil_ _3(ky7; K+ K,vs ky)

- _(UZRZ+ szl) _S(RX’Y?TRZ—’_RZ’YSTAX) _:S(Ry')’fsT &z+ Rz'y::‘r’ky) 81,;_ RZB|RZ_ Izéﬁhﬁé
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where &/=g,— I3, k=-iV, Ri,y,z: k— Rx,y,zr Bi=v1 Hamiltonian_(4). The symmetriz_ed eight-band Hamiltonian
+4y,, Bn=v1— 272, can be obtained, therefore, takige-0 andy=0.
In Eq. (3), 5 is the contribution toy; from thel'; and

vi=v+§, vy=v—§, (20 T, remote bands, while; is the contribution toy; from
. - the I';5 and T ,5 remote bandé’ Neglecting small contribu-
Y3=v3tx, Y3=V3—X- (3 tions from thel',5 remote bands, the paramepefr) is de-
¢ and y are called the dissymmetry parameters, becausirmined a¥
hen £&=0 and y=0, the Hamiltonian(1) becomes sym-
when £ X s Y X(N=[27:(N+3y3(0) - (D -118, (7

metrical. The explicit form of the parametée=(v,—v,)/2

follows from the formulagAl) and(A2) in Appendix A, and i.e., it is explicitly defined by the effective-mass parameters

the parametey is determined by Eq.7). of the bulk model. It is seen from E§7) that in a homoge-
When the spin-orbit coupling is “turned on,” the consid- neous medium whery;(r) are constantsy(r) is also a con-

ered eight-band Hamiltonian is represented in the Bloclstant, and therefore, it cancels from Ed). Consequently,

function basis [ST),|X1),[YT),1Z1),ISL).IX1),[YL),|Z])  x(r) is a specific function of a heterostructure, which gives a

as nonzero contribution to the Hamiltonian only at the hetero-
~ interfaces. The value of this contribution at the paigbf a
. Hy, O heterointerface is proportional te(ro+e,)—x(ro—€,),
Hg= 0 A, +Hso, 4 where g, is an infinitesimally small vector, normal to the

heterointerface at the poing. Parameters(r) andv,(r) of
where H, is defined by Eq(1) and the spin-orbit Hamil- the Hamiltonian(1), which can be obtained from the general

tonianHy, has the forr® effective-mass equations as derived by Bairare given in
Appendix A. In the definition(2), the functionsv(r) and
0 0 0 0 O 0 v,(r) are subdivided into the symmetriqr) and antisym-
00 —-i 0 O metric £(r) parts, where(r), like x(r) above, is a specific
) ) parameter of a heterostructure. In generélr) is a
0 i 0 0 0 0 —i piecewise-constant function of The necessary and suffi-
AlO O O 0O 0 -1 i O cient condition foré(r) to give a nonzero contribution to the
Hse"31 0 0 0 0 o 0 0 (5 8x8 Hamiltonian only at the heterointerfaces, and to be-
come a constant in the homogeneous medium, simulta-
00 0 -10 i 0 neously withu(r), is
0O 0 0 -i 0O —-i 0 O
ry=cg(r), 8
01 i 0 0 0 0 0 Hn=cp(n) ©

) ) . where the coefficient of proportionality, is constant over
In Eq. (1), mg is the free-electron masB.=7%"c./2mgisthe  the entire heterostructure. Equatic® is the general form of
energy of the conduction-bandCB) minimum, E,  g(r) only for a two-layer heterostructure. For BHayer het-
=h7e,/2mg s the energy of the valence-bafdB) maxi-  erostructure, there can té—1 independent constants —
mum, A =£76/2my is the spin-orbit splitting of the VB, and gone for each heterointerface. Each constant for a given het-
V=tfvl2m, is the Kane velocity Y= —i%i(Sk,|Z)/my).  erointerface can be found experimentally considering a two-
Contributions of remote bands to the hole effective massekayer heterostructurésee Sec. Y.
are written in terms of the “modified” Luttinger parameters  In order to diagonalize the spin-orbit Hamiltonibly,, it
y1=7i—Eyl3Ey,  v2=73—E,6Ey, and yz=»5 s convenient to carry out a unitary transformation of the
—Ep/6Eg, where E;=E.—E, is the energy gapE, Bloch function basis [ST),[XT1),[YT),[Z1),|S|).|X]),
=2myV? is the Kane energy, angl-(i=1,2,3) are the Lut- |Y]),|Z]) into the following Bloch function basi:
tinger parameters of the VB. Parametercan be evaluated

through the experimentally determined CB mass using Uip,12=[ST),
the relation .
Uip-12=1S0), 9
1 1 Ep 2 1 5
Hc—m—o a+? E_g+Eg+A . ()

1
Ugp,32= 7= (IXT)+i[YT)),
It is worth noting that all parameters entering the Hamil- 232 o

tonian (4) are coordinate dependent. In a heterostructure

these parameters abruptly change from their values in one i _

material to the corresponding values in the adjacent material, U§/2,1/2:%(|Xl>+ i1Y1)—2|Z1)),
therefore they are piecewise-constant functionsr ofAl-

though not symmetrical, the Hamiltoniaty is Hermitian as 1

seen from Eq(4). The parameter$ and y [see Eqs(2) and W = XY =i|YT)V+2|Z1)),
(3)] are responsible for the nonsymmetrical form of the d2-102 \/€(| n=ilvn+2izi)
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3 = | (|Xl> |Yi>)
Uz | )
3/2,-3/2 /_2

1
Ui/z,uz:ﬁ(lxl)Jr”Yl)WL 1Z1)),

W 1a=—a (IXT)=1IYD) = 1Z1)),

V3

(10

whereuj , anduj , are the Bloch functions of the conduc-

tion and valence bandd,is the Bloch function angular mo-
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mentum, andu=J, is its z component. The eight-band

HamiltonianH in the new basis can be obtained now after a
unitary transformation

H=U*HgUT, (11)

whereU is the matrix of the transformation from the basis
{STYIXTIYTLIZT)ISLLIXI)IYL),|Z1)} to the new

basis  {U/p1/2:UT12 - 112 U312, 3/2: U312, 1/2: U3y - 172 U3y2 — 312
U 1/2:Ulj2 1/ U is defined by Eqs(9) and(10). Perform-
ing the transformatiorill), one obtains

2 i i 2
+T 0 iV \ﬁ —V_ v \ﬁ
£C 1 3V0 \/§ 1 \/§ 0 3 -1
0 +T 0 “1y '\Fv v '\Fv “1y
€ r— — —V_ ) -
C \/§ 1 | 3 0 1 ! 3 1 \/§ 0
—i
—iv! 0 e,~P-Q -S -R 0 —S iV2R
' V2
2 -1 , 3
42 \[§V3 EVI -S' &—P+Q -C -R i\2Q —i\[EE
b=
2 — L
Mg _IV-]- i \/EVT _RT _CT SU_P* +Q* ST |\/§E* I\/EQ*
g3t 3°° 2
0 vt 0 R 5 6,~P*—Q* i\2R" g
V2
_—ivg —i \ﬁv{ s —-iV2Q - \ﬁzT —iV2R e, —P C
3 3 2 2
2 -1 3 i
VL =vE o SR \ﬁz* —iV2Q* —=S ct &P
Vo g 2 2
(12)
[
wheree, =&, — 9, R=3(k, (y,— ya)ks +k_(yo+ ya)k ),
o kerik, . ke—ik = & o o
ko= Y =X Y S=—iVB(k_(y3+x)k,+k (v3=x)ko),
V2 V2
e X\e = X\«
1 . N 1 N ~ 22_'\/6(k—(YB_§ kK, 73+§ k—),
V125(01k++k+02), V7125(01k7+k702)7
C=—i2\2(k_xk,—kk_). (13)

Vo=5 (vik,+ka),  T=kiak_+k_ak, +kak;,

P=k (y;—2x0)k_+k_(y1+2x)k; +k,v1k,,

Q=k. (y2— x)k_+k_(yo+ x)k, — 2k, y.k,,

In Eqg. (12), daggers (1) denote the Hermitian conjugation,
i.e, Al=(AT)* [it is important to note that uy k.)"
=ksvy, and @1 k,) "=k, v, ,]. Unlike the bulk 8<8 k-p
Hamiltoniar? where the matrix element is zero, in the
Hamiltonian(12) the Bloch functionsiy, 1 ,andug, 4, are
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coupled with each other, as well as the functiofis ,, and j+1r2 _ _
U 172- As seen from Eq(13), this coupling arises because W n(N= > RELOYIL(6,¢)
of the dissymmetry parameter, which can reduce, in this 1=j=172

way, the symmetry of the problem. The Hamiltonian so ob- j+3/2 . A

tained can be used to investigate electronic properties of + X RYL(NYLL™(6, )
quantum-well, quantum-wire, and quantum dot heterostruc- I=j=3/2

tures. j+1/2

2 ROV 0.0, (8
Ill. EIGHT-BAND HAMILTONIAN ) o(0):j.m .
FOR A SPHERICAL QDH where the &8 matrices);|”"""(6,¢) next to the eight
. _ radial envelope functionRﬁ(,”)'J(r), for a givenj, can be
To study the electronic structure of spherical QDH's, thefgnd by comparing Eq18) with Egs.(16) and (17). Now,
spherical approximatidn(i.e., y;=y;=7") can be applied. integrating over the angular variablésand &, it is possible
If we take y-=(2y5+35)/5, then the quantum states so to obtain the radial Hamiltonian
obtained are correct to the first order of the perturbation
theory. Using the relations between the Luttinger parameters - f b’;j,m 0y ~,b:j,m
- : = (8, HY3!"M(6,4)dQ, 19
y}' and the “modified” Luttinger parameterg; we have H (V517 (0,$)HY 576, ¢) (19

corresponding to the radial Scllioger equation
¥=(2y2+3y3)/5, (14
> FRSI(r) =E;RS{(r), (20)
and according to Eq7) b.Jl
where E; is the electron or hole eigenenergy to be deter-
x=(5y—y,—1)/3. (15) ~ Mmined, andb=c orv. The Hamiltonian19) does not depend
onm, because within the spherical approximation the energy

In spherical QDH’s, where all effective-mass parameters de§pectrum is degenerate with respect to theomponent of

pend only on the absolute valueof the radius vector, elec- the};f?tfl mr%mei?turgr. we derive the following relations for
tron and hole states are eigenfunctions of the total angul%e sehesr(i)calehzgrﬁonailése erive the foflowing refations 1o
momentunj and itszcomponenm=j,. Therefore, the elec- P :

tron or hole wave function can be written as a linear expan- [ vy s =cl? B*Y 0

sion in the eight Bloch functions$®) : AP =Civn 1B YVisanaal(6.6)

+ Cli\l,}wrl;l,lel_ Yi—1p+1(0,9),

\Pj,m<r>=JE Fﬁfi;'“(f)Uﬁ,ﬁJE FyLm(ryus,, (16) K_Yi2(0,8)==Clt 5 108 Yis1n-1(60,0)
M 2

. —CiM 1B Yicia-1(6.9),
where the envelope functior’n‘sgfz)”’m(r) are defined in the R . .
chosen Bloch function bas€8) and (10) as KYin(0,8)=Ci 151,081 Yir1a(0,9)

+CM 1B Yien(6,9), (2D

F‘i}%ﬂ’(fF% CHEL RS (1Y) 0(6,6), where

[+1 |
B =—i\5—AY, B =-i\z—AY,

21+1 21+1

vij,m _-#73/22 Cj,m ;]

Faiz, (r)=i 32 aRaiz (1Y 0 (6,),

X - o 1+1/2—pl2

A LT — (22)

FUlm(y =Y chbm REL ()Y, (0.4). (1 Using the relation$21), the radial Hamiltoniar{19) can be
iz (1) % o AR (Y10 (6,)- (17 obtained in an explicit form. If we choose the following or-
) der of the radial function®Ry; 1/, R3i3j+ 120 Rj3j-ar2s
Here, R$(VI(r) are the radial envelope functions, Rij3j+12: Rijjraz: R4jsj-12, Rejzjrap, and R iy,
C}'%1, are the Clebsch-Gordan coefficients, and (6,¢)  then the 8<8 matrix of the Hamiltoniar#{; takes the form
are the spherical harmonics. Noting that in the matrix

representation of the Hamiltonian (12 e HY 0 -
U$p1=(1 000000 O0J,...un 1, i\ o fu-v) (23
=(0 0 0 0 00 0 1) one can rearrange E@16) into A !

the form Here,H}l) is the 4< 4 Hamiltonian of the “even” states and
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7:(1(—1) is the 4x 4 Hamiltonian of the “odd” states. It is seen When the Hamiltonian isiot symmetrized. The obtained ra-

that the parityp (p=1 for even states angd=—1 for odd dial Hamiltonian H(p) for the radial functlonsRl,zJ_p,z,
stateg is conserved in the spherical approximation, evenR3,2]+p,2, R3,2] 3pi2s ande,zJer,2 has the form

= Ti—pp2 a'pAJ(;S;z bP A] 3p/2 p\/EAEJfB)z
| W o e eaanl
o b B p/2 a, bjRJ+p/2 8v+P 3p/2+C QJ 3p/2 p\/_pr,(JrB)z
p\/—BJ@plz p\/zaj o) 35 p\/—bijj—aplz -5+ Pk

where af'=\1+37], bP=\3(1-9), cf=1-39F, ] layer are known, the BC’s should be applied to match the

=p/(2j+1-p), wave functions from two adjacent layers.

1
A= Zﬁ(lel(p)JrAl(p)vz), IV. BOUNDARY CONDITIONS FOR A SPHERICAL QDH

When considering the multiband models for planar het-
erostructures, the BC’s for the wave function are often ob-

(p) — 1 AP 4 AP tained by integrating the Schiimger equation across the
Bi¥=—=(v A" +APvy), . ' e
2.6 heterointerface and assuming the continuity of the wave-
function envelope®?*1°The resulting BC’s are of the fol-
R{P = _Al(g)pyAl(P) ) (25)  lowing form:

Introducing the operator - -
WAl 0=¥alr=r0,  T7Val=—0=TWels= 10,

AP(B)=—ALPBAP, (26) @9
we can represerif;, PP andQ(” as whereA andB are two materials separated by the heteroint-
" 1 erfacez=0, and.7, is the normal to the heterointerface com-
(DA (a) HIAT “(a) ponent of the current operator. The aforementioned integra-
I 21+1 ' tion is actually justified only for Burt's envelope-function
equations, because only these have been shown to be valid at
(1+ 1)A|(1)(71_ 2x)+1 Al(—l)( y1—2x) the heterointerface. Analogously to the case of planar hetero-
pr)z oIl +A|(p)(2x), structures, for spherical QDH’s one integrates the radial
Schralinger equation
o = V2AM(y—x)+ (14324 V(y—x) c
Q"= T 12j - pl2
(p) (P _ g RP (P) Réibi o2
+AP(x). (27 (H”=Ej")R¥=0, RP=[ _ , (30
3/2j—3pl2
Inside each spherical layer, the radial Hamiltoni2ad) for a RV
1/2j+pl2

spherical QDH coincides with the bulk radial Hamiltonian
from Ref. 9 for a spherical QD, when the following denota-

tions for the radial functions are used: wheref{}p) is defined by Eq(24) and EJ(p) is the eigenen-

ergy. This integration is carried out across the painta,
wherer = a is the spherical heterointerface that separates two

Rg;/jz—l/zz R;r' ' Ri}jz'm/z: —Rg .
! ! ! ! materials:A (atr<a) andB (atr>a). Including the conti-

L - _ . . . (p) . ,
Rgijz,ju/z: RrTl,j’ Rg/%km: Ry » nuity of the radial wave functiorRj™, the required BC'’s
have the form
Rg}%j -32= Rr:rzj ) Rg/%j+3/2: - REZJ ,
) . ) (R alr=a-0=(RM)glia+0,
Rijbj+12=Rsj» Rijbj_1.=Rg;. (28)
Therefore, in order to find the radial wave functioR§}’! TPR) alr—a0=TP(RP)g|,—ar0- (31)

inside each spherical layer, one can use the same technique
as in Ref. 9. When the wave functions inside each sphericdfiere the radial component of the current operafc}P) is
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obtained from the radial Hamiltoniai” using the follow- ~ replaced by—p [in conformity with Eq.(22)]; the rest of the
ing procedure. In those terms of the Hamiltoni@4) that ~ terms are set to zero, and the result is multiplied b§A2
contain the operatoA(", the utmost left-hand sida(P is ~ Thus we find

d p -p 1
—a— —aP(v— —DbP(v— —(v—
o 2\/51( §) 2\/51( 3] 2\/5( )
-p d o X ipX
. ma,P(u+g) Y15 —CPyD,+ B2 palbPyAP, py2al yDr+f'1"’7)
()
jJ Mol p PP~ A(—P) J i.pX NG) -
%bj"(u%) —palblyAL Dy +cPyD—3MhPT —V2bfyALE),
-1 p jpX P, AP J ip
2\/§(U+§) p\/iaj YD+ fy T \/Ebj YA Z 3p12 71&r+2f
|
where A 1 JALR JALR JALR
v,L(R>=% n, ——+n_———+n,———|. (39
D oam k. gk ok,
D=t —, flP=p(j+1/2—np/2). (33

Here H- (HR) denotes the Hamiltonian, in which the
While the radial Hamiltoniar#{” is Hermitian, the radial right(left)-hand operators.., k_, andk, are treated as
component of the current operat(}rj(p) is not[as seen from numE)ers, |.e._, only _the Ie(ﬁght)-hand oper_aForsk+, k-,
Eq. (32)]. and k, are differentiated. Using the explicit form of the
It is important to compare the obtained BC31) and(32)  HamiltonianH [see Eq(12)], one finds thaV/; can be ob-
with the commonly used CR’¢the wave function and the tained multiplying by % the HamiltonianH, in which all
normal compoillelr;t of the velocity are continuous at th&ne |eft-hand operators, , k_, andk, are replaced by, ,
heterointerfacg'™*® The velocity operatoV is defined as  n_, andn,, correspondingly, while all the terms that do not

contain the former operators are set to zero. It can be also
shown that

)

o0 2
V—ﬁ[H,I’]

d

SN

: (34)

=

VR(EX) =TV (=& —x), (39)
where the Hamiltoniafl has been determined earlier by Eq.
(12). Therefore, the normal component of the velocity operaWhere the operator draws all effective-mass parameters

tor is obtained as follows: through the operatork, , k_, andk to the utmost right-
hand positions.
. 1roA 1 oA o oA The radial velocityy {?" is obtained fronV; in the same
Vi=g o kR ny K o Il + nZ&TkZ , (39 way that the radial Hamiltoniaf{” was obtained fronH,
i.e., by the definition(19). Forn, , n_, andn, [see Eq(36)]
where the expressions similar to EQR1) are valid if one replaces
—iA{P) by —p. Therefore V{P* can be found by multiply-
X+iy x—iy z ing the Hamlltonlarﬂ-l(p) by |/ﬁ replacing all the left-hand
n,= N n_= Nz n=r- (36) operatorsA(p) by —p, and setting all the terms, which do not

contain the operatok(p) to zero. This procedure results in
The differentiation of the Hamiltonian can be realized in

A 1.
such a way that Vj(p)’LZEJJ(p) , (40)
U, =+ R, (37 .
where 7(”’ has been defined by E¢82). Using Eqs.(37),
where (40), and(39) one obtains
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. 1 . A TABLE I. The eight-band effective-mass parameters of some
Vj(p) =§[j}p)(§,)() + Tj](p)( —&-x]. (41)  11-v materials. The VB offseE, is chosen to be zero in GaAs. The

parametersy, y;, v, andy of the spherical model are calculated
from the effective-mass parameters listed here.

Considering the explicit form of the matrix(”’ we see that
all the terms, containing parameterand y, responsible for Parameters GaAs AlAs InAs
the nonsymmetrical form of the Hamiltonian, cancel. Conse-

a a

quently, we obtain mLC(mO) 0.0665 0.150 0.02226
Yh 7.10° 3.76° 19.67°

R s 2.02° 0.90° 8.372

S 1T L 2.01° 1.42° 9.292

VP =——TP(£=0x=0). (42 % - - -

2 Ep(eV) 28.0¢ 21.12 22.28

_ _ _ Ey(eV) 1.519° 3.1302 0.4182

If all the effective-mass parameters are pleceW|se-consta|X[(eV) 0.3412 0.2752 0.380%
functions ofr, then at any point of the heterostructure exceptg (eV) 0 —0.532° 0.186°
the spherical heterointerfaces, we can replédazy 1, and —2927 0.11 0.24
therefore Y1 0.96 1.51 1.97
vy —0.52 0.09 0.07

VP =7 (£=0x=0). (43  x —-1.52 —0.69 -0.87

It is clearly seen now that the commonly used CR's for Reference 37.

b
spherical QDH'SRefs. 11 and 1Bare the same as BC(81) _Rererence 38.

Ci
and (32) obtained from the symmetrized Hamiltoniag ( dReference 39.
_ _ ‘Lo 7 (p) . . Reference 40.
=0,x=0). Like 7}", the radial component of the velocity eReference 13.

operator(42) is not Hermitian whenr=1. Therefore, in or-

der to prove that both current and velocity are conserve@ng in front of the VB Bloch functions for a hole state, i.e.,
simultaneously, we should verify whether the real parts oig—j— p/2 for an electron an®=min(j+p/2,j — 3p/2|) for
the current density and of the velocity density are the same, pgle.

i.e., we should check whether the equality

A. Electron energy levels

The electron energy levels of the HgS/CdS, InAs/GaAs,
and GaAs/AlAs QDH's are depicted in Figs. 1-3, corre-

Rq:(R](P))T:y](P)RJ(P)]: Rd:(R]_(P))T]}J(p)RJ(D)] (44)

holds true. Her&R(" is the radial wave function defined by

Eq. (30). Substituting Eq(32) into the left-hand side of Eq. TABLE II. The eight-band effecti " ¢

(44), we see that all the terms containing the paramegers - 1he elgnt-band eflective-mass parameters of some
. Lo IV-VI materials. The VB offse€, is chosen to be zero in HgS. The

and y cancel, because their contribution to the current den-

L . . . . . parameters of the spherical model y,, v, andy for CdS andy
sity is purely .Imaglnary. Therefore, in conformity with Eq. for HgS are calculated from the effective-mass parameters listed
(43), Eq. (44) is proven to be fair.

here. The parameters,, )/'i, and y“ are not presented for HgS,
because in a semimetal the band structure is inverted and these

V. RESULTS OF THE CALCULATION AND DISCUSSION parameters do not have their original sense.

In this section we investigate the electronic structure ofParameters HgS Cds
three spherical QDH'’s with different values of the energy

gaps: a zero-gap semiconductor embedded into a wide-gafF(Mo) 0-18:
semiconductofHgS/Cd$S, a narrow-gap semiconductor em- 1 171
bedded into a medium-gap semicondudioAs/GaAs, and 7" 0.62°
a medium-gap semiconductor embedded into a wide-gapp(eV) 13.2° 21.0°
semiconductofGaAs/AlAs). Note that in these widely used Eq(eV) —0.190° 2.56¢
experimentally relevant materials, the effective-mass parami(eV) 0.07¢ 0.07¢
eters are substantially different. The bulk eight-band paramk,(eV) 0 —-0.93°
eters of the used IlI-V and IV-VI materials are listed in « -1.0¢ —2.57
Tables | and Il, correspondingly. For electron and hole levelsy, 0.35' -1.02
obtained within the spherical eight-band model, we use & —0.67f -0.75
common notationn Q(e) denotes an electron state amQ(h) % —1.57 —1.24
denotes a hole state, wharés the number of the level with

a given symmetry an@@=S,P,D, ... denotes the lowest °Reference 41. 9Reference 45.

value of the momenturhin the spherical harmonics of Eq. PReference 42. °Reference 44.

(18) in front of the CB Bloch functions for an electron state ‘Reference 43. 'Reference 46.
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E,(CdS) s
1500 f

1250 B
SN
1000 [ °

750
500 |

electron energy (meV)

— =0 (c;=0) <
250 F ——— - - Ce=—1 (=0 '"-"*C§=1 (x20)

120 (Ce=0) | *Ci:l (7#0) TSN . ci=1 (20)
T S Jo (€770 S BN S S
1.0 1.5 2.0 25 3.0 1.5 20 25 3.0 3.5 4.0 4.5
a (nm) a (nm)

P —— 1=0 (cz=0)
- == %20 (¢;=0)

FIG. 1. All the discrete electron energy levels in the HgS/CdS ~ FIG. 3. All the discrete electron energy levels in the GaAs/AlAs
QDH as a function of the quantum dot radius. TRE&) and D) QDH as a function of the quantum dot radius. Other denotations are
energy levels are not shown here nor in Figs. 2 and 3 because in ti{@e same as in Fig. 1.
chosen scale they coincide with the levél§) and DS, corre-

Sight ban! modeld— 0. 0). With the nonsymmetized valence. -0 IS about 16 meV for HgS/CdSae2 nm) and
ba?nd part of the Hamilii)nianx(aﬁ 0), dashedylines show the case about 4 mev fof InAs/GaAsd=4 nm) .and GaAs/AlAs
c:=0 while grey bands represent the continuous changg tbm (a=3 nm) QDH s(§e_e Table . As prOV|_ded by Eq(45),
1 to —1. The grey bands refer to a possible variation in energy dudn€ value of this shift is inversely proportional to the square
to conduction-band/valence-band coupling via the position deperf the quantum dot radius. Consequently, for large QDH's
dence of the interband momentum matrix element. Here and iPN€ can use with high accuracy the symmetrized with respect
Figs. 2—6, the inset with inscriptiong=—1 andc,=1 shows to {0 x Hamiltonian, and the expressi¢45) is the measure of
which values ofc; the edges of the grey bands are related. accuracy. Ify;<yx», then the nonsymmetrized energy level
lies higher than the symmetrized ofs=e Figs. 1 and)3and
spondingly, as a function of the quantum dot radiusThe  if x1>x2, then the nonsymmetrized energy level lies lower
value of the spin-orbit splitting of electron energy levels isthan the symmetrized orlsee Fig. 2
small (=3meV) for all considered QDH’ésee Table Il and Gray bands in Figs. 1-3 reflect the change of the param-
Appendix B. Therefore, only the lowest level of the pair of eter c, [see Eq.(8)] from 1 to —1. The chosen interval
split levels is shown in Figs. 1-3. For all examined QDH?’s, includes the following specific values of: c,=0 (symme-
the lowest level of such a pair is the level with the least totaltrized Hamiltonian andc,= + 1 (see Appendixes A and)B
momenturm. With such a change af,, the electron energy increases in

Analyzing Figs. 1-3 we arrive at the following empirical Figs. 1 and 2 and decreases in Fig. 3. Therefore, the shift of
formula, which determines the energy shift of all electronan energy level witm=1 with respect to the level position
levels withn=1 when a nonzero value of the paramegegs ~ whenc,=0 can be estimated by the formula
considered:

%2 Ee— Ee|c§=O: b Cg( \/Ep,l_ \/Ep,z) (b>0), (46)
Ee—Eely—0= — —5 (x1—x2)- (45)
mea
where we take into account E¢) and the fact thav, ,

Here the indices “1” and “2” denote interior and exterior [E,12 E, is the Kane energysee Tables | and )i For
materials, correspondingly. Far>1 the value of this shiftis 1 ‘the shiftE,—E,|. _, becomes much smaller than for
-

much smaller than fon=1. It is seen that the shifE, n=1. The parametdn in Eq. (46) decreases with increasing
a and with increasing the energy gap in the interior material.

Ed(Gahs) Such a behavior of the parameteis connected with the fact
1200 that it is proportional to the value of hole radial components
S | - .
2 \ of the electron wave function at the heterointerface. It is
531000 [ clear now that the observed strong dependence of the energy
2 800 levels in the HgS/CdS QDH oo, (see Fig. lis due to the
g large value of the diﬁerencdﬁ,l— VE,, and to the zero
2 goo[ — 100 e 1 (0] 4 energy gap in HgS. For two other QDH’s the dependence of
- x0e=0) L c§=1 (xﬁm the energy levels or; is a few times weaker than that for

E(nAg—a——— 1 1 1 the HgS/CdS QDH.

o 20 a‘(‘r'l?n) = 6.0 Hence, Eqs(45) and(46) allow us to estimate corrections

to the eigenenergies due to the replacement of the heuristic
FIG. 2. All the discrete electron energy levels in the InAs/GaAsSymmetrized Hamiltonian with the nonsymmetrized Hamil-
QDH as a function of the quantum dot radius. Other denotations aréonian avoiding complicated calculations. It follows from Eq.
the same as in Fig. 1. (45) that such corrections rise with a decreasing quantum dot

245328-9



POKATILOV, FONOBEROV, FOMIN, AND DEVREESE PHYSICAL REVIEW B4 245328

TABLE lIl. The spin-orbital splitting of electron energy levelat c,.= — 1), the energy-dependent elec-
tron effective masse@t c,= —1), the energy shift of electron and hole levels due to finite valueg @it
c;=0), and the difference ok" in adjacent materials for the>66 model (at c,=1). If not indicated
explicitly, y#0. E. andE,, are the electron and hole ground-state energies corresponding to the ﬁﬁges 1
and (';'% The indices “1” and “2” denote the interior and exterior materials, correspondingly.

HgS/CdS InAs/GaAs GaAs/AlAs

a=2 nm a=4 nm a=3 nm
E1p(e)— Eip(e) (MeV)? 2.6(2.0 3.0(1.9 2.7(3.0
Eipe)—Eip (meV)? 2.0(2.3 3.8(2.2 45(7.1)
me1(Ee) (Mp) ° 0.056 0.0380.022 0.083(0.067
M o(Ee) (Mp) P 0.097(0.180 0.040(0.067 0.115(0.150
Ee—Eely—0 (MeV)°© 16.1(6.3) -35(-3.1) 4.8(7.0)
En—Enl,—0 (meV)© 9.3(6.3 -4.1(-3.1) 4.1(7.0)
X5(Ep) — x5(Ep) ¢ 36.28 (—0.33) 4.86(0.65 0.73 (—0.83)

aThe theoretical estimate based on the 2 energy-dependent Hamiltonian for an elect(eee Appendix B
is given in parentheses.

The corresponding bulk effective masee Tables | and )lis given in parentheses.

“The result of the empirical estimakg,,) — Ee(h)|X:0= —(h%Imya?) (x1— x») is given in parentheses.
The differencey; — x, for the eight-band moddkee Tables | and )lis given in parentheses.

radius as 1_42. Therefore, one should use the nonsymme-ground state ($4)) are depicted for HgS/CdSaE2 nm),
trized Hamiltonian for a description of quantum dots with InAs/GaAs @=4 nm), and GaAs/AlAs &=3 nm)

small radi. QDH?'s, correspondingly. It is seen that in all these QDH’s,
B. Hole energy levels the hole density in the interior material is higher than the
. electron density, and the electron density is higher in the
All the hole energy levels o8 and P types in the HgS/ . : .
CdS QDH, with] =372 in the InAs/GaAs QDH's and with ©X'°T°" Matenal. s also seen hat whapnchanges fiom &
j=3/2 in the GaAs/AlAs QDH’s are depicted in Figs. 46, ©© ~1. the electron density in the centers of the Hg:
correspondingly, as a function of the quantum dot radius. It i@nd INAs/GaAs QDH's increases and the hole density de-
seen from these figures that the empirical form@) holds ~ creases. The opposite trends of behavior of the electron and
for hole levels, too, i.e., for a nonzero value pf the hole  hole densities are observed in the center of the GaAs/AlAs
energy levels shift in the same direction as the electron enrQDH. The abrupt change of the derivative of the electron
ergy levels do. For the HgS/CdS_ QDHE£2 nm) the shift ~ radial component with the change of is well seen at the
of the hole ground-state level is about 9 meV, which isheterointerfaces of all QDH’s under consideration. At the
smaller than the shift of the electron ground-state level. Asame time, the derivative of the hole radial component
the same time, for InAs/GaAsai=4 nm) and GaAs/AlAs  changes smoothly. The contribution of the hole radial com-
(a=3 nm) QDH’s the shift for the hole ground-state level is ponents to the density of the electron stéaiec,=0) is as
almost the same as that for the electron ground-state |eVﬁ|igh as 33 % for HgS/CdS, 20 % for InAs/GaAs, and 14%
(see Table II). For the higher hole levels(-1) the value of o Gaas/AlAs QDH's. Such contributions show that the
the shift under consideration decreases with increasing ,nnaranolicity of the electron dispersion law is substantial
much weaker than it does for the electron levels. . even for the QD’s of the medium-gap semiconductors
The dependence of the hole levels on the paran®te&S  (Gaag and certainly should be taken into consideration

substantially different from such a dependence for the eleczhen the QD’s of the narrow-gap semiconductoms) are
tron levels. The formuld46) can be approximately applied jnyestigated. The contribution of the electron radial compo-

here only for the level ", which is the hole ground-state nent to the density of the hole statat c;=0) is 6% for
energy for all examined QDH'’s. It is seen that this energyHgs/cds, 1% for InAs/GaAs, and 1% for GaAs/AlAs
level strongly depends ory even for InAs/GaAs and GaAs/  QDH's. This fact leads to the conclusion that the additional
AlAs QDH's. All the other hole energy levels under analysis nonparabolicity of the hole dispersion law connected with
depend onc, very weakly, and such a dependence is re+the influence of the conduction band can be neglected for
vealed only in Fig. 4 for the HgS/CdS QDH. both narrow- and medium-gap semiconductor QD’'s.

Taking into account the principal role of the dissymmetry
coefficientc,, one can evaluate the influence of this param-

In Figs. 7-9, theS components of the radial wave func- eter on the observable effects. With this purpose we calculate
tions of the electron ground state $(1i%) and of the hole the lowest electron-hole pair energies as a function.dbr

C. Electron and hole wave functions and pair energies
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T L 3 T
x:() (ng(]) ----------- <—C&=—1 (X#O) nsé/% (a)
S—) (c§:0) »»»»»»»»»»»» «cazl (x=0)

x=0(Cz=0) me-C=—1 (x20) | n P (@)
———x#0 (cé:[)) _— ci:] (x20) L2
- 200 P

- 50

- 400
- 100
- 600
% - 150 ¢
-800 1 n=3_7n=4 E
0 ::;_6(} l()/)====c==l(l¢=0) S(h)'s B 0 | i pewrre o
¥=0 (c.= - Ce=1 (% n s b o
______ %0 (c§=0) «c‘;::1 (320) 1 () 5 —— =0 (€:=0) e-C=—1 (320) nhy | )
200 7 s 2 — - =20 (¢z=0) B =1 (x#0)
..... = -50F} -

- 400

- 100
- 600

- 800 - 150
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—-— 20 (¢;=0) ~ -1 (x#0) ) 2 3 4 5 6
_-200 a (nm)
%
g - 400 L- FIG. 5. All the discrete hole energy levels wiil+3/2 in the
& InAs/GaAs QDH as a function of the quantum dot radius. Other
% . 600 denotations are the same as in Fig. 1.
3
= 800 for GaAs/AlAs (@=3 nm) QDH's. These differences should
5 4 be quite accessible for experimental detection.
- 200 VI. CONCLUSIONS
The exact nonsymmetrized eight-band effective-mass
- 400 Hamiltonian for an arbitrary three-dimensional heterostruc-
- ture has been obtained using Burt’s envelope-function repre-
E (GaAs)——r——r1 T rr T 1T T —
. 3 . = (GaAs) ) _...........«c'gzl a0 |, s [ (@)
7/ "= —-— %20 (¢;=0) =e-Cp=—1 (320 ;s,_,.—-—A - o
0 A -100 ]
—— =0 (G=0) e =1 (20) [P35 | (@) "
_o00 |~ 0 (€0 Eec=1 (120) - 200
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< - 400
- 600 E
-800 ¢ g —— =0 (c:=0) ;
o 100 | —-——720 (cz=0) == .
E(CdS)L— 44 R e
1.0 15 2.0 _oti0
a (nm)
: . - 300
FIG. 4. All the discrete hole energy levels 8fand P types in '
the HgS/CdS QDH as a function of the quantum dot radius. Other - 400
denotations are the same as in Fig. 1.
EU(AIAS)—"""" "./.‘..I.. ) T R
all QDH'’s under consideratiofsee Fig. 1D It is seen from 15 20 25 30 35 40 45
Fig. 10 that when the parametef changes from-2 to 2, ()

the corresponding energy differencess, _(c.=2) FIG. 6. All the discrete hole energy levels wifk=3/2 in the

—Ee-n(cs=—2) constitute —175 meV for HgS/CAS {  GaAs/AlAs QDH as a function of the quantum dot radius. Other
=2 nm), —15 meV for INAs/GaAs §=4 nm), and 20 meV  denotations are the same as in Fig. 1.
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FIG. 7. Stype radial components of the wave functions of the g5 9. Stype radial components of the wave functions of the
electron and hole ground states in the HgS/CdS Qadiusa  gjectron and hole ground states in the GaAs/AlAs QRétliusa
=2 nm) within the nonsymmetrized eight-band model. Solid and—3 m) within the nonsymmetrized eight-band model. Normaliza-
dashed lines denote the casgs-1 andc,=—1, correspondingly,  tjon of each radial wave function and denotations are the same as in
while grey bands represent the continuous changg wfthin these  rig 7. Contributions to the integral probability from the depicted
limits. Each radial wave function is normalized by unity, i.e., the (5gial components vary from 85.4% to 86.9% for an electron and
integral probabilityzﬂfﬁrzRi(r)dr=1, wherepu labels the radial  from 88.9% to 86.6% for a hole whem changes from 1 to- 1. At
components. Contributions to the integral probability from the de-the same time the electron energy changes from 1880.4 meV to

picted radial components vary from 68.6% to 64.8% for an electromg50.4 meV and the hole energy changes freml1.6 meV to
and from 74.3% to 81.1% for a hole whep changes from 1 to 192 9 mev.

—1. At the same time the electron energy changes from 533.6 meV

to 678.8 meV and the hole energy changes fro@47.2 meV 10 gninorhit splitting of electron levels has been found. The
—202.1 meV. energy levels of the nonsymmetrized eight-band Hamiltonian

i have been calculated as a function of the dot radius for three
sentation. The X2 electron and &6 hole energy- spherical QDH’s: a zero-gap semiconductor embedded into a
deper_ldent Haml_ltonl_ans have been deduced. Wlthln thﬁ/ide-gap semiconductdHgS/CdS, a narrow-gap semicon-
spherical approximation, the>88, 2x2, and 6<6 radial  gyctor embedded into a medium-gap semicondudtoks/
Hamiltonians and the necessary BC's have been derived f%aAs), and a medium-gap semiconductor embedded into a
spherical QDH’s. The boundary conditions for radial Symme-yide-gap semiconductdiGaAs/AlAS. It has been demon-
trized and nonsymmetrized Hamiltonians are different_an(gtrated that parameters of dissymmegty) and£(r), giving
lead therefore to different energy levels and wave functionsyonzerg contributions to the multiband Hamiltonians only at
We have shown, further, that the CR’s, which are commonljne peterointerfaces, have, nevertheless, a strong effect on
used to match the solutions of the appropriate bkilip  the electron and hole spectra. Thus, for practically important
Hamiltonians, coincide with BC's for the symmetrized ca5es of relatively small QDH’s with noticeably different
Hamiltonians. A theoretical estimate for the value of thegtfective-mass parameters of the constituent materials, the
use of the obtained Hamiltonian is necessary for the adequate
description of experiment. Using the method developed in
the present paper, electron and hole states are studied in
CdS/HgS/CdS/ED and CdTe/HgTe/CdTel® quantum dot
1589 (1=0) guantum-well heterostructur¢&. P. Pokatilovet al., Phys.

0.4 a=4nm GaAs

0.3
2 [159@=0 =1 () Rev. B64, 245329(2001)].
02F N
2000 T r_Trro—e ==
01 ¢ 1950 F~" " \IS](/E;_IS% GaAs/AlAs ]

(a=3nm)

950 |

s
153
£
- & 900
0 1 2 3 4 5 6 g <1573 -15(3
r (nm) o 85071 R
. . S 800 | Iu/As/GaAs—\_ (_e)— —(; B
FIG. 8. Stype radial components of the wave functions of the 5 750t (@=4nm) 18}, —183,
electron and hole ground states in the InAs/GaAs Qédliusa L
=4 nm) within the nonsymmetrized eight-band model. Normaliza- .2 1 0 1 2

tion of each radial wave function and denotations are same as in ¢

Fig. 7. Contributions to the integral probability from the depicted

radial components vary from 80.6% to 79.2% for an electron and FIG. 10. The lowest electron-hole pair energies in different
from 75.3% to 78.7% for a hole whem changes from 1 te- 1. At QDH's as a function o€, (xy#0). Each dot is related to the closest
the same time the electron energy changes from 736.0 meV to 757curve and indicates the corresponding result of the symmetrized
meV and the hole energy changes fretii3.6 meV to—68.2 meV.  model ,=0,xy=0).
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We start with the nonsymmetrized eight-band Hamil-
tonianH defined by Eq(12). The wave function?, i.e., a
vector of eight envelope functiong,, ..., Vg is an eigen-

Using the general effective-mass equatipgs. (6.3) of  function of the matrix Schidinger equation
Ref. 19, one can see the origin of the interband momentum

APPENDIX A: INTERBAND MOMENTUM MATRIX
ELEMENTS

matrix elements ;(r) andv,(r) from Eq. (1): HY=E V¥, (B1)
4i 4 whereE is an eigenenergy. To find the CB Hamiltonian, one
vi(E,r)=— X<S| P,|Z)— 7 > [E=H,,(r)] *Hg,(1) should treat all VB's as remote. Therefore, we should ex-

clude all VB envelopes, i.e¥3, ... , Wy, from Eq.(B1). As
seen, this exclusion is possible only within the approxima-
tion y,=0, v,=0, and y3=0, in other words, when the
4i contributions to the hole effective-mass param_eters from the
va(E,r)=— o 2 [E=H, (N1 XSIp,v)H,2(r). remote bandsall bands except two CB's and six VB'sre
v negligible. This is a very close approximation, because the
(A2)  parametersy;, y,, andy, are small for almost all materials

To obtain Egs(A1) and(A2) it should be taken into account and, d.etermining contributions to the VB, they c_ertainly h.ave
that within the developed eight-band approach the conducs-_ma” influence on the electron !evels. Under this approxima-
tion band with the Bloch functiofS) and the valence band tion x=—1/3 [see Eq.(7)] and it cancels from the Hamil-
with the Bloch functiongX), |Y), and|Z) are included ex- tonian. Another necessary approximatiorcis=—1, i.e., £
plicitly, while all other bands with the Bloch functiofs) =~ 7 V; and therefore); =0, v,=2v [see Eqgs(8) and(2)].
are considered to be remote. Further, following the techniqué Nis is the only approximation that does not lead to the dis-
of Ref. 19 it is necessary to exclude the energy dependen&@ntinuity of CB envelopesl’; and W, at the heterointer-
from Egs. (A1) and (A2) by replacingE with an average face. Now we can express six VB envelopb§, oWy in
energy, for instance the energy at the middle of the narrowedgrms of two CB envelope¥, and ¥, using the last six
gap for the heterostructure compounds. Parametgry and ~ €duations of the se¢B1). This procedure results in
v,(r) are approximately considered to be constant in each
layer of a heterostructure. Po=—i v k_w,,

In bulk, if Burt’s material-independent basis functions co- €78
incide with the bulk Bloch functions, the second terms in the
right-hand side of Eq(Al) and the right-hand side of Eq. v \/ER W 1 i w
(A2) vanish, because in this casts,(r)=0 andH,(r) Te—¢ 3"z rﬁ -tap
=0. Therefore, one obtains,=2v (v=—_2i(S|p,|Z)/%)
andv,=0, which results iné=v [see Eq.(2)] andc,=1 v —i. 2.
[see Eq(8)]. When materials constituting the heterostructure V5= Wi\ gk V2|,
have close parameters, the second terms in the right-hand- 3
side of Eq.(Al) and the right-hand-side of EqA2) are
small compared with the first term in the right-hand-side of V= — v kW,
Eqg. (Al). In this casef does not differ significantly frona, €78y
andc, is close to 1. In a general case of disparate materials, .
c¢ can take arbitrary values. v, v (—IRZ\Ifl—i \@R\I@),

APPENDIX B: ENERGY-DEPENDENT SEPARATE
HAMILTONIANS FOR ELECTRONS AND HOLES

X(v|p,Z); (A1)

v

For narrow-gap semiconductors, the accurate way to take Vs e—g,+0o
into account the coupling of conduction and valence bands is
to consider the eight-band Hamiltonian. However, sometime
it is easier to solve a CB or VB Schimger equation with
energy-dependent effective-mass parameters. Solutions
these equations are just an approximation to the results of th
eight-band model. In what follows, we deduce thx22 52
energy-dependent Hamiltonian for an electron and tke56 Ho=——
energy-dependent Hamiltonian for a hole from the exact 2mq

2. 1.
\/;kﬂl’l_ﬁkzq’z)a (B2)

heres =2myE/#2. Substituting the envelopgB2) into the
irst two equations of the s¢B1), one obtains the sought-
ter CB Hamiltonian for the electron envelopés andWV,.
%ﬂis Hamiltonian has the form

egctPe Ce

B3
Cl et Py’ (B3)
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where eigenfunctions into Eq(B2), one obtains the rest envelopes
o " Vs, ..., ¥g, and thereforel. While the functions¥; and
i 0 Lo o C V¥, are continuous at the heterointerface, the functions
Pe_k*( me(e) F0c(e) [tk me(e) g°(8)> Ky U,, ..., Vg, like the envelope functions of all the other re-
mote bands, are ndt.Note that only the wave function¥,
+k ﬂk i.e., vectors of eight envelope functionk,, ..., Vg, are
‘me(e) "’ orthonormalized. The envelopds, and¥, are neither or-
thogonal nor properly normalized. When the nonparabolicity
Co=—V2(k,gc(e)k_—k_gc(2)ky,), (B4) s not strong, in other words, whem,(g) only weakly de-
pends on the energy, it is possible to choose one appropriate
mg v?[ 2 1 value of the energy, e.geg to find my(gy) andg.(gq), and
ma(e) at | == e, +8—80+ s to substitute them into the HamiltonidB3). In such a way

one obtains the Hamiltonidﬁe(so). The eigenfunction¥

B v?) 1 1 andV, of this Hamiltonian will be orthonormalized and the
9ele) = 3le—e, e—g,+0) (BS)  rest of the six envelopes will be no longer needed.
Here,my/m¢(g) is the inverse of the energy-dependent ef- b. CB Hamiltonian and BC's for a spherical QDH

fective mass of an electron, and.(e) is an energy- ) L o) _ ,
dependent interfacial parameter, which vanishes when the 1N€ radial CB Hamiltoniart for spherical QDH's can
spin-orbit splittings is zero. Likey, this parameter gives a P€ derived from the Hamiltonia(B3) by the same way as
nonzero contribution to the Hamiltonian only at the hetero-th€ radial Hamiltonian(24) has been obtained from the
interface. The parametey,(¢) is responsible for the non- Hamiltonian (1_2) in the spherical approximatiofsee Sec.
symmetrical form of the HamiltoniafB3) and for the mix- !I)- Thus we find

ing of the envelopest; and ¥,. When one solves the 72

Schralinger equation for an electron using the energy- ﬂg’j)z—(gc—P(epj)_p/Z), (B6)
dependent HamiltoniaitB3), one finds the eigenenerdy 1 2mg ’

and eigenfunctionsV'; and ¥,. Then, substituting these where

m m
+IAI(1)(—O+QC(8)>

<|+1>A.<”( ° rg(e)
Pg?l): mC(S) 21+1 mC(S) _Al(p)[gc(s)] (B7)

and the operatoA(P(B) is defined by Eq(26). Inside the interior and exterior materials, correspondingly. The value of

ith spherical layer, the HamiltoniaiB6) takes the form this difference is usually very small for typical QDH's.
Therefore, in the first approximation, one can find the energy
i) 2 Mg spectrumk, (I=j—p/2) neglecting the term proportional to
Rl = am, | i) Y702 B8 p(j+12-p)lge1(2) = e afe)] in the BC's. Then, includ-

. . . _ ing this term as a perturbation, one finds the energy spectrum
where A, is the spherical Laplacian anth;;(¢) is the  El |t is seen that the energy levels with=0 remain un-

energy-dependent CB mass of fite material. Further, one changed, while each energy ledlwith |=1 splits into two
should solve the Schdinger equation with the Hamiltonian |gyels:E!* Y2 andE! ™~ 1/2

. , | | ~'“. For the electron levels that are not
(_88) for each sphefrlcal Iayer_and match the obtained SO'“Very close to the CB minimurfes is the case for the QDH’s
tions at the spherical heterointerfaces using the BGH

i under consideratignthe following estimate can be obtained:
(see Sec. Y. The radial component of the CB current op-

erator 7 is obtained from the HamiltoniafB6) in the (1+1)E/ T Y24 E| 712
same way the radial component of the current operedr E = STr1 ;
has been obtained from the Hamiltonig#). Thus,
A in mg d ge(e) h2(21-1)
()l I _ ) 2 I+1/2_ l-1/2_ _
Tej Mg\ mu(e) o p(j+1/2—p) - (B9) E E moa? [9ea(en) —Gc2e],

B10
In a two-layer spherical QDH the electron energy depends (B10

on the differenceg. 1(e) —gc2(¢) [as seen from the BC's wheree,=2myE, /%2, In Table Ill we have used E¢B10) to
(31 and (B9)], where the indices “1” and “2” denote the estimate the spin-orbit splitting of the lowetandD levels.
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It is seen that the value of the splitting of the electron levels 0?2

is of the order of 3 meV in all considered QDH'’s, and there-

L =
y1i—vi(e)=y1+ 3e—s)’

fore this splitting can be neglected. This fact does not imply

that the dependence of the parameters of the CB Hamiltonian
on the energy can be neglected, too. As seen from Table I,
the electron effective masses in QDH'’s can differ by a factor,

of 2 from their values in the corresponding bulk materials.

2. 6X6 energy-dependent Hamiltonian for a hole

a. Nonsymmetrized VB Hamiltonian

The deduction of the VB Hamiltonian is analogous to the
deduction of the CB Hamiltonian with only one difference:
one should treat two CB’s as remote. In order to express the

CB envelopes¥; and V¥, in terms of the VB envelopes
Vs, ..., Vg and to exclude them from the Schlinger
equation(B1), one should apply the approximatier=0 and

2

6(g.—¢)’

Here, y}'(s) are the energy-dependent Luttinger parameters.
In conformity with Eq.(7), one should change the parameter
of dissymmetryy as follows:

Y23~ 7‘5,3(8) =1Yp3t (B11)

2
v
Le)=y+ —
x—x (e)=x 6(ec—c) (B12)
As a result of the chang@12), the parameter of dissymme-
try increasegsee Table I, therefore the results of the sym-
metrized Hamiltonian(with x“=0) will deviate sharply
from the exact solutions. The parametetsusually weakly
depend on the energy. Consequently, to obtain the hole spec-
tffum one can use the Hamiltoniath,(g,), wheree, is an
average hole energy.

b. VB Hamiltonian and BC'’s for a spherical QDH

cg=1. This approximation has the same grounds as the ap- The radial VB Hamiltonian#(?) for a spherical QDH
proximation used above to obtain the CB Hamiltonian. Now,coincides with the radial Hamiltonia24) in which Y1

we express the CB envelopds andW¥, in terms of the VB
envelopes¥s, ..., W4 from the first two equations of the

—>y|i(s) and y— x" (&) [in conformity with Eqs.(B11) and
(B12)], y—y-(e)=y+[v?/6(e.—¢€)] [in conformity with

set(B1) and substitute them into the last six equations of theEds. (B11) and (14)] and where the first two rows and the

same set. As a result we have the VB Hamiltonkp,
which coincides with the Hamiltoniatd [see Eq.(12)]

first two columns are deleted. For the radial components of
the hole wave function one should use the BC3Y), in

which the radial component of the current operaff) is

where the first two rows and the first two columns are deyen by the matrix(32) where the first row and the first
leted and the effective-mass parameters are changed in th8jumn are deleted and the parametess y, and y are

following way:

replaced by the parameteﬁ, ¥-, andy", correspondingly.
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