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Hamiltonian theory of the composite-fermion Wigner crystal
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Experimental results indicating the existence of the high-magnetic-field Wigner crystal have been available
for a number of years. While variational wave functions have demonstrated the instability of the Laughlin
liquid to a Wigner crystal at sufficiently small filling, calculations of the excitation gaps have been hampered
by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum-Hall problem has
been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and
use it to compute the transport gaps of the Wigner crystal states. We find that the Wigner crystal states near
n51/5 are quantitatively well described as crystals of composite fermions with four vortices attached. Predic-
tions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with
experiments.
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I. INTRODUCTION AND PREVIEW

The fractional quantum-Hall~FQH! regime presents u
with the quintessential problem of strong correlations. In
strong magnetic fieldB, the kinetic energy of the two
dimensional electron gas~2DEG! is quantized into Landau
levels with energy (n1 1

2 )vc , wherevc5eB/m is the cy-
clotron frequency. Each of these Landau levels~LL’s ! has a
huge degeneracy equal to the number of quanta of flux p
etrating the 2DEG. When the lowest Landau level~LLL ! is
partially full, it is seen that the kinetic energy is degenera
and all the dynamics has to come from interactions. At c
tain special filling factors~recall that filling factor isn
52pn/eB) the system reorganizes itself into new strong
correlated ground states1 with fractionally charged
excitations.2

The past decade has seen the development and accep
of the composite-fermion~CF! concept as basic to the unde
standing of a variety of these electronic states.3 The CF is
pictured as an electron bound to an even numberl of quanta
of statistical flux, which are opposed to the external field.
a mean-field level, each CF sees both the external field
the statistical field due to the other particles, and theref
moves in an effective fieldB* 5B22p ln, wheren is the
density of electrons. The principal fractionsn5p/2p11 are
seen to be exactly those fillings when the number of partic
is exactly enough to fill aninteger number of LL’s of the
effective field.

Thinking in terms of CF’s greatly simplifies the descri
tion of different incompressible and compressible FQ
states. CF’s are believed to be the true quasiparticles in m
the same way as Landau quasiparticles are for the no
Fermi liquid. The original CF theory was used to gener
electronic wave functions.4 Contemporaneously, field
theoretic approaches5 were also developed to better unde
stand the FQHE, and to compute response functions. Mo
the field-theoretic approaches are based on the Chern-Sim
~CS! transformation, a method of attaching flux to particl
in two dimensions. Attaching an odd number of flux quan
to electrons transforms them into bosons and leads to
bosonic CS approach,5 while adding an even number leads
0163-1829/2001/64~24!/245326~17!/$20.00 64 2453
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the fermionic CS theory.6 In the mean-field approximation
the fermionic CS theory recovers the picture of CF’s in
effective magnetic field. Recently, based on the fermionic
theory, a Hamiltonian approach was developed7 to describe
liquid states in the FQH regime. In this approach, the
representation is reached from the bare electronic coo
nates by a series of canonical transformations. The end p
uct is the electron density operator reexpressed in the
coordinates suitable for further calculations and/or appro
mations. Physical quantities calculated in this approach s
to be in reasonable agreement with numerical results
experiments.8

The subject of this paper, however, is not the liquid FQ
states, but the insulating states that have been detected
perimentally at very low filling fractions.9 A natural candi-
date to exhibit such insulating behavior is the electro
Wigner crystal~WC!. The simplest description of this state
the Hartree-Fock~HF! wave function10

CHF~$r i%!5A)
i

fRi
~r i !, ~1!

where A is the antisymmetrization operator, andfRi
is a

single-particle wave function that is localized atRi ~lattice
site! and belongs to the LLL. It is given by

fRi
~r !5exp@2ur2Ri u2/4l 0

22 i r3Ri• ẑ/2l 0
2#, ~2!

where l 05(eB)21/2 is the magnetic length. The wave func
tion ~1! has been improved by adding a Jastrow correlat
factor,12 and the energy of the resulting state has been sh
to become lower than that of the liquid state at about
experimentally right filling fraction (n' 1

7 ).10–12Thus, a very
strong magnetic field favors crystalline order by localizi
the electrons.

However, not all the experimental evidence suppo
the simple electronic WC picture. In particular, transp
experiments13,14 suggest that the transport gap in this sy
tem is two orders of magnitude smaller than the the
retical estimate as calculated using the Hartree-F
approximation.15,16Moreover, close to the Laughlin fraction
©2001 The American Physical Society26-1
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n51/(2p11), a dip in the longitudinal resistivityrxx is
observed,17 resembling the behavior of the correlated liqu
state. The measurements of the Hall resistivityrxy are sur-
prising as well.17–19 The electronic WC is known to have
vanishing Hall conductancesxy50 ~when pinned!, which
implies a vanishing Hall resistancerxy50. On the contrary,
experiments see Hall insulating behavior, that is,rxy
'h/ne2. These problems led Yi and Fertig20 to consider
crystalline states with Laughlin-Jastrow correlations. T
idea is to construct a trial wave function with correlatio
factors that keep electrons apart. Each electron is comb
with l vortices to obtain the trial wave function

C~$r i%!5A)
iÞ j

~zi2zj !
l)

i
fRi

~r i !. ~3!

The Coulomb energy for this wave function was then co
puted using Monte Carlo simulation. Yi and Fertig show
that the ground-state energy of the correlated WC is lo
than that of the usual WC at experimentally relevant filli
fractions.20 Moreover, by introducing Laughlin-Jastrow co
relations between the interstitials and the lattice electro
the experimentally observedrxy ~Hall insulating behavior!
can be explained.21,22 Unfortunately, the method become
computationally too demanding to allow one to calcula
other quantities of interest, such as the excitation spectr

Since the Laughlin-Jastrow correlations are precisely
ones that convert electrons into CF’s,~Ref. 4! we are led to
consider a crystal of composite fermions. The main adv
tage of the Hamiltonian approach is that one can easily c
pute the single-particle excitation gap~identical to the trans-
port gap! along with the ground-state energy.

Our main result is that the CF theory withl 54 denoting
four zeros attached to each particle gives the best descrip
of the experimental phenomenology. Figure 1 shows the
sults of our calculations of the transport gapEg as a function
of the filling factor aroundn51/5 in the triangular lattices o
CF’s. Our theory reproduces the dependence of the excita
energies on the filling factors as measured in Ref. 14 rea

FIG. 1. The transport gap dependence on the filling fac
aroundn'1/5. Squares are our CF theory with four vortices
tached for the hexagonal lattice. Diamonds represent our CF th
with four vortices attached for the oblique lattice~see the text!.
Stars are experimental results read off Fig. 3 of Ref. 14.
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ably well whenn,1/5. We also find that the shear modulu
of the CF lattices goes down as the filling factorn51/5 is
approached from below. This behavior is consistent with
experimentally observed increase of the threshold voltage
filling factors n→1/5 ~Ref. 23! ~if one interprets the results
in terms of ‘‘weak pinning’’24!.

For n.1/5 we will show in Sec. V that the energy land
scape becomes very flat, with many different lattice str
tures becoming nearly degenerate in energy. Not coincid
tally, the convergence of our Hartree-Fock procedure is v
poor in this region, and we are unable to identify the prop
ground state in the clean limit. We have therefore presen
two values for the gaps in this region, the upper one be
for the triangular lattice, and the lower one being for a mo
oblique lattice. Neither gap follows the experimentally o
served nonmonotonic dependenceEg(n). ~Note, however,
the different slope below and aboven51/5 in Fig. 1!. We
believe the main reason for this is the following: Since the
are many local minima with different lattice structures th
are very close in energy, disorder may play an important r
in real samples. The experimental gaps may also be do
nated in this region by disorder effects. Apart from this o
region of discrepancy, our numbers for the gaps are in r
sonable agreement with experiments.

The outline of the paper is as follows. In Sec. II we intr
duce the Hamiltonian formalism and show how the wa
function ~3! emerges naturally in this approach. In Sec.
we derive the expression of the electronic density operato
the CF representation and also calculate the Hall cond
tance for the CF lattice in the clean limit. In Sec. IV w
formulate the HF theory using the electronic density deriv
in Sec. III. In Sec. V we present the results, discuss th
physical import, and show that the HF solutions satisfy
conditions under which the formalism is derived~small gra-
dients and small deviations of density around the mean!. We
end with some conclusions, caveats, and open questi
Some details of the calculations are relegated to the th
appendices.

II. SETTING UP THE HAMILTONIAN FORMALISM

In this section we closely follow the exposition and not
tion of Murthy and Shankar.25 Since most of the details ar
similar, we will mainly highlight the differences. We wil
follow Lopez and Fradkin6 in assuming that a good startin
point for obtaining a perturbative solution of theN interact-
ing electron problem moving in a uniform magnetic fieldB
52 ẑ B is the noninteracting CS particle Hamiltonian (\
5c51, m is the mass of the electron,e its charge!

HCS5(
i

N
1

2m
@2 i¹ i1eA* ~r i !1aCS~r i !#

2. ~4!

The CS particle is obtained from the electron by attachinl
flux quanta to it. This flux attachment is the origin of th
Chern-Simons gauge fieldaCS(r i), which is defined by

r
-
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“3aCS~r i !

2p l
5(

i

N

d2~r2r i !2n~r !, ~5!

wheren(r ) is the expectation value of the electron density
the ground state~CS particle and electron densities are t
same!. Unlike the incompressible FQH state~liquid state! for
which the electrons have a uniform density, we are c
cerned with the case where the density depends on the
tion. The vector potentialA* (r i) corresponds to the differ
ence of the external magnetic field and the average fi
created by the attached flux tubes, orB* (r )5B
22p ln(r )/e.

Our main assumption throughout this work is that for t
appropriate field strength and electron density the electr
organize themselves into a density-wave state such tha
ground-state expectation value of the density operator
periodic function

n~r !5n1 (
GÞ0

dn~G!eiG•r, ~6!

whereG are the reciprocal lattice vectors. We also assu
that the uniform component of the average density is m
larger than any of the finite-G modulations, i.e.,n@dn. Ef-
fectively dn/n is a small parameter in our theory. We w
show in Sec. V that the HF ground state does satisfy
condition thatdn/n is small, thusa posteriori justifying our
use of this approximation. The effects of disorder are igno
in what follows.

The complicated part of the CS Hamiltonian in Eq.~4! is
the gauge fieldaCS(r i). To get rid of it, one enlarges th
Hilbert space7 by introducing a canonical pair of field
a(q),P(q) for everyq

@a~q!,P~q8!#5 i ~2p!2d2~q1q8!, ~7!

whereq,Q5A4pn. Instead of working with the CS Hamil
tonian, we introduce an equivalent Hamiltonian

H5(
i

N
1

2m
@2 i¹ i1eA* ~r i !1a~r i !1aCS~r i !#

2, ~8!

wherea(r i)52 i ẑ3q̂a(r i) is a transverse vector field. W
also define a longitudinal vector fieldP(r i)5 i q̂P(r i) (q̂ is a
unit vector in theq direction!. This problem is equivalent to
the original one provided we restrict our attention to sta
that are annihilated by the constraintsx(q)5a(q) (q,Q).
We will call states that are annihilated by these constra
physical states, that is,

x~q!uCphys&50. ~9!

We will continue to use notationx(q) for the constraint op-
erator in different representations.

Using the fieldsa(q),P(q), a unitary transformation is
then constructed that shiftsa to absorb the Fourier compo
nents ofaCS(r i) for q,Q. In the new representation, whos
particles we call composite particles~CP!, the Hamiltonian is
24532
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HCP5(
i

N
1

2m
@2 i“ i1eA* ~r i !1a~r i !12p lP~r i !#

2.

~10!

We neglected all theq.Q Fourier components of the gaug
field in deriving the above Hamiltonian, implying that ou
theory will not describe the motion correctly for large m
menta~or short distances!. In the following we will also be
using the random phase approximation~RPA! generalized for
the case of the inhomogeneous densities

(
j

eik•r j.n~2p!2d2~k!1dn~2k!. ~11!

The constraints in the CP representation are given by

x~q!52
qa~q!

2p l
1r~q!2n~q!, ~12!

wherer(q)5( j
Ne2 iq•r j is the CP density operator and coin

cides with the corresponding electron operator.
Before proceeding with any further transformations on

Hamiltonian~10!, we will show how the trial wave function
used to compute the energy of the correlated WC in Ref.
emerges naturally within this approach.25 The crudest ap-
proximation for the CP Hamiltonian is

HCP.(
i

N
1

2m
@2 i“ i1eA* ~r i !#

21
n

2m (
q

Q

@a~2q!a~q!

1~2p l !2P~2q!P~q!#. ~13!

In this expression we have assumed that the CP ground
can be regarded as largely homogeneous, so that thedn is
neglected in the definitions of the RPA~11! and vector po-
tential A* (r i), which corresponds now to the uniform ma
netic field. We have also neglected the coupling between
CP’s and the oscillator fieldsa(q, P(q). Since this Hamil-
tonian~13! has been artificially made separable into a sum
the particle and the oscillator terms, we can write down
ground state as a product wave function. The particles
moving in a uniform magnetic fieldB* 5B22p ln/e, so
there is a degeneracy in this problem, but we assume
their ground state is crystalline

CCF~$r i%!5)
i

fRi
~r i !, ~14!

wherefRi
(r i) are Gaussians centered on the lattice sitesRi

similar to Eq.~2!, except that instead of magnetic lengthl 0

there is a new magnetic lengthl 0* 5(eB* )21/2. CF stands for
composite fermions. The oscillator term describesN inde-
pendent harmonic oscillators with the ground state

Cosc~$q%!5)
q

Q

exp@2a2~q!/4p l #. ~15!

Using the constraints~12! we can eliminate the field degree
of freedoma(q) in favor of ther i in the expression for the
oscillator wave function~15!. Since the calculation is de
6-3
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scribed in Ref. 25 in great detail, we only give the final res
for the projected oscillator wave function

Cosc~$r i%! [a(q)52p lr(q)/q]5)
i , j

uzi2zj u l

3expS 2(
j

lnuzj u2/4l 0
2D .

~16!

Here zi5xi1 iy i is the complex coordinate andn
52pn/eB is the filling factor. The approximate CS wav
function is a product of Eqs.~14! and ~16! and agrees with
Eq. ~2.12! given in Ref. 20.

However, the fact remains that in this representation
oscillators and the particles remain strongly coupled. T
oscillators are identified with the magnetoplasmons, wh
are high-energy degrees of freedom, while the particles
turn out to form the low-energy sector. Our next task will
to construct a canonical transformation to decouple the
sectors, so that we are left with a purely low-energy theo

III. DECOUPLING AND THE ELECTRON DENSITY
OPERATOR IN THE FINAL REPRESENTATION

Before we turn to the technical details of the decoupl
transformation, it is worthwhile to articulate the philosop
of our approach. If one were able to find the exact canon
transformation, and implement it exactly, then one would
left with a final theory in which the fermions are pure
low-energy objects, and the oscillators are purely hig
energy objects. In particular, the oscillators should ob
Kohn’s theorem,28 while all reference to the bare mas
should have disappeared from the low-energy fermionic p
of the Hamiltonian. In other words, the bare kinetic energy
the CF’s should be quenched in the final representation.
nally, the projected electronic density when expressed in
final representation should obey the magnetic translation
gebra appropriate to the LLL.29 Unfortunately, this program
cannot be implemented fully in practice. What can be imp
mented is a sequence of transformations that achieves s
measure of the above at long-distance scales~small q). We
will see that the oscillators do end up obeying Kohn’s the
rem, since this is a small-q property. Similarly, the magnetic
translation algebra will be seen to occur in its small-q form.
However, while the tendency for the quenching of the m
will be manifest, the mass depends on all distance scales
its quenching cannot be shown within a long-distance
proximation. Our approach will be toassumethe exact
quenching of bare mass, since we know this to be true in
LLL, and write the final Hamiltonian in the low-energy se
tor as a pure interaction term. Thus, while the proximate g
of the canonical transformation is to decouple the high- a
low-energy parts, its ultimate goal is to obtain the electro
density operator in the final representation.

We return now to the CP Hamiltonian~10! and the set of
CP constraints~12!. Using the RPA approximation as give
by Eq. ~11!, the CP Hamiltonian can be recast into the fo
lowing form:
24532
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HCP5(
i

N
Pj

2

2m
1

Ap l

m (
q

Q

[A(q)c†(q)1H.c.]

1
p l

m (
q

Q

(
G

Q

$ [ ~ndG,01dn~G!#

3@A†~q!A~q2G!q̂2~q2Ĝ!1#1H.c.% . ~17!

The first term in Eq.~17! is the CP kinetic energy, with
Pj52 i“ j1eA* (r j ), which only depends on the particl
degrees of freedom. The second is the coupling between
particle and the auxiliary field~oscillator! degrees of free-
dom, withc(q)5q̂2( jP j 1e2 iq•r j and the ‘‘destruction’’ op-
eratorA(q)5@a(q)1 i2p lP(q)#/A4p l .26 The last term de-
scribes the oscillators and does not depend on the par
degrees of freedom. In order to decouple the high-ene
oscillators from the low-energy CP’s we need to compute
commutators between the newly introduced operators. I
straightforward to deduce from Eq.~7! that

@A~q!,A†~q8!#5~2p!2d2~q2q8!. ~18!

The commutator for the operatorc(q) is found from the
commutator of the canonical momentaPx andPy and then
using the RPA~11!. The result is

@c~q!,c†~q8!#.q̂2q̂18 $24p lndn~q2q8!

12eB* @n~2p!2d2~q2q8!1dn~q2q8!#%.

~19!

According to our assumption the average density is a p
odic function, as in Eq.~6!, therefore the right-hand side o
Eq. ~19! differs from zero only if the differenceq2q8 in Eq.
~19! is equal to a reciprocal lattice vectorG.

Our task is to decouple the Hamiltonian~17! by eliminat-
ing the term that couples the particle and the oscillator
grees of freedom. We will show how one can construc
canonical transformation that accomplishes this decoupl
Once the canonical transformation is found we can derive
electron density operator in the ‘‘final’’ representation~FR!.
Operators in the FR are expressed in terms of the CF c
dinates. We will show below that there are good reason
believe that composite fermions are the true quasiparticle
the FQH regime and the FR density operator represents
physical charge density.

The calculation is a straightforward extension of the p
cedure given in Ref. 25 for the case of the homogene
liquid, and we relegate the details of this calculation to A
pendix A. In what follows, only the results of applying th
transformation to the Hamiltonian~17!, the density operator
and the set of constraints~12! are presented.

By construction, the term coupling the particles and t
oscillators is not present in the FR Hamiltonian. Substitut
Eqs. ~A5!, ~A6!, and ~A9! into the expression for the CF
Hamiltonian~17!, we find that the oscillator term in the FR
is equal tovc(qA

†(q)A(q) with vc5eB/m exactly as in
the liquid, to order (dn/n)2. This is a physically correct re
6-4
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sult because according to the Kohn’s theorem28 the limit
vc(q→0) should not depend on the electron interactions
the lowest Landau level. The kinetic energy in the FR is

T5(
j

N
P j 2P j 1

2m
1(

j

N S eB*

2m
2

p l

m
dn~r j ! D

2
1

2mn (
q

Q

c†~q!c~q!1
1

2mn2 (
q

Q

(
G

Q

c†~q!

3c~q2G!dn~G!q̂2~q2Ĝ!1 . ~20!

In an ideal calculation the particle kinetic energy should d
appear in the FR; the electronic kinetic energy is subsum
into the oscillator term. As has been stated above, it is
possible to show this in a small-q approximation such as th
one we are using.

The electron density operator in the FR is obtained
solving the flow equation that is derived in a way that fo
lows closely the calculation for the kinetic energyT leading
to Eq.~A8!. The result of the integration of the flow equatio
is

r~q,l!5r~q!1r0~q,l!1
q

4nAp l ~11m2!
(
G

Q
dn~G!

N

3@A~q2G!q̂2~q2Ĝ!11H.c.#

1
q~21m222A11m2!

8p ln2m4A11m2 (
G

Q
dn~G!

N

3@c~q2G!q̂2~q2Ĝ!11H.c.#, ~21!

wherem251/ln21. The FR operatorr0(q,l) is the leading
term in the perturbation expansion of the density in the
rameterdn/n and is formally identical27 to the density op-
erator in the case when the average electron densit
uniform,25

r0~q,l!5
q

2Ap l ~11m2!
@A~q!1H.c.#

2
q~A11m221!

4p lnm2A~11m2!
@c~q!1H.c.#. ~22!

It is now straightforward to get the FR expression for t
set of constraints~12!, just by using the previously dete
mined FR operatorsA(q,l) @see Appendix A, Eq.~A5!# and
r(q,l) @Eqs.~21! and ~22!#. The expression that results is

x~q,l!5x0~q,l!2dn~q!1
q~21m22m422A11m2!

8p ln2m4A11m2

3(
G

Q

dn~G!@c~q2G!q̂2~q2Ĝ!11H.c.#. ~23!
24532
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Here againx0(q,l) is the part of the constraint that corre
sponds to the case of the uniform average density an
given by

x0~q,l!5r~q!1
q~A11m221!

4p lnm2
@c~q!1H.c.#. ~24!

The main observation about Eq.~23! is that oscillator de-
grees of freedom cancel out up to orderdn/n, implying that
the constraint acts only on particles. This reassures us o
self-consistency of the decoupling scheme, since there is
use decoupling the high- and low-energy modes in
Hamiltonian if the constraint still nontrivially couples them

Because the particles are confined entirely to the low
Landau level, one expects the physical charge-density op
tor to obey the magnetic translation algebra. However, thi
not true for the density operator defined by Eq.~21!. We are
allowed to modify the definition ofr(q,l) in CP represen-
tation by adding to it any multiple of the constraint, since
an exact calculation in the physical states the constrain
equal to zero. Following the same approach as in the liq
states25 we try the linear combination

r~q!21/~m211!x~q!. ~25!

This operator has the virtue that its FR matrix elements
of orderq2 or higher, consistent with Kohn’s theorem.28 The
FR expression of the density operator~25! ~which we will
call the preferred density! is

r̃~q!5
m2

m211
r~q!2

q

4p nl~11m2!
@c~q!1H.c.#1

dn~q!

m211

2
q~12A11m2!

4p nl~11m2!m2 (
G

Q

dn~G!@c~q2G!

3q̂2~q2Ĝ!11H.c.#. ~26!

The calculation of the commutator of the preferred de
sity operators to first order indn/n gives

@ r̃~q!,r̃~q8!#5 i l 0
2~q3q8!r̃~q1q8!

1 i l 0
2~q3q8!

1

11m2 (
G

Q
dn~G!

n

3x0~q1q82G,l!. ~27!

Herex0(q,l) is the constraint to zeroth order~in dn/n), Eq.
~24!. We conclude that the magnetic algebra is satisfied
physical states that are destroyed by the constraint. This
weaker result than was obtained in the translationally inv
ant case, but nevertheless still preserves the equivalenc
this theory to the original electronic theory in the LLL a
long distances.

The preferred density encodes many nonperturbative
tures that are known to be true for the original electro
problem. It shows the correct fractional charge of t
quasiparticles,2 obeys the magnetic translation algebra in t
smallq limit,29 and has matrix elements of orderq2 or higher
6-5
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from the ground state. Thus it is plausible that simple
calculations with this density will capture the essential ph
ics in the FQH regime. Certainly, this expectation has b
borne out in calculations for the liquid states.8

Thus all the features of the translationally invaria
Hamiltonian theory, namely, compliance with Kohn’s the
rem, simultaneous decoupling of the Hamiltonian and
constraints, and a preferred density that obeys the algeb
magnetic translations, carry over for the nonuniform el
tronic density state.

It is of interest to determine the Hall conductancesxy for
the nonuniform average density state. In the clean lim
when there is no external potential, translation invarian
implies thatsxy5ne2/h. Our theory does indeed predict th
in the clean limit. In order to see this we need the FR
pression for the current. Starting with the electron curre
and eliminating the CS vector potential we find the followi
CP current:

~JCP!1~q!5
1

m (
j

P j 1e2 iq•r j1
2nAp l

m
A~q!q̂1

1
2Ap l

m (
G

dn~G!A~q2G!~q2Ĝ!1 .

~28!

The first term in Eq.~28! is just a definition of the operato
c(q) so to get the FR expression for the current we have
substitute the FR operatorsA(q,l) andc(q,l). The FR cur-
rent consists of two terms, one that does not contain fac
of dn and another proportional todn/n. The first term is
identical to the FR current for the uniform average dens
state and as shown in Ref. 25 depends only on the oscill
degrees of freedom. To calculate the first order contribut
to the current we use expressions~A5! and~A6! that give the
first order corrections indn/n for the operatorsA(q,l) and
c(q,l), respectively. We find that it is also independent
the CF coordinates. Both terms add up to

J1~q!5
2nAp l ~11m2!

m
A~q!q̂1

1
Ap l ~11m2!

m (
G

dn~G!A~q2G!~q2Ĝ!1 .

~29!

Because the current in the FR depends only on the opera
that represent the oscillators, we can ignore the particle
tor in the conductance calculation. The argument in Ref.
for the uniform average density case goes through and g
sxy5ne2/h in the limit q→0, which is the correct unquan
tized Hall conductance in the clean limit. Note, however,
the presence of disorder it is believed that due to the pinn
of the Wigner crystalsxy→0, sxx→0 such thatrxy is its
classical value. A complete theory including disorder effe
is currently nonexistent, and we will confine ourselves to
clean limit in the sequel.
24532
-
n

t

e
of
-

t,
e

-
t,

o

rs

y
or
n

f

rs
c-
5
es

g

s
e

IV. HARTREE-FOCK APPROXIMATION

The goal of this section is to describe two methods
compute the transport gap of the Wigner crystal state. T
transport gap can also be understood as the gap to creat
particle-hole excitation where the particle and hole a
widely separated. It is important to note that generica
there aregapless collectiveexcitations in any crystalline
state. However, these collective~magnetophonon! modes are
neutral, and cannot contribute towards carrying electri
current. In the following, we focus on the energies of t
single-particle charged excitations from which one can co
pute the transport gap.

Having determined the correct canonical transformat
by decoupling the CS Hamiltonian in the previous sectio
we shift our focus to the Coulomb interaction that was hi
erto ignored. At the small filling factors for which the Wigne
crystal occurs, the lowest-Landau-level approximation is
propriate. Now the LLL electronic Hamiltonian is given by

H5
1

2S (
q

@V~q!r~q!r~2q!2V~q!e2q2l 0
2/2r~0!#.

~30!

HereS is the area of the system and the second term res
from undoing the normal ordering of the interaction term
the original electronic Hamiltonian. This is necessary sin
we need to have the full operatorr in order to write it in the
final representation. The two-dimensional Fourier transfo
of the Coulomb potential is suppressed at large momenq
by multiplying it with a Gaussian

V~q!5
2pe2

qe
e2q2L2

, ~31!

where a parameterL may be used to interpolate between t
pure Coulomb potential and the Coulomb potential that
effective only when the distance between two particles
larger thanL. e is the dielectric constant. We emphasize th
the form of the Fourier transform of the potential given
Eq. ~31! does not accurately describe the effect of the sam
thickness, but is rather chosen for illustrative purposes, s
it is computationally convenient. The second term in Eq.~30!
is a constant that will be ignored in what follows. The fir
term of the electronic Coulomb interaction when transform
to the CF coordinates will serve as our model Hamiltonia

H5
1

2S (
q

V~q!r̃~q!r̃~2q!. ~32!

The density operatorr̃(q) is given by Eq.~26!. It is useful at
this point to rewrite it so that the dependence on the mo
lated average densitydn is explicit,30
6-6
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r̃~q!5~12c2!r~q!2 i l 0
2(

j
q3Pj* e2 iq•r j

2c2 (
G,GÞq

dn~G!

N

q•G

G2
ei (G2q)•r j

1
i l 0

2c

c11 (
G

dn~G!

N (
j

q3Pj* ei (G2q)•r j . ~33!

HerePj* is the momentum operator that corresponds to
uniform average density case@Pj* 5Pj (dn50)# and c
5Aln. It will also be convenient to have separate symb
for the different orders of thedn in Eq. ~33!, so we write
r̃(q)5 r̃0(q)1(Gdn(G) r̃1(q,G).

The Hamiltonian~32! describes a many-body CF proble
that we will treat within the Hartree-Fock approximation. W
justify the use of the HF approximation by arguing that t
CF is the true quasiparticle in the FQH regime. It will b
assumed throughout this study that the average den
modulation is small compared to the uniform backgrou
(dn/n!1) so as a convenient basis we will choose the w
functions of the free CF moving in the uniform magne
field B* 5B22p ln/e. The Landau gauge will be used i
what follows. Wave functions will be denoted asun,X&, with
n as a CF Landau level index andX as a kinetic momentum
component in they direction.

We will now derive the HF Hamiltonian. The mode
Hamiltonian~32! in the un,X& basis may be written

H5
1

2S (
q

V~q! (
n1X1 , . . . ,n3X3

^n1X1ur̃~q!un2X2&

3^n2X2ur̃~2q!un3X3&cn1 ,X1

† cn3 ,X3

1
1

2S (
q

V~q! (
n1X1 , . . . ,n4X4

^n1X1ur̃~q!un4X4&

3^n2X2ur̃~2q!un3X3&cn1 ,X1

† cn2 ,X2

† cn3X3
cn4X4

,

~34!

wherecn,X
† (cn,X) is the CF creation~destruction! operator.

The usual HF pairings are made in the two-body term of
Hamiltonian~34!, giving two contributions—a direct and a
exchange term. Because theXi dependence of the densit
matrix elements in Eq.~34! is very simple,

^n1X1ur̃0~q!un2X2&5^n1ur̃0~q!un2&

3exp@2 iqx~X11X2!/2#dX1 ,X22qyl
0*

2

~35!

^n1X1ur̃1~q,G!un2X2&5^n1ur̃1~q,G!un2&

3exp@2 i ~qx2Gx!~X11X2!/2#

3dX1 ,X22(qy2Gy) l
0*

2 ~36!
24532
e

s
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d
e

e

@here l 0* 5(eB* )21/2 is the CF magnetic length#, one can
eliminate all the dependence on the momentumXi in the Eq.
~34!. To this end we introduce the operator

Dnn8~q!5
1

g (
X

exp~2 iqxX2 iqxqyl 0*
2/2!cn,X

† cn8,X1qyl
0*

2,

~37!

whereg is the degeneracy of a Landau level.Dnn8(G) is the
order parameter of the density modulation corresponding
the wave vectorG. Note thatDnn8(q) has the property

(
n

Dnn~0!5n. ~38!

After doing sums overXi we find the following contributions
to the HF Hamiltonian.

~1! one-body term, zeroth order indn,

Hob
005

g

2S (
q

V~q! (
n1 ,n2 ,n3

^n1ur̃0~q!un2&

3^n2ur̃0~2q!un3&Dn1n3
~0!. ~39!

~2! A one-body term, first order indn,

Hob
015

g

2S (
q,G

V~q! (
n1 ,n2 ,n3

~^n1ur̃1~2q,G!un2&

3^n2ur̃0~q!un3&1^n1ur̃0~2q!un2&^n2ur̃1~q,G!un3&!

3dn~G!eil 0*
2q3G/2Dn1n3

~2G!. ~40!

~3! A one-body term, second order indn,

Hob
115

g

2S (
q,G,G1

V~q! (
n1 ,n2 ,n3

^n1ur̃1~2q,G!un2&

3^n2ur̃1~q,G1!un3&dn~G!dn~G1!

3exp$ i l 0*
2@q3~G1G1!2G3G1#/2%

3Dn1n3
~2G2G1!. ~41!

~4! A two-body term, zeroth order indn, direct and ex-
change contributions,

Htb
005

g2

S (
G

V~G! (
n1 , . . . ,n4

^n1ur̃0~2G!un4&^n2ur̃0~G!un3&

3^Dn1n4
~2G!&Dn2n3

~G!

2(
q,G

V~q! (
n1 , . . . ,n4

^n1ur̃0~2q!un4&

3
g

S
^n2ur̃0~q!un3&^Dn1n3

~G!&Dn2n4
~2G!eil 0*

2G3q.

~42!
6-7
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~5! A two-body term, first order indn, direct contribu-
tions,

Htbd
01 5

g2

S (
G,G1

(
n1 , . . . ,n4

@V~2G2G1!

3^n1ur̃1~G1G1 ,G!un4&^n2ur̃0~2G2G1!un3&

1V~2G1!^n1ur̃0~G1!un4&

3^n2ur̃1~2G1 ,G!un3&#dn~G!

3^Dn1n4
~G1!&Dn2n3

~2G2G1!. ~43!

~6! A two-body term, first order indn, exchange contri-
butions,

Htbe
01 52

g

S (
q,G,G1

(
n1 , . . . ,n4

V~q!„^n1ur̃1~2q,G!un4&

3^n2ur̃0~q!un3&exp$ i l 0*
2@G3~q2G1!/2

1G13q#%1^n1ur̃0~2q!un4&

3^n2ur̃1~q,G!un3&exp$ i l 0*
2@G3~q1G1!/2

1G13q#%…3dn~G!^Dn1n3
~G1!&Dn2n4

~2G2G1!.

~44!

~7! A two-body term, second order indn, direct contribu-
tion,

Htbd
11 5

g2

S (
G,G1 ,G2

(
n1 , . . . ,n4

V~2G2G1!

3^n1ur̃1~G1G1 ,G1!un4&^n2ur̃1~2G2G1 ,G2!un3&

3dn~G1!dn~G2!^Dn1n4
~G!&Dn2n3

~2G2G12G2!.

~45!

~8! A two-body term, second order indn, exchange con-
tribution,

Htbe
11 52

g

S (
q,G,G1 ,G2

V~q! (
n1 , . . . ,n4

^n1ur̃1~2q,G1!un4&

3^n2ur̃1~q,G2!un3&

3^Dn1n3
~G!&dn~G1!dn~G2!Dn2n4

~2G2G12G2!

3exp$ i l 0*
2@~G11G2!3q1G3~G12G2!2G13G2

12G3q#/2%. ~46!

The matrix elements of the density operator can be ca
lated using the formulas~B1!, ~B2! and~B3! that are given in
the Appendix B. The momentaGi run over a discrete set o
reciprocal lattice vectors. The momentumq is a continuous
variable. The summation overq in those terms of the Hamil
tonian where it appears can be done in a closed form as
24532
u-

e

show in Appendix C because the potential in Eq.~31! was
chosen so that these integrals could be performed ana
cally.

We will group all the nonoperator entries in Eqs.~39!–
~46! under the notationUn1n2

(G) ~renaming the dummy
summation variables where necessary! and represent the HF
Hamiltonian in a form convenient for further discussion,

HHF5g (
G,n1 ,n2

Un1n2
~G!Dn1n2

~G!. ~47!

Obviously,Un1n2
(G) depends on the expectation value of t

order parameter operatorDn1n2
(G) both directly and through

the density modulationdn, because

dn~G!5g (
n1 ,n2

^n1ur̃0~G!un2&^Dn1n2
~G!&

1g (
G1 ,n1 ,n2

^n1ur̃1~G,G1!un2&dn~G1!

3^Dn1n2
~G2G1!&. ~48!

In the i th iteration of the numerical HF procedureDn1n2
(G)

is calculated using the solution of the (i 21)th ~previous!
iteration. The density modulation is then calculated as a
merical solution to the system of the linear equations defi
in Eq. ~48!.

Having found the HF Hamiltonian, we can solve it to fin
the single-particle spectrum of the many-body system.
will assume that the CF form a Wigner lattice with one pa
ticle per unit cell. The reciprocal lattice constant for a tria
gular lattice is given by

G05
1

l 0
A4pn

A3
. ~49!

However, we will find that in some regions of filling facto
the triangular lattice is not the ground state, and we w
explore other lattice structures.

We have used two different schemes to perform the c
culation, one due to Coˆté and MacDonald31 and the other due
to Yoshioka and Lee.32 Below we will outline the essence o
each of these methods.

The method by Coˆté and MacDonald~CM! starts from the
single-particle Green’s function that they define as

Gn1n2
~X1 ,X2 ,t!52^Tcn1 ,X1

~t!cn2 ,X2

† ~0!&, ~50!

whereT is the time-ordering operator. The relationship of t
Green’s function Fourier transform to the physically releva
expectation value of the order parameter is
6-8
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^Dn1n2
~G!&5Gn2n1

~G,t502!

[
1

g (
X1 ,X2

Gn2n1
~X2 ,X1 ,t502!

3exp~2 iGx~X11X2!/2!dX1 ,X22Gyl
0*

2.

~51!

The set of crystal order parameters^Dn1n2
(G)& is then used

to find the ground-state energy

EHF5
e1

n (
G,n1 ,n2

Un1n2
~G!^Dn1n2

~G!&, ~52!

wheree151 if it multiplies those terms ofUn1n2
(G) that are

given by Eqs.~39!–~41! ~one-body terms! and e151/2 if it
multiplies terms that are given by Eqs.~42!–~46! ~two-body
terms!. The transport gapEg , also called activation energy
can be deduced from the chemical potential and the sin
particle density of statesd(E) that is related to the Green’
function through

d~E!52
1

p (
n

Im Gnn~G50,iv j→E1 id!, ~53!

here ImGnn is the imaginary part of the operatorGnn , v j
are the Matsubara frequencies,d is a small smoothing pa
rameter.

All of the above is predicated on knowing the Green
function. We derive the Green’s function equation of moti
in the usual way by taking the commutator of the Ham
tonian ~47! with a single-particle destruction operatorcnX ,

S iv j1
m

\ DGn1n2
~G,v j !2 (

G,n3

1

\

3Un1n3
~G12G!Gn3n2

~G1 ,v j !e
iG3G1l 0*

2

5dn1 ,n2
dG,0 , ~54!

wherem is the the chemical potential. The system of E
~54! is solved for the Green’s function by diagonalizing
left-hand side with respect to the indicesn3 andG1. One can
find the expectation value of the order parameter and
density of states once the chemical potential is known. T
chemical potential in turn is calculated by filling up the co
rect number of states, that is, by using Eq.~38!.

The numerical iterative scheme starts by assumin
Gaussian form for the order parameters.~The exact expres
sion depends on the filling factor and the state that is be
constructed and will be discussed later!. This initial set of
^Dn1n2

(G)& is then used to compute the effective potent

Un1n2
(G). Next the equation of motion is solved to get a ne

set of order parameters and the process is repeated unt
^Dn1n2

(G)& converge with some prescribed accuracy. A
other way to check the accuracy of the numerical solution
by using the following useful sum rule31
24532
e-
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e
e
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(
G,n1 ,n2

^Dn1n2
~G!&25n. ~55!

The idea behind the second method, that of Yoshioka
Lee32 ~YL !, is to diagonalize the one-body HF Hamiltonia
that can be rewritten in terms of the CF creation and dest
tion operators as

H5 (
G,n1 ,n2 ,X

Un1n2
~G!e2 iGxXcn1 ,X2Gyl

0*
2/2

†
cn2 ,X1Gyl

0*
2/2 .

~56!

We assume that the CF form a periodic lattice with primiti
translation vectors of the reciprocal lattice that are given
Q15(Q0,0) andQ25Q0(p/q,a). The first unitary transfor-
mation on the Hamiltonian~56! is defined by

an1 ,X,Y5
1

Asm
(
s50

sm

e2 isaQ0Ycn1 ,X1saQ0l
0*

2, ~57!

wheresm5L/aQ0l 0*
2, L is the linear dimension of the sys

tem, 0<X<aQ0l 0*
2 and 0<Y,2p/aQ0. After making the

transformation~57!, the Hamiltonian is

H5 (
G,n1 ,n2 ,X,Y

Un1n2
~G!exp~2 iGxX1 iGyY

1 iGxGyl 0*
2/2!an1 ,X,Y

† an2 ,X,Y1Gxl
0*

2. ~58!

The variableY in Eq. ~58! is coupled throughGxl 0*
2. If this

number is commensurate with 2p/aQ0, which is the period
of the variableY, then we can simplify the Hamiltonian eve
further. Suppose then that the parameters are such
NQ0l 0*

2/q5M2p/aQ0, with M andN integers. We then in-
troduce a new operator

bn, j ,X,Y5an,X,Y1 jQ0l
0*

2/q , ~59!

where 1< j <N and 0<Y, l 0*
2Q0 /qM. After inserting Eq.

~59! into Eq. ~58! the expression for the Hamiltonian is

H5(
G

(
X,Y

(
n1 , j ,n2 ,k

Un1n2
~G!exp~2 iGxX1 iGyY!

3exp~ iQ0Qyjl 0*
2/q1 iGxGyl 0*

2/2!

3bn1 , j ,X,Y
† bn2 ,k,X,Ydk, j 1Qxq/Q0

. ~60!

For every pair (X,Y) that takes values in the rectangul
domain defined earlier, the Hamiltonian~60! can be diago-
nalized in the indicesn1 , j , and n2 ,k. The single-particle
energiesEn1 , j (X,Y) that thereby result are continuous in th

variablesX,Y and form energy bands. There arenmN energy
bands~where 1<n1 ,n2<nm) and there is a large energy ga
between the lowerMqth and (Mq11)th bands. The CF
state that has the chemical potential in this large gap sho
have the lowest energy. Such a state occurs when the
filling factor is n* 5qM/N, where we have defined the C
filling factor asn* 52p l 0*

2n. It is easy to derive the expres
6-9
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sion for the expectation value of the order parameter,
applying the transformations~57! and ~59! to the definition
~37! to get

^Dn1n2
~G!&5

2p l 0*
2

L2 (
X,Y

(
j ,k

exp~2 iGxX1 iGyY!

3exp~ iQ0Qyjl 0*
2/q1 iGxGyl 0*

2/2!

3^bn1 , j ,X,Y
† bn2 ,k,X,Y&dk, j 1Qxq/Q0

. ~61!

As in the case of the previous method we find a solution
the HF problem by iterating until the order parameters c
verge. We calculate the ground-state energy by using
~52! and the transport gapEg as a smallest separation b
tween theMqth and (Mq11)th bands.33

While the method of CM is numerically efficient, it i
sometimes difficult to extract the transport gap from t
smoothed density of states. There is no uncertainty in de
mining Eg when the method of YL is used.

V. RESULTS

Our experimental motivation is the work by Jian
et al.13,14 where the transport properties were measu
aroundn51/5 Landau-level filling. In Ref. 13 an insulatin
phase was identified just aboven51/5 atn50.21 by observ-
ing a large peak of the longitudinal resistanceRxx as a func-
tion of the external magnetic field. The activation energy w
estimated from the Arrhenius plot atEg;0.63 K ~with B
'20 T). The striking observation is that the magnitude
the transport gap compares very poorly with the results
tained from HF for the usual electron solid. The excitati
energies for the triangularelectron lattice with one particle
per unit cell are given in Table I. We use the modified Co
lomb potential given by Eq.~31! and present results for dif
ferent values of the thickness parameterL. The calculation
was done in the lowest-Landau-level approximation and
L50 it reproduces previous results.32 The energies are give
in units ofe2/e l 0. In the same units the experimental result
Eg;2.831023e2/e l 0, at least two orders of magnitud
smaller than the theory.

We expect some reduction in the value ofEg when the
relaxation of the lattice is accounted for,34,35but it is difficult
to believe that this correction would nearly exactly cancel
unrelaxed excitation energy. Besides, one would not exp
the Eg(n) for the electron WC to be nonmonotonic as o
served experimentally.14

Now we proceed to carry out our program of consider
crystals of CF’s.

TABLE I. Electron WC ground state and activation energies
n51/5 and different values ofL.

L 0 l 0/2 l 0 3l 0/2

EHF 20.3220 20.3137 20.2859 20.2413

Eg(e2/e l 0) 0.4728 0.5080 0.5080 0.4468
24532
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A. Crystals of composite fermions with two vortices attached

Let us examine how well CF’s withl 52 describe the
experimental situation. An electronic filling factor ofn
51/5 corresponds to a CF filling factorn* 5n/(12 ln)
51/3. So the lowest CF Landau level is partially filled and
is reasonable to expect that the composite fermions for
lattice. As in the electron solid calculation only the lowe
CF Landau level is kept (nm51). Keeping two CF Landau
levels (nm52) we find similar results, indicating that includ
ing more Landau levels does not influence the calculati
Because the CF and electron effective potentialU00(q) in
Eq. ~47! are different momentum functions it is not obviou
that the CF lattice is triangular as is the case for the elec
lattice. The functional form ofU00(q) may be suggestive in
that respect. One expects it to have a minimum at about
momentumq equal to the shortest reciprocal vector. Th
argument cannot be exact in our theory becauseU00(G) de-
pends ondn and is reevaluated self-consistently in eve
iteration. However, since the density modulations are sm
we expect that a good approximation toU00(G) can be ob-
tained by keeping only thedn-independent terms given b
Eqs.~39! and~42! in the HF Hamiltonian@the term given by
Eq. ~39! is a constant#. In that case the approximate effectiv
potential can be expressed asU00(G)[W0(G)^D00(G)&, de-
fining the effective interactionW0(G). We display the plot of
this effective interaction in Fig. 2 for different values of th
parameterL. Whereas for then* 51/3 triangular lattice we
expect a minimum at aboutuqu l 0* '1.56, the minimum for
CF effective potential is at much smaller wave vector, mo
so for a smallL. This is why we do not limit ourselves to th
triangular lattice but calculate the ground-state energ
along with theEg’s for three oblique~including triangular!
lattices. The results together with the primitive reciproc
lattice vectorsb1 , b2 are given in Table II. Every lattice is
rescaled by an overall factor that makes the volume of
unit cell a constant equal to 2p l 0

2/n.
We find that for L50 composite fermions prefer th

elongated lattices to the triangular one. For larger values

r

FIG. 2. Effective HF potential for different values of paramet
L. The filling fraction specific factor (12 ln)2 was omitted from
the zeroth-order expression of the effective potential when gene
ing these curves.
6-10
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TABLE II. l 52 CF lattice ground-state and activation energies forn51/5, different values ofL, and
different unit cells.

L 0 l 0/2 l 0 3l 0/2

b15(1,0) EHF 20.33 20.34 20.30 20.24

b25(0.5,A3/2) Eg(e2/e l 0) 0.08 0.13 0.13 0.14

b15(1,0) EHF 20.36 20.33 20.29 20.24

b25(0.5,A3) Eg(e2/e l 0) 0.06 0.07 0.12 0.12

b15(1,0) EHF 20.37 20.33 20.29 20.24

b25(0.5,3A3/2) Eg(e2/e l 0) 0.04 0.05 0.09 0.10
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L the triangular lattice is favored. The results for the exci
tion energy are somewhat closer to the experimental va
but still too large.

The disagreement between the theory and the experim
is not only in the magnitude of the activation energy but a
in its dependence on the filling factor. In our theory withl
52 the functionEg(n* ) varies slowly and is monotonic
around the CF filling factorn* 51/3 (n51/5). Figure 3
gives this dependence for the triangular lattice withL
53l 0/2. The experimental function~see Fig. 3 in Ref. 14!
has a sharp peak between the filling factorsn;0.22 andn
;0.21 and forn,1/5 it rises sharply and saturates at low
filling factors.

Let us turn to CF’s with four flux quanta to see how t
results compare with experiments.

B. Crystals of composite fermions with four vortices attached

The behavior of the experimental gap withn fits in more
naturally within the CF model withl 54. When the filling
factorn,1/5 the lowest CF Landau level is being populat
and a CF quasiparticle lattice is assumed to be the st
state.36 On the other hand, whenn.1/5 the second CF Lan
dau level is being populated, and one naturally expects s

FIG. 3. The transport gap dependence on the filling fac
aroundn'1/5 (l 52) for L51.5l 0.
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difference in the behavior of the gap in the theory. We w
see that this expectation is realized, but not in compl
agreement with experiments.

Numerical constraints limited our HF basis to the tw
lowest CF Landau levels (nm52). The initial seed used in
the HF procedure that converged to the correlated WC w

^Dn1n2
~G!&5H n* e2G2l 0*

2/4, if n1 ,n250

0 otherwise.

Whenn.1/5, the second CF Landau level is partially fille
Again we assume that the CF lattice is formed so the ini
seed that we use in this case is

^Dn1n2
~G!&5H e2G2l 0*

2/4, if n1 ,n250

~n* 21!e2G2l 0*
2/4, if n1 ,n251

0 otherwise.

Our results for the activation energy are presented in Fig
The value of the parameterL is 3l 0/2 ~the results forL
5 l 0 are very similar! and we assume that the lattice is tria
gular. A magnetic field ofB520 T was used to convert th
energy units to kelvin, in order to compare to the work
Jianget al.14

First we will discuss the results forn,1/5. The transport
gaps that we obtain are generally comparable to the exp
mental values. We also reproduce a correctEg(n) depen-
dence here~see the left half of the Fig. 1!. However, we do
not observe saturation towards the lower filling factors. T
may be an indication that perhaps CF’s withl 54 are not the
quasiparticles at very low fillings.

Another experimental probe supporting the crystalline
ture of the insulating state is anI -V measurement.23 Nonlin-
ear I -V curves have a threshold voltage at which the diff
ential resistance drops off that can be interpreted a
depinning of a weakly pinned Wigner crystal.24 As the filling
factor is varied the threshold voltages increase approac
the FQH state atn51/5 both from above and below. Thi
finding could be a consequence of a lattice getting less r
as the FQH state is closer.24,37 We have calculated the shea
modulus of the CF lattice for several fractionsn,1/5. We
first compute the ground-state energies of a triangular lat
r

6-11
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with the primitive reciprocal lattice vectorsb15(1,0), b2

5(0.5,A3/2) and a deformed lattice such that its primiti
reciprocal lattice vectors are b15Q0(1,0), b2

5Q0(0.5,3A2/4) ~oblique lattice!, with Q0 chosen so tha
the area of the Brillouin zone is equal to that of the triangu
lattice. Then the shear modulusm is proportional to the dif-
ference of the ground-state energies. The results are
sented in Fig. 4 forL51.5l 0. We observe that the lattice i
indeed becoming softer asn→1/5. This conclusion is con
sistent with the experimental results23 interpreted using the
collective pinning theory.24,37

For n.1/5 the gaps for the triangular lattice, while bein
in the same range as their experimental counterparts, do
show the correct dependence onn close ton51/5 ~see the
right half of the Fig. 1!. We find that in this case the trian
gular lattice is not the lowest energy solution to the HF eq
tions. Figure 5 gives the HF energies of several lattices fo
fraction n* 56/5 ~that corresponds ton50.206 . . . ). The
lattices that we consider are deformations of the triangu
lattice obtained from it by changing the angleu between the
reciprocal lattice vectorsb1 andb2 such thatub1u5ub2u and
the volume of the unit cell remains a constant. Figure 6 gi

FIG. 4. The shear modulusm for the triangular CF lattices as
function of filling factor (n,1/5) for L51.5l 0.

FIG. 5. The HF energies for CF lattices differing by an angleu
between the reciprocal lattice vectors for the filling factorn
'0.206 forL51.5l 0. The zero on the vertical axis corresponds
the energy20.265 15(e2/e l 0).
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the corresponding activation energies. As is apparent fr
Fig. 5, the lattices with small anglesu are more stable within
our HF scheme. The smallest angle for which the iteratio
reliably converge isu5p/6. The dependence ofEg on n is
presented for the triangular and theu5p/6 lattices in Fig. 1.

At this point we have run into an intrinsic limitation of th
Hamiltonian theory: Since the exact transformation betwe
the electronic coordinates and the CF coordinates is
known, the Hamiltonian itself is not known exactly. Th
means that we should not take the ground state energies
are predicted by our theory too seriously. Note also that
differences in ground-state energy between the different
tice structures are very tiny so any conclusion concerning
stability of one lattice compared to another should be ta
with a grain of salt. We still can estimate the ‘‘shear mod
lus’’ for this class of lattices by looking at the difference
ground-state energy between the triangular and square
tices. This leads to an estimate ofm'231025 e2/e l 0, an
order of magnitude smaller than forn,1/5. This means tha
the CF lattices are very soft forn just above 1/5, and disorde
may potentially be very important in this case. As the fillin
factor increases the situation remains qualitatively sim
but the differences in energy decrease. The HF energies
the triangular and square lattices are presented for sev
filling factors in Table III. The transport gaps for these tw
lattices are essentially the same.

A brief comparison of the ground-state energies of
different possible states is in order. Atn51/5 andL51.5l 0
the CF-WC with four vortices has a ground-state energy
20.265 per particle. The ground-state energies of the e
tronic WC and CF-WC with two vortices for the same p
rameters are equal to20.24 and20.241 as given in Tables
I and II, respectively. It can be seen that the ground-s
energy of the CF-WC with four vortices attached is low
than that of the CF-WC with two vortices and the electron
WC at n51/5. This reproduces the result found by Yi an
Fertig20 and reinforces our belief that CF’s with four vortice
attached offer the best description of the state nearn51/5.

C. Checking the consistency of the approximation scheme

Recall that the formalism that we have developed in Se
II and III is based on two assumptions:~i! We have made a

FIG. 6. The activation energies for CF lattices differing by
angleu between the reciprocal lattice vectors for the filling fact
n'0.206 forL51.5l 0.
6-12



s

HAMILTONIAN THEORY OF THE COMPOSITE-FERMION . . . PHYSICAL REVIEW B64 245326
TABLE III. Comparison of l 54 CF square and hexagonal lattice ground states for filling factorn
.1/5 andL51.5l 0. Energy in units ofe2/e l 0.

n 0.2 0.2069 0.2105 0.2143 0.2174 0.2195

EHF square 20.264984 20.265046 20.265242 20.265716 20.266248 20.266659

EHF hexag. 20.264984 20.265040 20.265232 20.265708 20.266247 20.266658
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small-q approximation, which implies that gradients a
small, and~ii ! We have assumed thatdn(G)/n!1. It is im-
portant to check that our HF solutions do satisfy both th
assumptions.

The fact, that our formalism is accurate only for smallq is
mitigated by the fact that the potential is weak at largeq due
to finite thickness effects, so that density matrix elements
large q are not important. In previous gap calculations
using this formalism8 ~with a similar though slightly differ-
ent potential 2pe2Lq/q), it was found that forL. l 0 the
formalism reproduces the numerically computed gaps of
liquid states quite well. Since we are usingL51.5l 0, we can
expect that the small-q formalism is applicable.

Nevertheless, more explicit checks are possible. In Fig
we plot the values of the charge-density wave~CDW! order
parameter̂ D00(G)& of Eq. ~37! anddn(G) as a function of
uGu for the ground state ofn50.1875, using CF’s with four
vortices attached. This value ofn corresponds ton* 50.75,
and the plot is normalized with respect ton* . It is clear that
the values of the order parameter rapidly go to zero asuGu
increases. This suggests that large values ofq do not matter.
Another check is provided by a real-space plot of the den
profile in Fig. 8 for the samen. As can be seen, the max
mum density deviations are of order620% around the mean
density, and the density variations are on the length scal
the interparticle spacing, which is greater than the magn
length.

One should also note from Fig. 7 that the value
dn(G)/n never exceeds 1/15, which is quite small. Note t
our expansion is in powers ofdn(G)/n, which should not be

FIG. 7. The CDW order parameter^D00(G)& and Fourier com-
ponents of the density deviationdn(G) as a function ofuGu for n
50.1875 andL51.5l 0. They axis is normalized ton* 50.75.
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confused with the real-space deviations of the density.
have checked the smallness ofdn/n by another method as
well. We have recomputed the ground-state energies
transport gaps by discarding all terms in the HF-Hamilton
that explicitly depend ondn. We find that the ground-stat
energies change by about 0.1% and that the gaps chang
at most 5–10 %. This indicates that the effects of t
dn-dependent terms in the Hamiltonian are small, which i
more physical measure of the smallness ofdn/n than its
numerical value.

We conclude that indeed both the approximations mad
setting up the formalism are satisfied by the HF solutions

VI. CONCLUSIONS, CAVEATS, AND OPEN QUESTIONS

Two-dimensional electron gases in high magnetic fie
offer the best conditions for the realization of the Wign
crystal, since the magnetic field tends to localize the el
trons. However, electronic correlations play a dominant r
in the LLL because the kinetic energy is degenerate.
tempts at describing the Wigner crystal using uncorrelat
or weakly correlated states of electrons,12 do capture some o
the essential physics, such as the filling factor at which
Laughlin liquid becomes unstable to the Wigner cryst
However, these theories fail to capture the correct struc
of the excitation spectrum, and predict gaps that are
orders of magnitude above experimental observations.

Since Laughlin-Jastrow correlations are the essence o
fractional quantum-Hall liquid states,2,4 it is natural to hy-

FIG. 8. Real-space density profile for the CF-WC atn
50.1875 andL51.5l 0. Once again the density is normalized
n* 50.75. The crystal appears as small modulations around
mean density of 0.75.
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pothesize that they are important in the Wigner crystal s
as well. The first step in this direction was taken by Yi a
Fertig,20 who studied the ground-state energy as more
more vortices were attached to electrons forming a Wig
crystal. They found that indeed the Wigner crystals with v
tices had better energies than the uncorrelated or weakly
related crystals.20

Unfortunately, ground-state energies cannot be probed
rectly in experiments. It is desirable to have predictions
observable physical properties that can distinguish betw
competing ground states. Calculating physical properties
strongly correlated state is notoriously difficult. The compo
ite fermion picture4 achieves the miracle of transforming
strongly correlated electronic problem into a weakly cor
lated problem of CF’s. In the years since the discovery of
FQHE, much progress has been made in developing fi
theoretic schemes that have predictive power.5,6 The latest in
this long line of approaches is the Hamiltonian formalism7

which has had reasonable success in computing gaps,
netoexciton dispersions, and finite-temperature properties
the liquid states.8

In this paper, we have partially accomplished the goa
computing the physical properties of a strongly correla
Wigner crystal. Based on an extension of the Hamilton
theory to account for the nonuniform density in the crys
state, we were able to compute gaps in the correlated cry

Our results show that qualitatively and semiquantitative
a Wigner crystal state of CF’s with four flux quanta attach
offers the best description of the phenomenology of the hi
field Wigner crystal nearn51/5. In particular, our predic-
tions for gaps are within a factor of 2 of the experiments
the entire regime of interest. Our predictions show a differ
behavior forn,1/5 andn.1/5. While the theory has som
discrepancies with the data14 for n just above 1/5, we believe
we understand why this might be the case: Different latt
structures have very similar energies in this regime, and
very deformable. Consequently, disorder is expected to p
a dominant role in determining the configuration, and he
the gaps, in this region ofn. Finally, we are able to estimat
the shear modulus of the crystal above and below 1/5,
we find them to become softer as 1/5 is approached. Th
consistent with theincreaseof the threshold voltage for non
linear transport,23 a standard feature of the theory of colle
tive pinning.24,37

Before we close, some caveats must be noted. An intri
limitation of the Hamiltonian theory7 is that the Hamiltonian
is known only approximately. Thus the ground-state energ
are not to be taken too seriously. This implies that this the
does not offer a trustworthy way to find the lowest-ener
state. The strength of the Hamiltonian theory lies in the f
that if the nature of the state is known, the theory allows
computation of gaps, magnetoexcitons, and even finite t
perature properties.8 With this in mind, let us note that we
have not carried out an exhaustive search in the space o
possible states. We have confined ourselves to crystals
one CF per unit cell. While we did explore crystals oth
than triangular and square forn.1/5, we kept the two primi-
tive reciprocal lattice vectors equal in magnitude. It is po
sible that some other crystal state that we have not explo
24532
te

d
r

-
or-

i-
r
en
a
-

-
e
d-

ag-
or

f
d
n
l
al.
,
d
-

t

e
re
y
e

d
is

ic

s
y
y
t
e
-

all
ith
r

-
ed

is the actual ground state in the clean limit. However, for
experimental observations this point is likely to be mo
because disorder probably plays a dominant role in this
gion of n.

Many open questions remain. The most important, and
most intractable, is the influence of disorder. Disorder w
cause lattice deformations, dislocations, and other defect
a crystal of CF’s, density variations are expected to prod
a corresponding variation in the effective magnetic fie
Thus, a random potential leads indirectly to a random m
netic field. In principle, the formalism we have develop
here to deal with nonuniform density could be generalized
incorporate disorder, but the implementation appears d
cult. In particular, it is difficult to visualize how the nonpe
turbative effects of disorder~localization of almost all states
changingsxy from ne2/h to 0, etc.! would emerge in a
straightforward manner.

Another open question is the evolution of the Wign
crystal state with temperature, which could be explored
the clean limit along the line of reasoning laid out in th
work. In particular, it would be of interest to obtain a predi
tion for the transition temperature between the Wigner cr
tal and the~presumably liquid! high-temperature state.

We hope to pursue these and other topics in future wo
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APPENDIX A

In this appendix we will construct the canonical transfo
mation that diagonalizes the Hamiltonian~17! as discussed
in the main text. First notice that putting everydn(G) to zero
takes us back to the uniform charge density case consid
by Murthy and Shankar.25 They showed that the canonica
transformation in that case is

U0~l![eilS05expH lu(
q

Q

@c†~q!A~q!2H.c.#J ,

~A1!

where u51/2nAp l and l5arctanm/m with m251/ln21.
The value of the constantl is fixed by requiring that the
Hamiltonian in the FR does not have a term coupling
particle and the oscillator degrees of freedom.

The Hamiltonian~17! is different from the one considere
in Ref. 25 by having terms proportional todn/n. The same is
true for the commutator of the kinetic momenta~19!. We will
assume thatdn/n is a small parameter and when diagonal
ing the Hamiltonian we will only keep terms proportional
it. Consistent with this program, a reasonable guess for
canonical transformation is
6-14
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U~l!5expH ilS01lb(
q

Q

(
G

Q

@c†~q!A~q2G!dn~G!q̂2

3~q2Ĝ!12H.c.#J , ~A2!

where b is a constant that has to be determined later
requiring that the first order of the coupling term be zero.
Eq. ~A1! c(q) is the operator that corresponds to the unifo
density, while in Eq.~A2! it depends ondn. Strictly speak-
ing, these are two different operators.

We proceed as in Ref. 25 by determining the operat
A(q,l) andc(q,l) in the new representation. Each of the
operators is a sum of an unperturbed part that coincides
mally with dn50 result and a first order indn/n part. We
introduce the notationA0(q,l)1A1(q,l) for these parts
@similarly for c(q,l)#. Using the canonical transformatio
~A2! and the commutation relations~18! and~19! we derive
the following first-order flow equations for the operators

dA1~q,l!

dl
52uc1~q,l!2b(

G

Q

c0~q2G,l!dn~G!

3q̂2~q2Ĝ!1 , ~A3!

dc1~q,l!

dl
52eB* nuA1~q,l!1u@2eB* ~bn11!24p ln#

3(
G

Q

A0~q2G,l!dn~G!q̂2~q2Ĝ!1 . ~A4!

Substituting Eq.~A4! into Eq. ~A3! a second-order inhomo
geneous ordinary differential equation is obtained
A1(q,l). The general solution depends on two arbitrary co
stants that are determined through the initial conditio
A1(q,0)5c1(q,l)50. The result of the calculation is

A1~q,l!52
al sinml

2m (
G

Q

A~q2G!dn~G!q̂2~q2Ĝ!1

1F S u

2mn
2

p lu

meB*
D sinml

2
aul cosml

2m2 G(
G

Q

c~q2G!dn~G!q̂2~q2Ĝ!1 ,

~A5!

where a new constanta52m2(b/u1p l /eB* 21/2n) was
introduced. Having foundA1(q,l), we can integratec1(q,l)
from the Eq.~A4! with the result
24532
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c1~q,l!52
al sinml

2m (
G

Q

c~q2G!dn~G!q̂2~q2Ĝ!1

1F S m

2un
2

p lm

ueB*
D sinml1

al cosml

2u G
3(

G

Q

A~q2G!dn~G!q̂2~q2Ĝ!1 . ~A6!

The only term in the Hamiltonian~17! that is not expressed
through the operatorsA(q) andc(q) is the CP kinetic energy
T5( i

NPj
2/2m. We will compute this operator in FR by de

riving first the flow equation for it. First though we have
rearrangeT, by using the canonical momentum commutat
into

T5(
j

N
P j 2P j 1

2m
1(

j

N S eB*

2m
2

p l

m
dn~r j ! D . ~A7!

The second term in Eq.~A7! will not contribute to the flow
equation after applying the RPA to it. It turns out to descri
the magnetic moment of the CP. After doing the appropri
commutators we find that to first order indn/n the kinetic
energy operatorT1 obeys the flow equation

dT1~l!

dl
5

eB* u

m (
q

Q

@A1
†~q,l!c0~q,l!1A0

†~q,l!c1~q,l!

1H.c.#1
eB* b22p lu

m

3(
q

Q

(
G

Q

@A0
†~q,l!c0~q2G,l!

3dn~G!q̂2~q2Ĝ!11H.c.#. ~A8!

We can integrate the kinetic energy from Eq.~A8! using the
initial condition T1(0)50. The resulting expression for th
kinetic energy in FR is substituted together with the ope
torsA(q,l) andc(q,l) in FR into the Hamiltonian~17!. We
fix the constantb by requiring that there be no couplin
between the particle and the oscillator degrees of freed
That way we get

b52
m1~m221!arctanm

4n2m2Ap l arctanm
. ~A9!

The other consequences of this transformation are give
the main text.

APPENDIX B

To calculate the matrix elementŝn1ur̃0(q)un2& and

^n1ur̃1(q,G)un2& one needs to know what the correspondi
6-15
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matrix elements for the operatorseiq•r, q3P* eiq•r, and q
3P* ei (q2G)•r are. We will give here only the final expres
sions for these matrix elements, as the first two were deri
in several papers~see, for example, Ref. 8! and the third can
be found using a similar approach. The matrix elements

^n1ueiq•run2&5An2!

n1! S i

A2
~qx1 iqy!l 0* D n12n2

3Ln2

n12n2~q2l 0*
2/2!e2q2l 0*

2/4, ~B1!
e
-
-
o

a
t i

ty-

24532
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l 0*
2^n1uq3P* eiq•run2&5 iAn2!

n1! S i

A2
~qx1 iqy!l 0* D n12n2

3@2Ln2

n12n2~q2l 0*
2/2!

2n1Ln221

n12n2~q2l 0*
2/2!

1~n211!Ln211
n12n2~q2l 0*

2/2!#

3e2q2l 0*
2/4, ~B2!
l 0*
2^n1uq3P* ei (q2G)•run2&5 iAn2!

n1! S i

A2
@qx2Gx1 i ~qy2Gy!# l 0* D n12n2S q•~q2G!

~q2G!2

3$2Ln2

n12n2@~q2G!2l 0*
2/2#2n1Ln221

n12n2@~q2G!2l 0*
2/2#1~n211!Ln211

n12n2@~q2G!2l 0*
2/2#%

1 i
q3G

~q2G!2
~n12n2!Ln2

n12n2@~q2G!2l 0*
2/2# D exp@2~q2G!2l 0*

2/4#. ~B3!
e
al
in

of
APPENDIX C

In this appendix we will illustrate the calculation of th
integrals over the momentumq that appear in the HF Hamil
tonian Eq.~39!–~46!. As an example, we will take the inte
gral that appears in the exchange contribution of the tw
body, first order indn term. Other integrals are done in
similar way. We choose to integrate the following term tha
part of Eq.~44!,

Utbe5
g

2S (
q

V~q!^0ur̃0~2q!u1&^0ur̃1~q,G!u0&

3exp@2 i l 0*
2q3~G12G1!/2#. ~C1!

Using the formulas given in the Appendix B for the densi
operator matrix elements, we find

Utbe5
2pe2g

2e E
0

` dq

~2p!2E0

2p

due2q2L2

3S i l 0* qe2 iu
q2l 0*

2

2A2
e2q2l 0*

2/4D
3S c2

q•G

G2
2

c

2~c11!
~q2l 0*

21q•Gl 0*
2!D

3exp@2~q2G!2l 0*
2/4#exp@2 i l 0*

2q3~G12G1!/2#.

~C2!

Taking into account thatq•G5q(G2eiu1G1e2 iu)/2 and
q3G5q(G1e2 iu2G2eiu)/2i , where G15Gx1 iGy and
G25Gx2 iGy , we get
-

s

Utbe5
e2g

2e l 0*
E

0

`

dxE
0

2p du

2p
exp@2x2~L2/ l 0*

211/2!#

3S ie2 iu
x3

2A2
D S c2

x~G2eiu1G1e2 iu!

2G2l 0*

2
c

2~c11!
@x21x~G2eiu1G1e2 iu!l 0* # D

3exp$@~G21G12!eiu2G11e2 iu# l 0* x/2%e2 l 0*
2G2/4,

~C3!

where x5ql0* . First we will integrate with respect to th
variablex. We notice that it is possible to extend the interv
of the integration over the whole real axis. The integrand
Eq. ~C3! is such that the odd/even powers ofx are multiplied
by the exp(iun) with n odd/even. Then reversing the sign
x and making a transformationu85u1p does not change
the integrand while shifting the integration with respect tox
interval to (2`,0). The integral is then

Utbe5
ie2g

4e l 0*
E

0

2p du

2p F I 4~a,b!
~G21G1e22iu!

4A2

3S c2

G2l 0*
2

cl0*

c11D 2I 5~a,b!
ce2 iu

4A2~c11!
Ge2 l 0*

2G2/4.

~C4!

We introduced a notation for the Gaussian integralI n(a,b)
5*2`

` dx exp(2ax212bx)xn with a5L2/ l 0*
211/2 and b
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5@(G21G12)eiu2G11e2iu#l0* /4. An important observation is
that after Eq.~C4! is expanded, the result is the sum of t
integrals of the form~note the even powers ofeiu that ap-
pear!

E
0

2p

exp@~aeiu1be2 iu!2#ei2nu
du

2p
5e2abS b

aD n

I unu~2ab!,

E
0

2p

e(aeiu)2
ei2nu

du

2p
5H 0 if n.0

aunu

unu!
otherwise,
e
,

,

k

r,

.

v.

-

24532
E
0

2p

e(be2 iu)2
ei2nu

du

2p
5H 0 if n,0

bn

n!
otherwise.

~C5!

Herea5(G21G12) andb52G11 . The second and third
lines in Eq.~C5! are given because they are used to calcu
other integrals. They hold if either one ofa or b are zero. The
final answer is then a series of the modified Bessel functi
multiplied by appropriate constants.
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