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Experimental results indicating the existence of the high-magnetic-field Wigner crystal have been available
for a number of years. While variational wave functions have demonstrated the instability of the Laughlin
liquid to a Wigner crystal at sufficiently small filling, calculations of the excitation gaps have been hampered
by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum-Hall problem has
been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and
use it to compute the transport gaps of the Wigner crystal states. We find that the Wigner crystal states near
v=1/5 are quantitatively well described as crystals of composite fermions with four vortices attached. Predic-
tions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with
experiments.
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I. INTRODUCTION AND PREVIEW the fermionic CS theor§.In the mean-field approximation
the fermionic CS theory recovers the picture of CF's in an

The fractional quantum-HallFQH) regime presents us effective magnetic field. Recently, based on the fermionic CS
with the quintessential problem of strong correlations. In atheory, a Hamiltonian approach was develdpexdescribe
strong magnetic fieldB, the kinetic energy of the two- liquid states in the FQH regime. In this approach, the CF
dimensional electron ga@DEG) is quantized into Landau representation is reached from the bare electronic coordi-
levels with energy I+ %) w., Wherew.=eB/m is the cy- nhates by a series of canonical transformations. The end prod-
clotron frequency. Each of these Landau levélss) has a  uct is the electron density operator reexpressed in the CF
huge degeneracy equal to the number of quanta of flux perfoordinates suitable for further calculations and/or approxi-
etrating the 2DEG. When the lowest Landau leftdlL ) is mations. Physical quantities calculated in this approach seem
partially full, it is seen that the kinetic energy is degenerate{0 be in reasonable agreement with numerical results and
and all the dynamics has to come from interactions. At cerexperiments.
tain special filling factors(recall that filling factor is v The subject of this paper, however, is not the liquid FQH
=2mn/eB) the system reorganizes itself into new strongly states, but the insulating states that have been detected ex-
correlated ground states with fractionally charged Perimentally at very low filling fractiond.A natural candi-
excitations? date to exhibit such insulating behavior is the electronic

The past decade has seen the development and acceptai¥@gner crystalWC). The simplest description of this state is
of the composite-fermiofCF) concept as basic to the under- the Hartree-FockHF) wave function
standing of a variety of these electronic stat&he CF is
pictured as an electron bound to an even nunhldrquanta 1) — ,
of statistical flux, which are opposed to the external field. At Pureirib) AH ¢Ri(r')’ @

a mean-field level, each CF sees both the external field and . ) o ]
the statistical field due to the other particles, and thereforévhere A is the antisymmetrization operator, amfk is a
moves in an effective fiel®* =B—2wIn, wheren is the  single-particle wave function that is localized Rt (lattice
density of electrons. The principal fractioms=p/2p+1 are  site) and belongs to the LLL. It is given by

seen to be exactly those fillings when the number of particles

is exgctly_enough to fill annteger number of LL's of the d;Ri(r):exp{—|r—Ri|2/4lg—ir><Ri~2/2I§], 2
effective field.

Thinking in terms of CF's greatly simplifies the descrip- wherel,=(eB is the magnetic length. The wave func-
tion of different incompressible and compressible FQHtion (1) has been improved by adding a Jastrow correlation
states. CF’s are believed to be the true quasiparticles in mudactor!? and the energy of the resulting state has been shown
the same way as Landau quasiparticles are for the norm&b become lower than that of the liquid state at about the
Fermi liquid. The original CF theory was used to generateexperimentally right filling fraction ¢~ 2).1°"1Thus, a very
electronic wave function$. Contemporaneously, field- strong magnetic field favors crystalline order by localizing
theoretic approachg&svere also developed to better under- the electrons.
stand the FQHE, and to compute response functions. Most of However, not all the experimental evidence supports
the field-theoretic approaches are based on the Chern-Simoti®e simple electronic WC picture. In particular, transport
(C9) transformation, a method of attaching flux to particlesexperiments*'* suggest that the transport gap in this sys-
in two dimensions. Attaching an odd number of flux quantatem is two orders of magnitude smaller than the theo-
to electrons transforms them into bosons and leads to theetical estimate as calculated using the Hartree-Fock
bosonic CS approachwhile adding an even number leads to approximation>**Moreover, close to the Laughlin fractions
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ably well wheny<1/5. We also find that the shear modulus
of the CF lattices goes down as the filling factos 1/5 is
approached from below. This behavior is consistent with the
experimentally observed increase of the threshold voltage for
filling factors »—1/5 (Ref. 23 (if one interprets the results

in terms of “weak pinning®?.

For v>1/5 we will show in Sec. V that the energy land-
scape becomes very flat, with many different lattice struc-
tures becoming nearly degenerate in energy. Not coinciden-
tally, the convergence of our Hartree-Fock procedure is very
poor in this region, and we are unable to identify the proper
ground state in the clean limit. We have therefore presented
two values for the gaps in this region, the upper one being

v for the triangular lattice, and the lower one being for a more
FIG. 1. The transport gap dependence on the filling factoroblique lattice. Nelther gap follows the experimentally ob-
around »~1/5. Squares are our CF theory with four vortices at- S€rved nonmonotonic dependengg(»). (Note, however,

tached for the hexagonal lattice. Diamonds represent our CF theorﬁhe_ different slppe below and_ apove= 1/5 in_ Fig. ]) We
with four vortices attached for the oblique latti¢see the teyt  Delieve the main reason for this is the following: Since there

Stars are experimental results read off Fig. 3 of Ref. 14. are many local minima with different lattice structures that
are very close in energy, disorder may play an important role
v=1/(2p+1), a dip in the longitudinal resistivity,, is  in real samples. The experimental gaps may also be domi-
observed, resembling the behavior of the correlated liquid nated in this region by disorder effects. Apart from this one
state. The measurements of the Hall resistiyify are sur- ~ region of discrepancy, our numbers for the gaps are in rea-
prising as well’"*°The electronic WC is known to have a sonable agreement with experiments. .
vanishing Hall conductance,=0 (when pinneg, which The outline c_)f thg paper is as follows. In Sec. Il we intro-
implies a vanishing Hall resistangg,=0. On the contrary, duce_ the Hamiltonian formalls_m ar)d show how the wave
experiments see Hall insulating behavior, that js,  function(3) emerges naturally in this approach. In Sec. Il
~h/ve?. These problems led Yi and Ferfgto consider —We derive the expression of the electronic density operator in
crystalline states with Laughlin-Jastrow correlations. Thethe CF representation and also calculate the Hall conduc-
idea is to construct a trial wave function with correlation tance for the CF lattice in the clean limit. In Sec. IV we
factors that keep electrons apart. Each electron is combing@rmulate the HF theory using the electronic density derived
with | vortices to obtain the trial wave function in Sec. lll. In Sec. V we present the results, discuss their
physical import, and show that the HF solutions satisfy the
conditions under which the formalism is derivezall gra-
dients and small deviations of density around the mea/e
end with some conclusions, caveats, and open questions.
The Coulomb energy for this wave function was then com-Some Qetails of the calculations are relegated to the three
puted using Monte Carlo simulation. Yi and Fertig showedappendices.
that the ground-state energy of the correlated WC is lower
than that of the usual WC at experimentally relevant filling
fractions?® Moreover, by introducing Laughlin-Jastrow cor-
relations between the interstitials and the lattice electrons,
the expenmentally 2c2)bservepixy (Hall insulating behavior tion of Murthy and Shankar, Since most of the details are
can be explaine&:?* Unfortunately, the method becomes

. : similar, we will mainly highlight the differences. We will
computat|or_lz_illy too demanding to allow one to CaICUIatefollow Lopez and Fradkihin assuming that a good starting
other quantities of interest, such as the excitation spectrum

Since the Laughli : ) goint for obtaining a perturbative solution of tikeinteract-
ghlin-Jastrow correlations are precisely th lect blem moving in a uniform maanetic fi&d

ones that convert electrons into CHRef. 4 we are led to ing elec Iron pro ) ) 9 : 9 N
consider a crystal of composite fermions. The main advan= — 2B is the noninteracting CS particle Hamiltoniaf (
tage of the Hamiltonian approach is that one can easily com=¢=1, mis the mass of the electroaits charge
pute the single-particle excitation gépentical to the trans-
port gap along with the ground-state energy.

Our main result is that the CF theory witk-4 denoting _ .
four zeros attached to each particle gives the best description Hes= Z mb Vit eA* (i) +acs(r)]* )
of the experimental phenomenology. Figure 1 shows the re-
sults of our calculations of the transport gapas a function
of the filling factor aroundy=1/5 in the triangular lattices of The CS particle is obtained from the electron by attacting
CF’s. Our theory reproduces the dependence of the excitatioifux quanta to it. This flux attachment is the origin of the
energies on the filling factors as measured in Ref. 14 reasorGhern-Simons gauge fielak g(r;), which is defined by

\If<{ri}>=Ai1;[j (z=2)'I] o, (ri). (3)

II. SETTING UP THE HAMILTONIAN FORMALISM

In this section we closely follow the exposition and nota-

N
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V Xacdri) N Noq

TI':Z S2(r—ry)—n(r), (5) HcpzZ Sl —iVi+eA*(r)+a(ry) +2mlP(r) .
(10
wheren(r) is the expectation value of the electron density in .
the ground statéCS particle and electron densities are the'Ve néglected all the>Q Fourier components of the gauge
same. Unlike the incompressible FQH stafiéguid state for field in d_erlvmg the gbove Ham.|lton|an, implying that our
which the electrons have a uniform density, we are contheory will not describe the motion correctly for large mo-

cerned with the case where the density depends on the podienta(or short distances|n the following we will also be

tion. The vector potentiah* (r;) corresponds to the differ- USiNg the random phase approximati&tPA) generalized for

ence of the external magnetic field and the average fiel1® case of the inhomogeneous densities

created by the attached flux tubes, d®*(r)=B ‘

—27lin(r)/e. > ek Ti=n(2m)26%(k)+ on(—k). (11)
Our main assumption throughout this work is that for the J

appropriate field strepgth and elgctron density the electron$ne constraints in the CP representation are given by

organize themselves into a density-wave state such that the

ground-state expectation value of the density operator is a ga(q)

periodic function x(@)=———~+p(q)—n(a), (12

Gor wherep(q) =Z; e '97j js the CP density operator and coin-
”(r):”+ezo on(G)e™, (6)  cides with the corresponding electron operator.

Before proceeding with any further transformations on the
whereG are the reciprocal lattice vectors. We also assumétamiltonian(10), we will show how the trial wave function
that the uniform component of the average density is muchised to compute the energy of the correlated WC in Ref. 20
larger than any of the finit& modulations, i.e.n>dn. Ef-  emerges naturally within this approathThe crudest ap-
fectively 6n/n is a small parameter in our theory. We will proximation for the CP Hamiltonian is
show in Sec. V that the HF ground state does satisfy the N 0
condition thatén/n is small, thusa posteriorijustifying our 1 . % L
use of this approximation. The effects of disorder are ignored HCP:Ei oml T IViteAT ()= 50 ; [a(=a)a(q)
in what follows.

The complicated part of the CS Hamiltonian in E4) is +(2m)*P(—q)P(q)]. (13
the gauge fieldac4(r;). To get rid of it, one enlarges the

Hilbert spach by introducing a canonical pair of fields In this expression we have assumed that the CP ground state

can be regarded as largely homogeneous, so thafrhis

a(q),P(a) for everyq neglected in the definitions of the RRA1) and vector po-
A 5w , tential A* (r;), which corresponds now to the uniform mag-
[a(a).P(a")]=i(2m) 6" (a+a’), @) netic field. We have also neglected the coupling between the

_ ; ; 2 CP’s and the oscillator fielda(q, P(q). Since this Hamil-
whereq<Q= y4mn. Instead of working with the CS Hamil- ; i .
tonianqweQintrodTJce an equivalent Hgmiltonian tonian(13) has been artificially made separable into a sum of

the particle and the oscillator terms, we can write down the

Ny ground state as a product wave function. The particles are
H:Z —[—iV,+eA*(r))+a(r))+acyr)]?, (8 moving in a uniform magnetic fiel®* =B—2nln/e, so
T 2m there is a degeneracy in this problem, but we assume that

o their ground state is crystalline
wherea(r;)=—izXga(r;) is a transverse vector field. We
also define a longitudinal vector fieR{(r;)=iqP(r;) (qis a W (fr 1) = " 14
unit vector in theq direction. This problem is equivalent to cr(iri) H Pr (M), (14
the original one provided we restrict our attention to states . _
that are annihilated by the constraintéq) =a(q) (q<Q). WhereqSRi(ri) are Gaussians centered on the lattice dRes
We will call states that are annihilated by these constraint§imilar to Eq.(2), except that instead of magnetic lenggh

physical states, that is, there is a new magnetic lengith= (eB*) ~¥2. CF stands for
composite fermions. The oscillator term descridésnde-
X(Q)|‘I’phys>:0- 9) pendent harmonic oscillators with the ground state

We will continue to use notatiog(q) for the constraint op- Q )

erator in different representations. Vosd{ap) =11 exd —a*(q)/anl]. (15
Using the fieldsa(q),P(q), a unitary transformation is a

then constructed that shifesto absorb the Fourier compo- Using the constraint6l2) we can eliminate the field degrees

nents ofac4(r;) for g<Q. In the new representation, whose of freedoma(q) in favor of ther; in the expression for the

particles we call composite particl&SP), the Hamiltonian is  oscillator wave function(15). Since the calculation is de-
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scribed in Ref. 25 in great detail, we only give the final result N 2 NE) Q
for the projected oscillator wave function Hep=2> ﬁﬂLW > [A(g)ct(g)+H.c]
i q
\If r: B — o A| I Q Q
osd{ribra@) =27l p(ay/al Il;[] |2~z + > {[(n5e ot on(G)]
m q G ’
><eXD< —; |v|2j|2/4|§>- X[AT(q)A(q—G)a,(q/—\GL]jLH.C.}. (17)

(16) The first term in Eq(17) is the CP kinetic energy, with
II;=—iV;+eA*(r;), which only depends on the particle
degrees of freedom. The second is the coupling between the
particle and the auxiliary fieldoscillatop degrees of free-

Here z;=x;+iy; is the complex coordinate and
=2mn/eB is the filling factor. The approximate CS wave
function is a product of Eq914) and (16) and agrees with . s “igr, B L,
Eq. (2.12 given in Ref. 20. dom, withc(q)=q_2;11;, e i and the “destruction” op-

- : ] 26
However, the fact remains that in this representation th&ratorA(q) =[a(q) +i2alP(q)]/ v4=l.” The last term de-

oscillators and the particles remain strongly coupled. TheCriPes the oscillators and does not depend on the particle
egrees of freedom. In order to decouple the high-energy

oscillators are identified with the magnetoplasmons, whictf! il ¢ he | , d h
are high-energy degrees of freedom, while the particles wilPScillators from the low-energy CP's we need to compute the

turn out to form the low-energy sector. Our next task will be COMMutators between the newly introduced operators. It is
to construct a canonical transformation to decouple the twétraightforward to deduce from Eqy) that

sectors, so that we are left with a purely low-energy theory. , ,
[A(a),A(a")]=(2m)?5*(q—q"). (18

The commutator for the operata(q) is found from the
commutator of the canonical momeritg andIl, and then

Before we turn to the technical details of the decouplingsing the RPA11). The result is
transformation, it is worthwhile to articulate the philosophy
of our approach. If one were able to find the exact canonicalc(q),c'(q’)]1=q_q,{—4xInsn(q—q’)
transformation, and implement it exactly, then one would be . 5w , ,
left with a final theory in which the fermions are purely +2eB*[n(2m)%6%(q—q’)+on(d—q’) ]}
low-energy objects, and the oscillators are purely high- (19
energy objects. In particular, the oscillators should obey
Kohn’s theorent® while all reference to the bare mass According to our assumption the average density is a peri-
should have disappeared from the low-energy fermionic parbdic function, as in Eq(6), therefore the right-hand side of
of the Hamiltonian. In other words, the bare kinetic energy ofEq. (19) differs from zero only if the differencg—q’ in Eq.
the CF’s should be quenched in the final representation. Fi19) is equal to a reciprocal lattice vecta.
nally, the projected electronic density when expressed in the Our task is to decouple the Hamiltoni&h7) by eliminat-
final representation should obey the magnetic translation aing the term that couples the particle and the oscillator de-
gebra appropriate to the LLT. Unfortunately, this program grees of freedom. We will show how one can construct a
cannot be implemented fully in practice. What can be imple-canonical transformation that accomplishes this decoupling.
mented is a sequence of transformations that achieves son@nce the canonical transformation is found we can derive the
measure of the above at long-distance scé&desall q). We  electron density operator in the “final” representati@fR).
will see that the oscillators do end up obeying Kohn'’s theo-Operators in the FR are expressed in terms of the CF coor-
rem, since this is a smafj]-property. Similarly, the magnetic dinates. We will show below that there are good reasons to
translation algebra will be seen to occur in its sntpfierm.  believe that composite fermions are the true quasiparticles in
However, while the tendency for the quenching of the masshe FQH regime and the FR density operator represents the
will be manifest, the mass depends on all distance scales, apdhysical charge density.
its quenching cannot be shown within a long-distance ap- The calculation is a straightforward extension of the pro-
proximation. Our approach will be tassumethe exact cedure given in Ref. 25 for the case of the homogeneous
qguenching of bare mass, since we know this to be true in thiéquid, and we relegate the details of this calculation to Ap-
LLL, and write the final Hamiltonian in the low-energy sec- pendix A. In what follows, only the results of applying the
tor as a pure interaction term. Thus, while the proximate goalransformation to the Hamiltoniafi7), the density operator,
of the canonical transformation is to decouple the high- an@nd the set of constraintd2) are presented.
low-energy parts, its ultimate goal is to obtain the electronic By construction, the term coupling the particles and the
density operator in the final representation. oscillators is not present in the FR Hamiltonian. Substituting
We return now to the CP HamiltoniglO) and the set of Egs. (A5), (A6), and (A9) into the expression for the CF
CP constraint§12). Using the RPA approximation as given Hamiltonian(17), we find that the oscillator term in the FR
by Eq. (11), the CP Hamiltonian can be recast into the fol-is equal tOwCEqAT(q)A(q) with w.=eB/m exactly as in
lowing form: the liquid, to order §n/n)?. This is a physically correct re-

IIl. DECOUPLING AND THE ELECTRON DENSITY
OPERATOR IN THE FINAL REPRESENTATION
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sult because according to the Kohn’s theofeihe limit  Here againyo(qg,\) is the part of the constraint that corre-
w:(gq—0) should not depend on the electron interactions insponds to the case of the uniform average density and is
the lowest Landau level. The kinetic energy in the FR is  given by

—E

N * \ 2—
LRUEESS (eB - l'gn(r,)) xa(@n=p(a+ D g e hel. (20
; 2m m J 477In
0 0 0 The main observation about E(R3) is that oscillator de-
_ i ctf(q)c(a) + 1 2 2 c'(qg) grees of freedom cancel out up to ord#r/n, implying that
2mn “g 2mm? 9 G the constraint acts only on particles. This reassures us of the
L self-consistency of the decoupling scheme, since there is no
Xc(g—G)on(G)q_(q—G) . . (20 use decoupling the high- and low-energy modes in the
Hamiltonian if the constraint still nontrivially couples them.
In an ideal calculation the particle kinetic energy should dis- Because the particles are confined entirely to the lowest
appear in the FR; the electronic kinetic energy is subsumegandau level, one expects the physical charge-density opera-
into the oscillator term. As has been stated above, it is imtor to obey the magnetic translation algebra. However, this is
possible to show this in a smajl-approximation such as the not true for the density operator defined by Efl). We are
one we are using. allowed to modify the definition op(qg,\) in CP represen-
The electron density operator in the FR is obtained bytation by adding to it any multiple of the constraint, since in
solving the flow equation that is derived in a way that fol- an exact calculation in the physical states the constraint is
lows closely the calculation for the kinetic energyeading  equal to zero. Following the same approach as in the liquid
to Eq.(A8). The result of the integration of the flow equation state&® we try the linear combination

is
p(a) = U(p?+1)x(a). (25
(QN)=p(q)+ N+ § on(G) This operator has the virtue that its FR matrix elements are
2 H H H ),
p(a,M)=p(a)+po(q, an \/T,U« = TN of orderq? or higher, consistent with Kohn’s theoréfhThe

FR expression of the density operat@5) (which we will

X[A(q—G)q_(q—G), +H.c] call the preferred densilyis
2+ u2—2\1+ %) & on(G ~ pu g én(q)
JAzre 1) s O p(a) = ——p(a) - —[e(q)+Hol+ 2
8min2u*y1+u2 S N u+1 A nl(1+u?) w?+1
X[c(q—G)q_(q—G), +H.c], (21) _q(l-V1+4?) Q

on(G)[c G
) , _ Amrnl(1+u?)u 22 le(a=6)
whereu=11v—1. The FR operatopy(q,\) is the leading

term in the perturbation expansion of the density in the pa- xa,(q’—\G)++H.c.]. (26)
rametersn/n and is formally identicaf to the density op-
erator in the case when the average electron density is The calculation of the commutator of the preferred den-

uniform® sity operators to first order idn/n gives
q [p(@).p(a)]=il5(axa)p(a+q")
Po(q,h)=m[A(Q)+H-C-] I 1 §5n(G)
q(V1+u?-1) R
4W|n#2¢1Tf[°(q”H” 22 XXola+ 0~ G.\). @7

Here x(q,\) is the constraint to zeroth ordén én/n), Eq.

It is now straightforward to get the FR expression for the(24). We conclude that the magnetic algebra is satisfied for
set of constraint12), just by using the previously deter- physical states that are destroyed by the constraint. This is a
mined FR operatoré(q,\) [see Appendix A, Eq(A5)] and  weaker result than was obtained in the translationally invari-
p(a,\) [Egs.(21) and(22)]. The expression that results is  ant case, but nevertheless still preserves the equivalence of

this theory to the original electronic theory in the LLL at

24 12— =21+ 42 long distances. . .
x(9,N\)=xo(g,\)—én(q) + aztu 2”4 > ~) The preferred density encodes many nonperturbative fea-
8mIn“u Vi+u tures that are known to be true for the original electronic
0 problem. It shows the correct fractional charge of the

% SN(G)c(a—G)a_(a—=6). +H.cl. (23 quasiparticled,obeys the magnetic translation algebra in the
% (G)lela=6)a-(a-6). 1 (23 smallq limit,?° and has matrix elements of ordgt or higher
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from the ground state. Thus it is plausible that simple HF IV. HARTREE-FOCK APPROXIMATION
calculations with this density will capture the essential phys- . L .
ics in the FQH regime. Certainly, this expectation has beer(l: o;hitgiﬁgci:z;r?és Osrctact;)n c;? tLOe c\iﬁ/iscr::at)recﬁwsc;aT:tt:tc;dsﬂt]?s
borne out in calculations for the liquid stafes. b port gap 9 Y '

Thus all the features of the translationally invarianttralnSport gap can also be understood as the gap to creating a

Hamiltonian theory, namely, compliance with Kohn’s theo- pgrticle-hole excitatio_n _vvhere the particle and holg are
rem, simultaneous decoupling of the Hamiltonian and th widely separated. It is important to note that generically

constraints, and a preferred density that obeys the algebra srtgtrs Iii)evg:\[/)(lafstsh;s;ligtlll\éi%?lggtso I%oirc];;nfc%ztsl;p:
magnetic translations, carry over for the nonuniform eIeC_neutr.al and cénnot contribute tgwardps carrying electrical
tronic density state. ' ying

It is of interest to determine the Hall conductancg, for current. In_the following, we focus on the_ energies of the
. . .__..single-particle charged excitations from which one can com-
the nonuniform average density state. In the clean limit

. ; T . ute the transport gap.
when there is no external potential, translation invarianc : . . .
S 5 . . . Having determined the correct canonical transformation
implies thato,,= ve“/h. Our theory does indeed predict this

: Y . by decoupling the CS Hamiltonian in the previous section,
in the clean limit. In order to see this we need the FR ex- : . . .

. ; . we shift our focus to the Coulomb interaction that was hith-
pression for the current. Starting with the electron current

T . . .~ erto ignored. At the small filling factors for which the Wigner
and eliminating the CS vector potential we find the following crystgl oceurs. the Iowest—Lar?dau—IeveI approximation?s ap-

CP current: propriate. Now the LLL electronic Hamiltonian is given by
1 . 2nyml .
Qep)(@)=0 2 Ty 0”@+ = A(0)- L .
H= 25 2 [V(@p(a@)p(—a)—V(g)e T1%p(0)].
2\[ml _ a
+—— 2 on(G)AQ-G)(q-G). . (30)
G

(28) HereSis the area of the system and the second term results

The first term in Eq(28) is just a definition of the operator from u_ngiomg the no_rmal or_dermg of th_e Interaction term in
. the original electronic Hamiltonian. This is necessary since
c(q) so to get the FR expression for the current we have tg . MR

substitute the ER operat \) andc(q.\). The FR cur- we need to have the full operatprin order to write it in the
. peratof{q, d.\) . final representation. The two-dimensional Fourier transform
rent consists of two terms, one that does not contain factors L
. ' ; of the Coulomb potential is suppressed at large momgnta

of én and another proportional tén/n. The first term is by multiplving it with a Gaussian

identical to the FR current for the uniform average density y plying
state and as shown in Ref. 25 depends only on the oscillator

degrees of freedom. To calculate the first order contribution 2me?
to the current we use expressidAs) and(A6) that give the V(q)= ™ e—qZAZ’ (31)
first order corrections idn/n for the operator#\(q,\) and Qe

c(qg,\), respectively. We find that it is also independent of

the CF coordinates. Both terms add up to .
P where a parametek may be used to interpolate between the

pure Coulomb potential and the Coulomb potential that is

1.(q)= 2nV7TI(1+'u2)A(q)fq effective only when the distance between two particles is
* m * larger thanA.. € is the dielectric constant. We emphasize that
the form of the Fourier transform of the potential given in
[ 2
" 7l (1+p%) S 5n(G)A(q—G)(G—0) Eq. (31) does not accurately describe the effect of the sample
m G o thickness, but is rather chosen for illustrative purposes, since

it is computationally convenient. The second term in E6)
is a constant that will be ignored in what follows. The first

Because the current in the FR depends only on the operatofgrm of the electronic Coulomb interaction when transformed

that represent the oscillators, we can ignore the particle se 0 the CF coordinates will serve as our model Hamiltonian
tor in the conductance calculation. The argument in Ref. 25

for the uzniform average density case goes through and gives 1

o,=ve‘/h in the limit g— 0, which is the correct unquan- - Ao —

tized Hall conductance in the clean limit. Note, however, in 1=2s 2 V@b(@p(-a). (32

the presence of disorder it is believed that due to the pinning

of the Wigner crystalo,,—0, o,—0 such thatp,, is its 5

classical value. A complete theory including disorder effectsThe density operatgs(q) is given by Eq.(26). It is useful at

is currently nonexistent, and we will confine ourselves to thethis point to rewrite it so that the dependence on the modu-
clean limit in the sequel. lated average densit§n is explicit°

(29

245326-6



HAMILTONIAN THEORY OF THE COMPOSITE-FERMION . .. PHYSICAL REVIEW B4 245326

- ) . . g [herel} =(eB*) Y2 is the CF magnetic lengthone can
p(@)=(1-c)p(q)—il 0; qx1Ije eliminate all the dependence on the momenkjnn the Eq.
(34). To this end we introduce the operator

e on(G) q'Gei(qu)n 1 | . o
cG#*q N G? Annr(Q)= a ; exp(— IqXX_IquyIO /Z)Cn,xcn',x+qy|32,
. il5c > 5n(G) 2 oI S0, (33 (
c+1 G whereg is the degeneracy of a Landau leval,, (G) is the

order parameter of the density modulation corresponding to
HerelI; is the momentum operator that corresponds to thehe wave vectoG. Note thatA,,(q) has the property
umform average density cas[eﬂJ =II;(én=0)] and c
=\/lv. It will also be convenient to have separate symbols 2 A, (0)=v (39)
for the different orders of thén in Eq. (33), so we write nn '
p(9)=po(q) +Zc6n(G)p1(q,G).

The Hamiltonian(32) describes a many-body CF problem
that we will treat within the Hartree-Fock approximation. We
justify the use of the HF approximation by arguing that the
CF is the true quasiparticle in the FQH regime. It will be
assumed throughout this study that the average density
modulation is small compared to the uniform background ob E V(q) E <n1|"[)o(q)|n2>
(6n/n<1) so as a convenient basis we will choose the wave 2S ny,nz.ng
functions of the free CF moving in the uniform magnetic ~
field B* =B—2mIn/e. The Landau gauge will be used in X(n2lpo(—a)|Ng)An,n,(0). (39)
what follows. Wave functions will be denoted fasX), with _ }
nas a CF Landau level index andas a kinetic momentum  (2) A one-body term, first order i@n,
component in the direction.

We will now derive the HF Hamiltonian. The model 01 ~
Hamiltonian(32) in the |n,X) basis may be written Hob= 2 V(q)n122 ng ((nilpa(=a.G)ln2)

After doing sums ovekK; we find the following contributions
to the HF Hamiltonian.

(1) one-body term, zeroth order ién,

1 _ X{Na[po(@)N3) +(N1[po( — @) [N2){(N2lp1(a,G)[n3))
Hegg 2 V@) 2 (nuXi[p(q)noXe)

naXy, . ngXs X on(G)ells aX62p  (—G). (40)

1N3

~ T
X(n2Xalp(=a)IngXs)Cn, x,Cny x, (3) A one-body term, second order i,

1 -
+ == \ n{X naX ~
255 V@, 2., (MXIP@INX) Hob= 25 & V@ 2 (mlpi(-a.G)ng)
~_ T T -
X<n2X2|p( Q)|n3x3>cnl,chnz,XZCn3X3Cn4X4- ><(n2|p1(q,Gl)|n3> 5H(G)5H(Gl)
(34

Xexplil £[qX (G+G;) — GX G,]/2}

WherecﬁyX (cnx) is the CF creatior{destruction operator. XA, o (—G—Gy) (41)
The usual HF pairings are made in the two-body term of the M1y v

Hamiltonian(34), giving two contributions—a direct and an
exchange term. Because the dependence of the density
matrix elements in Eq(34) is very simple,

(4) A two-body term, zeroth order i#n, direct and ex-
change contributions,

OOg

(n1Xa[po(a)|n2Xz) =(na[po( @) n2) 52 VO X (nilbo(~G)Ina)(nalpo(Glng)
XX X0t X)/2]0; x5 X (B (— ) Anyn (G)
(35 ~
. y “2 V@ 2 (mfpo(~a)lng)
(n1X1]p1(9,G)[nX5) =(N1|p1(a,G)[ny) , 1 4
Xexd —i(qy—Gy) (X1t X5)/2] X%(nzlﬁo(qﬂn3><Anln3(G)>An2n4(_G)engzexq'
X Bx, Xo-(a,-Gy)I3> (36) )

245326-7



R. NAREVICH, GANPATHY MURTHY, AND H. A. FERTIG PHYSICAL REVIEW B64 245326

(5) A two-body term, first order inSn, direct contribu- show in Appendix C because the potential in E8f) was

tions, chosen so that these integrals could be performed analyti-
cally.
9 We will group all the nonoperator entries in E489)—
01 _<9 Y e
Hipa= S G,Zel nl; Ny [V(=G=Gy) (46) under the notationl, , (G) (renaming the dummy
_ _ summation variables where necesgamyd represent the HF
X(Ny|p1(G+G1,G)[Ng)(Nalpo(— G—Gy)[ng) Hamiltonian in a form convenient for further discussion,
+V(=G1){(ny[po(Gy)|ny)
X (Na|p1(—G1,G)|nz)]8n(G) Hiup=0 2 Unn,(G)An,n(G). (47)
N1,N2
X<An1n4(Gl)>An2n3(_G_Gl)- (43)

_ _ _ Obviously,Unlnz(G) depends on the expectation value of the
(6) A two-body term, first order ion, exchange contri-  4rder parameter operatdr, , (G) both directly and through
butions, . . 12
the density modulatio®n, because

HE=-2 S S Vig)npa(—a.6)lng
Sq,GG n Ny

G Ng,y ey

B on(G)=g 2, (N1[po(G)N2){An,n,(G))
X{Na[po(a)[nz)exp(il §[GX (q—Gy)/2 L2

+ G al}+(nafpo(—a)Ing) t9_ 2 (nifps(G,Gy)lnz)an(Gy)
X(Na[p1(0,G)|ng)explil § [ GX (q+Gy)/2 X (Ap,n (G—Gy)). (48)

+Gy X q]})>< 5n(G)<An1n3(Gl)>An2n4( i Che Gl)-
(44) In theith iteration of the numerical HF procedutg, , (G)

is calculated using the solution of the—{1)th (previous
(7) A two-body term, second order i6n, direct contribu-  iteration. The density modulation is then calculated as a nu-

tion, merical solution to the system of the linear equations defined
in Eq. (48).
1 _92 D D Having found the HF Hamiltonian, we can solve it to find
thd_§ &6, 0, V(=G=Gy) the single-particle spectrum of the many-body system. We

will assume that the CF form a Wigner lattice with one par-
X (n4[p1(G+Gy,Gy) [N )Ny p1(—G—Gy,Gy)|ng) ticle per unit cell. The reciprocal lattice constant for a trian-

gular lattice is given by
X N(G1) 8N(G)(Ap n,(G))Ap o (—G—G1—Gy).

(45 1 4y
. Go=r—\/— (49
(8) A two-body term, second order ifin, exchange con- lo J3
tribution,
9 However, we will find that in some regions of filling factor
Hipe=—< > V(@ 2 (nipi(—0,Gy)ny) the triangular lattice is not the ground state, and we will
S 46616, i ---ng explore other lattice structures.
(nyl7 G,)| W_e have used two,diﬁerent schemes to perform the cal-
{na|p1(0,G2)[n3) culation, one due to @eand MacDonald! and the other due
X(Ap.n.(G))YN(G1)N(G)A, o (—G—G;—Gy) to Yoshioka and Leé& Below we will outline the essence of
v 2 each of these methods.
X exp{ilgz[(GlJr G,) Xq+GX(G;—G,)— G, X G, The method by C@ and MacDonaldCM) starts from the
single-particle Green'’s function that they define as
+2Gxq]/2}. (46)
The matrix elements of the density operator can be calcu- Giyny(X1.X2,7)=—(TCy x( T)szxz(o», (50)

lated using the formula@1), (B2) and(B3) that are given in
the Appendix B. The momenid; run over a discrete set of
reciprocal lattice vectors. The momentugris a continuous whereT is the time-ordering operator. The relationship of the
variable. The summation overin those terms of the Hamil- Green’s function Fourier transform to the physically relevant
tonian where it appears can be done in a closed form as wexpectation value of the order parameter is
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A G)=G G, =0~
< nlnz( )> nznl( T ) 2 <An ) (G) 2_, (55)
1 G,nq,ny 172
== 3 Gpyn,(Xo.Xq,7=0 | | |

g x%z ngny (X2: X1, 7=07) The idea behind the second method, that of Yoshioka and
, Lee® (YL), is to diagonalize the one-body HF Hamiltonian
XeXp —1G (X1 +X2)/2) 8x, x,- 6152 that can be rewritten in terms of the CF creation and destruc-

(51) tion operators as

The set of crystal order parametémnlnz(G)) is then used H i

_ —iGX .
> Unn,(Gle Cn, X—G,12/2Cn, X+ G122

to find the ground-state energy G.ng .y, X (56
56
_a We assume that the CF form a periodic lattice with primitive
Eyeg=— U G)(A G)), 52 . . . .
HF G,nzl,nz ng(G){Anyny(G)) 52 translation vectors of the reciprocal lattice that are given by

. o Q1=(Q0,0) andQ,=Qq(p/g,a). The first unitary transfor-
Where€1: 1ifit mUltlplleS those terms OUnlnz(G) that are mation on the Ham||ton|a(]56) is defined by

given by Eqs.(39)—(41) (one-body termsand e;=1/2 if it

multiplies terms that are given by Eqg.2)—(46) (two-body 1

terms. The transport gag,, also called activation energy, an, x,y= \/? = €

can be deduced from the chemical potential and the single- m

partiqle density of stated(E) that is related to the Green’s wheres,,=L/aQol%?, L is the linear dimension of the sys-

function through tem, 0=X=<aQql3* and 0<Y<2m/aQ,. After making the
transformation(57), the Hamiltonian is

—is Y
*Qo Cnl,X+SaQOI6‘21 (57)

1 . .
d(E)=~— ; IMGn(G=0jw;—~E+id), (53

H= 2 Uy (G)exp—iG,X+iG,Y
G,nqy,ny XY
here ImG,, is the imaginary part of the operat®,, ; e

are the Matsubara frequencie$,is a small smoothing pa- +iGXGyI(’;2/2)a§1’X,Yanz,X,YJ,GX,SZ. (58
rameter.

All of the above is predicated on knowing the Green's The variableY in Eq. (58) is coupled througiﬁxlgz. If this
function. We derive the Green’s function equation of motionnumber is commensurate withm2aQ,, which is the period
in the usual way by taking the commutator of the Hamil- of the variableY, then we can simplify the Hamiltonian even

tonian (47) with a single-particle destruction operatyy, further. Suppose then that the parameters are such that
NQol%2/q=M2m/aQ,, with M andN integers. We then in-
) o 1 troduce a new operator
Iwﬁ—% Gnlnz(G,wj)_GE g
N3 _
, Bn,jx,y= n,X,Y+]Qol* %/ » (59
XUp n(G1—G)Gy n (Gy, ;)€ ®*C1ld . N
nng( 617 G)Bngn, (G, 0)) where I=j<N and 0<Y<I%2Q,/qM. After inserting Eq.
=68n 1060, (54) (59 into Eq.(58) the expression for the Hamiltonian is
1Nz~ %,

wher_e,u is the the chem|cal, potent_lal. The system (_)f Egs. H=> > 2 Un,n,(G)exp(—iG,X+iGyY)
(54) is solved for the Green’s function by diagonalizing its G XY ng.jng .k

left-hand side with respect to the indicesandG;. One can
find the expectation value of the order parameter and the
density of states once the chemical potential is known. The
chemical potential in turn is calculated by filling up the cor-

rect number of states, that is, by using E8g). ~ For every pair K,Y) that takes values in the rectangular
The numerical iterative scheme starts by assuming omain defined earlier, the Hamiltoni&f0) can be diago-

Gaussian form for the order parametefBhe exact expres- najized in the indices1;,j, and n,,k. The single-particle

sion depends on the filling factor and the state that is bei”%nergiesfnl /(X,Y) that thereby result are continuous in the

constructed and will be discussed lateFhis initial set of iabl df bands. Th
(Ap,n,(G)) is then used to compute the effective potentialvarla esX, Y and form energy bands. There argN energy

, . bands(where 1=n;,n,<n,,) and there is a large energy gap
Unlnz(G). Next the equation of motion is solved to get a NnewWpanveen the loweiM qth and Mg+ 1)th bands. The CF
set of order parameters and the process is repeated until tegate that has the chemical potential in this large gap should
(An,n,(G)) converge with some prescribed accuracy. An-have the lowest energy. Such a state occurs when the CF
other way to check the accuracy of the numerical solution idilling factor is »* =gM/N, where we have defined the CF
by using the following useful sum rute filling factor asv* =27r|32n. It is easy to derive the expres-

X exp(iQoQyil§2/q+iG,G,1%%/2)

X bgl X YR, kX, YOk j+Q aiQ, (60)
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TABLE I. Electron WC ground state and activation energies for 1
v=1/5 and different values of.

A 0 lo/2 lo 3ly/2 05 |
Enr —0.3220 —0.3137 —0.2859 —0.2413

Eq(e?/elg) 0.4728 0.5080 0.5080 0.4468 S 0
sion for the expectation value of the order parameter, by —05 |

applying the transformation&7) and (59) to the definition
(37) to get

-1

277I32 0 03 } *1:5 2 215 3
(Apn,(G))= ¥ XEY 2, exp —iG,X+iG,Y) g2

. %2 . w2 FIG. 2. Effective HF potential for different values of parameter
X exp(iQoQyjlg 7a+iGG,l5/2) A. The filling fraction specific factor (%1v)? was omitted from

(b b s 61) the zeroth-order expression of the effective potential when generat-
( ngJ.XY ”2’ervY> kij+Qxa/Qq" ing these curves.

As in the case of the previous method we find @ solution 10 A crystals of composite fermions with two vortices attached

the HF problem by iterating until the order parameters con- ) . :

verge. We calculate the ground-state energy by using Eq. L€t us examine how well CF's with=2 describe the

(52 and the transport gaRi, as a smallest separation be- experimental situation. An ele_zc;tromc filing factor of

tween theMqth and Mg+ 1)th bands? =1/5 corresponds to a CF filling factor* =v/(1—1v)
While the method of CM is numerically efficient, it is =1/3. So the lowest CF Landau level is partially filled and it

sometimes difficult to extract the transport gap from theiS reasonable to expect that the composite fermions form a

smoothed density of states. There is no uncertainty in detefattice. As in the electron solid calculation only the lowest

mining E, when the method of YL is used. CF Landau level is kept(,=1). Keeping two CF Landau
levels (h,,=2) we find similar results, indicating that includ-

ing more Landau levels does not influence the calculation.
Because the CF and electron effective potentlgy(q) in

Our experimental motivation is the work by Jiang EQ. (47) are different momentum functions it is not obvious
et al®* where the transport properties were measuredhat the CF lattice is triangular as is the case for the electron
aroundv=1/5 Landau-level filling. In Ref. 13 an insulating lattice. The functional form otloy(q) may be suggestive in
phase was identified just above= 1/5 atv=0.21 by obsery- that respect. One expects it to have a minimum at about the
ing a large peak of the longitudinal resistariRg as a func- momentumq equal to the shortest reciprocal vector. This
tion of the external magnetic field. The activation energy wasirgument cannot be exact in our theory becduiggG) de-
estimated from the Arrhenius plot &,~0.63 K (with B pends onén and is reevaluated self-consistently in every
~20 T). The striking observation is that the magnitude ofiteration. However, since the density modulations are small,
the transport gap compares very poorly with the results obwe expect that a good approximation(G) can be ob-
tained from HF for the usual electron solid. The excitationtained by keeping only thén-independent terms given by
energies for the triangulaglectron lattice with one particle  Eds.(39) and(42) in the HF Hamiltoniar{the term given by
per unit cell are given in Table I. We use the modified Cou-Ed. (39) is a constarit In that case the approximate effective
lomb potential given by Eqi31) and present results for dif- potential can be expressedldgyG)=Wy(G)(Ao(G)), de-
ferent values of the thickness parameterThe calculation ~fining the effective interactiolVo(G). We display the plot of
was done in the lowest-Landau-level approximation and fotthis effective interaction in Fig. 2 for different values of the
A =0 it reproduces previous resufsThe energies are given parameterA. Whereas for the* =1/3 triangular lattice we
in units ofe?/ el ,. In the same units the experimental result isexpect a minimum at aboyg|l5~1.56, the minimum for
Eg~2.8X 10 3e?/el,, at least two orders of magnitude CF effective potential is at much smaller wave vector, more
smaller than the theory. so for a smallA. This is why we do not limit ourselves to the

We expect some reduction in the value Bf when the triangular lattice but calculate the ground-state energies
relaxation of the lattice is accounted f8r°but it is difficult ~ along with theEy’s for three oblique(including triangulay
to believe that this correction would nearly exactly cancel thdattices. The results together with the primitive reciprocal
unrelaxed excitation energy. Besides, one would not expedattice vectorsh,, b, are given in Table Il. Every lattice is
the E4(v) for the electron WC to be nonmonotonic as ob- rescaled by an overall factor that makes the volume of the

V. RESULTS

served experimentalfyf unit cell a constant equal to7d 3/ v.
Now we proceed to carry out our program of considering We find that for A=0 composite fermions prefer the
crystals of CF’s. elongated lattices to the triangular one. For larger values of
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TABLE II. 1=2 CF lattice ground-state and activation energiesiferl/5, different values of\, and
different unit cells.

A 0 /2 lo 31y/2
b,=(1,0) Ene -0.33 -0.34 -0.30 ~0.24
b,=(0.5,3/2) Eq(eelo) 0.08 0.13 0.13 0.14
b,=(1,0) Enr ~0.36 -0.33 —0.29 ~0.24
b,=(0.5,/3) Eq(e¥ely) 0.06 0.07 0.12 0.12
b,=(1,0) Ene -0.37 -0.33 -0.29 ~0.24
b,=(0.5,3/3/2) Eq(e/ely) 0.04 0.05 0.09 0.10

A the triangular lattice is favored. The results for the excita-difference in the behavior of the gap in the theory. We will
tion energy are somewhat closer to the experimental valusee that this expectation is realized, but not in complete
but still too large. agreement with experiments.

The disagreement between the theory and the experiment Numerical constraints limited our HF basis to the two
is not only in the magnitude of the activation energy but alsdowest CF Landau levelsn(,=2). The initial seed used in
in its dependence on the filling factor. In our theory with the HF procedure that converged to the correlated WC was
=2 the functionE4(v*) varies slowly and is monotonic ok _
around the CF filling factorv* =1/3 (v=1/5). Figure 3 v¥e G4 if ny,ny,=0
gives this dependence for the triangular lattice with <A”1“z(G)>: 0
=3ly/2. The experimental functiofsee Fig. 3 in Ref. 14
has a sharp peak between the filling facters0.22 andv Whenv>1/5, the second CF Landau level is partially filled.
~0.21 and forv<<1/5 it rises sharply and saturates at lowerAgain we assume that the CF lattice is formed so the initial

otherwise.

filling factors. seed that we use in this case is
Let us turn to CF’'s with four flux quanta to see how the 22 )
results compare with experiments. e Clo4 if ny,n=0
<Anln2(G)>: (V*—l)e_GZISZM, if n;,n,=1
B. Crystals of composite fermions with four vortices attached 0 otherwise.

The behavior of the experimental gap withits in more
naturally within the CF model with=4. V'Vhen. the filling The value of the parametek is 314/2 (the results forA
fac(;or v=1/5the Ioweslt (|3F Landau level lsdbelng pohpulatekc;ll: I, are very similay and we assume that the lattice is trian-
and a CF quasiparticle lattice is assumed to be the sta P _
state® On the other hand, wh 1/5 the second CE Lan- &ular. A magnetic field o0B=20 T was used to convert the

. ) energy units to kelvin, in order to compare to the work of
dau level is being populated, and one naturally expects Somﬁanget all4

First we will discuss the results far<1/5. The transport
gaps that we obtain are generally comparable to the experi-
mental values. We also reproduce a corrégf») depen-

* dence herdsee the left half of the Fig.)1However, we do
* ] not observe saturation towards the lower filling factors. This
may be an indication that perhaps CF’s wiith4 are not the
% quasiparticles at very low fillings.
01 r 1 Another experimental probe supporting the crystalline na-
ture of the insulating state is 4RV measuremerft Nonlin-
earl-V curves have a threshold voltage at which the differ-
005 | 1 ential resistance drops off that can be interpreted as a
depinning of a weakly pinned Wigner crystilAs the filling
factor is varied the threshold voltages increase approaching
0 ‘ : the FQH state at=1/5 both from above and below. This
0.18 02 0.22 finding could be a consequence of a lattice getting less rigid
M as the FQH state is clos&¥>’ We have calculated the shear

FIG. 3. The transport gap dependence on the filing factormodulus of the CF lattice for several fractioms<1/5. We

aroundv~1/5 (I=2) for A=1.5,. first compute the ground-state energies of a triangular lattice

Our results for the activation energy are presented in Fig. 1.

02

0.15 -

2
Ee rely)
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FIG. 6. The activation energies for CF lattices differing by an
angle 6 between the reciprocal lattice vectors for the filling factor
v~0.206 forA=1.9,,.

FIG. 4. The shear modulys for the triangular CF lattices as a
function of filling factor (v<1/5) for A=1.9,.

the corresponding activation energies. As is apparent from
) : "2 Fig. 5, the lattices with small anglésare more stable within
:(9'51\/5/2) and a deformed lattice such that its primitive oy HF scheme. The smallest angle for which the iterations
reciprocal _lattice  vectors  are b;=Qo(1,0), b,  reliably converge ig)= /6. The dependence @&, on v is
=Qo(0.5,32/4) (oblique latticg, with Qo chosen so that presented for the triangular and thie: /6 lattices in Fig. 1.
the area of the Brillouin zone is equal to that of the triangular At this point we have run into an intrinsic limitation of the
lattice. Then the shear modulysis proportional to the dif- Hamiltonian theory: Since the exact transformation between
ference of the ground-state energies. The results are préhe electronic coordinates and the CF coordinates is not
sented in Fig. 4 fol\ =1.9,. We observe that the lattice is known, the Hamiltonian itself is not known exactly. This
indeed becoming softer as—1/5. This conclusion is con- means that we should not take the ground state energies that
sistent with the experimental resiftsnterpreted using the are predicted by our theory too seriously. Note also that the
collective pinning theory*’ differences in ground-state energy betwee_n the differe_:nt lat-
For »>1/5 the gaps for the triangular lattice, while being tice structures are very tiny so any conclusion concerning the
in the same range as their experimental counterparts, do ngtaPility of one lattice compared to another should be taken
show the correct dependence orclose tor=1/5 (see the With a grain of salt. We still can estimate the “shear modu-
right half of the Fig. 1. We find that in this case the trian- lus” for this class of lattices by Iookmg at the difference in
gular lattice is not the lowest energy solution to the HF equaground-state energy between the triangular and square lat-

: - : . . ices. This leads to an estimate pi~2x10 ° e%/el,, an
tions. Figure 5 gives the HF energies of several lattices for }1 . . 0
fraction 1* =6/5 (that corresponds to=0.26 . . . ). The order of magnitude smaller than for< 1/5. This means that

lattices that we consider are deformations of the trianguIaFhe CF lattices are very soft frjust above 1/5, and disorder

. ) ) . may potentially be very important in this case. As the filling
Iatt!ce obtamgd from it by changing the anglebetween the factor increases the situation remains qualitatively similar
reciprocal lattice vectorb, andb, such thatb,|=|b,| and

the volume of the unit cell remains a constant. Figure 6 give but the differences in energy decrease. The HF energies for
-9 IVeIne triangular and square lattices are presented for several

filling factors in Table Ill. The transport gaps for these two
1.5%10° ‘ . ‘ lattices are essentially the same.

A brief comparison of the ground-state energies of the
different possible states is in order. At=1/5 andA=1.9,
e . * * ¥ the CF-WC with four vortices has a ground-state energy of

—0.265 per particle. The ground-state energies of the elec-
tronic WC and CF-WC with two vortices for the same pa-
rameters are equal to 0.24 and—0.241 as given in Tables
5%10” ] I and II, respectively. It can be seen that the ground-state
energy of the CF-WC with four vortices attached is lower
than that of the CF-WC with two vortices and the electronic
‘ WC at v=1/5. This reproduces the result found by Yi and
0 w6 w3 w2 Fertig?® and reinforces our belief that CF’s with four vortices

9 attached offer the best description of the state neal/s.

FIG. 5. The HF energies for CF lattices differing by an angle
between the reciprocal lattice vectors for the filling factor
~0.206 forA=1.9,. The zero on the vertical axis corresponds to  Recall that the formalism that we have developed in Secs.
the energy—0.265 15€%/ €l ). Il and 11l is based on two assumptions) We have made a

with the primitive reciprocal lattice vectors;=(1,0), b,

AE,(€'/el,)

C. Checking the consistency of the approximation scheme
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TABLE Ill. Comparison ofl=4 CF square and hexagonal lattice ground states for filling faators
>1/5 andA=1.9,. Energy in units oe?/el,.

v 0.2 0.2069 0.2105 0.2143 0.2174 0.2195
Enr square —0.264984 —0.265046 —0.265242 —0.265716 —0.266248 —0.266659
Enr hexag. —0.264984 —0.265040 —0.265232 —0.265708 —0.266247 —0.266658

smallq approximation, which implies that gradients are confused with the real-space deviations of the density. We
small, and(ii) We have assumed than(G)/n<1. Itisim-  have checked the smallness &f/n by another method as
portant to check that our HF solutions do satisfy both thesevell. We have recomputed the ground-state energies and
assumptions. transport gaps by discarding all terms in the HF-Hamiltonian

The fact, that our formalism is accurate only for sneplé  that explicitly depend orsn. We find that the ground-state
mitigated by the fact that the potential is weak at lagigdue  energies change by about 0.1% and that the gaps change by
to finite thickness effects, so that density matrix elements foat most 5-10%. This indicates that the effects of the
large q are not important. In previous gap calculations by sn-dependent terms in the Hamiltonian are small, which is a
using this formalisifi (with a similar though slightly differ- more physical measure of the smallnessdofn than its
ent potential Zre"9/q), it was found that forA>I, the  numerical value.
formalism reproduces the numerically computed gaps of the We conclude that indeed both the approximations made in
liquid states quite well. Since we are using=1.9,, we can  setting up the formalism are satisfied by the HF solutions.
expect that the smatl-formalism is applicable.

Nevertheless, more explicit checks are possible. In Fig. 7 ;. CONCLUSIONS, CAVEATS, AND OPEN QUESTIONS
we plot the values of the charge-density wa@®»W) order
paramete Ao(G)) of Eq. (37) and 8n(G) as a function of Two-dimensional electron gases in high magnetic fields
|G| for the ground state of=0.1875, using CF’s with four offer the best conditions for the realization of the Wigner
vortices attached. This value of corresponds to* =0.75,  crystal, since the magnetic field tends to localize the elec-
and the plot is normalized with respect#d. It is clear that  trons. However, electronic correlations play a dominant role
the values of the order parameter rapidly go to zer¢Gjs In the LLL because the kinetic energy is degenerate. At-
increases. This suggests that large valueg @6 not matter. tempts at describing the Wigner crystal using uncorrelated,
Another check is provided by a real-space plot of the densit@r Weakly correlated states of electrdfisio capture some of
profile in Fig. 8 for the same. As can be seen, the maxi- the essential physics, such as the filling factor at which the
mum density deviations are of order20% around the mean Laughlin liquid becomes unstable to the Wigner crystal.
density, and the density variations are on the length scale dfowever, these theories fail to capture the correct structure

the interparticle spacing, which is greater than the magnetief the excitation spectrum, and predict gaps that are two
length. orders of magnitude above experimental observations.

One should also note from Fig. 7 that the value of Since Laughlin-Jastrow correlations are the essence of the
sn(G)/n never exceeds 1/15, which is quite small. Note thafractional quantum-Hall liquid statés, it is natural to hy-
our expansion is in powers @ (G)/n, which should not be
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FIG. 8. Real-space density profile for the CF-WC at
FIG. 7. The CDW order parametéi ,o(G)) and Fourier com- =0.1875 andA=1.9,. Once again the density is normalized to
ponents of the density deviatiain(G) as a function of G| for v v*=0.75. The crystal appears as small modulations around the
=0.1875 andA =1.9,. They axis is normalized to/* =0.75. mean density of 0.75.
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pothesize that they are important in the Wigner crystal statés the actual ground state in the clean limit. However, for the
as well. The first step in this direction was taken by Yi andexperimental observations this point is likely to be moot,
Fertig?® who studied the ground-state energy as more anttecause disorder probably plays a dominant role in this re-
more vortices were attached to electrons forming a Wignegion of v.
crystal. They found that indeed the Wigner crystals with vor- Many open questions remain. The most important, and the
tices had better energies than the uncorrelated or weakly cof2ost intractable, is the influence of disorder. Disorder will
related crystal§° cause lattice deformations, dislocations, and other defects. In
Unfortunately, ground-state energies cannot be probed d@ crystal of CF’s, density variations are expected to produce
rectly in experiments. It is desirable to have predictions ford corresponding variation in the effective magnetic field.
observable physical properties that can distinguish betweehhus, a random potential leads indirectly to a random mag-
competing ground states. Calculating physical properties in Betic field. In principle, the formalism we have developed
strongly correlated state is notoriously difficult. The compos-here to deal with nonuniform density could be generalized to
ite fermion picturé achieves the miracle of transforming a incorporate disorder, but the implementation appears diffi-
strongly correlated electronic problem into a weakly corre-Cult. In particular, it is difficult to visualize how the nonper-
lated problem of CF’s. In the years since the discovery of théurbatlye effects of disorddtocalization of almost all states,
FQHE, much progress has been made in developing fieldthanging o, from ve?/h to 0, etc) would emerge in a
theoretic schemes that have predictive poweFhe latest in ~ Straightforward manner.
this long line of approaches is the Hamiltonian formalism, ~ Another open question is the evolution of the Wigner
which has had reasonable success in computing gaps, magystal state with temperature, which could be explored in

netoexciton dispersions, and finite-temperature properties féhe clean limit along the line of reasoning laid out in this
the liquid state$. work. In particular, it would be of interest to obtain a predic-

In this paper, we have partially accomplished the goal oftion for the transition temperature between the Wigner crys-
computing the physical properties of a strongly correlated@l and the(presumably liquidl high-temperature state.
Wigner crystal. Based on an extension of the Hamiltonian e hope to pursue these and other topics in future work.
theory to account for the nonuniform density in the crystal
state, we were able to compute gaps in the correlated crystal.

Our results show that qualitatively and semiquantitatively, ACKNOWLEDGMENTS

a Wigner crystal state of CF's with four flux quanta attached \y 5¢ grateful to the NSF for partial support of this work
offers the best description of the phenomenology of the highUnder Grant Nos. DMR-987068t0 R.N. and H.A.F and
field Wigner crystal neaw=1/5. In particular, our predic- pye_0071611(to RN. and G.M), and the Center for Com-

tions for gaps are within a factor of 2 of the experiments ing ;i2+ional ScienceR.N) at the University of Kentucky.
the entire regime of interest. Our predictions show a differenP

behavior forv<1/5 andv>1/5. While the theory has some
discrepancies with the dafsor v just above 1/5, we believe APPENDIX A
we understand why this might be the case: Different lattice
structures have very similar energies in this regime, and are In this appendix we will construct the canonical transfor-
very deformable. Consequently, disorder is expected to plagnation that diagonalizes the Hamiltoni&h?) as discussed
a dominant role in determining the configuration, and hencén the main text. First notice that putting evefy(G) to zero
the gaps, in this region of. Finally, we are able to estimate takes us back to the uniform charge density case considered
the shear modulus of the crystal above and below 1/5, andy Murthy and Shank&? They showed that the canonical
we find them to become softer as 1/5 is approached. This #gansformation in that case is
consistent with théncreaseof the threshold voltage for non-
linear transporf? a standard feature of the theory of collec-
tive pinning?*3’ o o ;

Before we close, some caveats must be noted. An intrinsic ~ Jo(A\)=€"®=ex N6 [cT(q)A(q) —H.c]y,
limitation of the Hamiltonian theoryis that the Hamiltonian a (A1)
is known only approximately. Thus the ground-state energies
are not to be taken too seriously. This implies that this theory
does not offer a trustworthy way to find the lowest-energywhere 6=1/2n\/xwl and A=arctarnu/p with u?=11v—1.
state. The strength of the Hamiltonian theory lies in the facfThe value of the constant is fixed by requiring that the
that if the nature of the state is known, the theory allows theHamiltonian in the FR does not have a term coupling the
computation of gaps, magnetoexcitons, and even finite tenparticle and the oscillator degrees of freedom.
perature properti€sWith this in mind, let us note that we The Hamiltonian(17) is different from the one considered
have not carried out an exhaustive search in the space of afi Ref. 25 by having terms proportional &m/n. The same is
possible states. We have confined ourselves to crystals witthue for the commutator of the kinetic momeiii®). We will
one CF per unit cell. While we did explore crystals otherassume thafn/n is a small parameter and when diagonaliz-
than triangular and square for-1/5, we kept the two primi-  ing the Hamiltonian we will only keep terms proportional to
tive reciprocal lattice vectors equal in magnitude. It is pos-t. Consistent with this program, a reasonable guess for the
sible that some other crystal state that we have not explorecanonical transformation is
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Q Q : Q
. “ a\ SInuA\ N
U(>\)=eXD{I?\So+7\B§q: 2 [c'(@A(@-G)an(G)q- Cu(@N) =~ 2 ¢(@-6)on(G)q(G-0),
X (67T H A2 M l ) a\ COSu\
(=G)+—Hc]y, (A2) >on P sinu T
Q ~
where 8 is a constant that has to be determined later by X%: A(g—=G)dn(G)g-(q—G) . (AB)

requiring that the first order of the coupling term be zero. In
Eqg. (Al) c(q) is the operator that corresponds to the uniform

density, while in Eq(A2) it depends orvn. Strictly speak- through the operators(q) andc(q) is the CP kinetic energy

ing, these are two different operators. o NTy2 . . .
We proceed as in Ref. 25 by determining the operatorélj_Ei LI/2m. We will compute this operator in FR by de-

A(q,\) andc(q,\) in the new representation. Each of thesenving first the rovy equation fOI’. it. First though we have to
operators is a sum of an unperturbed part that coincides fotr_earrangeT, by using the canonical momentum commutator,
mally with sn=0 result and a first order iédn/n part. We Into
introduce the notatiomy(g,\) +A(q,\) for these parts

[similarly for c(g,\)]. Using the canonical transformation NoTnTI n

(A2) and the commutation relatiori$8) and(19) we derive T=2 m "'E.
the following first-order flow equations for the operators . .

The only term in the Hamiltonial?) that is not expressed

N (eB* al )
Zm_ﬁén(rj)' (A7)

The second term in EqA7) will not contribute to the flow
equation after applying the RPA to it. It turns out to describe

dAs(q,\) 2 the magnetic moment of the CP. After doing the appropriate
d» fe1(a.1) '6% Co(g=G:h)on(G) commutators we find that to first order #n/n the kinetic
. energy operator; obeys the flow equation
Xq-(q=G)+, (A3)
dT,(\) eB* o 2
——=—— 3 [Al(@.M)co(@ M) +Al(@N)ei(g )
dealah) g OAL(Q,\)+ 6[2eB* (Bn+1)—4min] o mo
————=2eB*n , e n —4in
dN o i eB* -2l 6
+Hc]+ ——

Q

X2 Ao(d=G,\)an(G)q_(G—G),. (Ad) 0 o
G +

xg 2 [AN(AN)Co(a =GN

Substituting Eq(A4) into Eq. (A3) a second-order inhomo- N
geneous ordinary differential equation is obtained for xon(G)q-(4=6). +H.cl. (A8)
A1(g,\). The general solution depends on two arbitrary con-

stants that are determined through the initial conditions/€ Can integrate the kinetic energy from E48) using the

_ _ L Initial condition T;(0)=0. The resulting expression for the
A1(9,0)=C1(q,1) =0. The resuilt of the calculation is kinetic energy in FR is substituted together with the opera-

torsA(qg,\) andc(g,\) in FR into the Hamiltoniari17). We

N sinun 2 fix the constant3 by requiring that there be no coupling
a y7 N . .
AL(QN)=— 2 A(Q—G)n(G)q_(4—5) . between the particle and the oscillator degrees of freedom.
2u G That way we get
AL PN T (u?- Darct
- sin —1)arcta
2un gem| p=-LF ey (A9)
4n“p | arctanu
a O\ cosu Q O —
T, 2 EG; ¢(@=6)dn(G)a-(a=G)+,  The other consequences of this transformation are given in
H the main text.
(A5)
APPENDIX B
where a new constant=2u?(8/6+ wl/eB* —1/2n) was _ -
introduced. Having found;(q,\), we can integrate; (q,\) To calculate the matrix elementén,|po(q)|nz) and
from the Eq.(A4) with the result (n1|p1(a,G)|n,) one needs to know what the corresponding
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XII*e'@~9 " are. We will give here only the final expres-
sions for these matrix elements, as the first two were derived
in several paperésee, for example, Ref) &nd the third can

be found using a similar approach. The matrix elements are

matrix elements for the operatoed® ", qxII*e'9"", andq ~
152(n g IT* €' |n,) =i il

np—ny
f(qxﬂqy)l*)
X[=Lop ™(q15%12)

—niLyl " (0%15%72)

. n n
_ not[ i _ v
iq-r _ PR * -
(ny|€|ny) \/nl!(ﬁquy)lo) +(no+ DLt (9715 %12)]
XL e te 8D xe a3 (82)
2

* * Al r ny! * o Q(q_G)
| 2<n |q><H (a-G)- |n2>_l an (\/_[qx G +|(qy y)]lo) ((q——G)z

X (=L (q=G)5 21— niL ! [(q=G)A5 2]+ (ny+ 1)Lt (9= G) 15 %721}

np,+1
. gXG ni—n, 2% 2 2)%2
+i———=(n—ny)L .t Z[(q—G)“157/2] |exd —(q—G)“l5°/4]. (B3)
(9-G)? 2
|
APPENDIX C 2rdo
_ 21*2
In this appendix we will illustrate the calculation of the Utbe= f f exp: X*(A*M15%+1/2)]

integrals over the momentumthat appear in the HF Hamil-

tonian Eq.(39—-(46). As an example, we will take the inte- X8 X(G_e''+G,e 7

gral that appears in the exchange contribution of the two- X Ieilgz\/i 2 2G2*

body, first order inén term. Other integrals are done in a 0
similar way. We choose to integrate the following term that is c

art of Eq.(44), _ 2 i0 R NES

p q 2(c+1)[x +x(G_e''+G e ')IF]

g - - *
Utbezz_s Eq: V(a)(0[po(—a)[1){0[p1(a,G)[0) X exp{[(G_ +Gl_)e‘9—G1+e*“9]l’(§x/2}e*'02‘32’4,

X ext] — il 52qx (G+2Gy)/2]. (CD) €3

wherex=ql3 . First we will integrate with respect to the
variablex. We notice that it is possible to extend the interval
of the integration over the whole real axis. The integrand in

Using the formulas given in the Appendix B for the density-
operator matrix elements, we find

2me?a (= d o Eq. (C3) is such that the odd/even powersxadre multiplied
tbe= 9 q ge—a°A? by the expi#n) with n odd/even. Then reversing the sign of
2 Jo(2m)?Jo x and making a transformatioé’ = #+ 7 does not change
k2 the integrand while shifting the integration with respeckto
il*qe‘mq Io e_q2|32/4) interval to (—=,0). The integral is then
0
ieg [27dé » B)(G,+G+e*2”’)
-G C = — a,f)—m—7M
T 1>(q2'32+q'6'32)) " adglo 2rl” w2
_ c® cl} ce '’ £20:2
xexf — (q—G)2E2/4]exd —il ¥%qx (G+2G,)/2]. X ——— | —lg(a,f) —————|e 0 G4
° ° ' car cr1) PG

(C2

. . C4
Taking into account that]-G=q(G_€'’+ G, e™'%/2 and (
qxG=q(G,e '"-G_€e'%/2i, where G,=G,+iG, and We introduced a notation for the Gaussian integrély, 5)
G_=G,—iG,, we get =[7 . dxexp(—a+2B)X" with a=A?/1%2+1/2 and B
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=[(G_+G,_)e’—G,,e '?)I}/4. An important observation is 0 ifn<o0
that after Eq.(C4) is expanded, the result is the sum of the fzﬂe(be—m)zemg%: bn (C5)
integrals of the formnote the even powers @ ? that ap- 0 27 — otherwise.
peay n!
am 04 it 21020099 _ 2ap( )" ,
exfl(ae’+be )] o — =™ — | 1|y (2ab), Herea=(G_+G;_) andb=—G,, . The second and third
0 lines in Eq.(C5) are given because they are used to calculate
0 if n>0 other integrals. They hold if either one @br b are zero. The
27 (ad®2.i2n0 de i final answer is then a series of the modified Bessel functions
fo e e 5= % otherwise, multiplied by appropriate constants.
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