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Electron-phonon interaction in a spherical quantum dot with finite potential barriers:
The Frohlich Hamiltonian
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A Frohlich Hamiltonian describing the electron-phonon interaction in a spherical quantum dot embedded in
another polar material is derived, taking into account interactions with both bulk longitudinal optical and
surface optical phonons. The Hamiltonian is appropriate to the general case of a finite confining potential
originating from a bandgap mismatch between the materials of the dot and the surrounding matrix. This
Hamiltonian is then used to treat the electron-phonon interaction in the adiabatic approximation for CdSe/ZnSe
and CuCl/NaCl quantum dot systems. It is found that, as the radius of the dot decreases, the magnitude of the
electron-phonon interaction energy first increases, passes through a maximum, and then gradually decreases to
the value appropriate to the situation where the electron is weakly localized inside the dot. As the height of the
interface barrier decreases, the absolute value of the electron-phonon interaction energy also decreases. These
results indicate that the dependence of the electron-phonon interaction on the radius of the dot is much smaller
than predicted from the simplified model with infinite value of the bandgap mismatch.
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[. INTRODUCTION do not contribute to the polaron energy shift. Second-order
perturbation theory? was also used to calculate the polaron
Remarkable progress in semiconductor nanotechnologghift; it was found that the bulk-type phonons play the domi-
has made it possible to fabricate a wide array of semiconnant role in the polaron energy shift. The all-coupling varia-
ductor heterotructures. In these structures electronic statdi@nal techniqué’ valid for a wide range of material param-
are subject to a strong dimensional confinement effect arisingters was also developed and systematic calculations of the
from the mismatch in the bandgaps of the constituent matgRolaron energy shift were performed. The major results of
rials. Among various kinds of nanostructuesiantum wells ~ these considerations are tHay the bulk LO phonons play

and superlattices with electronic confinement in one dimenth€ Most important role in the polaron effects and the contri-
sion, quantum wires with two-dimensional confinement pO_butlon from the SO phonons is either negligible or nonexist-

tentials and quantum dots with the quantum confinemen?unéear;?(tzgewgglg?gn'n:;g?;; gr]:ig]%ggrt:a;zgluert)ihdelyn;?c?Ql-a
present in all three dimensignghe quantum dofQD) sys- large value and then gradually approaches its bulk value.

e o oo HoFEA - HoWewE amostall madae Wized i he bove papers
. . _ suffer from one important drawback: they all assume that the
and the interesting quantum-mechanical phenomena assogjis.qntinuity at the interface of the QD has an infinite value.
ated with them. o The effect of the finite value of the discontinuity was con-
_The electron-phonon coupling in nanostructures also hagjgered in Refs. 11,12; however, the electron-phonon Hamil-
different features from that in the bulk. Namely, there is aignian was not given there in explicit form. The assumption
strong increase of its strength with the reduction of dimen+f an infinite surface barrier gives rise to the fact that the
sionality (from 3D in the bulk to OD in the quantum dpind  electron is always confined perfectly inside the dot. When
there exist surface opticabO) modes due to the difference the bandgap mismatch has a finite value, the electron can
in the dielectric constants of the materials inside and outsidgenetrate into the barrier material. Since the real semicon-
the structure. To discuss phonon effects on electrons in nanauctor quantum dots are usually embedded in another polar
structures in a proper way, these phonon featypegdaron material, e.g., a GaAs QD in a AlGaAs matrix, this may
effecty have to be taken into account. result in a significant change of the total electron-phonon
Since the QD is one of the simplest examples of quantuninteraction energy since an electron in the barrier will also
confined structures, the polaron effects on an electron haviateract with LO phonons pertinent to that medium. Thus the
been studied extensively both theoretically and experimentull electron-phonon interaction Hamiltonian should com-
tally. Polaron effects have been studied theoretically in QD’grise all these effects: the interaction of an electron with the
of various forms: cylindrical QD4 rectangular quantum internal LO phonons of the QD material together with the
boxes® and QD’s with a parabolic confinement potenfiaf.  interaction with phonons in the outer medium and the
In the spherical quantum dots polaron effects have been exlectron-SO-phonon interaction due to the presence of the
tensively investigated within the dielectric continuum interface (surface of the dgtshould all be considered to-
model®~!! These effects were first studied for the case of agether.
free polaron in a spherical QEan electron confined in the In the present work we derive a Flich Hamiltonian
QD interacts with phononsimplementing an adiabatic describing the electron-phonon interaction in a spherical
approximatior?~ ! in which surface optical phonon modes quantum dot embedded in another polar material, taking into
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account interactions with both internal and external LO andvhereD, E, p, ¢ are the dielectric displacement vector, elec-

SO phonons. This Hamiltonian is valid for quantum dot sys-tric field, the polarization density, and the polarization poten-

tems with finite values of the bandgap mismatch on the surtial, respectively, we easily get the Poisson equation for the

face of the doffinite values of the confinement potenidh potential o(r) in this system

order to derive this Hamiltonian, various phonon modes re-

sponsible for polarization of the medium were first consid- ei(w)Ae=0, i=12. (4)

ered and then the interaction of a charged partielectron

or hole with them was calculated. The electron-phonon in-

teraction in confined systems was first studied by Fuchs an

Kliewer* Licari and Evrard® and Lucaset all® Later

Wendlett’” extended their method for the calculation of the .

phonon modes in layered semiconductor heterostructures. (0)=¢, @ T WiLo =19 )

Klein etal? obtained the Hamiltonian describing the ER@IT i w?—wko "

electron-phonon interaction in spherical QD’s embedded in a '

nonpolar material assuming perfect confinement of an elecsorresponds to the polarization due to the bulk LO modes of

tron in the dot. This Hamiltonian was used in the works citedeigenfrequency;, o . Heree;., is the high-frequency dielec-

above and was also adapted for the cases of the bouridc constant,w; o and w;to are the LO and TO eigenfre-

polarort®*8and excitoh®!°confined in the QD. Recently the quencies related by,y/¢;..= (i o/ wit0)% &ig IS the static

approach of Licari and Evrard and Wendler was also used tdielectric constant.

derive the electron-phonon interaction Hamiltonian for quan- (2) A¢=0, which will give another type of solution. It

tum wire system$&? again assuming perfect confinement of was shown in Ref. 15 that the polarization associated with

an electron in the system. The electron-phonon interactiothese modes gives rise to a surface charge only, and thus

was also studied in quantum well structures within thethese modes are usually called surface or interface optical

second-order perturbation thedhassuming finite value of (SO) phonon modes. Let us consider these two cases sepa-

the interface barrier. rately and derive the Hamiltonian which describes the inter-
This paper is organized in the following way. In the next action of a charged particl@lectron or holgwith bulk LO

section the derivation of the electron-phonon Hamiltonianand SO phonons.

is presented; first the interaction with SO modes is con-

sidered and then the electron-LO-phonon interaction is A. Electron-SO-phonon interaction

calculated. In the following section this new Hamiltonian ) ) ) i i

is applied to the problem of the single polaron confined_ Assuming that the eigenfrequencies associated with

in spherical quantum dot. To simplify the consideration, theS© Phonons are not equal to eithef o or w; o, the solu-
electron-phonon interaction is treated in the adiabatic aption of the Poisson equation
proximation in Zn_,Cd,Se/ZnSe(Ref. 22 and CuCl/NaCl B .
QD systems. Finally, the last section gives some concluding Agi(r)=0, i=1.2 (6)

remarks and outlines possible future directions of research¢an pe written in the standard form

From this equation we have two possibilities.
g (1) &;(w) =0, which, since the dielectric constant is given
y

|
Il. THE ELECTRON-PHONON INTERACTION r
HAMILTONIAN (Pl(r):% Cl(ri)(ﬁ Yim(0,¢), I<R,
We consider a sphere of radiBamade of a polar material 11
with dielectric constant;(w) (material 2 embedded in an (r)zz c® E Y,(6,0), >R @
infinite polar medium of dielectric constan(w) (Mmaterial ®2 moImlr Im %@ '

2). We need to derive the Hntich Hamiltonian describing

the interaction of an electron with longitudinal opti¢al0) ~ where C{7) ,.C(2) are constants to be determined later, and
phonons. In this situation the only relevant modes are th&im(9,¢) are the spherical harmonics. Here we have as-
internal and external L@bulk) and the surfacéSO) modes.  sumed that the outer medium is infinite in extent.

Since we have two different polar media there should exist The electrostatic boundary conditions for these potentials
two different types of LO phonons associated with them,can be written as

which we call bulk LO phonons, and one type of SO

phonons. ¢1lr=r=®2li =R, ®
Proceeding from the standard electrostatic Maxwell equa-
tions written for the dielectric continuum model dy )

Din= 81(“’5)7 =Dyy= 82(0)3)7 )]

V-D=0, (1) r=R r=R
From the continuity of the potentiap [Eq. (9)], we obtain

D=cE=E+4mp, (2)  for the constant€(y) andC(?) that

E=—Vo, k) Cly=Cfi=Cin, (10)

245320-2



ELECTRON-PHONON INTERACTION IN A SPHERICA. . . PHYSICAL REVIEW B 64 245320

while from the continuity of the normal component of the ) ) (871'/3)&),2) ) ) (477/3)w'2)
displacement vectoD [Eq. (10)], the equation for the SO wio=wyt 1+ @aBna’ Wio= Wy~ 1-(4nl3)na’
phonon frequencies follows (18)
le1(wg) +(1+21)es(ws)=0. (11 1+(87/3)na
— 19
By solving this equation together with E(®), the values of © 1-(473)na (19

the SO phonon eigenfrequencies= », can be determined.
Note that forl=0 the only solution of this equation is for
wo= wy o, Which corresponds to the interaction of an elec- 1 _
tron with bulk LO phonons. Thus the lowest value of the Hésho):—f d3r @ (w))(|p|>+ »f|p|?), (20
orbital quantum number for SO phonon modessisl. 2

The polarization densities associated with the potential§yhere
defined abovdEq. (4)] can then be cast in the following
form w? 4mne?

O(w)= P . wl=
[w,23+477na(wg—w2)]2 P M

we may rewrite Eq(16) in the following form?’

. (21

) |
P == Xﬁfw')cmvwﬁ) Y|m<a,<o>}, 12

We now introduce phonon creatiagj,, and annihilation
a,, operators as follows:

® R I+1
pz(r)=—2 Xiﬂ_l)clmv (?) Y|m(0,<p)}, (13 Y1(@)) r\!

" pa==2 ?cmﬂ(ﬁ) Y|m<0,¢>}<a.*m+a|m>.
where y1(w,) and y,(w,) are susceptibilities of materials 1 (22)
and 2, respectively.

In order to determine the constar@3,, and to proceed _  xao) r\! )

further with the derivation of the electron-phonon interaction Py(r)=_ i, 4—C|mV[(§) Yim(6,¢) | (ajm—aim)
potential, we must calculate the Hamiltonian for a given pho- m 7 (23

non mode(the free phonon HamiltonianWe start with the
basic equation of motion for the relative displacement of theand analogously fop,(r) andp,(r). These expressions will

ions in materiali (i=1,2): allow us to obtain the standard free phonon Hamiltonian
L 2 1
1= S wiu+
mitl Hi@joU+ €Bjoc, (14 HE)ShO): |§m hw) a,Tma|m+§ . (24)

where u; is the reduced mass for an ionic pais, is the
characteristic frequency associated with the short-range in- gypstituting expression@2) and (23) into Eq. (20) and

teraction, andq is the local field at the position of the ionic sjng the usual commutation relations for the operaigs
pair. The oscillating ions produce a polarization field

anday,
p(r)=neu+naky, (15 [aIvaaI’m’]:‘SII"Smm’v [aITmvar'm/]:[almaal’m’]:()’
wheren is the number density of pairs anrdis the polariz- (29
ability of a pair. and the first Green'’s identity
According to the equation of motion, we may express the
;aaTllton functionH ™ in the form of the following inte f d3rVd>~Vz,/;:—f d3r¢A1//+f dsd)&_lrﬂ (26)

1 _ to perform the integration, we obtain constaflg, in the
HE)ShO)ZEJ dr (nu|ul?+ npwdul?—neuE,). (16)  form

Using Eq.(12) for the relation between the polarization and 2 :ZML 1

the macroscopic elgctric fiel&, together with the well- _ ™ @R X2(@0)0 (o) + x2(0)O () (1 +1)
known Lorentz relation between the local and macroscopic (27
electric field

The electron-phonon interaction Hamiltonian describing
A1 the interaction of the point chardelectron or holgat posi-
Bioc=E+ 3P, (A7) tion r, with the polarizatiorp(r) is given by

and the equations for LO and TO phonon frequencies

1
(SO _ _ 3 - .
670! Hep efd rVr|r r p(r). (28
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Substituting in this equation the polarizatiopg(r) and (r/R)'Y (6, 0), r<Rr,
p,(r) together with constants,,, determined above, we will Vim(r)= RIN'*1Y. (0 ~R (35
obtain for the electron-SO-phonon interaction the following (RIr) m(0,¢), T=R.
expression: and the frequencies, are to be determined from EQL1). It

should be mentioned here that the quadratic equatidh
has two different solutions due to the presence of two polar
(SO _ _—
Heo =~ 24 % Cimilxa(@)lim+ x2l@)Imlam+H.C}  materials: one of them is associated with medium 1 and the
(290  other with medium 2.
In the limiting case when the outside medium is nonpo-

1 I larizable, i.e.g,(w)=e4q=const, there will be only one so-
I|m=f d*rv,—— rr] ~V[<§) Y,m(ﬂ,qo)}, lution for the eigenfrequencies, and the Hamiltonian can be
r<Rr easily rewritten in the well-known form first obtained by
| Klein et al’®
1 +1
Jim= dSI’V,|r | 'V{ T) Ylm(eﬂp)}-
R>r

H(espo):_lz a[Vim(1)am+H.cl, (36)

In order to evaluate the integrals, we again apply the first

Green'’s identity which transforms the integrals over the vol-V with the electron-SO-phonon coupling constant

ume into the integrals over the surface of the sphere with slx\/l_ 2melh [ 1 1
radiusR: = w1 o\ ——=— | — — —|,
le1.+(1+1)egy oR \e1. €19
x1(@)limt x2(@)Im=[x1(@)!+ x2(w) (1 +1)] (37
le g 1 Y. (o, , &dt(egterl e
— O =—"">F 3w .
R, _ 5| =1 im(6,¢). S S TR L
(30 Another limiting case is whes(w)==¢,(w), i.e., there

is no interface. In this case E¢l1) will be satisfied only
This last integral can be easily evaluated by making use ofyhen w;=w, o, and this situation corresponds to the inter-

the well-known expansion action of a charged particle with bulk LO phonons.
1 — 4 B. Electron-bulk-phonon interaction
r—r 21+1 . .
Ir=rell,—q In this case we need to consider two separate cd$ps:

1(rg)! w=wq o corresponding to the interaction with bulk LO
2 §(§> Yia(0,0)Yim(be,06), Fe<R, phonons in the material 1 an@) o= w4 o appropriate for
Im the LO modes in the outside medium. We start with the first
X 1 ! case.
> ( ) Yim(0,©)Yim(be,@e), re>R. (1) Here the solution of the Poisson equation

Im le

e1(w10)A¢1(r)=0, &1(w;.0)=0, r<R,

gx(w10)A@y(r)=0, g5(wy.0)#0, r>R (39

(31

Realizing also thak;(w)=¢;(w)—1, the factory(w)I
+ xo(w)(1+1) becomes equal te (21 + 1) so that the final takes the form
expression for the electron-SO-phonon interaction can be

given as follows: 91(1)= 2 Aumii (KN Yin(6,¢), T<R,
HEO=— > o[Vim(r)am+H.cl, (32
o= g HlVin(Nam+Hel £2(N =2 Bin(RIN'" Yin(0,0), r>R. (39
with! o .
From the continuity of the normal component of the dis-
ok 112 placement vector on the surface, we obtain that the potential
a m 1 outside the sphere is equal to zero:
R x%(w)0 I+ x5(w))® I+1
X1(@) O 1(@)!+ x5() O 7(w))( ) 33 0,(1)=0, r>R. (40)
From the continuity of the electrostatic potential on the in-
) wio—wio . terface, we then conclude that
Xi(a))(ﬂi(w):sixﬁ, |:1,2, (34)
(0= wito) jI(kR=0 (42)
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which specifies the allowed spectrum k&k),=u, /R, Then the electron-phonon interaction Hamiltonian can also
where u,, is the nth root of thelth order spherical Bessel be easily evaluated.
function j, . The unknown constant,,, will be determined After some calculations, it turns out that the polarization
later from the comparison of the polarization Hamiltonianassociated with the frequeney,, o gives rise to a nonzero
with the free phonon Hamiltonian written for LO modes in value of this interaction only when an electron is confined
medium 1, similar to the case of the electron-SO-phonorinside the spherer{(<R). Physically this fact can be under-
interaction considered above. stood by noting that in our model phonons are dispersionless
(2) In the situation when the frequeney coincides with  and thus the frequenay, o corresponds to the excitation of
the eigenfrequency of LO phonons in mediuma, o, the  phonons only in medium 1. The value of this electron-

potential outside the dot is given by phonon interaction is equal ton order to calculate it, the
first Green’s identity was used together with expansion of
~ _r |71 i i
¢2(r)=% Rt (KDY 106, ) (42) [r—rc| =t in spherical harmonigs
with Heg= =2 B Vim(Dame+Hel, (49
f1(kr)=],(kr)+Bmn(kr) (43  where
and n; is the spherical Neumann function of thin order. 472 ho 1 1)
Inside the quantum dot the potential is equal to zero, and its L= o = _) . (50
continuity on the interface results in the condition R ,u,znj,ﬂl(,um) €1 €10
fi(kR)=0. (44 V(D) =11(kin") Yim( 6,). (51)
There is one constant still undeterminds}(,). To find it When the electron is outside the sphergXR), it inter-
we need to set up boundary conditions on the distant outegicts only with the polarization due to phonons in medium 2.
interface with radiusR,: The value of this potential is
, , == 2 B Vi (ame+Hel, (52
Together these two last equations determine the allowed
spectrum ofk values:k=k;,= »,,/R, and values oByn,. with
After the spectrum and constants are found, the valug,of
can go to infinity so that the final answer is independent of 2)_ 27e? hwyof 1 1))
its particular value. B R Iy \&aw 20| (53

The rest of the calculation is analogous to the derivation
of the electron-SO-phonon interaction Hamiltonian. We V()= (Kinh) Yim( 6, @). (54)
again set up the polarization vectors associated with
phonons: this time there will be two of them, one for each of  Finally, the full electron-phonon Hamiltonian can be writ-
the LO phonon frequencies. Writing the classical Hamiltonten by adding the electron-SO-phonon interaction potential
function for each polarization separately and equating it taand the free SO phonon Hamiltonian given by E&§) and
the free phonon Hamiltonian (24) to the electron-bulk-phonon potential and the free LO

phonon Hamiltonian obtained above:
HGO =2 70O

Imn

almnalmn+ 2 (46) Hep: Hgspo)-i- H((_:‘Lpo) + HE)ShO)+ H S—ho) , (55)
with eigenfrequencf) = w; o OF w, o, respectively, allows Where

us to find the values of the normalization constahtg, and

o HY, r<R
Aimn: (Loy_ | 'ep’ '
Imn Hep = H,(E%P), >R (56)
A7h 1 ] . ] o
Imn= - , ote also that if the electron is confined perfectly inside
A 5 5 (47 Note also that if the elect fined perfectl d
@1oRun1+1(1n) X1(@110)01(@110) the sphere, then this full Hamiltonian, given now by Egs.
(36),(24),(49),(46), agrees with that of Kleiret al®
~ 27h 1
Aimn= ) (48)
®200R It y2(021.0)O (w210 lll. RESULTS OF CALCULATIONS

where the normalization integréj, is A. Method

In this section we apply the electron-phonon interaction
I, = Vlznf dxo@|f(viX)|2. _I-Iamiltonia.mHep obtained above to the problem of a polaron
in a spherical QD. We consider an electron which is confined
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in a sphere with radiuR and is interacting with LO phonons. (PIVED (1) 4
In the effective-mass approximation the Hamiltonian of the T R r<r,
system is given by sum of the electromig and the electron- fU — ) 1o (63)
phonon interactioH .., parts m (WIVIEND] ) (SR
hw ,
H=He+Hep. (57) 2Lo
Here the electronic part is given by f&)=— M (64)

Im
ﬁw|
2

P Following the variational method, we choose the electronic
He=5m T Vaolr), 58 \ave function in the forf?
wherem, p, andr are the effective mass, momentum and W(r)y=yo(r)e ", (65

coordinate of the electron, respectivelfgp(r) is the con-

finement potential of the QD: where y is a variational parameter, indicating the degree of

the electron-phonon interaction, angh(r) is the ground
state eigenfunction of the Hamiltoniah, :

Vos(r) 0, r<Rr, 59
QD! r)= .
Vo, >R, Nsm(ér), (<R

andV is the value of the conduction band-edge mismatch Wo(r)= . ' (66)
between the materials of the QD and the surrounding N sin({R) e R =R
medium (the interface barrier potential experienced by an r ' '
electron. . . . o .

Let us assume that the electron moves much faster thaff this equationN is the normalization constant given as
the surrounding ions. This situation can be realigBdvhen N~2=4m(A+B) (67)

the radius of the QD is sufficiently small so that the quantum
confinement gives rises to orbital shrinking of the electronicwith
density and increases the kinetic energy of the electron and

(2) when the electron-phonon interaction is so strong that . 1—672’/R_ y+e 2R sin(2{R)— y cog2{R)]
electron self-localization occurs, i.e., fast electron oscilla- " 4y 4(y2+ () ’
tions. This means that the phonon field experiences a static (68)
distribution of electronic charge density and there is no cor-

relation between the instantaneous position of the electron sif({R)e~2"R

and the induced polarization field; this is what is usually :W’ (69)

called the adiabatic approximation.

Within this approach, the effect of the electron-phononand {=\2mE,/#?, n=+2m(Vy—Ey)/%%; the value of the
interaction is to displace the equilibrium positions of theground state energy ¢, Eo, is determined from the tran-
ions. This can be achieved by performing two linear shiftscendental equation
canonical transformations corresponding to the interaction
with bulk (j=1) and surfacej(=2) phonon modes: ntan¢R)=—¢. (70)
Note also that from this equation it follows that the smallest
value of the QD radiuRR required for the existence of a
bound state iR.= (724 2/8mV,) 2.

After some calculations we can find the expectation en-
wheres={l,m,n} for j=1, s={I,m} for j=2, and the pa- ergyE as a functional of the parametgrin the form
rametersf;s are to be determined variationally. With these
transformations taken into account, the total wave function _ 5 )
of the system is given by the product of the electronic part Ely]= m [(y*= DA+ (y+7)"B—y(C]

|y(r)) and the phonon patti;U,|0): . i
1)|2|<¢f|v|<n3n<r>|u/>|

szexp{ 23 [fDa+(f9)*al]t, (60)

#2N?

2 _ (
W)= #(r)U1U,/0), (6D +HATNVOB— 2, (B

where|0) is the phonon ground state. v (¢ 2

The subsequent minimization of the expectation energy —E |,3|(§)|2|<l/l| inn(14)) : (71
value imn fiwy o

whereC is given by
E=(¥[H|¥) (62)
A= 2WRr o

with respect to the variational parametdts, leads to the C= (e ™ USWZ&R)%COS(%R)]_ (72)
following standard expressions for them: 2(y?+ &2

245320-6



ELECTRON-PHONON INTERACTION IN A SPHERICA. ..

In the above expression for the polaron energy functiépal

PHYSICAL REVIEW B 64 245320

TABLE 1. Physical parameters of two binary compounds:

the first two summands correspond to the energy of the bari the mass of an electrdim units of a free electron mags, is the
electron confined in the QD, and the third and fourth onegnergy band gagin eV), e, and .. are the static and high-

describe the interaction of the electron with bulk LO

frequency dielectric constantéw, g is the energy of the LO pho-

phonons in media 1 and 2, respectively. Note also that in thi§on (in mev).

equation the contribution from the electron-SO-phonon inter=

action is absent. This can be explained by the fact that in thi

case the electron has a spherically symmetrical wave fun-yse

tion given by Eq.(65), and thus the value of the parameter

f(2) is equal to zero. Physically this can be explained byg,¢;
noting that in the adiabatic approximation the electron isy,c

oscillating fast and since it is in the ground state with a

g/laterial €g €o ho o m E
6.23 9.56 26.46 0.11 1.9

ZnSe 7.6 5.4 31.4 0.13 2.82
3.61 7.9 25.64 0.5 34
23 5.9 33.6 2.8 8.4

spherically symmetrical charge distribution, the average sur-

face ionic polarization charge is zero.

In the following calculations we will pay special attention
to these quantities: total polaron enefgygiven by Eq.(71),
and contributions to it from the electron-bulk-phonon inter-
action in media 1 and £{Y andE{4, which can be cast in
the following form:

W [4eRN]?( 1 1
e R P
1[ (7 sinnx) (ZRX ’
» 1 dx S|n2 s~ e—27RX/7T 73
nzl nz{fo X 7 "~
E@_ [4emNsi?((R)e*™R]? (1 1
Lo~ R,—R @ 8_20
. _ 2
3 L [ TR a7
Kon kgn ' |

where ko,=7n/(R,—R), n=1,2,..., is thesolution of

Egs.(44) and (45).

CdSe quantum dots. As was noted in Ref. 24, most of the
necessary parameters are not very well known for ZnSe,
CdSe, and their ternary alloys. Various theoretical studies use
different values of these parameters. In this work we use the
values of the material parameters adopted from Refs. 10,25
for ZnSe and CdSesee Table ) The parameters for
Zn,_,Cd,Se are obtained by linear interpolation from the
corresponding values for ZnSe and CdSe. For bandgap mis-
match we use the simple relatiohE,=92M(meV) for
Zn,_,Cd,Se/ZnSe systems assuming that this approximation
may have an effect only on quantitative properties, but not
on qualitative conclusions. The value of the conduction band
offsetV, is assumed to be 80% afE,.**

In Fig. 1 we present the total polaron energy as a function
of the QD radius. It is seen that all these energies approach
the same negative value in the limit of large radius. Eventu-
ally the energy becomes negative in the limit of the large QD
due to the fact that the electron-phonon interaction lowers
the conduction band edge. For small values of the dot’s ra-
dius these energies are smaller than the energy calculated for
the QD with infinite barriers in the interface since the elec-

Since we assume that the outer medium is infinitely largdron can spread out through the barrier, and when the radius
(R,—), we can assert that the separation between the ads close toR. the energies approach the values/gffor the

jacent values 0k, is infinitely small and thus replace the
summation ovekg, in Eq. (74) by a one-dimensional inte-

gral overk which represents the transition from the discretePhonon coupling energ¥, o given by the sume

particular material.
In the next figure(Fig. 2) we present the total electron-
B+eQ

phonon modes to the continuum spectrum of phonons. Théor the Zn_,Cd,Se/ZnSe QD system. The dependence of
resulting expression does not depend on the particular vali@e electron-phonon interaction energy calculated for the

of radiusR, and can be rewritten as follows:

1

E{3=—[4en®Nsir?({R)e?""]?
€20

|

o 2
dk 2’7re27f} . (75

X —_
fo k2
The energy of the bound polaron and electron-phonon
interaction energie€73),(75) can then be found by minimiz-

ing numerically the functionalE[ ] with respect to the pa-
rametery.

fRz sink(r—R)]
dr ———e
R

r

B. Electron-phonon coupling

Numerical calculations have been carried out for
Zn;_,Cd,Se/ZnSe QD systems with different valuesxaind

case of perfect electron confinemely(- =) is also shown

500 | .
Cd,Zn, ,Se/ZnSe
400 - —a—x=1 B
=~ —+—x=0.5
g 300 | —v—x=0.1 b
—
200 | b
100 b
0 1 Iy p i & -
0 50 100 150 200
Radius (&)
FIG. 1. The dependence of the total polaron endeggn the

for CuCl quantum dots embedded in NaCl. We start withradius of the quantum dot.
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wogl x=0.1 . ur 60 —+— Infinite barrier .
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10} —=—x=1 . -80 1
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FIG. 2. The electron-phonon interaction enekgy as a func-
tion of the quantum dot’s radius for the ZnCd,Se/ZnSe system.

FIG. 4. The electron-phonon interaction eneigy as a func-
tion of the quantum dot’s radius for the CuCl/NaCl system.

(curve 4. Itis seen that for large values of the dot's radius allvalue of E{Y is much smaller thafE(3). As the radius in-
curves obtained for the various values of Zn concentratioReases the quantitg(3 exponentially quickly approaches
approach the same value as calculated for the limiting case gy since the energy level becomes significantly below the
the infinitely deep potential well. However, their behavior for jnterface barrier so that the electron is localized in the QD.
smaller radii is rather different. When the radius decreaseSyhen the interaction with internal QD phonons becomes
the magnitude of the interaction energy first increases, agominant.

obtained earlier for the polaron confined perfectly in the 1o demonstrate the behavior of the electron-phonon inter-
QD:™ for small values oR, E, o> 1/R since the radius of the 4ction in the limit of a very large confinement potential, we
dot now becomes the characteristic distance instead of thgaye also performed calculations for a CuCl quantum dot
polaron radius in the bulk’ When the radius decreases fur- empedded in NaCl matrix. The parameters for this system
ther, the energy begins to deviate from the limitinR de-  gre taken from Refs. 10,11,26 and also listed in Table 1. For
pendence due to the fact that the electron now can be presafe conduction band offset we have assumed that it is 50% of
in the barrier as well, effectively increasing its localization AE,. From the dependencies shown in Fig. 4, it is seen that
radius. Note also that the smaller the valuexdahe smaller  for most values of the QD radius the value of the electron-
the interaction energy for all values Bf When the radius of  yhonon interaction energy coincides with the limiting value
the dot approaches the critical valiR (the ground state gptained for perfect electron confinement, which is to be
level is close to the conduction band edge of the surroundlngxpected since the value W, here is 2.5 eV. Only for very
materia) the electron-phonon interaction energy reaches itgmaj| radii (R<10 A), it deviates sharply from that curve.
limiting value appropriate for the situation when the greatestriys it can be concluded that for this situation the model
part of the electronic density is in ZnSe. assuming an infinite value of the potential barrier on the

In this situation the greatest contribution to the total valu€jnterface produces reasonable results for almost all values of
of the electron-phonon interaction comes from interaction ofhe QD ragdii.

the electron with phonons in the surrounding ZnSe. This is
clearly seen in Fig. 3 where we plotted separately the contri-
butions from the internal LO phonon&fl) and external
phonons E{4) for x=0.1. We see that for small radii the

IV. CONCLUDING REMARKS

In the present work we presented the tiich Hamil-
tonian describing the electron-phonon interaction in spheri-
cal quantum dots. Such effects as the presence of a surround-
ing polar material in which the QD is embedded and the
finite value of the band gap offset on the dot’s interface are
taken into account. Interactions with both bulk LO and SO
phonons were also considered. This Hamiltonian was then
§ applied to a study of the polaron confined in the quantum
dot. The adiabatic variational method was used to treat the
: electron-phonon interaction. Generally speaking, this method
gives valid results only for small quantum dots when effects
. of the quantum confinement predominate. It is in this range
of QD radii that the most significant differences between the
predictions of this Hamiltonian and the results obtained from
the implementation of the model with perfect electron con-

FIG. 3. The dependence of the interaction energy of the electrofinement*® were found. As the radius of the dot decreases
with internal and external LO phonons on the dot’s radius. the magnitude of the electron-phonon interaction energy first

Cd,Zn, Se/ZnSe 4
x=0.1

—a— nternal LO

—a— External LO

EM o E® o (mev)
o)
[0+
T

50 100
Radius (A )

150 200
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increases, passes through a maximum, and then gradually However, in order to make a quantitative comparison be-
decreases to the value appropriate to the situation where th@een the predictions of this model and available experimen-
electron is weakly localized inside the dot. In this region thetal data, the all-coupling variational scheme should be uti-
contribution from the interaction of the electron with lized to treat the electron-phonon interaction. This technique
phonons in the surrounding material, not considered in thevill allow us to obtain the correct values of the electron-
previous study? gives a significant contribution to the total phonon coupling in both weakly coupled systems such as
electron-phonon coupling energy. As the height of the inter-GaAs/AlCaAs QD’s and intermediate coupled materials
face barrier decreases, the absolute value of the electromhere most of the compounds belong. The Hamiltonian de-
phonon interaction energy also decreases. These results indived here can also be quite easily extended for other inter-
cate that the dependence of the electron-phonon interacticsting problems such as a polaron interacting with an impu-
on the radius of the dot is much smaller than can be prerity and confined in the QD(bound polaron problem
dicted from the simplified model with infinite value of the confined polaron exciton problem, and so on.

band edge offset. The Hamiltonian obtained here should be
useful to compare the predicted values of the electron-
phonon coupling with experimentally observed values; it is
known that the existing experimental results differ from each One of the author¢D.V.M.) also acknowledges financial
other significantly(see, e.g., Ref. 27, and references therein support from the Sherman Fairchild Center.
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