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Chern-Simons matrix model: Coherent states and relation to Laughlin wave functions
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Using a coherent state representation we derive many-body probability distributions and wave functions for
the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We
analyze two different coherent state representations, corresponding to different choices for electron coordinate
bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin
ones. There is agreement on the long distance behavior, but the short distance behavior is different.
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I. INTRODUCTION havior similar to the corresponding Laughlin one, but quite a
different short distance behavior.

Recently an interesting connection between the quantum This paper is organized as follows. In Sec. Il we give a
Hall effect (QHE) and noncommutative field theory ap- brief discussion of fermions in the lowest Landau level and
peared. In particular Susskind proposed in Ref. 1 that théhe Laughlin wave functions. In Sec. Il we briefly review
Laughlin states at filling fractione=1/(2p+1) for a sys- the Chern-Simons finite matrix model proposed by Poly-
tem of an infinite number of electrons confined in the lowestchronakos. In Sec. IV we present two different approaches
Landau levellLLL) can be described by a noncommutativetowards a coherent state representation of the matrix states.
U(1) Chern-Simons theory. The fields of this theory are infi-In Sec. V we comment on our results.
nite matrices that act on an infinite Hilbert space, appropriate
to account for an infinite number of electrons. In the same ||, FERMIONS IN THE LOWEST LANDAU LEVEL
spirit, Polychronakos later proposed a finite matrix mdds|, ) i i
regularized version of this noncommutative Chern-Simons, 't IS Well known by now that the two-dimensional con-
theory in an effort to describe finite systems of limited spatialli9uration space of charged particles in the LLL is equivalent
extent with a finite number of electrons. This matrix model!© & one-dimensional phase space and therefore

. ’7 - - _
was shown to reproduce the basic features of the quantur'?loncpmm“tat“’é' To see this let us consider a charged par
Hall droplets and their corresponding excitatiynsuch as ticle in the presence of a strong uniform magnetic field. The

boundary and quasihole excitations at filing fraction L@drangian is given by
=1/(2p+1).

In a subsequent p_ap%HeIIerman and Raamsdonk, trying L= T;(’zhg\, ;Z—V(xl,xz), 1)
to make the connection between the quantum Hall effect and 2
the noncommutative matrix model more transparent, ana- ) ) o )
lyzed the states of the theory and concluded that the states ¥nereV(xy,x,) is an abritrary confining potential. For con-
the matrix model are in one-to-one correspondence with th¥enience we shall consider to be a harmonic oscillator
Laughlin states describing the QHE at filling fraction  Potential of the form
=1/2p+1). Similar arguments were put forward for the ex-
cited states. Although this is an interesting observation, the V= 1 >

) . . = —wX*°. 2
existence of a one-to-one mapping between states is not 2
enough to prove the equivalence of the two theories.

Since the mapping in Ref. 3 is somewhat formal at thelhe energy eigestates of this system lie on Landau levels and
level of states, in this paper we try to go one step further an@t the limitm—0 (or equivalently strond3) the system is
compare the two theories at the level of the wave functionsconfined to the LLL. In this case the kinetic energy term in
This requires a notion of coordinates, which is introduced vid1) is negligible. We further use the radial gaugg
a coherent state representation for the states of the matrix zBe;;X;. The canonical momentum of; is then p;
model. We will present two different ways of arriving at a =BX, and as a result
coherent state representation, which are not equivalent in
general. In the special case &1 (#=0), it turns out that
both coherent state representations of the corresponding ma- [X1,%2]=
trix model reproduce the=1 Laughlin wave function. For
v=1/(2p+ 1) though, the two ways produce different prob- In the absence of a confining potential all the eigenstates at
ability distributions and neither agrees with the Laughlineach Landau level are degenerate. The confining potential
one. The probability distributions emerging from the differ- lifts the degeneracy. In the lowest Landau level the Hamil-
ent coherent state representations have a long distance Henian is

i
=5 (3)

P1
Xl,E
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w B .
H=Z(a'a+3), (4) s:f dt5 Tr{ean(Xa+i[Aog, Xal)Xp+20A0— 0XZ}
wherea=+/B/2(Xx;+iX5). The single-particle eigenstates are AR —AgV), 9
1 whereX,, a=1,2 areNXN matrices andV is a complex
Iny=——a'™0). (5) N-vector that transforms in the fundamental of the gauge
Vnt group UN),
The corresponding normalized wave functions are X,—UX,U Y v—Uw. (10
B _ 5 The Aq equation of motion implies the constraint
Vo= 5o 2 (6)
mn: =—iB[Xy,X,]+ PP -Bg=0 (11)

where z= {B/2(x; +iX;). These can be thought of as the The trace of this equation gives
coherent state representation of E5).

Consider now the case dbffermions. Since each state can Vi =NBS. (12
be occupied by at most one fermion, the presence of th
confining potential selects a unique ground state which is th
minimum angular momentum state. This is the 1 ground
state wave function

is interesting to note that in the absenceWs, the pa-
rameteré has to be zero. In this case the acti®nis that of
a one-dimensional Hermitian matrix model in a harmonic
potential, which is known to be equivalent td one-
- 1 N dimensional fermions in a confining potentfal.
xpl()Zl, . ,)ZN):H (Zi—Zj)EXP( __E |Zi|2)- (7) Upon quantization the matrix elements ¥f, and the
i<] 231 components of become operators, obeying the following

This corresponds to an incompressible circular droplet Con(_:ommuta'uon relations:

figuration of uniform density =B/2. This incompressibil- [V, wi]=5

ity is crucial in explaining the experimentally observed gap I R

for v=1. The existence of a similar gap is less obvious in the i

case of noninteger filling fractions, where the LLL is only [(X1)ij ,(X2)]= §5i|5jk- (13
partially filled. In this case, it is believed that the repulsive
Coulomb interactions among electrons are important in gen-

. ; i The Hamiltonian is
erating strong correlations which eventually produce a new

ground state with a gap. Laughlin proposed that such a state, N2
in the casev=1/(2p+ 1), is described by a wave functidn H =w(7+2 AiTjAji ) (14)
N N . .
- - - — 1 where A= {B/2(X;+iX,). The system containsl(N+ 1)
— 2p+1 2
Wopra(Xy, - ’XN)_LIJ. (z—z)*" exp( - Eizl 2] ) oscillators coupled by the constraifitl). As explained in

(8) Ref. 2, upon quantization, the operatérbecomes the gen-

_ . erator of unitary rotations of botK, and¥. The trace part
Using the connection to the one-component, two-(12) demands thanB#, being the number operator fdr’s,
dimensional plasma, Laughlin showed that this correspondg quantized to an integer. The traceless part of the constraint
to an incompressible droplet of densjiy=B/[27(2p+1)].  demands the physical states to be singlets ofN§U(

Although not an exact eigenfunction, E§) is quite close to Since theA! transform in the adjoint and th#] trans-
the true solution, at least numerically. This equation vanishegm in the fundamental representation of $U( a purely
quite rapidly if any two particles approach each other, andy oup theoretical argument implies that a physical state being
this helps minimize the expectation value of the Coulomby singlet has to contaiNn ¥1's, wheren is an integer. This

energy. lts success lies very much on the short distance bgsags 1o the quantization &6=k. We shall see later that in

havior. , identifying this matrix model with a fermionic systethas
Our aim is to develop an appropriate coherent state repy, pe an even integer.

resentation for the states of the corresponding matrix model Explicit expressions for the states were written down in

and to compare them directly to the Laughlin wave func-pet 3 (Essentially equivalent results were also obtained by

tions. Before we explain this in more detail, we shall give apolychronako$) The ground state, being an SN singlet
brief review of the matrix Chern-Simons model proposed by,ith the lowest number oA'’s. is c;f the form

Polychronakos.
|‘P>=[6|1 ..... iN \I,i’rl(\I,TAT)iz_”(\I,TATN—l)iN]k|O>’
IIl. CHERN-SIMONS MATRIX MODEL (15

The action describing the matrix Chern-Simons model isvhere|0) is annihilated byA’s and ¥’s, while the excited
given by states can be written as

245316-2
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N—1 N
|‘I’ex9=i1;[l (TrATS (2p+ 1|2I0+1>:J Hl dZ;dZdéde (2p+1]Z,4)
X[er i Wl (PTAT, L (PTANY), 1K 0). X(Z,42p+1). (19

(16) Before we talk about the general case, it is interesting to
demonstrate how the coherent state representation works for
p=0. The scalar produdfl9) can be written as

IV. COHERENT STATE REPRESENTATIONS

N
We now present a coherent state representation for the <1|1>:f 1T dZideﬁe*TrZTZf dodee %%, (20
matrix stateg15) and(16). In doing this one has to make a il
choice of coordinates that eventually parametrize the phassince theg integration is trivial, Eq(20) defines essentially
space of the underlying one-dimensional system. a complex random matrix model with probability distribution
From the matrix model point of view, a natural choice e~ T12'Z A detailed analysis of this model has been given in
would be to diagonalizé\ and interpret its eigenvalues as Ref 10'
phase space coordinates of particles. We refer to this a& the ~ : "
representation. This is essentially a generalized complex rang
dom matrix model.
Another choice would be to diagonalizg and interpret
its eigenvalues as one-dimensional coordinates. This iXthe Z=XEX1, (21)
representation. In this, the elements Xf are canonically
conjugate toX;. Once theX representation of the matrix \ynereE is diagonal withE;; =z . Integration over the non-

states(15) and (16) is derived, we can then use the Usualdiagonal part o in Eq. (20) gives the following resuft®
coherent state representation to express the wave functions in

terms of phase space coordinates. N
Clearly in the two cases, th® and X representations, the — 2
notion of phase space coordinates is different; as a result we <1|1>:f .Hl dzdze” L[J z—z/*, (22)
derive different expressions for the corresponding wave
functions. Below we present in detail the two representationgp to normalization factors. One can immediatelly recognize
and compare the results to the Laughlin wave functions.  the integrand of Eq(22) as the probability distribution cor-
responding to thev=1 Laughlin wave function. In theé\

Z is a complex matrix that can be diagonalized(asn-
agonalizable matrices form a set of measure jzero

A. A representation representation we have identified the phase space coordinates
We define the coherent std, ¢) such that (()I7t)he fermions with the eigenvalues of the matzixn Eq.
We would like now to extend this approach in the case
AndlZ,Y=Z11Z,b), p# 0 in the presence of the extia degrees of freedom. This
can be viewed as a generalized complex random matrix
VolZ, )= bnlZ, ), (17 model.(An attempt for a random matrix formulation of the

Laughlin theory of the fractional QHE has been proposed by
Callaway'!) As shown in Ref. 10 any complex reguldr
X N matrix X can be expressed in one and only one way as

X=UYV, (23)

2p+1)=[er N W] (WTAT); - (WTATND), 177]0) . . o -
1 2 N where U is a unitary matrix,Y is a triangular matrix with
(18) Y;j=0 fori>j andY;;=1, andV is a diagonal matrix with
and reexpress its scalar product in terms of the coherent stateal positive diagonal elements. Using this particular param-
wave functions using the completeness relation etrization we find

where Z is a complexNXN matrix and ¢ is a complex
vector. Let us consider the matrix ground state of the form

(2p+1]Z,¢)y=[€1 iN¢i1(Z¢)i2(ZZ¢)i2' o (Z’\Fle’)iN]ZP(fTrZTZ/ZE%I2

:[Gil ..... iNd)il(UYEvlufld))iz(UYEZY*lU7l¢)i2..'(UYEN*lYflu71¢)iN]2pefTrZTZIZefg¢/2
N
— T _
=Lde(UY)IPL] (zi—z)®]] gre Tre e, (24
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whereé=(UY) 1.
Further using Eqs21) and(23) we have

Tr Z'Z=Tr(EHEH™ 1),
whereH=Y'Y and deH=1 (detY=1).

PHYSICAL REVIEW B 64 245316

(2p+1]2p+1)

_ . J J N
(25 :f [l azdall 2=z "L} (__)

. . . S . _T(E} -1y, -1
In performing the integration ovep's it is convenient to xf 11 dHye TERER D IH 1) o (30)

change variables fromp to ¢. Since U is unitary and

detY=1,

N N
|H dedpe” ¢’¢:|]"[ dEdgeeHe
=1 =1

Further following Ref. 10, one can show that

EdM(Z,H)L[j zi—z)*

(26)

1#]

We are now left with theH integration
|:f dH”efTr(EHEH’l)eJiH’lJ_ 31
Lo @

To do this we follow an iterative procedure as in Ref. 10. At
each step of the iteration we integrate over the variables of
the last row and column dfl and thus decrease by one the
size of the matrix. In the absence of the source terms, the
structure of the reduced matrix remains the same and this

27 produces a simple recursion formula, which eventually leads

to Eqg.(22). This is not quite the case when there are source

up to normalization factors. Putting everything together wel€rms; as a result there is no simple recursion formula.

find

(2p+1|2p+1)

=f du(zH)]] |z—7|** e  TEHE Ddgdg,
i<j

N
x[1 (&&)2e e,
i=1

(28)

The iteration procedure is defined as follows: Let
H’, E’, etc., be the relevant matrices of orderand let
H, E, be those obtained fromd’, E’ by removing the last
row and last column. Greeftatin) indices run from 1 tan
(n—1). LetA;B be the cofactor oH;ﬁ in H" andA;; the
cofactor ofHj; in H. Let g;=H/,. Because ded’=detH
=1, the following relations are tru¥:

_ -1 -1
wp=H o Ay=Hj",

Integration overé andH would produce a quantity that de-

pends only org; andz; . It is clear from the above expression Hpn=1+ E o gjlji,
that in the absence of the¢integration, the integration over b

the nondiagonal elements @fwould produce a probability

distribution similar to the corresponding Laughlin one. Al = —E A
Since, howeveré's couple toH andH in turn couples tg; in ] g

andz;, this integration will not necessarily produce a prob-

ability distribution that agrees with the Laughlin one. The

integration overt andH is much more involved now and it A =HA =2 gr oAl

is hard to extract a closed expression for arbitrisiryHow- Lk

ever, as we shall see one can find general features of the

probability distribution that do not agree with what one A=A A= AjA; . (32

would expect from the Laughlin distribution.

We first perform thet integration by introducing a source Let

term as follows:

P =Tr(E'H'E'H' 1 -JH ¥=a)-JH Y.

N
_ _ — (33
fdfidfiﬂ (§&)%Pe e
i=1 Using Eq.(32) we find
Nlaoa |\ e Tiu i
-1 (Eﬁ) J aadge e, D= 202+ 03y IIH (gl HHE-20)
AP
N[ a2 XH(E-2zy)H *g)—(g/H "JIH"*g)
=TI | = =] e™ Y,5. (29 * (1) T4 Jy(TH 1
=1\ 4 93, ’ +97 (H™3) Iyt In(IH D)9, (34)

Equation(28) can now be written as

Integration overg’s produces the following result:

245316-4
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2 g 5
I~J [I  dHje /= e Ph-1ednin
I<i#)=sN-1

exp{
X

> J_ixilej)JNTN

PHYSICAL REVIEW B 64 245316

e 1alPe 12 giid

I~ el232/(1-M), 42

|z1-2,/° 1-M

whereM =1-J,J,/|z,—2,|%. The functional diferentiation
with respect tal’s, Eq. (29), gives

(39

detXij = 3,J;) 0 a9\ o a\2
where (ﬁa—jl) (HE) 'la3-o
Xij=(H HE-zy)H(E—2zy)H ;= 33, =X] - 3J;. _Zeflzllzef\b\z 9 9 \2
(36) 1z1-2,1* |31 63,

The expression35) can be further simplified using the fol-

lowing relations:

el ‘

X —
(1_~]1~31/|21_22|2)3

‘Jl,J_lzo

Ji(X0= 3 1= 3 (X0) 1+ (XO) TRIAXO) )y
EN — *|21|2 *\22\2
Ji(X%)+ 1, e e 24 48
- (IJj*lJ ' (37 |z at |21_22|2+ |21—2,|"]"
1-3;(X%);; 79,
Furthermore (43
_ Using EQgs.(28), (29), and(43) we find
de(xo_Jj):eTrln(xo—JJ)
— — 2_ 2
:eTr{|nx°+|n[1—(x0)‘1ﬁ]} <3|3>”J dz;dzdz,dze ™=zl |21_22|6
=de(X°)e'”T(XO)7lJ 12
x| 1+ + . 44
121-2,°  |z1— 2" “9

=Il lz-zu> X 3(X9m,
i<N 1<sI,m=sN-1

The first term corresponds to the probability distribution for
the »=1/3 ground state Laughlin wave function. There are

(39 extra terms, though, that are dominant at short distances as

where we have used the fact that

detx®=defH Y E—-zyH(E—-z9H =] |z—2zy/?
i<N

(39

Substituting Egs(37) and (38) in Eqg. (35) we find

~lzyl? —®3_ _
|~e—J dHi-e " 1eJNJN/(l—M)7
1=izj=N-1  (1-M)

, |zi—zy?
i<N

(40)

M= (X919,

J, J

— -1 J -0 T
=2 Hj == (41 Iv-wdn-n | s

~1(zi—zy) (Zj—zN)'

1=<i

Already this result can be used to evaluate EB) for the
simple case of a 2 2 matrix model. Although this is a rather J;

trivial case, it is worth presenting it, since it highlights
erties of the probability distribution that are not in agre
with the Laughlin one.

To simplify the calculation let us further choope- 1. For + H-1

z,—72,. In this simple case we find that the distribution

emerging from the matrix model has a long distance behav-

ior similar to the corresponding Laughlin one, but its short
. distance behavior is quite different. We shall now argue that
this behavior prevails for ani.

It is clear from Eq.(40) that the first step of the iteration
produces an expression that is not quite similar to the origi-
nal one ifJ’s# 0. As a result the integration ovef;, at each
subsequent step of the iteration becomes quite involved. Al-
though it is very hard to derive an exact expression fas a
function ofz’s, it is quite straightforward to explore its de-
pendence onzy_;—zy|. This is sufficient, for example, to
get information about the short and long distance behavior of
the probability distribution agzy_;—2zy/<1 and |zy_;
—zy|>1, respectively.

The dependence dfon |zy_;,—zy\| comes first from the
overall factor 111, _y|z —zy|? and second from the factor
M; see Eqs(40) and(41). ExpandingM we find

J.
-~ Huyly =——
M-z

ezt (Znei—zw) j<N-1

1 In-1

; + =

g:ggm N1 (zi—z) "Nz z)
Ji Jj

_ (45)

the N=2 case after the first iteration we find from E¢0) w=ifEn-2 (Zi—zn) Y (zj-zy)

245316-5
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It is clear now that in order to explicity demonstrate the
|zy—2zn- 1| dependence we need to evaluate the functional

derivatives with respect tdy andJy_4, as in Eq.(30). We
Jd d

find
2
E—
H (&JI (9\]|) |J’

_ex;m( —Ei |z;|?

J=0

B B*
A+Z 5 + = —
2 N-17ZN  Zy_1—2Z
H |zi— z\| N-1OoN
I<N
C D
+ 7+ 7
|zZny-1— 20| (Zn-1—2n)
D* N 1
— — 2
(ZN_]__ZN)Z |ZN*1_ZN|
E E F
X =+ 7|,
IN-172IN Zy_1— 2N |zn-1— 2l
(46)

whereA, B, C, D, E, andF are in general functions of
Z’'s containing factors of the form z(—z,), (z
—2Zy-1), (z—%), and their complex conjugates, where
<N-—2. Substituting this expression in EO0), we find a
probability distribution that is dominated by a term propor-
tional to|zy—zy_1|® when|zy—zy_4|>1, similar to thev
=1/3 Laughlin distribution. However, whejzy—zy_ 1| <1

the matrix distribution is dominated by a term proportional to

|zy—zn—1]%. The long and short distance behavior for ahy
is the same as the one found in the simNle2 case, Eg.
(44).

It is straightforward now to see that similar results can be

derived for anyp+ 0. In particular, the long distance behav-
ior of the probability distribution is that of the=1/(2p

+1) Laughlin distribution while the short distance behavior

is that of av=1 Laughlin distribution.

Further the probability distribution cannot be factorized as

v*¥, whereV is the corresponding many-particle wave
function, which is both antisymmetric and holomorphic in

Z's. This indicates that the identification of the eigenvalues of

the matrixZ with the actual holomorphic coordinates of fer-
mions may not be appropriate.

B. X representation

Going to an X representation first, we derive one-

dimensional fermionic wave functions, where the coordi-
nates have been identified with the eigenvalues of the matrix

PHYSICAL REVIEW B 64 245316

(2p+1|X, $)=[ €1 ng (Ad),,

X (ANT1g); 170X, ¢),  (48)
where
(0|X, )= e—Tr(BXZ/Z)e—$¢/2’
Vs

Since Eq.(48) is completely antisymmetric in thig indices,
the differential operato#/9X;; produces a nonzero contribu-
tion only if it acts on the ground state wave function
(0|X, #). We then find

(2p+1]X, )= (V2B)PNN "D el1 - ingy (Xgp);
X .- (XN"1gp), ]2pe—Tr(Bx2/2)e—$¢/2_
(50

X being a Hermitian matrix, it can be diagonalized by a
unitary transformation

X=UxU"1,  x;=x8;. (51)

Using this in Eq.(50) we find
(2p+1|X,4)
=(V2B)PNN DLl ingy (UXU ),
.. -(UXN_1U_1¢)i ]2pe—Tr(Bx2/2)e—$¢/2
N

= (y/2B)PNN-1)[ detU]?P
N —
XH (Xi_xj)zpl‘[ (U—1¢)i2pe—Tr(BX2/2)e—¢¢/2.
i<] i=1

(52

Using Eg. (52 we can express the scalar product of the
|2p+1) state as

(2p+1[2p+1)
- [ 1, 10020+ 11X 6)0x dl2p+ 1)
~ f [ 11T (xi—x)) e ™ dgyd s
i<j

<]l [(U™1g)(pU)]2Pe %2, (53)

X1, then transform the wave functions to the coherent state

representation. We define the sti¥e ) such that

Xal X, 0)=X[X, ), WX, $)=|X,8).

Using Eq.(47) we find

(47)

Since U is a unitary matrix the integration ove’s com-
pletely decouple§unlike the case in Eq28)]. Further®

[dX;1=dx [T (x—x))2[dU], (54)
i<j

245316-6
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where[dU] is the Haar measure. Integration over the non-The coherent state representation of the many-body Calogero
diagonal elements of gives wavefunction is thus

(2p+1|2p+1)

~f dx [T (xi—xj)“p“exp(—Bz xlz)

i<j

. 'ZN|\P>~eXp( _Ei |Zi|2/2) ex;{% Z ;72)

(55) X1 (x—xj%*? (60)
1< ey
This is the probability distribution for the one-dimensional %= 428
Calogero ground state wave function For p=0, Eq. (60) gives they=1 Laughlin state. Fop
#0 the coherent representation of the Calogero state has a
H (xi—xj)z‘”lexr{ — BE xi2/2). long distance behavior similar to the=1/(2p+1) Laugh-
i< [ lin state, but a different short distance behavior. This connec-

0tion between the one-dimensional Calogero wave function

This is not surprising; it was already indicated in Refs. 2 an : ;
b J y éamd the Laughlin states has already been noted in Ref. 13.

12 that the Chern-Simons matrix model is equivalent to th
Calogero model.

Let us now use a coherent state representation for the
Calogero wave function V. SUMMARY AND DISCUSSION

In an attempt to clarify the exact correspondence between
the Chern-Simons matrix model introduced by Polychrona-
(xq, . x| ®)=]1 (xi—xj)ZP“exp( -BY, xi2/2). kos and the fractional QHE at filling fraction=1/m, as
=] : described by Laughlin wave functions, we have derived the
The coherent state representation of any wave functiofatrix model wave functions using a coherent state represen-
(x|¥) can be written as tation. We have presented two different coherent state repre-
sentations, each one implementing a different choice for the
phase space coordinates of the underlying one-dimensional
<Z|‘1’>:f dx(zZ|x)(x| V), (56)  fermionic system.

In the A representation, the eigenvalues of the ma#ix
where 7|z)=z|z) and z=\BI2(x+iy), [X, y]=i/B. are identified with the phase space coordinate$ the fer-
Using mions, while in theX representation, the eigenvalues of the

B matrix X; are identified with the one-dimensional coordi-
(z|x) = e~ B¥I2g 2B2g~ 2o~ (212, (579  natesx of the fermions.
) Both choices give identical results whpr= 0, or equiva-
we find lently =0 in Eq. (9). The corresponding wave function is
identical to thev=1 Laughlin wave function.
(z|\1f):f dx efB(xfzv‘?_B)zf(X), (58) For p#0 the two represer_ltations give differe_n_t result_s.
Although the explicit expressions for the probability distri-
L B B2 . butions are different, they share some common features.
where f(x) is given by(x|¥)=f(x)e - In evaluating  They poth have the same long and short distance behavior.

(58) we expandf(x) aroundz/2B. Comparing them to the corresponding 1/(2p+1) Laugh-

. lin distributions, we find that it is only the long distance
2 Ry BEN2 behavior that is in agreement. The short distance behavior
(Zw)y=e "1 /220 f dx e~ BUZ28) does not agree with the Laughlin one.

B A noticeable difference between the two representations is
that theX representation leads to a holomorphic wave func-
tion with antisymmetric properties, while this is not possible

x=2/\2B for the A representation.

As we mentioned earlier there is an ambiguity in intro-

1 z | ot
X X—
(2k)! JoB/|  ox*

I k+£ ducing electron coordinates in the matrix model. This has to

> 2 (92kf‘ do with the choice of coherent state representation. In this
—el7%2 15 ok paper we analyzed two particular coherent state representa-

k=0 (2K)!B X ‘X:;,\@ tions, which seem to be the natural choices from the matrix

model point of view. In both cases we find that the emerging
wave functions do not quite agree with the Laughlin one.
_ Although this by itself does not prove that the original matrix
x=2/\2B model is not equivalent to the Laughlin theory for the
(59 =1/m fractional QHE, it makes the precise correspondence

a
- \ﬁe|z2/2
B

exp — — | f(x
4B 9x? (x)
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between the two models less transparent. One can argue that ACKNOWLEDGMENTS
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