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Chern-Simons matrix model: Coherent states and relation to Laughlin wave functions
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Using a coherent state representation we derive many-body probability distributions and wave functions for
the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We
analyze two different coherent state representations, corresponding to different choices for electron coordinate
bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin
ones. There is agreement on the long distance behavior, but the short distance behavior is different.
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I. INTRODUCTION

Recently an interesting connection between the quan
Hall effect ~QHE! and noncommutative field theory ap
peared. In particular Susskind proposed in Ref. 1 that
Laughlin states at filling fractionsn51/(2p11) for a sys-
tem of an infinite number of electrons confined in the low
Landau level~LLL ! can be described by a noncommutati
U~1! Chern-Simons theory. The fields of this theory are in
nite matrices that act on an infinite Hilbert space, appropr
to account for an infinite number of electrons. In the sa
spirit, Polychronakos later proposed a finite matrix model2 a
regularized version of this noncommutative Chern-Simo
theory in an effort to describe finite systems of limited spa
extent with a finite number of electrons. This matrix mod
was shown to reproduce the basic features of the quan
Hall droplets and their corresponding excitations5, such as
boundary and quasihole excitations at filling fractionn
51/(2p11).

In a subsequent paper,3 Hellerman and Raamsdonk, tryin
to make the connection between the quantum Hall effect
the noncommutative matrix model more transparent, a
lyzed the states of the theory and concluded that the state
the matrix model are in one-to-one correspondence with
Laughlin states describing the QHE at filling fractionn
51/2p11). Similar arguments were put forward for the e
cited states. Although this is an interesting observation,
existence of a one-to-one mapping between states is
enough to prove the equivalence of the two theories.

Since the mapping in Ref. 3 is somewhat formal at
level of states, in this paper we try to go one step further
compare the two theories at the level of the wave functio
This requires a notion of coordinates, which is introduced
a coherent state representation for the states of the m
model. We will present two different ways of arriving at
coherent state representation, which are not equivalen
general. In the special case ofn51 (u50), it turns out that
both coherent state representations of the corresponding
trix model reproduce then51 Laughlin wave function. For
n51/(2p11) though, the two ways produce different pro
ability distributions and neither agrees with the Laugh
one. The probability distributions emerging from the diffe
ent coherent state representations have a long distance
0163-1829/2001/64~24!/245316~8!/$20.00 64 2453
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havior similar to the corresponding Laughlin one, but quite
different short distance behavior.

This paper is organized as follows. In Sec. II we give
brief discussion of fermions in the lowest Landau level a
the Laughlin wave functions. In Sec. III we briefly revie
the Chern-Simons finite matrix model proposed by Po
chronakos. In Sec. IV we present two different approac
towards a coherent state representation of the matrix sta
In Sec. V we comment on our results.

II. FERMIONS IN THE LOWEST LANDAU LEVEL

It is well known by now that the two-dimensional con
figuration space of charged particles in the LLL is equivale
to a one-dimensional phase space and there
noncommutative.6,7 To see this let us consider a charged p
ticle in the presence of a strong uniform magnetic field. T
Lagrangian is given by

L5
m

2
xẆ21AW •xẆ2V~x1 ,x2!, ~1!

whereV(x1 ,x2) is an abritrary confining potential. For con
venience we shall considerV to be a harmonic oscillato
potential of the form

V5
1

2
vxW2. ~2!

The energy eigestates of this system lie on Landau levels
at the limit m→0 ~or equivalently strongB) the system is
confined to the LLL. In this case the kinetic energy term
~1! is negligible. We further use the radial gaugeAi
5 1

2 Be i j xj . The canonical momentum ofx1 is then p1
5Bx2 and as a result

@x1 ,x2#5Fx1 ,
p1

B G5
i

B
. ~3!

In the absence of a confining potential all the eigenstate
each Landau level are degenerate. The confining pote
lifts the degeneracy. In the lowest Landau level the Ham
tonian is
©2001 The American Physical Society16-1
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H5
v

B
~a†a1 1

2 !, ~4!

wherea5AB/2(x11 ix2). The single-particle eigenstates a

un&5
1

An!
a†nu0&. ~5!

The corresponding normalized wave functions are

Cn5A B

2pn!
z̄ne2uzu2/2, ~6!

where z5AB/2(x11 ix2). These can be thought of as th
coherent state representation of Eq.~5!.

Consider now the case ofN fermions. Since each state ca
be occupied by at most one fermion, the presence of
confining potential selects a unique ground state which is
minimum angular momentum state. This is then51 ground
state wave function

C1~xW1 , . . . ,xWN!5)
i , j

~ z̄i2 z̄j !expS 2
1

2(i 51

N

uzi u2D . ~7!

This corresponds to an incompressible circular droplet c
figuration of uniform densityr5B/2p. This incompressibil-
ity is crucial in explaining the experimentally observed g
for n51. The existence of a similar gap is less obvious in
case of noninteger filling fractions, where the LLL is on
partially filled. In this case, it is believed that the repulsi
Coulomb interactions among electrons are important in g
erating strong correlations which eventually produce a n
ground state with a gap. Laughlin proposed that such a s
in the casen51/(2p11), is described by a wave function8

C2p11~xW1 , . . . ,xWN!5)
i , j

N

~ z̄i2 z̄j !
2p11expS 2

1

2(i 51

N

uzi u2D .

~8!

Using the connection to the one-component, tw
dimensional plasma, Laughlin showed that this correspo
to an incompressible droplet of densityr5B/@2p(2p11)#.
Although not an exact eigenfunction, Eq.~8! is quite close to
the true solution, at least numerically. This equation vanis
quite rapidly if any two particles approach each other, a
this helps minimize the expectation value of the Coulo
energy. Its success lies very much on the short distance
havior.

Our aim is to develop an appropriate coherent state
resentation for the states of the corresponding matrix mo
and to compare them directly to the Laughlin wave fun
tions. Before we explain this in more detail, we shall give
brief review of the matrix Chern-Simons model proposed
Polychronakos.

III. CHERN-SIMONS MATRIX MODEL

The action describing the matrix Chern-Simons mode
given by2
24531
e
e

-

e

n-
w
te,

-
ds

s
d
b
e-

p-
el
-

y

s

S5E dt
B

2
Tr$eab~Ẋa1 i @A0 , Xa# !Xb12uA02vXa

2%

1C†~ i Ċ2A0C!, ~9!

whereXa , a51,2 areN3N matrices andC is a complex
N-vector that transforms in the fundamental of the gau
group U~N!,

Xa→UXaU21, C→UC. ~10!

The A0 equation of motion implies the constraint

G[2 iB@X1 ,X2#1CC†2Bu50 ~11!

The trace of this equation gives

C†C5NBu. ~12!

It is interesting to note that in the absence ofC ’s, the pa-
rameteru has to be zero. In this case the action~9! is that of
a one-dimensional Hermitian matrix model in a harmon
potential, which is known to be equivalent toN one-
dimensional fermions in a confining potential.9

Upon quantization the matrix elements ofXa and the
components ofC become operators, obeying the followin
commutation relations:

@C i ,C j
†#5d i j ,

@~X1! i j ,~X2!kl#5
i

B
d i l d jk . ~13!

The Hamiltonian is

H5vS N2

2
1( Ai j

† Aji D , ~14!

where A5AB/2(X11 iX2). The system containsN(N11)
oscillators coupled by the constraint~11!. As explained in
Ref. 2, upon quantization, the operatorG becomes the gen
erator of unitary rotations of bothXa andC. The trace part
~12! demands thatNBu, being the number operator forC ’s,
is quantized to an integer. The traceless part of the constr
demands the physical states to be singlets of SU(N).

Since theAi j
† transform in the adjoint and theC i

† trans-
form in the fundamental representation of SU(N), a purely
group theoretical argument implies that a physical state be
a singlet has to containNn C†’s, wheren is an integer. This
leads to the quantization ofBu5k. We shall see later that in
identifying this matrix model with a fermionic system,k has
to be an even integer.

Explicit expressions for the states were written down
Ref. 3. ~Essentially equivalent results were also obtained
Polychronakos.4! The ground state, being an SU(N) singlet
with the lowest number ofA†’s, is of the form

uC&5@e i 1 , . . . ,i N C i 1
† ~C†A†! i 2

•••~C†A†N21! i N
#ku0&,

~15!

where u0& is annihilated byA’s and C ’s, while the excited
states can be written as
6-2
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uCexc&5 )
i 51

N21

~TrA†i !ci

3@e i 1 , . . . ,i N C i 1
† ~C†A†! i 2

•••~C†A†N21! i N
#ku0&.

~16!

IV. COHERENT STATE REPRESENTATIONS

We now present a coherent state representation for
matrix states~15! and ~16!. In doing this one has to make
choice of coordinates that eventually parametrize the ph
space of the underlying one-dimensional system.

From the matrix model point of view, a natural choic
would be to diagonalizeA and interpret its eigenvalues a
phase space coordinates of particles. We refer to this as tA
representation. This is essentially a generalized complex
dom matrix model.

Another choice would be to diagonalizeX1 and interpret
its eigenvalues as one-dimensional coordinates. This is thX
representation. In this, the elements ofX2 are canonically
conjugate toX1. Once theX representation of the matri
states~15! and ~16! is derived, we can then use the usu
coherent state representation to express the wave functio
terms of phase space coordinates.

Clearly in the two cases, theA andX representations, the
notion of phase space coordinates is different; as a resul
derive different expressions for the corresponding wa
functions. Below we present in detail the two representati
and compare the results to the Laughlin wave functions.

A. A representation

We define the coherent stateuZ,f& such that

AmnuZ,f&5ZmnuZ,f&,

CnuZ,f&5fnuZ,f&, ~17!

where Z is a complexN3N matrix and f is a complex
vector. Let us consider the matrix ground state of the for

u2p11&5@e i 1 , . . . ,i N C i 1
† ~C†A†! i 2

•••~C†A†N21! i N
#2pu0&

~18!

and reexpress its scalar product in terms of the coherent
wave functions using the completeness relation
24531
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^2p11u2p11&5E )
i , j ,l

N

dZi j dZi j* df ldf̄ l ^2p11uZ,f&

3^Z,fu2p11&. ~19!

Before we talk about the general case, it is interesting
demonstrate how the coherent state representation work
p50. The scalar product~19! can be written as

^1u1&5E )
i , j ,l

N

dZi j dZi j* e2Tr Z†ZE df ldf̄ le
2f̄f. ~20!

Since thef integration is trivial, Eq.~20! defines essentially
a complex random matrix model with probability distributio
e2Tr Z†Z. A detailed analysis of this model has been given
Ref. 10.

Z is a complex matrix that can be diagonalized as~non-
diagonalizable matrices form a set of measure zero!

Z5XEX21, ~21!

whereE is diagonal withEii 5zi . Integration over the non-
diagonal part ofZ in Eq. ~20! gives the following result,10

^1u1&5E )
i 51

N

dzidz̄ie
2uzi u

2

)
i , j

uzi2zj u2, ~22!

up to normalization factors. One can immediatelly recogn
the integrand of Eq.~22! as the probability distribution cor
responding to then51 Laughlin wave function. In theA
representation we have identified the phase space coordin
of the fermions with the eigenvalues of the matrixZ in Eq.
~17!.

We would like now to extend this approach in the ca
pÞ0 in the presence of the extraC degrees of freedom. This
can be viewed as a generalized complex random ma
model. ~An attempt for a random matrix formulation of th
Laughlin theory of the fractional QHE has been proposed
Callaway.11! As shown in Ref. 10 any complex regularN
3N matrix X can be expressed in one and only one way

X5UYV, ~23!

where U is a unitary matrix,Y is a triangular matrix with
Yi j 50 for i . j andYii 51, andV is a diagonal matrix with
real positive diagonal elements. Using this particular para
etrization we find
^2p11uZ,f&5@e i 1 , . . . ,i Nf i 1
~Zf! i 2

~Z2f! i 2
•••~ZN21f! i N

#2pe2Tr Z†Z/2e2f̄f/2

5@e i 1 , . . . ,i Nf i 1
~UYEY21U21f! i 2

~UYE2Y21U21f! i 2
•••~UYEN21Y21U21f! i N

#2pe2Tr Z†Z/2e2f̄f/2

5@det~UY!#2p)
i , j

~zi2zj !
2p)

i 51

N

j i
2pe2Tr Z†Z/2e2f̄f/2, ~24!
6-3
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wherej5(UY)21f.
Further using Eqs.~21! and ~23! we have

Tr Z†Z5Tr~ĒHEH21!, ~25!

whereH5Y†Y and detH51 (detY51).
In performing the integration overf ’s it is convenient to

change variables fromf to j. Since U is unitary and
detY51,

)
l 51

N

df̄ ldf le
2f̄f5)

l 51

N

dj̄ ldj le
2 j̄Hj. ~26!

Further following Ref. 10, one can show that

dZi j dZi j* 5)
i

dzidz̄i)
i , j

uzi2zj u4)
iÞ j

dHi j

[dm~z,H !)
i , j

uzi2zj u4 ~27!

up to normalization factors. Putting everything together
find

^2p11u2p11&

5E dm~z,H !)
i , j

uzi2zj u4p14e2Tr(ĒHEH21)dj̄ idj i

3)
i 51

N

~ j̄ ij i !
2pe2j†Hj. ~28!

Integration overj andH would produce a quantity that de
pends only onzi andz̄i . It is clear from the above expressio
that in the absence of thej integration, the integration ove
the nondiagonal elements ofZ would produce a probability
distribution similar to the corresponding Laughlin on
Since, however,j ’s couple toH andH in turn couples tozi

and z̄i , this integration will not necessarily produce a pro
ability distribution that agrees with the Laughlin one. T
integration overj andH is much more involved now and i
is hard to extract a closed expression for arbitraryN. How-
ever, as we shall see one can find general features of
probability distribution that do not agree with what on
would expect from the Laughlin distribution.

We first perform thej integration by introducing a sourc
term as follows:

E dj idj̄ i)
i 51

N

~j i j̄ i !
2pe2 j̄Hj

5)
i 51

N S ]

]Ji

]

] J̄i
D 2pE dj idj̄ ie

2 j̄Hj1 J̄j1Jj̄uJ,J̄50

5)
i 51

N S ]

]Ji

]

] J̄i
D 2p

eJ̄H21JuJ,J̄50 . ~29!

Equation~28! can now be written as
24531
e
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^2p11u2p11&

5E )
i

dzidz̄i)
i , j

uzi2zj u4p14)
i 51

N S ]

]Ji

]

] J̄i
D 2p

3E )
iÞ j

dHi j e
2Tr(ĒHEH21)1 J̄H21JuJ,J̄50 . ~30!

We are now left with theH integration

I 5E )
1< iÞ j <N

dHi j e
2Tr(ĒHEH21)eJ̄H21J. ~31!

To do this we follow an iterative procedure as in Ref. 10.
each step of the iteration we integrate over the variables
the last row and column ofH and thus decrease by one th
size of the matrix. In the absence of the source terms,
structure of the reduced matrix remains the same and
produces a simple recursion formula, which eventually le
to Eq. ~22!. This is not quite the case when there are sou
terms; as a result there is no simple recursion formula.

The iteration procedure is defined as follows: L
H8, E8, etc., be the relevant matrices of ordern and let
H, E, be those obtained fromH8, E8 by removing the last
row and last column. Greek~Latin! indices run from 1 ton
(n21). Let Dab8 be the cofactor ofHab8 in H8 and D i j the
cofactor of Hi j in H. Let gi5Hin8 . Because detH85detH
51, the following relations are true:10

Dab8 5H8ba
21 , D i j 5H ji

21 ,

Hnn8 511(
i , j

gi* gjD j i ,

D in8 52(
l

D i l gl* ,

D i j8 5Hnn8 D i j 2(
l ,k

gk* glD i j
lk,

D i j
lk5D i j D lk2D ikD l j . ~32!

Let

Fn
J5Tr~Ē8H8E8H821!2 J̄8H821J8[Fn

02 J̄8H821J8.
~33!

Using Eq.~32! we find

FN
J 5uzNu21FN21

J 2JNJ̄N1^guH21~Ē2 z̄N!

3H~E2zN!H21ug&2^guH21JJ̄H21ug&

1gl* ~H21J! l J̄N1JN~ J̄H21! lgl . ~34!

Integration overg’s produces the following result:
6-4
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I;E )
1< iÞ j <N21

dHi j e
2uzNu2e2FN21

J
eJNJ̄N

3

expF S ( J̄iXi j
21Jj D JNJ̄NG

det~Xi j 2Ji J̄j !
, ~35!

where

Xi j 5„H21~Ē2 z̄N!H~E2zN!H21
…i j 2Ji J̄j5Xi j

0 2Ji J̄j .
~36!

The expression~35! can be further simplified using the fo
lowing relations:

J̄i~X02JJ̄! i j
21Jj5 J̄i„~X0!211~X0!21JJ̄~X0!211•••…i j Jj

5
J̄i~X0! i j

21Jj

12 J̄i~X0! i j
21Jj

. ~37!

Furthermore

det~X02JJ̄!5eTr ln(X02JJ̄)

5eTr$ ln X01 ln[12(X0)21JJ̄] %

5det~X0!eln J̄(X0)21J

5)
i ,N

uzi2zNu2 (
1< l ,m<N21

J̄l~X0! lm
21Jm ,

~38!

where we have used the fact that

detX05det@H21~Ē2 z̄N!H~E2zN!H21#5)
i ,N

uzi2zNu2.

~39!

Substituting Eqs.~37! and ~38! in Eq. ~35! we find

I;
e2uzNu2

)
i ,N

uzi2zNu2
E )

1< iÞ j <N21
dHi j

e2FN21
J

~12M !
eJNJ̄N /(12M ),

~40!

where

M5 (
1< i , j <N21

J̄i~X0! i j
21Jj

5 (
1< i , j <N21

J̄i

~zi2zN!
Hi j

21 Jj

~ z̄j2 z̄N!
. ~41!

Already this result can be used to evaluate Eq.~28! for the
simple case of a 232 matrix model. Although this is a rathe
trivial case, it is worth presenting it, since it highlights pro
erties of the probability distribution that are not in agreem
with the Laughlin one.

To simplify the calculation let us further choosep51. For
the N52 case after the first iteration we find from Eq.~40!
24531
t

I;
e2uz1u2e2uz2u2

uz12z2u2

eJ1J̄1

12M
eJ2J̄2 /(12M ), ~42!

whereM512J1J̄1 /uz12z2u2. The functional diferentiation
with respect toJ’s, Eq. ~29!, gives

S ]

]J1

]

] J̄1
D 2S ]

]J2

]

] J̄2
D 2

I uJ,J̄50

52
e2uz1u2e2uz2u2

uz12z2u2 S ]

]J1

]

] J̄1
D 2

3
eJ1J̄1

~12J1J̄1 /uz12z2u2!3U
J1 ,J̄150

5
e2uz1u2e2uz2u2

uz12z2u2 F41
24

uz12z2u2 1
48

uz12z2u4G .
~43!

Using Eqs.~28!, ~29!, and~43! we find

^3u3&;E dz1dz̄1dz2dz̄2e2uz1u22uz2u2uz12z2u6

3F11
6

uz12z2u2
1

12

uz12z2u4G . ~44!

The first term corresponds to the probability distribution f
the n51/3 ground state Laughlin wave function. There a
extra terms, though, that are dominant at short distance
z1→z2. In this simple case we find that the distributio
emerging from the matrix model has a long distance beh
ior similar to the corresponding Laughlin one, but its sh
distance behavior is quite different. We shall now argue t
this behavior prevails for anyN.

It is clear from Eq.~40! that the first step of the iteration
produces an expression that is not quite similar to the or
nal one ifJ8sÞ0. As a result the integration overH in8 at each
subsequent step of the iteration becomes quite involved.
though it is very hard to derive an exact expression forI as a
function of zi ’s, it is quite straightforward to explore its de
pendence onuzN212zNu. This is sufficient, for example, to
get information about the short and long distance behavio
the probability distribution asuzN212zNu!1 and uzN21
2zNu@1, respectively.

The dependence ofI on uzN212zNu comes first from the
overall factor 1/) i ,Nuzi2zNu2 and second from the facto
M; see Eqs.~40! and ~41!. ExpandingM we find

M5
J̄N21J̄N21

uzN212zNu2 1
J̄N21

~zN212zN! (
j ,N21

HN21,j
21 Jj

~ z̄j2 z̄N!

1 (
i ,N21

J̄i

~zi2zN!
Hi ,N21

21 JN21

~ z̄N212 z̄N!

1 (
1< i , j <N22

J̄i

~zi2zN!
Hi j

21 Jj

~ z̄j2 z̄N!
. ~45!
6-5
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It is clear now that in order to explicitly demonstrate t
uzN2zN21u dependence we need to evaluate the functio
derivatives with respect toJN andJN21, as in Eq.~30!. We
find

)
i

S ]

]Ji

]

] J̄i
D 2

I uJ,J̄50

5

expS 2(
i

uzi u2D
)
i ,N

uzi2zNu2
FA1

B

zN212zN
1

B*

z̄N212 z̄N

1
C

uzN212zNu2 1
D

~zN212zN!2

1
D*

~ z̄N212 z̄N!2
1

1

uzN212zNu2

3S E

zN212zN
1

Ē

z̄N212 z̄N
D 1

F

uzN212zNu4G ,

~46!

whereA, B, C, D, E, andF are in general functions o
z’s containing factors of the form (zi2zN), (zi
2zN21), (zi2zj ), and their complex conjugates, wherei
<N22. Substituting this expression in Eq.~30!, we find a
probability distribution that is dominated by a term propo
tional to uzN2zN21u6 when uzN2zN21u@1, similar to then
51/3 Laughlin distribution. However, whenuzN2zN21u!1
the matrix distribution is dominated by a term proportional
uzN2zN21u2. The long and short distance behavior for anyN
is the same as the one found in the simpleN52 case, Eq.
~44!.

It is straightforward now to see that similar results can
derived for anypÞ0. In particular, the long distance beha
ior of the probability distribution is that of then51/(2p
11) Laughlin distribution while the short distance behav
is that of an51 Laughlin distribution.

Further the probability distribution cannot be factorized
C* C, where C is the corresponding many-particle wav
function, which is both antisymmetric and holomorphic
z’s. This indicates that the identification of the eigenvalues
the matrixZ with the actual holomorphic coordinates of fe
mions may not be appropriate.

B. X representation

Going to an X representation first, we derive one
dimensional fermionic wave functions, where the coor
nates have been identified with the eigenvalues of the ma
X1, then transform the wave functions to the coherent s
representation. We define the stateuX,f& such that

X̂1uX,f&5XuX,f&, CuX,f&5fuX,f&. ~47!

Using Eq.~47! we find
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^2p11uX,f&5@e i 1 . . . i Nf i 1
~Af! i 2

3•••~AN21f! i N
#2p^0uX,f&, ~48!

where

^0uX,f&5e2Tr(BX2/2)e2f̄f/2,

Ai j 5AB

2S Xi j 2
1

B

]

]Xji
D . ~49!

Since Eq.~48! is completely antisymmetric in thei n indices,
the differential operator]/]Xji produces a nonzero contribu
tion only if it acts on the ground state wave functio
^0uX,f&. We then find

^2p11uX,f&5~A2B!pN(N21)@e i 1 , . . . ,i Nf i 1
~Xf! i 2

3•••~XN21f! i N
#2pe2Tr(BX2/2)e2f̄f/2.

~50!

X being a Hermitian matrix, it can be diagonalized by
unitary transformation

X5UxU21, xi j 5xid i j . ~51!

Using this in Eq.~50! we find

^2p11uX,f&

5~A2B!pN(N21)@e i 1 , . . . ,i Nf i 1
~UxU21f! i 2

3•••~UxN21U21f! i N
#2pe2Tr(BX2/2)e2f̄f/2

5~A2B!pN(N21)@detU#2p

3)
i , j

~xi2xj !
2p)

i 51

N

~U21f! i
2pe2Tr(BX2/2)e2f̄f/2.

~52!

Using Eq. ~52! we can express the scalar product of t
u2p11& state as

^2p11u2p11&

5E @dXi j #df̄ ldf l^2p11uX,f&^X,fu2p11&

;E @dXi j #)
i , j

~xi2xj !
4pe2TrBX2

df̄ ldf l

3)
i

@~U21f! i~f̄U ! i #
2pe2f̄f. ~53!

Since U is a unitary matrix the integration overf ’s com-
pletely decouples@unlike the case in Eq.~28!#. Further,9

@dXi j #5dxi)
i , j

~xi2xj !
2@dU#, ~54!
6-6



n

a

n
th

th

tio

gero

as a

ec-
ion
3.

een
na-

the
sen-
pre-
the
onal

he
i-

s

ts.
ri-
res.
vior.

e
vior

s is
c-
le

o-
to

this
nta-
trix
ing
e.

rix

ce

MATRIX MODEL: COHERENT STATES . . . PHYSICAL REVIEW B 64 245316
where@dU# is the Haar measure. Integration over the no
diagonal elements ofX gives

^2p11u2p11&

;E dxi)
i , j

~xi2xj !
4p12expS 2B(

i
xi

2D .

~55!

This is the probability distribution for the one-dimension
Calogero ground state wave function

)
i , j

~xi2xj !
2p11expS 2B(

i
xi

2/2D .

This is not surprising; it was already indicated in Refs. 2 a
12 that the Chern-Simons matrix model is equivalent to
Calogero model.

Let us now use a coherent state representation for
Calogero wave function

^x1 , . . . ,xNuC&5)
i , j

~xi2xj !
2p11expS 2B(

i
xi

2/2D .

The coherent state representation of any wave func
^xuC& can be written as

^zuC&5E dx^zux&^xuC&, ~56!

where ẑuz&5zuz& and ẑ5AB/2(x̂1 i ŷ), @ x̂, ŷ#5 i /B.
Using

^zux&5e2Bx2/2eA2Bz̄xe2 z̄2/2e2uzu2/2, ~57!

we find

^zuC&5E dx e2B(x2 z̄/A2B)2
f ~x!, ~58!

where f (x) is given by ^xuC&5 f (x)e2Bx2/2. In evaluating
~58! we expandf (x) aroundz̄/A2B.

^zuC&5e2uzu2/2(
k50

`

E dx e2B(x2 z̄/A2B)2

3
1

~2k!! S x2
z̄

A2B
D 2k

]2kf

]x2kU
x5 z̄/A2B

5e2uzu2/2(
k50

` GS k1
1

2
D

~2k!!Bk11/2

]2kf

]x2kU
x5 z̄/A2B

5Ap

B
e2uzu2/2FexpS 1

4B

]2

]x2D f ~x!G
x5 z̄/A2B

.

~59!
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The coherent state representation of the many-body Calo
wavefunction is thus

^z1 , . . . ,zNuC&;expS 2(
i

uzi u2/2D FexpS 1

4B (
i

]2

]xi
2D

3)
i , j

~xi2xj !
2p11G

xi5 z̄i /A2B

. ~60!

For p50, Eq. ~60! gives then51 Laughlin state. Forp
Þ0 the coherent representation of the Calogero state h
long distance behavior similar to then51/(2p11) Laugh-
lin state, but a different short distance behavior. This conn
tion between the one-dimensional Calogero wave funct
and the Laughlin states has already been noted in Ref. 1

V. SUMMARY AND DISCUSSION

In an attempt to clarify the exact correspondence betw
the Chern-Simons matrix model introduced by Polychro
kos and the fractional QHE at filling fractionn51/m, as
described by Laughlin wave functions, we have derived
matrix model wave functions using a coherent state repre
tation. We have presented two different coherent state re
sentations, each one implementing a different choice for
phase space coordinates of the underlying one-dimensi
fermionic system.

In the A representation, the eigenvalues of the matrixA
are identified with the phase space coordinatesz of the fer-
mions, while in theX representation, the eigenvalues of t
matrix X1 are identified with the one-dimensional coord
natesx of the fermions.

Both choices give identical results whenp50, or equiva-
lently u50 in Eq. ~9!. The corresponding wave function i
identical to then51 Laughlin wave function.

For pÞ0 the two representations give different resul
Although the explicit expressions for the probability dist
butions are different, they share some common featu
They both have the same long and short distance beha
Comparing them to the correspondingn51/(2p11) Laugh-
lin distributions, we find that it is only the long distanc
behavior that is in agreement. The short distance beha
does not agree with the Laughlin one.

A noticeable difference between the two representation
that theX representation leads to a holomorphic wave fun
tion with antisymmetric properties, while this is not possib
for the A representation.

As we mentioned earlier there is an ambiguity in intr
ducing electron coordinates in the matrix model. This has
do with the choice of coherent state representation. In
paper we analyzed two particular coherent state represe
tions, which seem to be the natural choices from the ma
model point of view. In both cases we find that the emerg
wave functions do not quite agree with the Laughlin on
Although this by itself does not prove that the original mat
model is not equivalent to the Laughlin theory for then
51/m fractional QHE, it makes the precise corresponden
6-7
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between the two models less transparent. One can argue
there may exist another coherent state representation, c
sponding to another choice for the electron coordinates, s
that there is agreement with the Laughlin wave functio
However, for the matrix model to be truly useful in the co
text of QHE, this new coordinate choice should be eas
identifiable.
n
,
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