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Transmission properties of the oscillatingé-function potential
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We derive an exact expression for the transmission amplitude of a particle moving through a harmonically
driven §-function potential by using the method of continued fractions within the framework of Floquet theory.
We prove that the transmission through this potential as a function of the incident energy presents at most two
real zeros, that its poles occur at energidso+e* [0<Re(¢*)<fw], and that the poles and zeros in the
transmission amplitude come in pairs with the distance between the zeros and théapdidékeir residue
decreasing with increasing energy of the incident particle. We also show the existence of nonresonant “bands”
in the transmission amplitude as a function of the strength of the potential and the driving frequency.
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[. INTRODUCTION the Smatrix for this potential. In Sec. Il we solve the equa-
tions derived in Sec. Il and find the exact CF expression for
Time-dependent potentials in mesoscopic systems hav@e transmission amplitudes. In Secs. IV and V we study
been studied for a number of years in connection withanalytically and numerically the zeros and poles of the trans-
electron-phonon interactiodsquantum tunneling tim&;%*  mission. In Sec. VI we briefly discuss the “threshold anoma-
ionization®>® electronic transmissiofi;*°and also in the field lies” in the transmission amplitude.
of quantum chao$' One of the interesting features of local-
ized time-periodic potentials is the presence of resonances or || SCATTERING MATRIX AND TRANSMISSION
quasi-bound “states,” which could be thought of as electrons AMPLITUDES
dynamically trapped by the oscillating potential. This is also
a feature common to all multichannel quantum scattering A formal treatment of the problem of scattering by a time-
problems'13 periodic potential can be found in Ref. 9,19. Also, a discus-
The solution of any three-term recursion relation, either insion about the subspace of the Hilbert space suitable for the
functions or in operators, is a continued fract(@F)_ Such treatment of time-periodic potentials can be found in Ref. 20.

is the case for tight-binding Hamiltoniah$!® for the time- The Hamiltonian we consider is

independent Schdinger equation(in discretized spadg®

and for harmonic time-dependent potentials, such as an atom 72 d?

in a standing-wave laser fidit*8or for tunneling in the pres- H(x,t)=— 20 4 +Vé(x)cog wt), 2.1

ence of phonons.

We first prove here, starting from Scldinger’s equation,
that the transmission amplitude has the structure of a CF
functions of the incident energy and the strength of &he
potential. This is a considerable advantage over the numer
cal computation of the transmission done before using thi
kind of potential’® Our expression allows us to study with
greater detail, both analytically and numerically, several dif- w0
ferent features of the transmission that had not been noticed ;
or explained before, such as the location of the zero-pole \Pg(x,t)—n; Yn(x)exp = (i/R)(e +nfo)t].
resonances of the transmission and the almost periodic be- (2.2
havior of their position, the existence of nonresonant
“bands,” the dependence of the pole residues on energy, and Since the potential is zero everywhere exceptad, we
the existence of the so-callgeh the language of nuclear assumey,(x) to be of the form
physicg “threshold anomalies” in the transmission. We be-
lieve our work gives some insight and clarifies issues in the 1
gene_ral problem_ of scattering through harmomcally driven lﬂh(x): —(a,e'**+d,e ¥ for x<0,
localized potentials. One such potential is the Landau- \/k—n
Buttiker potential, for which numerical and analytical studies
of the transmission have been ddt8showing many simi-
larities with the transmission properties of the potential stud- zpﬁ(x) = —(
ied in this paper. \/k—n

In Sec. Il we use Floquet’s theorem to derive the equa-
tions that couple different components of the wave function The factor 14/k,, has been included to ensure unitarity of
in a plain wave basis, and then we use these equations to filde Smatrix and the wave vectois, are defined by

here u is the mass of the particle. Even though energy is

ot conserved, the Floguet energyis conserved for this
system and takes on a continuous range of values in the
[hterval 0<e<fiw. The Floguet eigenstate with Floquet en-
%rgye takes the form

Cneiknx+ bne*iknx) for x>0. (2.3
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2 (o] Cc_
Ky= \/ 25 (e + nfiw). 2.4 o '
cy c_,

In this papern will always have the range-o<n<oo,
The square-root function has its branch cut on the real energy
axis and for the energy on the negative real axis we will use .
the Riemann sheet that has kp=0, the so-called “physi- ~wherec, contains the amplitudes of the propagating modes
cal sheet.” On this sheet the momentimis on the positive  gytgoing to the right, and, contains the amplitudes of the
imaginary axis for anyn<<0. This is required to allow for eyanescent modes that decay to the right. Analogous defini-
evanescent modggxponentially decaying on both sides of tions:alpp_w for tﬁe cglumn vectoss,, by, dy, andd, . Note

the potentigl since they can contribute significantly to the i B .
wave function in the neighborhood of tlefunction. These that ae_=0 and be:.O' We can now rewrite Eqs2.9) and
4210 in the following form:

evanescent states are also related to resonances or qu
bound states that are known to exist in multichannel prob-
lems. To avoid any unphysical exponentially growing states
when dealing with positive pure imaginary momentum

(Tpp”LYpp) 'Ep*”ype'ge:;p_ Xpp- by,

states, we will require that,=0 andb,=0 forn<—1. To Xep' Cpt (Leet Xee) - Ce= — Xep by,
study the resonances in the transmission we will allow the -
energy to take complex values and will not necessarily stay (Lppt Xpp) - dptXper de=bp—Xp-ap,
on the physical sheet. This will be discussed in Sec. V. [
The Floquet eigenstatd .(x,t) must be continuous at Xep dpt (Leet Xeo) - de=—Xep- @p, (2.12

=0. This leads to the condition that — — o _ ) )
where 1,, and 1 are infinite-dimensional unit matrices and

a,+d,=c,+b,. (2.5  matricesX,,, Xee, Xep, andfpe have matrix elements

Because of thé function in the Hamiltonian, the slope of (Xpp)mm =N m(Smmr + 17 Smmr -1),
¥ .(x,t) is discontinuous and satisfies the condition _ .
(Xee)v,v’ = IhV (5v,v’+l+ 51/,1/’—1)1

dv, dv, 2uV — . = .
d_ —d— = > cog wt)W¥ (0}). (Xpe)m,vzlh—l 5m,051z,—1r (Xep)v,mzlh—l 6m,05v,—1-
X lx=0+ X lx=0- h (2.13
(2.6)
Note that we have introduced the convention that the in-
This leads to the condition dices m=0,1,2 ... >, and v= -1-2,—-3,...,—%, to
help separate propagating modes from evanescent modes.
co+d,—by—a,=—2i[h, 4(a, 1+d, ;) We can how ert_e_the scattering _matrlx_ for this systgm.
The scattering matrids connects the incoming propagating
+ha(an+1tdnia)], (2.7 modes to the outgoing propagating modes,
h q Y PR Y
where dp\ [ ap rot a, 014
—|=S\|\= =+ == 2.1
v Cp b, tor b,
hy=——— (2.9

" 252k Kniq

We can now combine Eq$2.5 and(2.7), to obtain the
following relations between coefficients:

wheret andt’ are matrices of transmission probability am-
plitudes andr andr’ are matrices of reflection probability
amplitudes. More specifically, the matrix elemety

=(t_)m,m, is the probability amplitude for then’” mode en-

. . . . tering from the left to transmit to the right, a ,
Chtihnchiitihg 1y 1=a,—ihyby 1 —ih,_1by 4 ng g b m

(2.9 =(r)m,m is probability amplitude that then" mode enteri_ng
from the left and will reflect to the left. Matrix elementsdf
and and t’ contain reflection and transmission coefficients for
modes entering from the right.
d,+ihdys+ih,_1d,_1=b,—ih,a,.1—ih,_j8,_1. After some algebra one can show that
(2.10

= (Tpp'kvpp)il
It is useful to separate the propagating modes from the
evanescent modes. Let us define column vectors and

1= (Lpp+ Ypp) 1 Vpp, (215
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TRANSMISSION PROPERTIES OF THE OSCILLATING . ..
where
Yop=Xpp— Xpe' (Leet Xed) "+ Xep- (2.16
The effects of the evanescent modes are now explicitly
included in the scattering matrix.

For propagating modes entering in tim¢h channel on the
left, the total probability for transmission to the right is

PHYSICAL REVIEW @&} 245315

—ih,
ha-1
ha—»

2
hn—3

1+

1+

(3.7

©

From the above expressions for thes (whenn=0 and
n=—1) we can obtairc, from Eq.(3.3),

Thm= 2 |tm’,m|2- (2.17
m’=0 1
Co=loo=—
In the next section we focus on the transmission probabil- 1+ 4 ih_,f_,
ity To. By expanding it in continued fractions, we can deter- fo
mine all the transmission zeros and complex poles of this
system. _ 1 . (38
h2 h?,
IIl. CONTINUED FRACTIONS SOLUTION 1+ hi + h32
. . . 1+ 1+
Let us now consider the special case of a single propagat- h3 h? ,
ing mode, entering in channeh=0 from the left and no 1+—h2 1+ ~
propagating modes entering from the right. In this case 1+ — 142

=0h o andb,=0. The probability amplitude for the particle

to be transmitted into thieth channelpropagating or ngton
the right is ¢,. For the propagating modes#0), c,
=tn0. Let us now define the following quantity:

Cn

fo= , —oo<nN< oo, (3.2
Cn+1

In terms off,,, Eq. (2.9 gives

ih,

+
lfn

+ih,_4f,_1=0  for n#0, (3.2

ihg . 1
1+—+|h,1f,1=c— when n=0. (3.3

f0 0

For n=0 we can write the solution of Eq3.2) in the
form

1 ihyyq
f”_—ihn 1+ . (3.9
or
1 h?

fo=— [ 1+ ———|. (3.5

_Ihn hn+2

1+hf1+3
For n=—1 we write the solution in the form

o M 3.6
" 1+ih,_4f, g (3.6

or

With the solution for thef,,’'s and cgy known, any coeffi-
cientc, can be foundusing Eq. 3.1in the following way:

Co f 1 and
= =
Cn fn_lfn_z"'fo or n an

Ch="Fnfni1---f1cg  for n=—1. (3.9
From here, the transmission probabilifyy can be written
as

- 1
To=2, lcnl?=]to,02 1+ ——
n=0 n=1

H |fn'—l|2

n'=1
=|to,d?S(e,V). (3.10

As it can be seen in Fig. 1, none of tfigs (for n=0)
appear to have zeros in the half plang &e>0. This im-
plies that the functiors(e,V) has neither zeros nor poles in
that region; consequently, the zeros and poles in the trans-
mission probability are the zeros and poles|tfg?. From
now on we concentrate ag o only.

IV. TRANSMISSION ZEROS

The coefficientcy can be taken to be a continuous func-
tion of the incoming energ¥=¢ + nfiw, instead of a func-
tion of the Floquet energy. This is so because, when the
incident energy is in channeh (E=m#iw+e¢), we need to
solve Eq.(2.9) with the conditiona,= &, ,. The solution is
given in terms of the coefficient,, that now plays the
former role ofcy. The CF forc, is given by Eq(3.8) with m
added to all subscripts. As it can be seen eagiy(e)
=co(Mhw+e)=cy(E), which means that the general solu-
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FIG. 1. Graph of/fo(E)|? in the complex plan€E in units of
fhiw). a=10. Notice thatf,(g)=fy(n+e)=fy(E), therefore, this
graph shows the behavior 6f(e) for 0O=<n<9. The function be-
haves similarly, but with a different scale, for other valuesiof

tion of the problem, for any incoming energy can be obtained

from the CF expression far, derived in Eq(3.8) evaluating
it at any energyE. Notice also thatcy(E)=cqo(mhw+¢)

=tnm(e). Because of this, and to be rigorous with the no-

tation, we define to(E)=to(miw+e)=ty, n(g)=Co(E).

From this we can say thag(E) contains the same informa-

tion as the whole diagonal of the transmission mattrint Eq.
(2.14.

To study the properties afy(E) it is convenient to define
the following quantitie§see Eq.(2.9)]:

a
=h(g)= ———-——
Ol &) =he) = Ve a1

with dimensionless parameters

B m\2 €
e ¢ ho
and
E
e5%=e+n for nhw<Es(n+1iw. 4.1
Also, we define the function
Fo(e)=F ZF (o=14i00FE)
o(8)=Fo(n+e)=F(e)= +Ifo(n—+€)
ISP O 4.2
gn+1(5)
1+ —————
14 gntz(f)

Notice thatg,(€) also depends oa. Using the definitions
given above we can write the coefficiesy(e) for the range
nse<(n+1), in the following way:

PHYSICAL REVIEW B64 245315

1

Co(€)=Co(N+e€)= On-1(€)

Fn(e)+

Jo(€)
g-1(e)

1+
1+ 9—.2(6)

1+

4.3

In the above expression all quantities are éal € real
except forg_;(€) that is pure imaginary. This has an impor-
tant consequence for the number of real zerax(®) as we
shall see next.

Let us rewrite the equation above in a slightly different
way,

1
Co(n+e)= , 4.4
o G 2(9 @4
Fn(e)+ 9 (e)
14—
9ol €)
Y156
where the continued fractioB(e) is defined as
G(e) -2 “9
€)= .
[1— 6\/2 1+ g;(e)
14 g-3(e)

Notice G(€) is a real function fore real and Gse<1.
If Eq. (4.4) is put in the form of a standard fraction, we
get

CO(E):FOTiG for n=0 and
Co(n+e€)
:iPn(gn,z,gn,3, +++80)G+R(gn-2,9n-3---.90)
iQn(Fn!gn—l! e ng)G+Sn(Fnign—li e !gO)
for n>0. (4.6

In the last expressior®,,,Q,,R,,S, are polynomials on
the variablesy,, and F,, indicated in parentheses, such that
the coefficient of every term is equal to one and all variables
appear elevated to the first power oriye., 1+g:+ 019>
+---). Notice thatG is the only function that can take val-
ues between-« to ». The other functionsK, andg,) are
strictly positive and finite fore>0 . This implies that
Pn,Qn,R,,S, are strictly positive and finite, which means
that, forn>0, the numerator of, can never be zero and the
denominator does not go to infinity unle§s—c, in which
case the numerator would also blow up keeping the fraction

245315-4
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It is interesting to notice in Fig. 3 and Fig. 4 that there are

2 N . intervals ofa, around integer values, for which the real zero
I ”N in the transmission disappears. A talffer 0<a<9) with
S I‘ g "M’” ”.“' i e g :;- _ the exact values$to seven digits of the intervals for which
— l{'l)‘/’l ( ”’ I l’ N’( there is a real zero in the transmissi@part from the trivial
2 [ one atE=0) is shown in Table I. This behavior of the real
oo \\ {\\\&{\\\&\\ ’ ’{ I'l ” W ,’"’"’” ( . zero seems to be matphed by the behavior of the poles of the
0al \ \\\\\\\k\\\\\\\s \, """""’"’"' " "'l' "' ’ l'"'{"' 'M transmission as we will see next.
S o ’ ' i
11.8 \\\k\?\\\\\\:\\:\\\{\\ﬁ """2'04,{ t"o',”" ‘ "2"»:'.‘2”.{ i.ﬁj:f: V. TRANSMISSION POLES
" 04 - .%ﬁ‘onﬂ‘“f"ﬁ'i,j“.‘“ % : ?\\U\“\\ In this section we prove by induction that the poles of
' - “\\\“‘\‘ﬁf“"““ il IR co(e) occur at energies= (n+ €*) with 0<Re(e*)<1 and

o 0 0s show that their residue decreases with increasifgnergy.
a We start with Eq.(4.3) and write it in the form
FIG. 2. Graph of the functiodG (e,a)|. The zeros of this
function give the real zeros of the transmission. 1
_ . _ Co(n+e)=——F7—, (5.
strictly positive. From this we can conclude ttiaere are no 0 Fn(€e)+Gn(e)

real transmission zeros for incident energie>Ew.

For n=0 we see that a real zero can only happen when

Fo(e,a)— or G(e,a)— . The first case only occurs when WhereF, andG, satisfy

€=0 (G blows up at this point top For the second case, the
real zeros ofy(e,a) are given by the zeros @& 1(¢,a). As
it can be seen from Fig. 2 the functi®® !(e,a) seems to (=1+ gn(e) (6)= On-1(€) 5.2
have some periodicity. This can also be seen in Fig. 3 where " nt1(€)’ 1+Gp-a(e)”
the curves§(a) that satisfy ty(s,a)=G 1(8,a)=0 are
shown. This dependence of the transmission real zeros with
the parametea can be seen directly in Fig. 4 in the sequence Let us assume thaty(e) has a pole ae=n+€*. This
of transmission graphs for different values of the strength ofmplies thatcy(e) has also a pole a&=n+1+¢e* because
the 6. we can write from Egs(5.1) and (5.2

(7918 TR MUOE TR RPN S 0 OO ST O 0
N = i
07 _____ _____ T T T Lo L S
oef- ..... _
0005_ ,,,,, _____ ,,,,, AAAAA _____ AAAAA _____ »»»»» _ FIG. 3. Location of the real

zero of t; as a function ofa

: : T : Do S . ) _
S T N N to(0,2)=G7(5,2)=0.

08 o ie et EIRREPPS ST TR i T HRRETRR Toie s
02k .- Todeed . R RN . _ _______ vode RRE PR g o -

04k - ....... T ....... IRTR IO S ERPERR R T IER
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FIG. 4. Sequence ofty(€e)]

graphs for increasing values of a

1 showing the evolution of the
transmission real zeros.

e

poles and~,(€)# 1. This implies thaffrom the last line of
Eq. (5.3)] if co(e) has a pole ah+ e* [which means that
F.(e*)+G,(€*)=0], then it must have a pole at+1

t,(e)l
1 1 1 1
05 0.5 0.5 0.5
a=0.2 a=0.4 a=0.6 a=08
0 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 1 1 1
05 0.5 0.5 0.5
a=1.0 a=1.2 a=1.4 a=1.6
0 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 1 1
a=1.8 a=2.0 a=2.2 a=24
05 05 M 05 f\/\ 05 F\/‘\/
0 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 1 1 1
a=2.6 a=2.38 a=3.0 a=3.2
05 /\/ 05 05 /\/—\ 05 (\/\
0 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
(n+1+e€) -
CO n+1l+e)=
Fni1(€)+Gpia(e)
1

On(e) On(e)
Fole)—1 1+G,(e)

[14Gy(][Fo(e)—1]
a gn(€)[Fn(e)+Gp(e)]

_ [14Gy(e)]
Frr1(€)[Fa(e)+Gn(e)]
It is important to notice that, sindg(e) (as shown in Fig. ]L

has neither poles nor zeros in the half planedg(0, the
functionF(e)=Fy(n+¢€)=1+ihg(e)/fy(e) does not have

(5.3

TABLE I. Intervals of a=mV?/8%3w for which a zero-pole
resonance can be found in the system. The notatjgal, (used in
the text and in some grapheefers to the lower/higher value of the
intervala,, .

+€* [The numerator in Eq(5.3) does not vanish a¢= €*
becauseG, (e*)=—F,(e*)#—1].

Notice also that whem—co, F,— 1, becausdy(n+¢)
—o, and hg(n+€)—0 in this limit. This means that the
location of the transmission zero approaches the location of
the pole as the incoming energy grows; the zero happens
when e= 6, with G,,(6)= —1; the pole occurs whea= €*,
with G,(€*)=—F,(e*). Obviously 6—e* because
F.(e*)—1 asn—x. From that we conclude that the residue
of the poles in the transmission amplitude tend to zera as
—oo, This explains why, even though the transmission am-
plitude has an infinite number of poles separated by a dis-
tance ofh w in the incoming energy, all at the same distance
from the real axis, only the effect of the first poles can be
seen in the graphs of transmission probability versus incom-
ing energy. Another way to say this is that the zefiosthe
complex plangat higher energies are very close to the poles,
therefore, canceling out the possible effect of the poles in the
transmission.

In Fig. 5 we show a graph of the imaginary parttgfe)

I h

a 0 0.7821147

a, 1.1652568 1.7710590
a, 2.1873508 2.7667368
as 3.1979937 3.7642963
ay 4.2045658 4.7626808
as 5.2091415 5.7615115
ag 6.2125623 6.7606150
a; 7.2152455 7.7598995
ag 8.2174231 8.7593115

where the poles in channels 0, 1, 2, can be $aenrefer to
channeln as the strip in the complex energy plane that sat-
isfiesn<Re(e)<n+1]. It is evident in that graph that the
poles have support on different sheets; we will call these
sheetsS,,, where n refers to the channel number. This
sheeted structure comes from the fact that, because the func-
tionsk,(e) have a branch point &= —n and two Riemann
sheets, any function df,(e) [ty(e) in particulad will have a
multiple-sheeted structure. What is called the “physical”
sheet(P) in the context of multiple-channel scattering is the

sheet obtained when selecting all the Riemann sheets with
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:, t”"

()
T

7
S

FIG. 7. Sketch of Ifity(e)] versus Re¢) [we assume
Im(e) =constant0] that gives a schematic representation of the
different sheets where the poles of the transmission are located. The
Im(e) Re(e) peak structures in the lower part of the figure represent poles.

FIG. 5. Graph of the imaginary part tf(e) for a=0.5,show- tant effects on the behavior of ti&matrix along the real axis
ing several poles. Each pole is located on a different sheet. (see Ref. 12 for an excellent discussion on multiple-channel

scattering,.
Im(k,)>0. Each sheet of the full multisheeted surface can In smgle-channel scattering, the unitarity of tﬁenatnx
be labeled by the sequence of signs ofkaj . . ., Im(k,) on the real axis has consequences in the analytic structure of
Im(ko), Im(k_,) ImKk_.)., e.g. (- TR i) the Smatrix in both sheets, the most important one being the

[bold has been used to indicate the sign of kg){; fortu- zero-pole structure of the resonances: every pole has a com-
nately we do not need to consider all these sheets, since on nion zero at a posmo_n complex conjugate to. the position
a small fraction of them are of physical interest; the principal f the .pole but on a different sheet. For multlple-cha_nnel
one beingP or (+-- - +++---+). Crossing the real axis scattering the position of the pole and zero are not so simply
from P at an energyn<e<m+ 1 crosses all the branch cuts related and_ pften the pole and ZEro appear in the same sheet.
whose branch point is at an energy smaller teamm (see The posmon_ of the pole") in the first chan_nel, can be
Fig. 6). The sheet that is the smooth continuationPointo found by Iqokmg at the 2€eros of _the fun_cholﬁo(e,a)

the lower complex planémooth even at the cis the one +Go(e,a_) with the appropriate selection of Riemann sheets,
obtained by taking InK_.)<0 for all n=m and Im_) as desc_rl_bed before, so as to be on the sBgef graph o_f _
~0 for all n>m. We caﬂnthese shee, and they areipnre- the position of the pole as the strength of the potential is
cisely the ones where the poles in the transmission are founaa”ed is shown in Fig. 8, where it can be seen that the pole

as shown schematically in Fig. 7 approaches the real axis @t =1 whena—0, annihilating
Resonances, as opposed to bound state poles, do not occur o
in the “physical” sheet; however, from the unitarity of ti& ' PN )
matrix extended to the complex plane, they can have impor- :
-0.1
Im(e) a
1 0.2 J /
P * + {
</
.;‘\_0'3_ % B +  a
% a'; \ . : * + / |
— .* a
0 ' 1 » 2 R A - P/T
\ e(e) e ., o8
3
*So » S —05f g + 4+ :4/ a:s
4 t o+ red
a . -t M AW
_osl ah \ + 8
¥ i ] \
h
FIG. 6. Top view of the physical she& and the threshold a;g:"
branch points and cuts in the complex energy plane. Indicated with ‘°'7o' Y : s
a thin line are the branch cuts corresponding to the branch points ' '

Re(e*)
n=0,1,2; thethick line represents all the branch cuts with branch

point at negative energfn<<O branch points Paths that start on FIG. 8. Trajectory of one of the transmission poles ass

the upper half oP and go under the branch cut lead to the differentchanged from 0 to 9. He@/aﬂ refers to the lower/higher value of
sheetsS, (that in this figure are assumed to be undern&jth the interval an given in Table I.
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S

FIG. 11. Various forms of transmission amplitude behavior at a
channel opening.

It(e)

10'~:

||

o il "ll,,
it S
I ”',',',’.,.,.,.,’::,l'l'l’:.,.,.,',ii:-‘“‘

> ©

0.270065

Re(e)

behavior of the poles on other sheets is expected from the
discussion following Eq(5.3).

The study of the behavior of the poles and real zeros as a
function of the parametes=mV?/843w shows an interest-
ing quasi-periodic dependence @and the presence of
“bands” of nonresonant values @ for which the transmis-
the real zero that also goes to the same position with0. ~ Sion does not have zero-pole resonances. This quasi-periodic
As the parametea is increased the zero moves to the left onbehavior of the transmission resonances as a function of the
real axis describing an arch. At= a8=0.7821147(all val-  has not been found before. Around integer values tfie

ues ofa are accurate to the seventh dighie zero disappears ©Scillating potential seems to be incapable of dynamically
at 5=0 and so does the pole. For valuesaaflightly greater, trapping partllcles not even f'or a short period qf time. It can
the transmission has a very high peak but it is not a pole, adlso be ment_|on_ed that_the Ilfe_t|me of the qua3|-bc_>und states
can be seen in Fig. @ompare with the pole @=0.78 in d_ecrea_ses Wlt_h increasiray which can be acc_ompllshed by
Fig. 10. In the intervala)<a<a! the transmission does not either increasing the strengW of the potential or by de-
have any zero-pole resonances. In this interval the peak gieasing the frequency of the oscillations.

false “pole” follows a trajectory that seems the continuation
of the trajectory the pole had followed until it vanished.
When a=a'1 the zero reappears on this channel, entering at
6=1. At this value however, we do not see any pole in this
channel. There is in fact a pole & but it is located in the
next channe[ 1<Re(e*)<2]. For a~1.3 the pole has fi-
nally made it into then=0 channel. Asais further increased
the pole continues to describe an arch until it disappears
along with the zero. A similar behavior to the one described
above occurs for increasing values of the paramatevith

10t
2

-0.415447

Im(e) 0.270085

-0.415448

FIG. 9. False “pole” ofty(e) for a=0.79,right after the zero
has disappeared a@t=0 for a:a('}.

VI. THRESHOLD ANOMALIES

One of the most evident features in the transmission ver-
sus energy curves for all values afis what seems to be a
discontinuity in the slope a¢=n#Aw (channel openingsA
close look into this region reveals that there is a rapid diver-

0.9

o ) . 08f
the pole describing ever increasing arches, each one farthe
away from the real axis than the previous one. An identical 07t
06f
@ o5}
=)
A
— 04}
03f
0.2f
0.1
1/05 . . " , , , , ,
-0.4145252 0.2873178 0 05 1 1 5 2 25 3

e

—0.4145256 0.2873175
Im(e) Re(e)
FIG. 12. Graph ofity(e)| versus incoming energy. Threshold

FIG. 10. True pole of the transmission fa=0.78, slightly
lower than the value of aa(= aB) for which the zero disappears.

anomalies of “cusp” type at the channel openings #®+0.5.
Threshold anomalies of “rounded step” type far-2.05.
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gence of the slope at the thresholds, thatlig/de— =« as  been found with the use of CF's. Computationally, this ap-
e—nhw. This is actually a common occurrence in all mul- proach represents an improvement in speed over the standard
tichannel scattering problems, and it can be traced back tmethod that requires the inversion of an infinite tridiagonal
the fact that when the energy is in timh channel near matrix. This improvement can be significant when studying
threshold, the first open-channel momentum ks, the zero-pole structure of the transmission on the complex
=\e—nhw. It can be proven that th® matrix has elements plane. Most importantly, it allowed us to prove rigorously
that are linear functions of this momentum near thresholdsome general properties of the transmission for this system,
This clearly implies that the derivative of these elementssuch as the existence of transmission zeros only in the first
with respect to the energy must diverge at threshidat  channel, the location of the poles at regular intervalé of
more details see Ref. 21These threshold anomalies can in the incident energy, the decrease in the residue of the poles
easily be proven to exist in our particular time-dependenwith increasing energy, and also allowed us to understand the
potential by looking at our CF solution fog(e) in Eg.(3.8).  existence of threshold anomalies at the channel openings.
From it, it is clear that the derivative of this expression gives The scattering of particles through a time-periodic poten-
an infinite number of terms, each one proportional to thdial is another example of multichannel scattering, for which
derivative of some functiog,,(e). These functions and their a great deal of theory and research has been done in the past
derivatives diverge at their thresholdsee the expression for and still continues to be an important topic of research. In
g, in Eq. (4.1)], therefore, the derivative df(e) must also  this paper we have put Floquet scattering in the greater con-
diverge at each threshold. According to this, the shape of thtext of multichannel scattering to which it belongs and by
threshold anomaly can be of four different kinds, two cuspsdoing so we believe some aspects of the transmission
like and two rounded steps, as shown in Fig. 11. These fouthrough oscillatinglocalized potentials have been clarified.
different kinds of anomalies are shown in Fig. 12 as they
occur in thelty(e)| graphs for two different values &t
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