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Transmission properties of the oscillatingd-function potential

D. F. Martinez and L. E. Reichl
Center for Statistical Mechanics, Department of Physics, The University of Texas at Austin, Austin, Texas 78712

~Received 6 June 2001; published 4 December 2001!

We derive an exact expression for the transmission amplitude of a particle moving through a harmonically
drivend-function potential by using the method of continued fractions within the framework of Floquet theory.
We prove that the transmission through this potential as a function of the incident energy presents at most two
real zeros, that its poles occur at energiesn\v1«* @0,Re(«* ),\v#, and that the poles and zeros in the
transmission amplitude come in pairs with the distance between the zeros and the poles~and their residue!
decreasing with increasing energy of the incident particle. We also show the existence of nonresonant ‘‘bands’’
in the transmission amplitude as a function of the strength of the potential and the driving frequency.

DOI: 10.1103/PhysRevB.64.245315 PACS number~s!: 73.21.2b, 03.65.Ge, 73.23.2b, 73.50.Bk
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I. INTRODUCTION

Time-dependent potentials in mesoscopic systems h
been studied for a number of years in connection w
electron-phonon interactions,1 quantum tunneling time,2–4

ionization,5,6 electronic transmission,7–10and also in the field
of quantum chaos.11 One of the interesting features of loca
ized time-periodic potentials is the presence of resonance
quasi-bound ‘‘states,’’ which could be thought of as electro
dynamically trapped by the oscillating potential. This is a
a feature common to all multichannel quantum scatter
problems.12,13

The solution of any three-term recursion relation, eithe
functions or in operators, is a continued fraction~CF!. Such
is the case for tight-binding Hamiltonians,14,15 for the time-
independent Schro¨dinger equation~in discretized space!,16

and for harmonic time-dependent potentials, such as an a
in a standing-wave laser field17,18or for tunneling in the pres-
ence of phonons.1

We first prove here, starting from Schro¨dinger’s equation,
that the transmission amplitude has the structure of a C
functions of the incident energy and the strength of thed
potential. This is a considerable advantage over the num
cal computation of the transmission done before using
kind of potential.7,8 Our expression allows us to study wit
greater detail, both analytically and numerically, several d
ferent features of the transmission that had not been not
or explained before, such as the location of the zero-p
resonances of the transmission and the almost periodic
havior of their position, the existence of nonresona
‘‘bands,’’ the dependence of the pole residues on energy,
the existence of the so-called~in the language of nuclea
physics! ‘‘threshold anomalies’’ in the transmission. We b
lieve our work gives some insight and clarifies issues in
general problem of scattering through harmonically driv
localized potentials. One such potential is the Land
Büttiker potential, for which numerical and analytical studi
of the transmission have been done,9,10 showing many simi-
larities with the transmission properties of the potential st
ied in this paper.

In Sec. II we use Floquet’s theorem to derive the eq
tions that couple different components of the wave funct
in a plain wave basis, and then we use these equations to
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theS-matrix for this potential. In Sec. III we solve the equ
tions derived in Sec. II and find the exact CF expression
the transmission amplitudes. In Secs. IV and V we stu
analytically and numerically the zeros and poles of the tra
mission. In Sec. VI we briefly discuss the ‘‘threshold anom
lies’’ in the transmission amplitude.

II. SCATTERING MATRIX AND TRANSMISSION
AMPLITUDES

A formal treatment of the problem of scattering by a tim
periodic potential can be found in Ref. 9,19. Also, a disc
sion about the subspace of the Hilbert space suitable for
treatment of time-periodic potentials can be found in Ref.

The Hamiltonian we consider is

H~x,t !52
\2

2m

d2

dx2
1Vd~x!cos~vt !, ~2.1!

wherem is the mass of the particle. Even though energy
not conserved, the Floquet energy« is conserved for this
system and takes on a continuous range of values in
interval 0<«<\v. The Floquet eigenstate with Floquet e
ergy « takes the form

C«~x,t !5 (
n52`

`

cn~x!exp@2~ i /\!~«1n\v!t#.

~2.2!

Since the potential is zero everywhere except atx50, we
assumecn(x) to be of the form

cn
L~x!5

1

Akn

~aneiknx1dne2 iknx! for x,0,

cn
R~x!5

1

Akn

~cneiknx1bne2 iknx! for x.0. ~2.3!

The factor 1/Akn has been included to ensure unitarity
the S-matrix and the wave vectorskn are defined by
©2001 The American Physical Society15-1
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kn5A2m

\2 ~«1n\v!. ~2.4!

In this papern will always have the range2`,n,`.
The square-root function has its branch cut on the real en
axis and for the energy on the negative real axis we will
the Riemann sheet that has Im(kn)>0, the so-called ‘‘physi-
cal sheet.’’ On this sheet the momentumkn is on the positive
imaginary axis for anyn,0. This is required to allow for
evanescent modes~exponentially decaying on both sides
the potential! since they can contribute significantly to th
wave function in the neighborhood of thed function. These
evanescent states are also related to resonances or q
bound states that are known to exist in multichannel pr
lems. To avoid any unphysical exponentially growing sta
when dealing with positive pure imaginary momentu
states, we will require thatan50 andbn50 for n<21. To
study the resonances in the transmission we will allow
energy to take complex values and will not necessarily s
on the physical sheet. This will be discussed in Sec. V.

The Floquet eigenstateC«(x,t) must be continuous atx
50. This leads to the condition that

an1dn5cn1bn . ~2.5!

Because of thed function in the Hamiltonian, the slope o
C«(x,t) is discontinuous and satisfies the condition

dC«

dx
U
x501

2
dC«

dx
U
x502

5
2mV

\2
cos~vt !C«~0,t !.

~2.6!

This leads to the condition

cn1dn2bn2an522i @hn21~an211dn21!

1hn~an111dn11!#, ~2.7!

where

hn5
mV

2\2Aknkn11

. ~2.8!

We can now combine Eqs.~2.5! and ~2.7!, to obtain the
following relations between coefficients:

cn1 ihncn111 ihn21cn215an2 ihnbn112 ihn21bn21
~2.9!

and

dn1 ihndn111 ihn21dn215bn2 ihnan112 ihn21an21 .
~2.10!

It is useful to separate the propagating modes from
evanescent modes. Let us define column vectors
24531
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c̄p5S c0

c1

c2

A
D and c̄e5S c21

c22

c23

A
D , ~2.11!

wherec̄p contains the amplitudes of the propagating mod
outgoing to the right, andc̄e contains the amplitudes of th
evanescent modes that decay to the right. Analogous de
tions apply for the column vectorsāp , b̄p , d̄p , andd̄e . Note
that āe[0̄ and b̄e[0̄. We can now rewrite Eqs.~2.9! and
~2.10! in the following form:

~ 1̄pp1X̄pp!• c̄p1X̄pe• c̄e5āp2X̄pp•b̄p ,

X̄ep• c̄p1~ 1̄ee1X̄ee!• c̄e52X̄ep•b̄p ,

~ 1̄pp1X̄pp!•d̄p1X̄pe•d̄e5b̄p2X̄pp•āp ,

X̄ep•d̄p1~ 1̄ee1X̄ee!•d̄e52X̄ep•āp , ~2.12!

where 1̄pp and 1̄ee are infinite-dimensional unit matrices an
matricesX̄pp , X̄ee, X̄ep , andX̄pe have matrix elements

~X̄pp!m,m85 ihm~dm,m8111dm,m821!,

~X̄ee!n,n85 ihn ~dn,n8111dn,n821!,

~X̄pe!m,n5 ih21 dm,0dn,21 , ~X̄ep!n,m5 ih21 dm,0dn,21 .
~2.13!

Note that we have introduced the convention that the
dices m50,1,2, . . . ,̀ , and n521,22,23, . . . ,2`, to
help separate propagating modes from evanescent mode

We can now write the scattering matrix for this syste
The scattering matrixS̄ connects the incoming propagatin
modes to the outgoing propagating modes,

S d̄p

c̄p
D 5S̄•S āp

b̄p
D 5S r̄ t̄ 8

t̄ r̄ 8D •S āp

b̄p
D , ~2.14!

where t̄ and t̄ 8 are matrices of transmission probability am
plitudes andr̄ and r̄ 8 are matrices of reflection probabilit
amplitudes. More specifically, the matrix elementtm,m8
5( t̄ )m,m8 is the probability amplitude for them8 mode en-
tering from the left to transmit to the right, andr m,m8
5( r̄ )m,m8 is probability amplitude that them8 mode entering
from the left and will reflect to the left. Matrix elements ofr̄ 8

and t̄ 8 contain reflection and transmission coefficients
modes entering from the right.

After some algebra one can show that

t̄ 5 t̄ 85~ 1̄pp1Ȳpp!
21

and r̄ 5 r̄ 852~ 1̄pp1Ȳpp!
21

•Ȳpp , ~2.15!
5-2
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where

Ȳpp5X̄pp2X̄pe•~ 1̄ee1X̄ee!
21

•X̄ep . ~2.16!

The effects of the evanescent modes are now explic
included in the scattering matrix.

For propagating modes entering in themth channel on the
left, the total probability for transmission to the right is

Tm5 (
m850

`

utm8,mu2. ~2.17!

In the next section we focus on the transmission proba
ity T0. By expanding it in continued fractions, we can det
mine all the transmission zeros and complex poles of
system.

III. CONTINUED FRACTIONS SOLUTION

Let us now consider the special case of a single propa
ing mode, entering in channelm50 from the left and no
propagating modes entering from the right. In this casean
5dn,0 andbn50. The probability amplitude for the particl
to be transmitted into thenth channel~propagating or not! on
the right is cn . For the propagating modes (n>0), cn
5tn,0 . Let us now define the following quantity:

f n5
cn

cn11
, 2`,n,`. ~3.1!

In terms of f n , Eq. ~2.9! gives

11
ihn

f n
1 ihn21f n2150 for nÞ0, ~3.2!

11
ih0

f 0
1 ih21f 215

1

c0
when n50. ~3.3!

For n>0 we can write the solution of Eq.~3.2! in the
form

f n5
1

2 ihn
S 11

ihn11

f n11
D ~3.4!

or

f n5
1

2 ihn S 11
hn11

2

11
hn12

2

11
hn13

2

�

D . ~3.5!

For n<21 we write the solution in the form

f n5
2 ihn

11 ihn21f n21
~3.6!

or
24531
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f n5
2 ihn

11
hn21

2

11
hn22

2

11
hn23

2

�

. ~3.7!

From the above expressions for thef n’s ~whenn50 and
n521) we can obtainc0 from Eq. ~3.3!,

c05t0,05
1

11
ih0

f 0
1 ih21f 21

5
1

11
h0

2

11
h1

2

11
h2

2

11
h3

2

�

1
h21

2

11
h22

2

11
h23

2

11
h24

2

�

. ~3.8!

With the solution for thef n’s and c0 known, any coeffi-
cient cn can be found~using Eq. 3.1! in the following way:

cn5
c0

f n21f n22••• f 0
for n>1 and

cn5 f nf n11••• f 21c0 for n<21. ~3.9!

From here, the transmission probabilityT0 can be written
as

T05 (
n50

`

ucnu25ut0,0u2S 11 (
n51

1

)
n851

n

u f n821u2D
5ut0,0u2S~«,V!. ~3.10!

As it can be seen in Fig. 1, none of thef n8s ~for n>0)
appear to have zeros in the half plane Re@«#.0. This im-
plies that the functionS(«,V) has neither zeros nor poles i
that region; consequently, the zeros and poles in the tra
mission probability are the zeros and poles ofut0,0u2. From
now on we concentrate ont0,0 only.

IV. TRANSMISSION ZEROS

The coefficientc0 can be taken to be a continuous fun
tion of the incoming energyE5«1n\v, instead of a func-
tion of the Floquet energy«. This is so because, when th
incident energy is in channelm (E5m\v1«), we need to
solve Eq.~2.9! with the conditionan5dn,m . The solution is
given in terms of the coefficientcm that now plays the
former role ofc0. The CF forcm is given by Eq.~3.8! with m
added to all subscripts. As it can be seen easily,cm(«)
5c0(m\v1«)5c0(E), which means that the general sol
5-3
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tion of the problem, for any incoming energy can be obtain
from the CF expression forc0 derived in Eq.~3.8! evaluating
it at any energyE. Notice also thatc0(E)5c0(m\v1«)
5tm,m(«). Because of this, and to be rigorous with the n
tation, we define t0(E)5t0(m\v1«)[tm,m(«)5c0(E).
From this we can say thatt0(E) contains the same informa
tion as the whole diagonal of the transmission matrixt̄ in Eq.
~2.14!.

To study the properties ofc0(E) it is convenient to define
the following quantities@see Eq.~2.8!#:

gn~e![hn
2~«!5

a

Ae1nAe1n11

with dimensionless parameters

a[
mV2

8\3v
, e[

«

\v

and

e[
E

\v
5e1n for n\v<E<~n11!\v. ~4.1!

Also, we define the function

F0~e!5F0~n1e![Fn~e![11 i
h0~n1e!

f 0~n1e!

511
gn~e!

11
gn11~e!

11
gn12~e!

�

. ~4.2!

Notice thatgn(e) also depends ona. Using the definitions
given above we can write the coefficientc0(e) for the range
n<e<(n11), in the following way:

FIG. 1. Graph ofu f 0(E)u2 in the complex plane~E in units of
\v!. a510. Notice thatf n(«)5 f 0(n1«)5 f 0(E), therefore, this
graph shows the behavior off n(«) for 0<n<9. The function be-
haves similarly, but with a different scale, for other values ofa.
24531
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c0~e!5c0~n1e!5
1

Fn~e!1
gn21~e!

�

11
g0~e!

11
g21~e!

11
g22~e!

�

.

~4.3!

In the above expression all quantities are real~for e real!
except forg21(e) that is pure imaginary. This has an impo
tant consequence for the number of real zeros inc0(e) as we
shall see next.

Let us rewrite the equation above in a slightly differe
way,

c0~n1e!5
1

Fn~e!1
gn21~e!

11
gn22~e!

�

11
go~e!

11 iG~e!

, ~4.4!

where the continued fractionG(e) is defined as

G~e![
2a

A12eAeS 11
g22~e!

11
g23~e!

�

D . ~4.5!

Notice G(e) is a real function fore real and 0<e<1.
If Eq. ~4.4! is put in the form of a standard fraction, w

get

c0~e!5
1

F01 iG
for n50 and

c0~n1e!

5
iPn~gn22 ,gn23 , . . . ,g0!G1Rn~gn22 ,gn23 . . . ,g0!

iQn~Fn ,gn21 , . . . ,g0!G1Sn~Fn ,gn21 , . . . ,g0!

for n.0. ~4.6!

In the last expression,Pn ,Qn ,Rn ,Sn are polynomials on
the variablesgn and Fn indicated in parentheses, such th
the coefficient of every term is equal to one and all variab
appear elevated to the first power only~i.e., 11g11g1g2
1•••). Notice thatG is the only function that can take va
ues between2` to `. The other functions (Fn andgn) are
strictly positive and finite fore.0 . This implies that
Pn ,Qn ,Rn ,Sn are strictly positive and finite, which mean
that, forn.0, the numerator ofc0 can never be zero and th
denominator does not go to infinity unlessG→`, in which
case the numerator would also blow up keeping the frac
5-4
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strictly positive. From this we can conclude thatthere are no
real transmission zeros for incident energies E.\v.

For n50 we see that a real zero can only happen wh
F0(e,a)→` or G(e,a)→`. The first case only occurs whe
e50 ~G blows up at this point too!. For the second case, th
real zeros oft0(e,a) are given by the zeros ofG21(e,a). As
it can be seen from Fig. 2 the functionG21(e,a) seems to
have some periodicity. This can also be seen in Fig. 3 wh
the curvesd(a) that satisfy t0(d,a)5G21(d,a)50 are
shown. This dependence of the transmission real zeros
the parametera can be seen directly in Fig. 4 in the sequen
of transmission graphs for different values of the strength
the d.

FIG. 2. Graph of the functionuG21(e,a)u. The zeros of this
function give the real zeros of the transmission.
24531
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It is interesting to notice in Fig. 3 and Fig. 4 that there a
intervals ofa, around integer values, for which the real ze
in the transmission disappears. A table~for 0<a<9) with
the exact values~to seven digits! of the intervals for which
there is a real zero in the transmission~apart from the trivial
one atE50) is shown in Table I. This behavior of the re
zero seems to be matched by the behavior of the poles o
transmission as we will see next.

V. TRANSMISSION POLES

In this section we prove by induction that the poles
c0(e) occur at energiese5(n1e* ) with 0,Re(e* ),1 and
show that their residue decreases with increasingn ~energy!.
We start with Eq.~4.3! and write it in the form

c0~n1e!5
1

Fn~e!1Gn~e!
, ~5.1!

whereFn andGn satisfy

Fn~e!511
gn~e!

Fn11~e!
, Gn~e!5

gn21~e!

11Gn21~e!
. ~5.2!

Let us assume thatc0(e) has a pole ate5n1e* . This
implies thatc0(e) has also a pole ate5n111e* because
we can write from Eqs.~5.1! and ~5.2!
FIG. 3. Location of the real
zero of t0 as a function ofa.
t0(d,a)5G21(d,a)50.
5-5
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FIG. 4. Sequence ofut0(e)u
graphs for increasing values of
showing the evolution of the
transmission real zeros.
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c0~n111e!5
1

Fn11~e!1Gn11~e!

5
1

gn~«!

Fn~e!21
1

gn~e!

11Gn~e!

5
@11Gn~e!#@Fn~e!21#

gn~e!@Fn~e!1Gn~e!#

5
@11Gn~e!#

Fn11~e!@Fn~e!1Gn~e!#
. ~5.3!

It is important to notice that, sincef 0(e) ~as shown in Fig. 1!
has neither poles nor zeros in the half plane Re(e).0, the
function Fn(e)5F0(n1e)511 ih0(e)/ f 0(e) does not have

TABLE I. Intervals of a5mV2/8\3v for which a zero-pole
resonance can be found in the system. The notationan

l /an
h ~used in

the text and in some graphs! refers to the lower/higher value of th
interval an .

l h

a0 0 0.7821147
a1 1.1652568 1.7710590
a2 2.1873508 2.7667368
a3 3.1979937 3.7642963
a4 4.2045658 4.7626808
a5 5.2091415 5.7615115
a6 6.2125623 6.7606150
a7 7.2152455 7.7598995
a8 8.2174231 8.7593115
24531
poles andFn(e)Þ1. This implies that@from the last line of
Eq. ~5.3!# if c0(e) has a pole atn1e* @which means that
Fn(e* )1Gn(e* )50#, then it must have a pole atn11
1e* @The numerator in Eq.~5.3! does not vanish ate5e*
becauseGn(e* )52Fn(e* )Þ21#.

Notice also that whenn→`, Fn→1, becausef 0(n1e)
→`, and h0(n1e)→0 in this limit. This means that the
location of the transmission zero approaches the locatio
the pole as the incoming energy grows; the zero happ
whene5d, with Gn(d)521; the pole occurs whene5e* ,
with Gn(e* )52Fn(e* ). Obviously d→e* because
Fn(e* )→1 asn→`. From that we conclude that the residu
of the poles in the transmission amplitude tend to zero an
→`. This explains why, even though the transmission a
plitude has an infinite number of poles separated by a
tance of\v in the incoming energy, all at the same distan
from the real axis, only the effect of the first poles can
seen in the graphs of transmission probability versus inco
ing energy. Another way to say this is that the zeros~in the
complex plane! at higher energies are very close to the pol
therefore, canceling out the possible effect of the poles in
transmission.

In Fig. 5 we show a graph of the imaginary part oft0(e)
where the poles in channels 0, 1, 2, can be seen@we refer to
channeln as the strip in the complex energy plane that s
isfies n,Re(e),n11#. It is evident in that graph that the
poles have support on different sheets; we will call the
sheetsSn , where n refers to the channel number. Th
sheeted structure comes from the fact that, because the f
tionskn(e) have a branch point ate52n and two Riemann
sheets, any function ofkn(e) @t0(e) in particular# will have a
multiple-sheeted structure. What is called the ‘‘physica
sheet~P! in the context of multiple-channel scattering is th
sheet obtained when selecting all the Riemann sheets
5-6



a

o
pa

ts

un

oc

o

nel

re of
the
om-
ion
el
ply
heet.

ts,

l is
ole

wi
in
ch

n

he
. The

f

TRANSMISSION PROPERTIES OF THE OSCILLATING . . . PHYSICAL REVIEW B64 245315
Im(kn).0. Each sheet of the full multisheeted surface c
be labeled by the sequence of signs of Im(k`), . . . , Im(k1),
Im(k0), Im(k21), . . . , Im(k2`)., e.g., (1•••2¿1•••1)
@bold has been used to indicate the sign of Im(k0)#; fortu-
nately we do not need to consider all these sheets, since
a small fraction of them are of physical interest; the princi
one beingP or (1•••1¿1•••1). Crossing the real axis
from P at an energym,e,m11 crosses all the branch cu
whose branch point is at an energy smaller thane5m ~see
Fig. 6!. The sheet that is the smooth continuation ofP into
the lower complex plane~smooth even at the cut! is the one
obtained by taking Im(k2n),0 for all n<m and Im(k2n)
.0 for all n.m. We call these sheetsSm and they are pre-
cisely the ones where the poles in the transmission are fo
as shown schematically in Fig. 7.

Resonances, as opposed to bound state poles, do not
in the ‘‘physical’’ sheet; however, from the unitarity of theS
matrix extended to the complex plane, they can have imp

FIG. 5. Graph of the imaginary part oft0(e) for a50.5, show-
ing several poles. Each pole is located on a different sheet.

FIG. 6. Top view of the physical sheetP and the threshold
branch points and cuts in the complex energy plane. Indicated
a thin line are the branch cuts corresponding to the branch po
n50,1,2; thethick line represents all the branch cuts with bran
point at negative energy~n,0 branch points!. Paths that start on
the upper half ofP and go under the branch cut lead to the differe
sheetsSn ~that in this figure are assumed to be underneathP).
24531
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tant effects on the behavior of theSmatrix along the real axis
~see Ref. 12 for an excellent discussion on multiple-chan
scattering!.

In single-channel scattering, the unitarity of theS matrix
on the real axis has consequences in the analytic structu
theSmatrix in both sheets, the most important one being
zero-pole structure of the resonances: every pole has a c
panion zero at a position complex conjugate to the posit
of the pole but on a different sheet. For multiple-chann
scattering the position of the pole and zero are not so sim
related and often the pole and zero appear in the same s

The position of the pole (e* ) in the first channel, can be
found by looking at the zeros of the functionF0(e,a)
1G0(e,a) with the appropriate selection of Riemann shee
as described before, so as to be on the sheetS0. A graph of
the position of the pole as the strength of the potentia
varied is shown in Fig. 8, where it can be seen that the p
approaches the real axis ate* 51 whena→0, annihilating

th
ts

t

FIG. 7. Sketch of Im@ t0(e)# versus Re(e) @we assume
Im(e)5constant,0# that gives a schematic representation of t
different sheets where the poles of the transmission are located
peak structures in the lower part of the figure represent poles.

FIG. 8. Trajectory of one of the transmission poles asa is
changed from 0 to 9. Herean

l /an
h refers to the lower/higher value o

the interval an given in Table I.
5-7
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the real zero that also goes to the same position witha→0.
As the parametera is increased the zero moves to the left
the real axis~see Fig. 3! and the pole moves away from th
real axis describing an arch. Ata5a0

h50.7821147~all val-
ues ofa are accurate to the seventh digit! the zero disappear
at d50 and so does the pole. For values ofa slightly greater,
the transmission has a very high peak but it is not a pole
can be seen in Fig. 9~compare with the pole ata50.78 in
Fig. 10!. In the intervala0

h,a,a1
l the transmission does no

have any zero-pole resonances. In this interval the pea
false ‘‘pole’’ follows a trajectory that seems the continuati
of the trajectory the pole had followed until it vanishe
Whena5a1

l the zero reappears on this channel, entering
d51. At this value however, we do not see any pole in t
channel. There is in fact a pole onS0 but it is located in the
next channel@1,Re(e* ),2#. For a'1.3 the pole has fi-
nally made it into then50 channel. Asa is further increased
the pole continues to describe an arch until it disappe
along with the zero. A similar behavior to the one describ
above occurs for increasing values of the parametera, with
the pole describing ever increasing arches, each one fa
away from the real axis than the previous one. An identi

FIG. 9. False ‘‘pole’’ of t0(e) for a50.79, right after the zero
has disappeared atd50 for a5a0

h.

FIG. 10. True pole of the transmission fora50.78, slightly
lower than the value of a (a5a0

h) for which the zero disappears.
24531
as
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behavior of the poles on other sheets is expected from
discussion following Eq.~5.3!.

The study of the behavior of the poles and real zeros a
function of the parametera5mV2/8\3v shows an interest-
ing quasi-periodic dependence ona and the presence o
‘‘bands’’ of nonresonant values ofa for which the transmis-
sion does not have zero-pole resonances. This quasi-per
behavior of the transmission resonances as a function of
strength of the oscillating potential and the driving frequen
has not been found before. Around integer values ofa the
oscillating potential seems to be incapable of dynamica
trapping particles not even for a short period of time. It c
also be mentioned that the lifetime of the quasi-bound sta
decreases with increasinga, which can be accomplished b
either increasing the strengthV of the potential or by de-
creasing the frequency of the oscillations.

VI. THRESHOLD ANOMALIES

One of the most evident features in the transmission v
sus energy curves for all values ofa is what seems to be a
discontinuity in the slope ate5n\v ~channel openings!. A
close look into this region reveals that there is a rapid div

FIG. 11. Various forms of transmission amplitude behavior a
channel opening.

FIG. 12. Graph ofut0(e)u versus incoming energy. Threshol
anomalies of ‘‘cusp’’ type at the channel openings fora50.5.
Threshold anomalies of ‘‘rounded step’’ type fora52.05.
5-8
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gence of the slope at the thresholds, that is,dt0 /de→6` as
e→n\v. This is actually a common occurrence in all mu
tichannel scattering problems, and it can be traced bac
the fact that when the energy is in thenth channel near
threshold, the first open-channel momentum isk2n

5Ae2n\v. It can be proven that theSmatrix has elements
that are linear functions of this momentum near thresho
This clearly implies that the derivative of these eleme
with respect to the energy must diverge at threshold~for
more details see Ref. 21!. These threshold anomalies ca
easily be proven to exist in our particular time-depend
potential by looking at our CF solution fort0(e) in Eq. ~3.8!.
From it, it is clear that the derivative of this expression giv
an infinite number of terms, each one proportional to
derivative of some functiongn(e). These functions and thei
derivatives diverge at their thresholds@see the expression fo
gn in Eq. ~4.1!#, therefore, the derivative oft0(e) must also
diverge at each threshold. According to this, the shape of
threshold anomaly can be of four different kinds, two cus
like and two rounded steps, as shown in Fig. 11. These
different kinds of anomalies are shown in Fig. 12 as th
occur in theut0(e)u graphs for two different values ofa.

VII. CONCLUSIONS

The exact solution for the problem of transmission o
particle through a monochromatic oscillating potential h
tt

a

24531
to
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been found with the use of CF’s. Computationally, this a
proach represents an improvement in speed over the stan
method that requires the inversion of an infinite tridiagon
matrix. This improvement can be significant when studyi
the zero-pole structure of the transmission on the comp
plane. Most importantly, it allowed us to prove rigorous
some general properties of the transmission for this syst
such as the existence of transmission zeros only in the
channel, the location of the poles at regular intervals of\v
in the incident energy, the decrease in the residue of the p
with increasing energy, and also allowed us to understand
existence of threshold anomalies at the channel opening

The scattering of particles through a time-periodic pote
tial is another example of multichannel scattering, for whi
a great deal of theory and research has been done in the
and still continues to be an important topic of research.
this paper we have put Floquet scattering in the greater c
text of multichannel scattering to which it belongs and
doing so we believe some aspects of the transmiss
through oscillating~localized! potentials have been clarified
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