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Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas
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Quasibound and scattered states in a two-dimensional electr¢@@EBS) subjected to a circular symmetric
steplike magnetic profile with zero average magnetic field are studied. We calculate the effect of a random
distribution of such identical profiles on the transport properties of a 2DEG. We show that a nonzero Hall
resistance can be obtained, althogh) =0, and that in some cases it can even change sign as function of the
Fermi energy or the magnetic-field strength. The Hall and magnetoresistance show pronounced resonances
apart from the Landau states of the inner core, corresponding to the so-called quasibound snake orbit states.
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I. INTRODUCTION with different magnetic field strengths inside and outside a
radiusR. In contrast to the bound states found by Katal,
The response of a two-dimensional electron 2BEG) here the electron states are quasibound, because we consider
to a spatially inhomogeneous magnetic field has been thenagnetic profiles which are finite in extent.
subject of considerable interest in recent yéaksvery low We will model the magnetic field by
temperatures and in very pure samples, these inhomogene-

ities in the magnetic field can act as scattering centers for the B(r<Ra)=Ba,
2DEG, perturbing the ballistic electron motion and hence B(Ry<r<Ry)=B,,
altering the transport properties of the 2DEG.
These inhomogeneous magnetic fields can be realized by B(r>R,)=0, (1)

growing a type-ll superconducting film on top of a hetero-

. _ 2_ g
junction, containing a 2DE&.If a background magnetic with By=—Ba/[(Ry/Rs)*—1] such that the condition

field is applied, vortices will penetrate the 2DEG, where they<BZ>:0 is SatiSﬁe_d‘ This magnet_ic-field profile mo_del; the
one of a perpendicularly magnetized ferromagnetic disk as

form scattering centers. If the applied magnetic field is low,_. i .
the vortices will be distributed randomly, due to the inhomo- fglt by a 2DEG underngath the d|§k. A.S an example, in
geneities in the superconducting film. Brey and Fértigd _F|g. 1 we plot the magnetl_c-fleld _profl(solld c_:urve) result-
Nielsen and Hedégd® studied scattering on these vortices if "9 from a ferromagnet with radiug, and thicknessi/R, -
distributed randomly, and if distributed on a periodic array. — 1+ 9rown a distanck/R,=0.1 above a 2DEG, as shown in

In an alternative approach superconducting particles arthe |_nset. The dotted curve represents the magnetic field ac-
deposited above a 2DEG. Due to the Meissner effect, mag0rding to our model, where we have chosgn/R,~2.8 to
netic flux will be expelled from the particles, which again account for the shape of the profile. A cutofffgf is made in
results in a low-magnetic-field region undermeath each of th@"der to simplify the calculations. We believe that, in doing
superconducting particles. This was realized by Srital,>  this, the physics is not altered.
who grew lead grains on top of a heterojunction. The parametersRa,, Ry, By, andBp) depend on the

A logic next step would be to deposit ferromagnetic clus-Specific properties of the ferromagnetic mate(ias extent,
ters as inhomogenous magnetic field creators in the 2DEG.

This was realized by Yet al.® who grew Dy micromagnets 1L ' ' ]
on top of a GaAs/AlGa,_,As heterostructure and recently e e :
by Dubonoset al.” who studied scattering of electrons on of dR,=1 '
the stray field of a single Dy magnet. This problem is essen-
tially different from the earlier problems, because now the
average magnetic-field strength is ze{B;,)=0.

Preliminary results on this system were already presented
in Refs. 8 and 9, where scattering on the stray fields of in-
finitesimally flat magnetic disks with perpendicular magneti-
zation was studied. In this paper we extend and generalize
these earlier results, and study cylindrical symmetric steplike 5
profiles, with an average zero magnetic field. This simplifi- L .
cation enables us to classify the arising phenomena and un- 0 1 2 3
derstand their underlying physics. We will show that such a R,
system can give rise to a nonzero Hall resistance, even F|G. 1. The magnetic-field profilesolid curve and the theoret-

though(B,)=0. Moreover, such a system can hi)St quasi-cal model (dotted curvg for a magnet of radiu® and thickness
bound states, similar to the ones studied by Kinal,'who  d/R=1, deposited a distandgR=0.01 above a 2DEG, as shown

theoretically investigated the electron states of a circulain the inset. The lower inset shows a simplified top view of the
symmetric magnetic-field profile, consisting of two regionsmagnetic-field profile in the plane of the 2DEG.

AL
| R/R =28

B, (arb. units)
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thickness, magnetization, and distance to the 2DEKbe
resulting profile can also be affected by including supercon-
ducting strips, which expel the flux lines due to the Meissner
effect and consequently can rearrange or guide the magnetis
field lines. i

The paper is organized as follows. In Sec. Il we consider
scattering on a single magnetic profile. First we solve the
problem classically in order to get a reference frame which
describes the large energy limit. Then we concentrate on the
guantum-mechanical behavior, and study the differences
which arise, such as, e.g., the existence of quasibound state
In Sec. lll, we calculate the response of the 2DEG to a ran-
dom, homogeneous distribution of the@éentica) profiles
over the sample. The approach is along the lines presente
by Nielsen and Hedegd in Ref. 4, which was based on the
Boltzmann transport equation. Again, we consider the scat-
tering both classically and quantum mechanically, and dis-
cuss the arising differences. In Sec. IV we summarize our
conclusions, and briefly discuss the possibility of reproduc-
ing our results experimentally.

do:

do/de

Il. SCATTERING ON A SINGLE MAGNETIC PROFILE
A. Classical scattering

Classically, the scattering on a magnetic field profile is @:
determined by the solution of Newton's equation of motion, = *
where the force is given by the Lorentz expressionev
X B for a particle with charge. Outside the profile, no mag-
netic field is present, and consequently the path is just a
straight line. Inside the profile, the electron describes an arc
of a circle, of which the radiugnd the direction in which it
is drawn, i.e., clockwise or counterclockwjsepends on its FIG. 2. This figure corresponds to the situati®g/B,=20 and
position in the profile, since the profile considered here conRy/R,=1.5. On the left, the differential cross section for different
sists of two regions with different magnetic-field strengthk/Ba=1a/Ra, i.e., (@ 1a/R;=0.5, (b) 1,/R,=1, and (c) for
(and sign. The respective cyclotron radii are given by !a/Ra=2. The bold curve corresponds to the classical result, and
=vlw., wherev is the velocity of the electron and, the thin curye to t_he quantum mec_hanical result._On thg right, sqme
—eB/mc is the cyclotron frequency in the local magnetic plassmgl trajec.torles |nteracF|ng with the magnetic p.roflle,. resulltllng
field, which isB=B, in the inner core and=B, in the in the dlfferer_mal cross sections on the left. The trajectories giving
outer region. rise to the different parts of the different structures, are grouped

The geometry of the scattering process is determined b;S/Chemat'Ca"y'

the following dimensionless parameteal R, /R,, i.e., the  symmetry due to the time-reversal-breaking magnetic field.

ratio of the radii of the inner and the outer circle of the we note thatdo/d¢ is sensitive tol,/R,: for increasing

magnetic field profile, andb) 1,/R,=(m/e)(v/B,), which  1,/R,, it is more centered around 0, but its structure also

is the ratio of the cyclotron radius in the inner core, to thechanges significantly, which can be understood by inspection

radius of this center part. It is clear from geometrical consid-of the different classical electron trajectories shown on the

erations that it is impossible for a particle which was initially right.

outside the magnetic profile to become trapped inside the Suppose we consider the classical trajectories from left to

magnetic profile. right. In the casd,/R,=0.5, the electrons are deflected to
We calculated the differential cross sectida/d¢ nu-  the left (¢<0), giving rise to the orbits indicated g), and

merically, from the different classical trajectories. In Fig. 2, contributing to the differential cross section indicated(iy

we show examples of the classical trajectofi@s the righf,  Shifting the initial position of the electron further to the

and their resulting cross sectiof®ld curves, on the leffor  right, at a certain point the electron does not only feel the

the R,/R,=1.5 configuration for different, /R, . outer region, but is able to penetrate into the inner core;
In the limit of 1,/R,—0, the cyclotron radius is very consequently the electron is abruptly swept to the other side.

small compared tdr,, and, therefore, the electron scattersThe latter causes the abrupt decreasel@fd¢ at ¢/m=

on the magnetic profile as if it were bouncing off a hard wall. —0.75. These trajectories contribute to p@iin the differ-

As a consequence, the differential cross section would bential cross section, and have maimy>0.

symmetric ing. From Fig. 2, we see that if,/R, increases, The same reasoning can be used to understand the differ-

the differential cross section changes drastically, and loses itsntial cross section fdr,/R,=1; only now,do/d¢ is more
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i i - - 2 ! !
centergd around zero due to thg hl.gher velocity of the glec ka(r):r|”‘|e 1/2B,r [CmaM(a',B,7")
tron (with respect to the magnetic figld.e., the electron is
less deflected. For larger velocities, e.g., flpfR,=2 as in +cmaU(a’,B,7")], (8)

Fig. 2(c), the previous picture has to be extended with a new
type of trajectories: those on the rigt® which again only wher_e I\]{I(a,t_),c)suand U(_a,b,c) are l(_:onf_luent hypergeo-
probe the outer region, since the magnetic field in the outef"®tr¢ functions, ¢y, IS 2 normalization constante

region is not strong enough to deflect the electron into the- LIM/+1—m—k7(2By)]/2, B=|m|+1 and y=Br*. «

inner part. These trajectories give rise to an additional pea®Nd ¥’ are the same aa and g, but with B,—B,. The
(3) in the differential cross section. constantx, , andcp, 3 have to be determined such that the

wave function is continuous at=R,. An alternative ap-

. . roach is to calculate the wave function numerically up to
B. Quantum-mechanical scattering P y up

r= Rb .
1. Schradinger equation Forr>R,, Eq.(5) reduces to
We have to solve the Schiimger equation
gered 1d d m K B
(H—E)¥(r,¢)=0, 2) _Eara“L?_? Rkm(r)=0, 9

whereE=7k?/2m is the energy of the scattering wave. Be- \yhich is the differential equation for the Bessel function of
cause of cylindrical symmetry, we work with polar coordi- ine first kind:

natesr =(r,¢). We can make this equation dimensionless by
rescaling the problem in the following way: lengtR, Rim(T) = amdm(Kr) +byY (k). (10)

=R,, energyE,=%%(mR?), time ty=mR/%, and mag- ) ) )
netic field B =cﬁ/eR§. We can write the scattering wave Therefore, the resulting phase shifts can be calculated at this
0 oint, r=R,,, and are derived from the condition that the

function as consisting of components, separated into an alf’ i L t th ol ; X
gular and radial part, ogarithmic derivative of the radial wave function must be

continuous at this boundary,

[’

V(re)= 2 R Pr(e), 3 1 dRa
" Ry, dr

1 dRg,
. Rem dr

= é:km ’ (11)

. . =R
for which the angular part is equal to T

which results in

1
D (@)= —==e""", 4 .
SN L dRa|_in(KR)Yn(kRy gy
since the problem is cylindrically symmetric. The Schro R dr r=R, Im(kRp) = Yim(KRp)tandp,

dinger equation is then reduced to only one dimension, . o
gereq y where we have introduced the abbreviatiors,(x)

1d d =(XI2)[Zm-1(X) = Zms1(x) ] With (z,2) =(j,J) or (y,Y). It
“orar ar T Vm(N—E[Rn(r)=0, (5) is now easy to solve fos,,:
with tans..— Im(KRp) = €kmIm(KRy) (13)
1 2 " ym(ka)_fkam(ka).
m
V(1) = E{Ad’(r) ) © 2. Resonances
the effective potential, and,(r)=(1/r) [5dr'r'B(r’), the In contrast to the classical problem, the raltjgR, no

angular component of the vector potential. Note that the anlONger determines the scattering problem completely. We
gular quantum number satisfieso<m<o, in contrast to need to know the exact energy and the magnetic-field

when the scatterers are nonmagnetic, in which case we hagdength, and therefork, /R, should be extended with the
0<m<c, due to symmetry, i.em and —m result in the ©€XactE or By. We have chosen to fix the magnetic field

same scattered wave. strengthB,/B,= 20, and to plot all curves as a function of

We know that the scattering process is fully determined if</Ba(RaBo) =1a/Ra, as was done in the classical case. The
we know 8, for everym. In order to calculate these phase larger thek value (~1,/R; for fixed B,), the more classical
shifts, we have to solve E¢5) for everymin the presence of the system is, and the more the average of it converges to our

the unperturbed wave. The solution fox R, is in the right part of Fig. 2 But for lowerk values, i.e., when
the wavelength of the scattering wave is comparable to the

R, (r)=rlmMe~1/2Ba2c M a.B.7), 7 dimensipns of the scattererkt Rp, quantum me.chanics be-
(1) maM(a.5.7) 0 comes important, and results in features which cannot be
and, forR,<r<Ry, understood classically, as e.g., the existence of resonances.
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"R, FIG. 5. The effective potentid¥¢(r) as function ofr/R, for

FIG. 3. The effective potentiao¢¢(r) as function ofr/R, for ~ m=—8 andm=—21 whenB,/B,=20 andR;/R,=1.5, together
variousm values, for the case whe,/B,=20 andR,/R,=1.5.  with the radial wave function&otted curvepat the resonant ener-
The horizontal lines correspond to the resonant energies. gies. These quasibound states correspond to different types of snake

orbits, propagating parallel to the magnetic edge, as depicted sche-

In order to determine at which energies these resonancégatically in the inset of the figure.
occur, one should inspect the phase shiftas a function of ) _
the energy or the correspondigector. When a jump ofr not possible since the total extent of the lowest Landau state
occurs, there is a resonance for that particilamlue for  (=2lp=2R,/\/20=0.5R,) does not fit into the outer region
given m. The lifetime of that quasibound state depends or{lRb—Ra=0.5Rj).
the energy interval over which this jump occurs, or on the Nevertheless, fom< —4 there are also resonances which
peak width of the partial cross section, as a function of the have an energy lower than the first Landau level of the inner
energy. core. They correspond to quasibound snake orbit states,

In the following, we show the results for the caseWwhich travel around the profile, propagating from tBg
B,/B,=20 andR,/R,=1.5. In Fig. 3 we plot the effective region into theBy, region, and vice versa. As an example we
potential for four differentm values for this case. In Fig. 4 plot the effective potential and the corresponding radial wave
we plot the phase shift as a function kfB, for —10<m  function R, for m=—8 in Fig. 5. Because the two wells,
<10. corresponding to the magnetic confinement in the different

We note that form=—2 well-defined quasibound states magnetic fields of the inner and outer regions, are joined
are formed at the Landau levels of the inner core of thdogether, they form one well which is broader—and conse-
magnetic-field profile, i.e., atk=B,(2n+1)=4.471, quently hgs_ an energy lower—than e_ach of the separate
7.745, 10,. . ., or in theunits of Fig. 4:k/B,=0.224, 0.387, wells. A similar effect we encountered in a previous paper

0.5, ....Landau states in the outer regioB,(B,=16) are for the case of electron traveling along a one-dimensional
magnetic interfacé® The electrons propagate classically, as

schematically depicted in the inset of Fig. 5.

For higher energies we also note resonances for negative
m, e.g., form=—21, as shown in Fig. 5. They too corre-
spond to snake orbits, but, because they have a larger energy
they have to move closer to the interface, in order not to
escape the magnetic-field profile, since their cyclotron radius
is larger. These type of states become extinct when the cy-
clotron radius in the outer part exceeds the radius of the outer
part R,, i.e., forkl,~R,/R;=1.5. We have checked this,
and these resonances indeed disappear.

S /n

3. Differential cross section
In two dimensions, the differential cross section is given
by
0.0 0.1 0.2 0.3 0.4 0.5 o 2
do 2 o5
k/B, (R B,) > eMeednsing,,| . (14)

d¢ 7K|nT
FIG. 4. The phase shif§,, as a function ok/B, for differentm
values, for the situation witlB,/B,=20 andR,/R,=1.5. Phase We plot this together with its classical counterpart in Figs.
jumps of 7 correspond to resonant states. 2(a)—2(c). We note that many oscillations are present, due to
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' ' ' 1 1 " ' jected to a randomly distributed array of such identical pro-

gl _m=-8 m = -21 . files. We will make the assumption that the dimensions of the
‘ magnetic disks are small compared to the distance between
F,M-LJLL\.LJL_L‘ 1 the disks, so we do not include interference effects between
6l LW\LJ\A_/\‘M_ different scattering events. Moreover, we neglect impurity
™ scattering.

We solve the(classical Boltzmann transport equation,

o« linearized in the electric field, and foIIov! the derivation as
5 4r ] described in the paper of Nielsen and HedddaFinally, we
___________ AU R VS SN SIS DU B N arrive at
°[ B8, =20 | _ L Mo - cosw(k.b). (153
L R/R, =15 - P 2m2ne el n e
0 " 1 " 1 1 " 1 "
0.0 0.2 0.4 0.6 0.8 1.0 1 npto (m _
k/Ba (RaBo) pxy_(zT)z n_e g _ﬂ_d(ﬁ S|n¢W(k- ¢); (15b)

FIG. 6. The cross section as a function ok/B, in the classical wheren, is the electron concentrationg is the concentra-
limit (dashed curyeand if calculated quantum mechanicafolid  tion of magnetic scatterers, amdk, ¢) is the probability for
curve for B,/Bo=20 andR,/R,=1.5. The marked resonant states an electron with wave vectdrto be scattered over an angle
correspond to the ones shown in Figs. 5 and 8. Vertical dotted lineg. In relation to the differential cross section, we can write
are the Landau energies of the inner core of the magnetic-fielgy(k, ¢) = (Zk/m)(do/d¢), since cvAt is the probability
profile. for an electron with velocityw to interact with a scatterer

_ o with cross sectiorr in a time intervalAt.
interference effects. The number of these oscillations de-

pends on the energy: the larger the energy, the greater the
number of oscillations. In the high-energy limit, the
guantum-mechanical result will ultimately, on the average, 1. Magnetoresistance
converge to the classical one, except for the peak-a0. lts In Fig. 7(a), we plot the magnetoresistance as a function
occurrence is a purely quantum-mechanical effect, and is du

. X [,/R, for wvarious R,/R,, in units of p
to the fact that an electron which would classically pass by_z(nol’}lne)a(h/ez). This is obtabinea(lj by inserting the ea?lier

and hence does not interact with—the scatterer, quantum M iculated classicallo/d¢ into w(k,é) of Eq. (153. The
chanically, has a finite overlap with the scatterer, and Conserhagnetoresistance is zero WH%MR,=0 beca.use f;)r 7610
a [l [}

quently contributes—although very little—to the cross
: . S . L energy, electrons do not move €£0), and consequently do
section. Because the interaction is very slight, it is only scat- 9y e£0) . Y

not experience any scattering. For small values the magne-
tpeergg over a very small angle, and thus adds to 40 toresistance increases linearly up to a certain value, after

which it decreases for increasihg/R, . This decrease is due
to the fact that for higher energy, the electrons are less de-
flected because of a larger cyclotron radius in the magnetic
In Fig. 6 we plot the total cross sectior= [d¢da/d¢ as  inhomogeneity. We note that for increasiRg/R, the mag-
a function of k/B,. Classically, this is equal to the total netoresistance has an overall increase, which can be ex-
diameter of the magnetic inhomogeneity=2R;, (dashed plained by considering scattering on the inner and outer pro-
line in Fig. 6. From Fig. 6 we note that the quantum- files and how they influence each other. For larBgfR,,
mechanical cross sectidrolid curve is larger than the clas- the cyclotron radius of the outer part increases quadratically
sical result. For large energies the total cross section is twice R, /R, ; therefore, electrons will be less deflected for in-
as large; for small energies the cross section is four times aseasingR,/R,. However, this is compensated for by the
large, as is the case for scattering on a spherical hard walfact that the cross section also increases linearly with
We also note the resonances mentioned before, present R§/R,, and consequently scattering on the outer part has
small peaks, which can be attributed to a particataralue.  more or less the same impact for differéqt/R, . Therefore,
As an example, we indicated the=—8 and —21 reso- the increase in the resistance is due to the fact that for larger
nances, corresponding to the quasibound states of Fig. 5. R,/R,, the scattering on the inner and outer regions can be
considered as two separate processes, which interfere with
each other very little. This is not the case for smaRg/R,,
IIl. SCATTERING ON MULTIPLE PROFILES v_vhere electrqns intera(_:ting with the outer part are more
likely also to interact with the inner part, which would de-
With a knowledge of the classical and quantum-flect the electron in the opposite way, and thus diminishes the
mechanical differential cross sections, it is now possible tescattering effect produced by the outer part. In short we can
calculate the Hall and magnetoresistance in a 2DEG sulsay that electrons, which interact with the magnetic profile,

A. Classical result

4, Total cross section
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tance. For increasing,/R,, the electrons will penetrate
deeper in the outer region, but not yet in the inner core as
long asl, /R, is small enough, i.e.,12<(R,—R,) [see the
trajectory given by the bold curve in the right figure of Figs.
2(a)]. The Hall resistance is due to a vortex with magnetic
strengthBy, . For increasind/B,, the electrons will be able
to penetrate into the inner region, where they are deflected to
the other side; consequently, the Hall resistance changes sign
[see the bold curve in Figs(l® and Zc)].

The reason that this effect does not occur for higher

g-g ’ ’ ’ ‘ R, /R, values is due to the fact that, in these cases, there is
1 only little interplay between scattering in the inner and outer
2.0 regions, as mentioned above. It is much more unlikely that
aacl an electron which initially only felt the outer region, for
o 15 I higherl ,/R,, will interact with the(relatively small core,
1.0 and be swept to the other side. Therefore, the Hall resistance

for large Ry /R, always has the same sign, as generated by

0.5 the outer region.

0.0 |u=

B. Quantum-mechanical result

After insertion of Eq.(14) into Egs.(153 and(15b), we

can rewrite the magnetoresistance and the Hall resistance as
FIG. 7. The magnetoresistant and the Hall resistanog) in ~ functions of the phase shifts:

the classical limit as a function df, /R, for different R, /R, con-

figurations. .
n
pocy 5 2 28I (on=dn.a). (163
e = —00
on average “feel” a nonzero magnetic field which increases
with increasingR, /R, , and this results in an increase of the
magnetoresistance and the Hall resistance. No i <
The fact that for higheR, /R, the scattering problem can Py~ 2 2 SIM2(6m— 6m+1) - (16b)
e € m=-w

be seen as two separate scattering processes on different vor-
tices (R,,B,) and Ry, ,By), is also reflected in the dip in the
magnetoresistance which arises for highes/R,, e.g., In Fig. 8, we plot the Hall resistance and the magnetoresis-
Ry/R,=10. Actually, the magnetoresistance has two peaksance as functions dt/B, for B,/By=20 andR,/R,=1.5.
of which one, the lower-energy peak, corresponds to scatteifhe solid curve is the quantum-mechanical result, and the
ing on the outer region, while the second peak corresponds tashed curve is our previously obtained classical result. We
scattering on the center region. For higlgy/R,, the first  observe many resonances, which diminish for increasing
peak will shift toward smallet,/R,, while the other peak k/B,. Except for this, on the average there is rather good
remains in the same position; consequently, the two scatteagreement between both curves, which is due to the choice
ing processes will become more distinct. of B,/By being large; consequently, in this figuke—and
consequently the energy—is large.
There are two types of resonancéb; those which occur
at the energy of the Landau levels of the inner core of the
The corresponding Hall resistance is plotted in Fi@n).7  magnetic-field profilgthin dotted curves and(2) those cor-
We note that both qualitative and quantitative behaviors argesponding to quasibound snake orbit states.
more sensitive to the ratiR, /R, than was the case for the  In case of the first type of resonance, the Hall resistance
magnetoresistance. There are two striking featUgsgain, decreases abruptl§.e., it has a sawtooth behavjpwhile
there is an overall increase of the Hall resistance with inthe magnetoresistance increases. This can be viewed in the
creasingR,/R,; and (b) for small R,/R,, i.e., R,/R,  rightinset in Fig. 8. The reason for this is that at the energy
<1.73, the Hall resistance can change sign as a function ajf the Landau levelgindicated by the vertical dotted lings
l./R,, i.e., as a function of the Fermi energy or the electrons ardquas) bound into cyclotron orbits, and hence
magnetic-field strength. cannot(a) contribute to the conduction, and consequently the
The fact that the Hall resistance can change sign whemagnetoresistance increases; é@mdcannot pile up and gen-
Ry /R,<1.73 is a consequence of the interplay between scakrate a voltage difference on the left and right side, and con-
tering in the inner and outer regions of the magnetic-fieldsequently the Hall resistance decreases. Moreover, spending
profile. For infinitesimally small ,/R,, the outer part will time circling around underneath the disk, the electron loses
act as a hard wall, and consequently there is no Hall resisknowledge of where it came from. As a result, if the electron

2. Hall resistance
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| m=-21 [V. CONCLUSIONS

In this paper we studied scattering on circular symmetric
magnetic-field profiles with zero mean magnetic field in
the 2DEG. We considered scattering on a single profile,
both classically and quantum mechanically, and found differ-
ent types of quasibound states: the Landau states in the
inner core, and different quasibound snake orbit states.
Next we investigated the diagonal and Hall resistivities in
the presence of a randomly distributed array of these mag-
netic profiles, using the kinetic Boltzmann equation, for
different magnetic-field configurations. We obtained a non-
zero Hall resistance althougtB,)=0, and showed that
the Hall resistance can change sign as a function of the
Fermi-energy or the magnetic-field strength. We found that

00 o2 04 os 08 10 the electron resonances in the individual magnetic-field pro-
files are reflected in the Hall resistance and the magnetore-
k/B, (R_B,) :
alato sistance.

FIG. 8. The magnetoresistance and Hall resistance as functions C_ZonS|der_|ng a realistic magnetlc-fleld proflle_gs in the ex-
of k/B, in the classical limi{dashed curvesand if calculated quan- periment will only rearrange or Sh!ft t_he pOSItIOI’]S. of the
tum mechanically(solid curves for B,/B,=20 andR,/R,=1.5.  'esonances, but we expect no qualltatlve changes in our re-
The marked resonant states correspond to the ones shown in FigsSglts. Note that similar resonances g, and p,, are ex-

and 6, and the vertical dotted lines are the Landau energies of tfféeCted to occur for composite fermionsl at the magnetic fill-
inner core of the magnetic-field profile. The insets show enlargeing factorv=1/2. Nevertheless, measuring these resonances

ments of a quasibound snake orbit resonafte) and a Landau- Will be hard, since there are two competing effects which

level resonancéright) where the solid curve correspondspig and ~ make an experimental measurement of these resonances dif-

the dashed curve to,, . ficult: in order to detect these quasibound states, it is neces-
sary that the energigbound or resonahnhot be too close to

relaxes and escapes the scattering region, its chances to %@Ch other. To obtain this, one has to make a very small

: _ 32
scattered in the backward direction increase, and Consépagnet(smce Eo=1 /ng\)’ but then one encounters the

quently the magnetoresistance also increases. The Hall resfyoblem that in order to bind the electrons in such a small

tance is a measure of the asymmetry of the scattering proqrea one needs a very strong inhqmogenepus magngtic field
cess, and we can therefore interpret the dips,jnalong the (Bozcﬁ/eRg); currently no magnetic materials are available

same line of reasoning. which can realize these strong f|eId§.
. . .. An example of such a system is the one by Dubonos
For larger energies, the cyclotron orbit in the center will

. . _ I”: they man i ingle Dy magnet with
increase and exceed the inner core classicallyk/@, et al.: they managed to deposit a single Dy magnet wit

a radius~0.1 um on top of a heterojunction containing

=1/(R,Bp). Nevertheless, quantum mechanically the elec—a 2DEG. For this system, our units are given By=7.63

trc_m vv_iII “feel” the presence of the ogter magnet!c field, gnd %10% meV and B,=0.066 T. The Fermi energy in

this will change th.e.resongnt energies. The resstgncg JUMRReir system was abol;=17.86 meV, which in our units

are also less explicit for higher Landgu Ieygls, which is dugg Er=2341E, or ke~ 70. According to Ref. 7 the stray field

to the reduced number of state_s which fit in the core as @q|d locally generate magnetic fields Bf,~1T~15B,,

result of the large cyclotron radius. which corresponds tckg/B,~4.7, for which we are in
Apart from resonant states at the Landau levels, the maghe classical regime and the scattering process can be calcu-

netoresistance exhibits very sharp peaks, which correspongdted classically. In order to measure individual snake orbits,

to the snake orbit states mentioned earlier. This second type is therefore necessary to include additional electrical

of resonances can have a lower energy than the first Landasonfinement, which discretizes the energies and makes mea-

level of both the inner and outer parts, as explained abovesurement possible, as also used in the paper by Nogaret

Since for all the snake orbit resonances only one quasibouret al*®

state is involved(in contrast to the Landau states, where

various quasibound states exist for variousvalues; see ACKNOWLEDGMENTS
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