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Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas
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Quasibound and scattered states in a two-dimensional electron gas~2DEG! subjected to a circular symmetric
steplike magnetic profile with zero average magnetic field are studied. We calculate the effect of a random
distribution of such identical profiles on the transport properties of a 2DEG. We show that a nonzero Hall
resistance can be obtained, although^Bz&50, and that in some cases it can even change sign as function of the
Fermi energy or the magnetic-field strength. The Hall and magnetoresistance show pronounced resonances
apart from the Landau states of the inner core, corresponding to the so-called quasibound snake orbit states.
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I. INTRODUCTION

The response of a two-dimensional electron gas~2DEG!
to a spatially inhomogeneous magnetic field has been
subject of considerable interest in recent years.1 At very low
temperatures and in very pure samples, these inhomog
ities in the magnetic field can act as scattering centers for
2DEG, perturbing the ballistic electron motion and hen
altering the transport properties of the 2DEG.

These inhomogeneous magnetic fields can be realize
growing a type-II superconducting film on top of a heter
junction, containing a 2DEG.2 If a background magnetic
field is applied, vortices will penetrate the 2DEG, where th
form scattering centers. If the applied magnetic field is lo
the vortices will be distributed randomly, due to the inhom
geneities in the superconducting film. Brey and Fertig3 and
Nielsen and Hedega˚rd4 studied scattering on these vortices
distributed randomly, and if distributed on a periodic arra

In an alternative approach superconducting particles
deposited above a 2DEG. Due to the Meissner effect, m
netic flux will be expelled from the particles, which aga
results in a low-magnetic-field region underneath each of
superconducting particles. This was realized by Smithet al.,5

who grew lead grains on top of a heterojunction.
A logic next step would be to deposit ferromagnetic clu

ters as inhomogenous magnetic field creators in the 2D
This was realized by Yeet al.,6 who grew Dy micromagnets
on top of a GaAs/AlxGa12xAs heterostructure and recent
by Dubonoset al.,7 who studied scattering of electrons o
the stray field of a single Dy magnet. This problem is ess
tially different from the earlier problems, because now t
average magnetic-field strength is zero;^Bz&50.

Preliminary results on this system were already presen
in Refs. 8 and 9, where scattering on the stray fields of
finitesimally flat magnetic disks with perpendicular magne
zation was studied. In this paper we extend and genera
these earlier results, and study cylindrical symmetric step
profiles, with an average zero magnetic field. This simpl
cation enables us to classify the arising phenomena and
derstand their underlying physics. We will show that suc
system can give rise to a nonzero Hall resistance, e
though ^Bz&50. Moreover, such a system can host qua
bound states, similar to the ones studied by Kimet al.,10 who
theoretically investigated the electron states of a circu
symmetric magnetic-field profile, consisting of two regio
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with different magnetic field strengths inside and outside
radiusR. In contrast to the bound states found by Kimet al.,
here the electron states are quasibound, because we con
magnetic profiles which are finite in extent.

We will model the magnetic field by

B~r ,Ra!5Ba ,

B~Ra,r ,Rb!5Bb ,

B~r .Rb!50, ~1!

with Bb52Ba /@(Rb /Ra)221# such that the condition
^Bz&50 is satisfied. This magnetic-field profile models t
one of a perpendicularly magnetized ferromagnetic disk
‘‘felt’’ by a 2DEG underneath the disk. As an example,
Fig. 1 we plot the magnetic-field profile~solid curve! result-
ing from a ferromagnet with radiusRa and thicknessd/Ra
51, grown a distanceh/Ra50.1 above a 2DEG, as shown i
the inset. The dotted curve represents the magnetic field
cording to our model, where we have chosenRb /Ra'2.8 to
account for the shape of the profile. A cutoff atRb is made in
order to simplify the calculations. We believe that, in doi
this, the physics is not altered.

The parameters (Ra , Rb , Ba , and Bb) depend on the
specific properties of the ferromagnetic material~as extent,

FIG. 1. The magnetic-field profile~solid curve! and the theoret-
ical model ~dotted curve! for a magnet of radiusR and thickness
d/R51, deposited a distanceh/R50.01 above a 2DEG, as show
in the inset. The lower inset shows a simplified top view of t
magnetic-field profile in the plane of the 2DEG.
©2001 The American Physical Society14-1
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thickness, magnetization, and distance to the 2DEG!. The
resulting profile can also be affected by including superc
ducting strips, which expel the flux lines due to the Meiss
effect and consequently can rearrange or guide the mag
field lines.

The paper is organized as follows. In Sec. II we consi
scattering on a single magnetic profile. First we solve
problem classically in order to get a reference frame wh
describes the large energy limit. Then we concentrate on
quantum-mechanical behavior, and study the differen
which arise, such as, e.g., the existence of quasibound st
In Sec. III, we calculate the response of the 2DEG to a r
dom, homogeneous distribution of these~identical! profiles
over the sample. The approach is along the lines prese
by Nielsen and Hedega˚rd in Ref. 4, which was based on th
Boltzmann transport equation. Again, we consider the s
tering both classically and quantum mechanically, and d
cuss the arising differences. In Sec. IV we summarize
conclusions, and briefly discuss the possibility of reprod
ing our results experimentally.

II. SCATTERING ON A SINGLE MAGNETIC PROFILE

A. Classical scattering

Classically, the scattering on a magnetic field profile
determined by the solution of Newton’s equation of motio
where the force is given by the Lorentz expressionF5ev
3B for a particle with chargee. Outside the profile, no mag
netic field is present, and consequently the path is jus
straight line. Inside the profile, the electron describes an
of a circle, of which the radius~and the direction in which it
is drawn, i.e., clockwise or counterclockwise! depends on its
position in the profile, since the profile considered here c
sists of two regions with different magnetic-field streng
~and sign!. The respective cyclotron radii are given byl c
5v/vc , where v is the velocity of the electron andvc
5eB/mc is the cyclotron frequency in the local magne
field, which is B5Ba in the inner core andB5Bb in the
outer region.

The geometry of the scattering process is determined
the following dimensionless parameters:~a! Rb /Ra , i.e., the
ratio of the radii of the inner and the outer circle of th
magnetic field profile, and~b! l a /Ra5(m/e)(v/Ba), which
is the ratio of the cyclotron radius in the inner core, to t
radius of this center part. It is clear from geometrical cons
erations that it is impossible for a particle which was initia
outside the magnetic profile to become trapped inside
magnetic profile.

We calculated the differential cross sectionds/df nu-
merically, from the different classical trajectories. In Fig.
we show examples of the classical trajectories~on the right!,
and their resulting cross sections~bold curves, on the left! for
the Rb /Ra51.5 configuration for differentl a /Ra .

In the limit of l a /Ra→0, the cyclotron radius is very
small compared toRb , and, therefore, the electron scatte
on the magnetic profile as if it were bouncing off a hard wa
As a consequence, the differential cross section would
symmetric inf. From Fig. 2, we see that ifl a /Ra increases,
the differential cross section changes drastically, and lose
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symmetry due to the time-reversal-breaking magnetic fie
We note thatds/df is sensitive tol a /Ra : for increasing
l a /Ra , it is more centered around 0, but its structure a
changes significantly, which can be understood by inspec
of the different classical electron trajectories shown on
right.

Suppose we consider the classical trajectories from lef
right. In the casel a /Ra50.5, the electrons are deflected
the left (f,0), giving rise to the orbits indicated by~1!, and
contributing to the differential cross section indicated by~1!.
Shifting the initial position of the electron further to th
right, at a certain point the electron does not only feel
outer region, but is able to penetrate into the inner co
consequently the electron is abruptly swept to the other s
The latter causes the abrupt decrease ofds/df at f/p5
20.75. These trajectories contribute to part~2! in the differ-
ential cross section, and have mainlyf.0.

The same reasoning can be used to understand the d
ential cross section forl a /Ra51; only now,ds/dw is more

FIG. 2. This figure corresponds to the situationBa /B0520 and
Rb /Ra51.5. On the left, the differential cross section for differe
k/Ba5 l a /Ra , i.e., ~a! l a /Ra50.5, ~b! l a /Ra51, and ~c! for
l a /Ra52. The bold curve corresponds to the classical result,
the thin curve to the quantum mechanical result. On the right, so
classical trajectories interacting with the magnetic profile, result
in the differential cross sections on the left. The trajectories giv
rise to the different parts of the different structures, are grou
schematically.
4-2
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ELECTRON SCATTERING ON CIRCULAR SYMMETRIC . . . PHYSICAL REVIEW B 64 245314
centered around zero due to the higher velocity of the e
tron ~with respect to the magnetic field!, i.e., the electron is
less deflected. For larger velocities, e.g., forl a /Ra52 as in
Fig. 2~c!, the previous picture has to be extended with a n
type of trajectories: those on the right~3! which again only
probe the outer region, since the magnetic field in the ou
region is not strong enough to deflect the electron into
inner part. These trajectories give rise to an additional p
~3! in the differential cross section.

B. Quantum-mechanical scattering

1. Schrödinger equation

We have to solve the Schro¨dinger equation

~H2E!C~r ,w!50, ~2!

whereE5\2k2/2m is the energy of the scattering wave. B
cause of cylindrical symmetry, we work with polar coord
natesr5(r ,w). We can make this equation dimensionless
rescaling the problem in the following way: lengthR0

5Ra , energyE05\2/(mRa
2), time t05mRa

2/\, and mag-
netic field B05c\/eRa

2 . We can write the scattering wav
function as consisting of components, separated into an
gular and radial part,

C~r ,w!5 (
m52`

`

Rkm~r !Fm~w!, ~3!

for which the angular part is equal to

Fm~w!5
1

A2p
eimw, ~4!

since the problem is cylindrically symmetric. The Schr¨-
dinger equation is then reduced to only one dimension,

F2
1

2r

d

dr
r

d

dr
1Vm~r !2EGRkm~r !50, ~5!

with

Vm~r !5
1

2 FAf~r !1
m

r G2

, ~6!

the effective potential, andAf(r )5(1/r )*0
r dr8r 8B(r 8), the

angular component of the vector potential. Note that the
gular quantum number satisfies2`,m,`, in contrast to
when the scatterers are nonmagnetic, in which case we
0<m,`, due to symmetry, i.e.,m and 2m result in the
same scattered wave.

We know that the scattering process is fully determine
we know dm for every m. In order to calculate these phas
shifts, we have to solve Eq.~5! for everym in the presence o
our magnetic profile, and compare the scattered wave w
the unperturbed wave. The solution forr ,Ra is

Rkm~r !5r umue2 1/2 Bar 2
cm,1M ~a,b,g!, ~7!

and, forRa,r ,Rb ,
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Rkm~r !5r umue2 1/2 Bar 2
@cm,2M ~a8,b,g8!

1cm,3U~a8,b,g8!#, ~8!

where M (a,b,c) and U(a,b,c) are confluent hypergeo
metric functions,11 cm,1 is a normalization constant,a
5@ umu112m2k2/(2Ba)#/2, b5umu11 andg5Bar 2. a8
and g8 are the same asa and b, but with Ba→Bb . The
constantscm,2 andcm,3 have to be determined such that th
wave function is continuous atr 5Ra . An alternative ap-
proach is to calculate the wave function numerically up
r 5Rb .

For r .Rb , Eq. ~5! reduces to

F2
1

2r

d

dr
r

d

dr
1

m2

2r 2
2

k2

2 GRkm~r !50, ~9!

which is the differential equation for the Bessel function
the first kind:

Rkm~r !5amJm~kr !1bmYm~kr !. ~10!

Therefore, the resulting phase shifts can be calculated at
point, r 5Rb , and are derived from the condition that th
logarithmic derivative of the radial wave function must b
continuous at this boundary,

1

Rkm
,

dRkm
,

dr U
r 5Rb

5
1

Rkm
.

dRkm
.

dr
U

r 5Rb

[jkm , ~11!

which results in

1

Rkm
,

dRkm
,

dr
U

r 5Rb

5
j m~kRb!2ym~kRb!tandm

Jm~kRb!2Ym~kRb!tandm
, ~12!

where we have introduced the abbreviationszm(x)
5(x/2)@Zm21(x)2Zm11(x)# with (z,Z)5( j ,J) or (y,Y). It
is now easy to solve fordm :

tandm5
j m~kRb!2jkmJm~kRb!

ym~kRb!2jkmYm~kRb!
. ~13!

2. Resonances

In contrast to the classical problem, the ratiol a /Ra no
longer determines the scattering problem completely.
need to know the exact energy and the magnetic-fi
strength, and thereforel a /Ra should be extended with th
exact E or Ba . We have chosen to fix the magnetic fie
strengthBa /B0520, and to plot all curves as a function o
k/Ba(RaB0)5 l a /Ra , as was done in the classical case. T
larger thek value (; l a /Ra for fixed Ba), the more classica
the system is, and the more the average of it converges to
previously obtained classical result~see the thin solid curves
in the right part of Fig. 2!. But for lowerk values, i.e., when
the wavelength of the scattering wave is comparable to
dimensions of the scatterer 1/k'Rb , quantum mechanics be
comes important, and results in features which cannot
understood classically, as e.g., the existence of resonanc
4-3
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In order to determine at which energies these resona
occur, one should inspect the phase shiftdm as a function of
the energy or the correspondingk vector. When a jump ofp
occurs, there is a resonance for that particulark value for
given m. The lifetime of that quasibound state depends
the energy interval over which this jump occurs, or on t
peak width of the partial cross sectionsm as a function of the
energy.

In the following, we show the results for the ca
Ba /B0520 andRb /Ra51.5. In Fig. 3 we plot the effective
potential for four differentm values for this case. In Fig. 4
we plot the phase shift as a function ofk/Ba for 210<m
<10.

We note that form>22 well-defined quasibound state
are formed at the Landau levels of the inner core of
magnetic-field profile, i.e., atk5ABa(2n11)54.471,
7.745, 10,. . . , or in theunits of Fig. 4:k/Ba50.224, 0.387,
0.5, . . . . Landau states in the outer region (Bb /B0516) are

FIG. 3. The effective potentialVe f f(r ) as function ofr /Ra for
variousm values, for the case whenBa /B0520 andRb /Ra51.5.
The horizontal lines correspond to the resonant energies.

FIG. 4. The phase shiftdm as a function ofk/Ba for differentm
values, for the situation withBa /B0520 andRb /Ra51.5. Phase
jumps ofp correspond to resonant states.
24531
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not possible since the total extent of the lowest Landau s
(52l b52Ra /A2050.5Ra) does not fit into the outer region
(Rb2Ra50.5Ra).

Nevertheless, form,24 there are also resonances whi
have an energy lower than the first Landau level of the in
core. They correspond to quasibound snake orbit sta
which travel around the profile, propagating from theBa
region into theBb region, and vice versa. As an example w
plot the effective potential and the corresponding radial wa
function Rm for m528 in Fig. 5. Because the two wells
corresponding to the magnetic confinement in the differ
magnetic fields of the inner and outer regions, are join
together, they form one well which is broader—and con
quently has an energy lower—than each of the sepa
wells. A similar effect we encountered in a previous pap
for the case of electron traveling along a one-dimensio
magnetic interface.12 The electrons propagate classically,
schematically depicted in the inset of Fig. 5.

For higher energies we also note resonances for nega
m, e.g., for m5221, as shown in Fig. 5. They too corre
spond to snake orbits, but, because they have a larger en
they have to move closer to the interface, in order not
escape the magnetic-field profile, since their cyclotron rad
is larger. These type of states become extinct when the
clotron radius in the outer part exceeds the radius of the o
part Rb , i.e., for kla'Rb /Ra51.5. We have checked this
and these resonances indeed disappear.

3. Differential cross section

In two dimensions, the differential cross section is giv
by

ds

df
5

2

pkU (
m52`

`

eimwe2 idm sindmU2

. ~14!

We plot this together with its classical counterpart in Fig
2~a!–2~c!. We note that many oscillations are present, due

FIG. 5. The effective potentialVe f f(r ) as function ofr /R0 for
m528 andm5221 whenBa /B0520 andRb /Ra51.5, together
with the radial wave functions~dotted curves! at the resonant ener
gies. These quasibound states correspond to different types of s
orbits, propagating parallel to the magnetic edge, as depicted s
matically in the inset of the figure.
4-4
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ELECTRON SCATTERING ON CIRCULAR SYMMETRIC . . . PHYSICAL REVIEW B 64 245314
interference effects. The number of these oscillations
pends on the energy: the larger the energy, the greate
number of oscillations. In the high-energy limit, th
quantum-mechanical result will ultimately, on the avera
converge to the classical one, except for the peak atf50. Its
occurrence is a purely quantum-mechanical effect, and is
to the fact that an electron which would classically pass b
and hence does not interact with—the scatterer, quantum
chanically, has a finite overlap with the scatterer, and con
quently contributes—although very little—to the cro
section. Because the interaction is very slight, it is only sc
tered over a very small angle, and thus adds to thef50
peak.

4. Total cross section

In Fig. 6 we plot the total cross sections5*dfds/df as
a function of k/Ba . Classically, this is equal to the tota
diameter of the magnetic inhomogeneitys52Rb ~dashed
line in Fig. 6!. From Fig. 6 we note that the quantum
mechanical cross section~solid curve! is larger than the clas
sical result. For large energies the total cross section is tw
as large; for small energies the cross section is four time
large, as is the case for scattering on a spherical hard w
We also note the resonances mentioned before, prese
small peaks, which can be attributed to a particularm value.
As an example, we indicated them528 and 221 reso-
nances, corresponding to the quasibound states of Fig. 5

III. SCATTERING ON MULTIPLE PROFILES

With a knowledge of the classical and quantu
mechanical differential cross sections, it is now possible
calculate the Hall and magnetoresistance in a 2DEG s

FIG. 6. The cross sections as a function ofk/Ba in the classical
limit ~dashed curve! and if calculated quantum mechanically~solid
curve! for Ba /B0520 andRb /Ra51.5. The marked resonant stat
correspond to the ones shown in Figs. 5 and 8. Vertical dotted l
are the Landau energies of the inner core of the magnetic-
profile.
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jected to a randomly distributed array of such identical p
files. We will make the assumption that the dimensions of
magnetic disks are small compared to the distance betw
the disks, so we do not include interference effects betw
different scattering events. Moreover, we neglect impur
scattering.

We solve the~classical! Boltzmann transport equation
linearized in the electric field, and follow the derivation
described in the paper of Nielsen and Hedega˚rd.4 Finally, we
arrive at

rxx5
1

~2p!2

n0

ne

\

e2E2p

p

df~12cosf!w~k,f!, ~15a!

rxy5
1

~2p!2

n0

ne

\

e2E2p

p

df sinfw~k,f!, ~15b!

wherene is the electron concentration,n0 is the concentra-
tion of magnetic scatterers, andw(k,f) is the probability for
an electron with wave vectork to be scattered over an ang
f. In relation to the differential cross section, we can wr
w(k,f)5(\k/m)(ds/df), since svDt is the probability
for an electron with velocityv to interact with a scattere
with cross sections in a time intervalDt.

A. Classical result

1. Magnetoresistance

In Fig. 7~a!, we plot the magnetoresistance as a funct
of l a /Ra for various Rb /Ra , in units of r0
5(n0 /ne)(\/e2). This is obtained by inserting the earlie
calculated classicalds/df into w(k,f) of Eq. ~15a!. The
magnetoresistance is zero whenl a /Ra50, because, for zero
energy, electrons do not move (v50), and consequently do
not experience any scattering. For small values the mag
toresistance increases linearly up to a certain value, a
which it decreases for increasingl a /Ra . This decrease is due
to the fact that for higher energy, the electrons are less
flected because of a larger cyclotron radius in the magn
inhomogeneity. We note that for increasingRb /Ra the mag-
netoresistance has an overall increase, which can be
plained by considering scattering on the inner and outer p
files and how they influence each other. For largerRb /Ra ,
the cyclotron radius of the outer part increases quadratic
in Rb /Ra ; therefore, electrons will be less deflected for i
creasingRb /Ra . However, this is compensated for by th
fact that the cross section also increases linearly w
Rb /Ra , and consequently scattering on the outer part
more or less the same impact for differentRb /Ra . Therefore,
the increase in the resistance is due to the fact that for la
Rb /Ra , the scattering on the inner and outer regions can
considered as two separate processes, which interfere
each other very little. This is not the case for smallerRb /Ra ,
where electrons interacting with the outer part are m
likely also to interact with the inner part, which would de
flect the electron in the opposite way, and thus diminishes
scattering effect produced by the outer part. In short we
say that electrons, which interact with the magnetic profi

es
ld
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on average ‘‘feel’’ a nonzero magnetic field which increas
with increasingRb /Ra , and this results in an increase of th
magnetoresistance and the Hall resistance.

The fact that for higherRb /Ra the scattering problem ca
be seen as two separate scattering processes on differen
tices (Ra ,Ba) and (Rb ,Bb), is also reflected in the dip in th
magnetoresistance which arises for higherRb /Ra , e.g.,
Rb /Ra510. Actually, the magnetoresistance has two pe
of which one, the lower-energy peak, corresponds to sca
ing on the outer region, while the second peak correspond
scattering on the center region. For higherRb /Ra , the first
peak will shift toward smallerl a /Ra , while the other peak
remains in the same position; consequently, the two sca
ing processes will become more distinct.

2. Hall resistance

The corresponding Hall resistance is plotted in Fig. 7~b!.
We note that both qualitative and quantitative behaviors
more sensitive to the ratioRb /Ra than was the case for th
magnetoresistance. There are two striking features:~a! again,
there is an overall increase of the Hall resistance with
creasing Rb /Ra ; and ~b! for small Rb /Ra , i.e., Rb /Ra
,1.73, the Hall resistance can change sign as a functio
l a /Ra , i.e., as a function of the Fermi energy or th
magnetic-field strength.

The fact that the Hall resistance can change sign w
Rb /Ra,1.73 is a consequence of the interplay between s
tering in the inner and outer regions of the magnetic-fi
profile. For infinitesimally smalll a /Ra , the outer part will
act as a hard wall, and consequently there is no Hall re

FIG. 7. The magnetoresistance~a! and the Hall resistance~b! in
the classical limit as a function ofl a /Ra for different Rb /Ra con-
figurations.
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tance. For increasingl a /Ra , the electrons will penetrate
deeper in the outer region, but not yet in the inner core
long asl a /Ra is small enough, i.e., 2l b,(Rb2Ra) @see the
trajectory given by the bold curve in the right figure of Fig
2~a!#. The Hall resistance is due to a vortex with magne
strengthBb . For increasingk/Ba , the electrons will be able
to penetrate into the inner region, where they are deflecte
the other side; consequently, the Hall resistance changes
@see the bold curve in Figs. 2~b! and 2~c!#.

The reason that this effect does not occur for high
Rb /Ra values is due to the fact that, in these cases, ther
only little interplay between scattering in the inner and ou
regions, as mentioned above. It is much more unlikely t
an electron which initially only felt the outer region, fo
higher l a /Ra , will interact with the~relatively small! core,
and be swept to the other side. Therefore, the Hall resista
for large Rb /Ra always has the same sign, as generated
the outer region.

B. Quantum-mechanical result

After insertion of Eq.~14! into Eqs.~15a! and ~15b!, we
can rewrite the magnetoresistance and the Hall resistanc
functions of the phase shifts:

rxx5
n0

ne

\

e2 (
m52`

`

2 sin2~dm2dm11!, ~16a!

rxy5
n0

ne

\

e2 (
m52`

`

sin@2~dm2dm11!#. ~16b!

In Fig. 8, we plot the Hall resistance and the magnetore
tance as functions ofk/Ba for Ba /B0520 andRb /Ra51.5.
The solid curve is the quantum-mechanical result, and
dashed curve is our previously obtained classical result.
observe many resonances, which diminish for increas
k/Ba . Except for this, on the average there is rather go
agreement between both curves, which is due to the ch
of Ba /B0 being large; consequently, in this figurek—and
consequently the energy—is large.

There are two types of resonances:~1! those which occur
at the energy of the Landau levels of the inner core of
magnetic-field profile~thin dotted curves!, and~2! those cor-
responding to quasibound snake orbit states.

In case of the first type of resonance, the Hall resista
decreases abruptly~i.e., it has a sawtooth behavior!, while
the magnetoresistance increases. This can be viewed in
right inset in Fig. 8. The reason for this is that at the ene
of the Landau levels~indicated by the vertical dotted lines!,
electrons are~quasi! bound into cyclotron orbits, and henc
cannot~a! contribute to the conduction, and consequently
magnetoresistance increases; and~b! cannot pile up and gen
erate a voltage difference on the left and right side, and c
sequently the Hall resistance decreases. Moreover, spen
time circling around underneath the disk, the electron lo
knowledge of where it came from. As a result, if the electr
4-6
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relaxes and escapes the scattering region, its chances
scattered in the backward direction increase, and co
quently the magnetoresistance also increases. The Hall r
tance is a measure of the asymmetry of the scattering
cess, and we can therefore interpret the dips inrxy along the
same line of reasoning.

For larger energies, the cyclotron orbit in the center w
increase and exceed the inner core classically atk/Ba

51/(RaB0). Nevertheless, quantum mechanically the el
tron will ‘‘feel’’ the presence of the outer magnetic field, an
this will change the resonant energies. The resistance ju
are also less explicit for higher Landau levels, which is d
to the reduced number of states which fit in the core a
result of the large cyclotron radius.

Apart from resonant states at the Landau levels, the m
netoresistance exhibits very sharp peaks, which corresp
to the snake orbit states mentioned earlier. This second
of resonances can have a lower energy than the first Lan
level of both the inner and outer parts, as explained abo
Since for all the snake orbit resonances only one quasibo
state is involved~in contrast to the Landau states, whe
various quasibound states exist for variousm values; see
Figs. 3 and 4!, these peaks are very sharp~see, e.g., the lef
inset of Fig. 8! and are superimposed on a more continuo
background.

The influence of the quasibound snake orbit states is
visible in the Hall resistance, but not as pronounced as in
magnetoresistance. These quasibound states produce
changes in the slope of the Hall resistancerxy , as is clear
from the dashed curve in the left inset of Fig. 8.

FIG. 8. The magnetoresistance and Hall resistance as func
of k/Ba in the classical limit~dashed curves! and if calculated quan-
tum mechanically~solid curves! for Ba /B0520 andRb /Ra51.5.
The marked resonant states correspond to the ones shown in F
and 6, and the vertical dotted lines are the Landau energies o
inner core of the magnetic-field profile. The insets show enlar
ments of a quasibound snake orbit resonance~left! and a Landau-
level resonance~right! where the solid curve corresponds torxx and
the dashed curve torxy .
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IV. CONCLUSIONS

In this paper we studied scattering on circular symme
magnetic-field profiles with zero mean magnetic field
the 2DEG. We considered scattering on a single profi
both classically and quantum mechanically, and found diff
ent types of quasibound states: the Landau states in
inner core, and different quasibound snake orbit sta
Next we investigated the diagonal and Hall resistivities
the presence of a randomly distributed array of these m
netic profiles, using the kinetic Boltzmann equation, f
different magnetic-field configurations. We obtained a no
zero Hall resistance althougĥBz&50, and showed tha
the Hall resistance can change sign as a function of
Fermi-energy or the magnetic-field strength. We found t
the electron resonances in the individual magnetic-field p
files are reflected in the Hall resistance and the magnet
sistance.

Considering a realistic magnetic-field profile as in the e
periment will only rearrange or shift the positions of th
resonances, but we expect no qualitative changes in ou
sults. Note that similar resonances inrxx and rxy are ex-
pected to occur for composite fermions at the magnetic
ing factorn51/2. Nevertheless, measuring these resonan
will be hard, since there are two competing effects wh
make an experimental measurement of these resonance
ficult: in order to detect these quasibound states, it is ne
sary that the energies~bound or resonant! not be too close to
each other. To obtain this, one has to make a very sm
magnet~since E05\2/mRa

2), but then one encounters th
problem that in order to bind the electrons in such a sm
area one needs a very strong inhomogeneous magnetic
(B05c\/eRa

2); currently no magnetic materials are availab
which can realize these strong fields.

An example of such a system is the one by Dubon
et al.7: they managed to deposit a single Dy magnet w
a radius'0.1 mm on top of a heterojunction containin
a 2DEG. For this system, our units are given byE057.63
31023 meV and B050.066 T. The Fermi energy in
their system was aboutEF517.86 meV, which in our units
is EF52341E0 or kF'70. According to Ref. 7 the stray field
could locally generate magnetic fields ofBa'1T'15B0,
which corresponds tokF /Ba'4.7, for which we are in
the classical regime and the scattering process can be c
lated classically. In order to measure individual snake orb
it is therefore necessary to include additional electri
confinement, which discretizes the energies and makes m
surement possible, as also used in the paper by Nog
et al.13
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