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Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer
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The reduction of the amplitude of Aharonov-Bohm oscillations in a ballistic one-channel mesoscopic inter-
ferometer due to charge fluctuations is investigated. In the arrangement considered the interferometer has four
terminals and is coupled to macroscopic metallic side gates. The Aharonov-Bohm oscillation amplitude is
calculated as a function of temperature and the strength of coupling between the ring and the side gates. The
resulting dephasing rate is linear in temperature in agreement with recent experiments. Our derivation empha-
sizes the relationship between dephasing, ac-transport, and charge fluctuations.
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I. INTRODUCTION with four terminals, the arms of the ring being capacitively
coupled to lateral gatesee Fig. 1 For a recent experiment

Dephasing processes suppress quantum mechanical intén a ballistic (two-termina) AB ring with lateral gates
ference effects and generate the transition from a microcoupled to both arms see Ref. 10.
scopic quantum coherent world in which interference is cru- The structure we examine has no closed orbits: as a con-
cial to a macroscopic world characterized by the absence dgfequence in its equilibrium state it exhibits no persistent cur-
(quantum interference effects. Mesoscopic systems are neitent and in the transport state there is no weak localization
ther entirely microscopic nor macroscopic but at the bordercorrection to the conductance. It exhibits, however, an
line between the two. Clearly, therefore, dephasing processd¥1aronov-Bohm effect due to superposition of partial
play a central role in mesoscopic physicSAt low tempera-  Waves in the outgoing final quantum channel. In fact this is
tures, it is thought that the predominant processes which geﬁhe situation discussed in the Original work of Aharonov and
erates dephasing are electron-electron interacfiéfign this ~ Bohm Itis also sometimes assumed in mesoscopic physics
work, we investigate a ballistic Aharonov-Boh{AB) inter- without a detailed specification of the conditiofraultiter-
ferometer, in which electronién the absence of interactions Minal geometry, absence of backscatteyingich are neces-
are subject only to forward scattering processes Fig. 1. sary for interference to appear only in the final outgoing

Our work is motivated by the following questions: A me- channel. The system investigated here is the electric analog
soscopic conductor connects two or more electron reservoir®f an optical interferometer in which the path is divided by
inside a reservoir screening is effective and electron interadorward scattering only. An example of such an arrangement
tions are of little importance. In contrast, inside the mesosiS the Mach-Zehndef interferometeMZ1). In the MZI the
copic structure screening is poor and interactions are impor-
tant. Thus the process of a carrier entering or leaving the
mesoscopic structure is essential since this process gives rise
to potential fluctuations. We ask how this process affects the
dephasing. In standard treatments of dephasing the conductor
is considered to be charge neutral and the elementary exci-
tations are electron-hole scattering processes. In a gated
structure we can, however, have an electron inside the con-
ductor and a hole on a nearby capacitsee Fig. L As a
consequence the conductor is charge neutral only when its
surroundings are taken into accourdgservoir banks, nearby

capacitors
A second question we seek to answer is the following:
instead of calculating a dephasing rate, it is desirable to find L

a way to directly evaluate the quantity of interésere the
conductance In small mesoscopic systems the dephasing

r_ate mlght be_ a s_ampl_e specific quarﬁlagnd there would be_ a magnetic flux. The two arms of the ring are each coupled to a side
little Justlflgatlon in using an ensemble averaged dephasmgate via a capacitand@s (G=A,B). We consider junctions which
rate even if we are interested only in the ensemble averagede perfectly transmitting and divide the incoming current into the
conductance. Clearly to answer such conceptual questionsjhper and lower branches of the ring. The system then is the elec-
is useful to have a model which is as simple as possible. Ifonic equivalent of an optical Mach-Zehnder interferoméiézI).

this paper we theoretically investigate dephasing of AB 0SThe total charge in a Gauss sphétedrawn around the system of
cillations in a ballistic ring with a single transport channel. gates and ring is assumed to be zero, implying that current in the
The one-channel limit is of actual experimental intefsse, system is conserved. It is assumed that each arm is characterized by
e.g., Refs. 7—P Our idealized setup consists of an AB ring a single potential , (or Ug) and the charger Q, (or +Qg).

FIG. 1. The figure shows the four-terminal AB ring threaded by
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sample specific AB oscillations are a consequence of supegate-mediated interactions. Applying the ac-scattering ap-
position in the outgoing scattering channel only. We calculatgoroach of Ref. 16 we start by calculating the dynamic con-
the effect of internal potential fluctuations on the linear re-ductance matrix of our system. From the redissipative
sponse dc conductance in the ring as a function of théart of the dynamic conductance matrix element relating the
strength of the coupling between ring and gates and of temgurrent in one of the gates to the voltage applied to the same
perature. In this approach the conductance and the dephasifigte we can find the spectrum of the equilibrium potential
time are not calculated Separate|y but a dephasing time wilfiluctuations in the nearby arm of the ring via the fluctuation
appear in the expression for the conductance in a naturdlissipation theorem. When calculating the dc conductance
way. It quantifies the degree of the attenuation of AB oscil-We statistically average over the scattering potential assum-
lations due to randomization of the phases of the electron#d that the potential has a vanishing statistical mean and that
going through the ringas opposed to attenuation due to the spectrum of fluctuations is given by the spectrum of equi-
thermal averaginp From our calculations we find that the librium fluctuations. Taking into account interactions in the
coherent part of the conductance is diminished by a factofanner outlined above results in an attenuation of the ampli-
1—7/74~exp(— 7/ ,) relative to the ideal case due to tem- tude of AB oscillations of the statistically averaged conduc-
perature and coupling to the gates. Herés the traversal tance.
time for going through one arm of the ring. For temperatures [N the next two sections we derive the scattering matrix
#1/7<kT we find a dephasing ratﬁ(;l linear in temperature.  for the MZL. Inelastic scattering from internal potential fluc-
In an experiment on a two-terminal AB ring, a dephasing ratguations is taken into account. In Sec. IV we determine the
linear in temperature was recently measured by Hanseffiternal potential distribution of the ring and then go on to
et al® calculate the admittance matrix. We will show that by taking
In our model the dephasing is due to inelastic scattering ofto account screening effects a current conserving theory for
electrons from charge fluctuations in the arms of the ring. Wéhe system consisting of the ring and the two gates can be
treat the gates as macroscopic entities with perfect screeninfprmulated. In the following(Sec. V) we calculate the dc
The carrier dynamics in the gates is irrelevant for the discusconductance and investigate the influence of equilibrium
sion presented here. They do not represent an external balictuations on dc transport.
or dephasing agent. The irreversible source necessary for
dephasing is given by the electron dynamics of the ring it- Il. MACH-ZEHNDER INTERFEROMETER
self: the phase and energy of a carrier exiting into a contact

are unrelated to the phase and energy of a carrier entering th we cons_ld_er an MZI with a smgle trans_port charjnel. An
sample. electron arriving at one of the two intersections coming from

Our approach is similar in spirit to the one used in Ref. 132 reservoir can enter either of the tW_O arms of the ring, but
annot be reflected back to a reservoir. An electron coming to

where dephasing due to charge fluctuations was discussed . . . . .
two coupled mesoscopic structures. The influence of intern e intersection from th? rng W'." enter one of the_ reservoirs.
he amplitudes for going straight through the intersection

otential fluctuations on the persistent current in a close ) . )
P P and for being deflected to the adjacent lead in the forward

ring were examined in Ref. 14. Very recently the effect of a” ™~ _ T “iR )
fluctuating vector potential on persistent current and Cotund'reCtIon are?—_ Tandr=iyR, r_espectlv_ely, vyheré’+R
=1. Transmission through the intersections is taken to be

neling transport through a mesoscopic ring have also been ,
investigated® To simplify the discussion we assume that it Ndependent of energy. In the remainder, we assume symmet-
is possible to draw a Gauss sphere around the system §f intersections: that isR=T=1/2 in [Eq. (1)]. Due to the
gates and ring such that all electric field lines emanating?©tential fluctuations in the arms of the ring, a carrier can
within the sphere also end in(tee Fig. 1 This implies that 9@n or lose ,energy. This process is described by a scattering
the total charge in the sphere is zero at any time. However, f1at1ix Sg(E’,E) for each arm which depends on both the
is possible to charge up one part of the systamarm of the ~ €NergyE of the incoming and the enerdy’ of the exiting
ring) relative to another partthe nearby gate creating Carrier. The scattering matrigs(E',E) thus connects cur-
charge dipolesCharge fluctuations in the arms of the ring "Nt amplitudes at a junction of the ring incident on the
lead to fluctuations of the effective internal potentials. Elec-branch to the amplitudes of current at the other junction leav-
trons going through the ring are exposed to these potentidld the branch. We have a matrg(E',E) for the upper
fluctuations and scatter inelastically. The strength of the cou®M[Sa(E’,E)] and one for the lower arfSg(E’,E)]. As
pling between the gates and the arms determines the amoutconsequence of the inelastic transitions in the arms of the
of screening and thus the strength of the effective electroning the full scattering matrxS, ;(E’,E) describing trans-
electron interaction. When the capacitar@ebetween arm  Mission through the entire interferometer from contadb
and gate becomes very large, the Coulomb enefg¢ of  contacta is also a function of two energy arguments. This
the system goes to zero. This means that it is in principlgcattering matrix can be found by combining the scattering
possible to put any amount of charge on the ring withoutMatrices for the two arms with the amplitudes for going
causing any reaction. The charge fluctuations in the ring arérough the intersections following a specified path. Due to
thus completely free. We say that in this limE{ =) gate the geometry of the system, we have the symmetries
and arm aredecoupled S13+8(E",E)=S,418(E’,E) and Ss2.+8(E",E)

The main goal of this work is the calculation of the dc =Ss1+8(E’,E). In addition the scattering matrix elements
conductance of the ring taking into account the effects of thealculated for the system in a magnetic fi€ldare related to
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the matrix elements found at an inverted fieldB by a(E+hw)

S.p+8(E',E)=Sg, —s(E',E). All elements of the scatter- a(B) -l bE)
ing matrix can then be found from the three elements given a (E-ho) =

below: ‘

813(E,1E):SZ4(E,1E)

. , h(x)eU(1)
=iTR[SA(E',E)e A+ Sy(E’ ,E)et®8], 0 L

= X

. . . G G .
S,(E' E)=—RSy(E',E)e ' ®a+TSy(E' E)ei®s FIG. 2. Scattering state¥g and V¢, [see Eq.(4)] with
14 ) S ) S ) amplitudesa(E) anda(E+%w) respectively due to electrons inci-
’ R — / —iDp_ / +idg dent from the left at energieE and Ex#%w are indicated in the
SAELE)=TS(E"E)e RS(E'.E)e - (@) figure. For didactic purposes the special case of a harmonically
Hered is the magnetic phase picked up by a particle goingpscillating barrierU (t)«cost) is considered and only first order
through armG clockwise. Thenb ,+ ®g=27d/d,, where side bands are drawn. In the rest of the paper we discuss the case of
® is the flux through the ring and, is the flux quantum. @ randomly oscillating barrier and include second-order corrections.
All scattering matrix elementS, 5(E',E) with |a—g|<1  The scattering state which may be described by a sirfplegoing
are zero since transport through the junctions takes plad@ane wave at energf with amplitudeb(E) to the right of the
only in forward direction. The on-shelbne-energyscatter- ~ Parier is emphasized in the figure. The amplitue¢s) andb(E)
ing matrix elements for théree) one-channel interferometer rire f[elateréihrohugh the scattering matrix bigE) == ,_, . S(E,E
in the absence of gates which we denote $§)(E) are shw)a(E+ohw).
found by replacingSg(E',E) in Eqg. (1) by Sg(E',E)
=2mh 6(E'—E)SY(E) with SO)(E) = exp(keLg). Our first
task is now to determine the scattering matri€gE’,E)
for the arms of the ring.

practical calculations we will, however, often employ a rect-
angular potential barridgthg(x) =const if 0<x=<Lg, where

L is the length of armG]. Using a space-independent in-
ternal potential is a valid approximatitirat least in the low-
frequency limitw 7g=1 where a passing electron sees a con-
ll. S MATRIX FOR A TIME-DEPENDENT POTENTIAL stant or slowly changing barrier. We have here introduced the

In this section we calculate the scattering matrix for thetraversal timerg=Lg/vg r Wherevg r is the Fermi velocity
interacting ring system. We first solve the Safirger equa- N @M G. We will show in Sec. IV how the potentials
tion for a single branch of the interferometer using a WKB
approach. The amplitude for a transition from eneEgyo Ug(t)= J' d_wu (w)e ot 3)
energyE +7% w of a particle passing through this arm and the ¢ 27 ©

corresponding scattering matrix element are determined. ) ] ) ]
Subsequent|y the Scattering matrices for the two arms arénd the|r SpeCtra can be determ|ned na Self-ConSIStent Way.

included into a scattering matrix for the full interferometer. A T0 solve the Schidinger equation with the Hamiltonian, Eq.
WKB approach similar to ours has been used previously td2). We make the ansatz

discuss photon-assisted transport in a quantum point contact
(QPOY or to the investigation of traversal times for

tunneling.18 The influence of a time-dependent bosonic envi- - ) )
ronment on transport through a QPC was addressed in Ref¥nerekg,ge=2m*(E—Eg)/A andrg(x,t) is the action due

19 and 20 also applying a WKB ansatz. to inelastic scatteringsee Fig. 2 We will omit the indexG

The gate situated opposite to a@ (G=A,B) is as- of the wave vector(or of_ th_e velocitva{thlgG'E/m*)
sumed to be extended over the whole length of this armfrom now on and only write it when the distinction between
Fluctuations of the charge in the gate capacitively couple tdVave vectors in different arms is important. It is assumed
the charge in the neighboring arm of the Mzl and influenceth@t transmission is perfect: the potential fluctuations cause

electron transport through this arm. This interaction effect i2nly forward scattering. This is justified if all energies relat-
taken care of by introducing a time-dependent potential"d to the fluctuating potential are much smaller than the

\I’(E;(X,t) — g IEVA+ikg pxc+irg(x /i @

Vs(x,t) into the Hamiltonian Fermi energyEg, in particulari o <Eg.
In determiningrg(x,t) we will take into account correc-
B2 2 tions up to the second order in the potential. We write
H= = o 5 T EatVelx), @ re(xt)=reaxt)+reaxt), where
for arm G. Herex is the coordinate along the arfg is the _J do i,
- . rgix,t)=| =—e '"“rgax, 5
subband energy due to the lateral confining potential of the c1 0= | 52 ca(X,@) ©

arm andm* is the effective mass of the electron. We make ) ) )
the assumption that the fluctuating potential factorizes in as linear in the perturbing potential and
space- and a time-dependent part, writingg(X,t) q d
=hg(x)eUg(t). For the ballistic structure considered here f wlf D2 it o)t
> . g . D= =— | =— @17 @2 ,01, 6
the internal potential is a slowly varying function ®f For fo.2X.0) 27 ) 27 ° foaX,0p,02)  (6)
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. i

in Ref. 18 for a general form dfig(x). The corresponding tg(E’,E)=éde " eltel 277 5(e) + +Tealle.elh)

expression for the term quadratic in the potential is readily

found but is quite cumbersome. We here give (X, ») and d
. ’ oli

I (X, wq,w;) for the case werkg(x) is a rectangular bar- + f 5 —rgalg,w,elh—w)

rier of lengthLg: | h

is a second-order correction. The linear term was calculated {

1
—%I’GJ(LG,w)reyl(LG,a/ﬁ—w)H, (10)

rgai(X,@)=i Yol ) (g*elvr—1),
@ wheree =E' — E. The scattering matrix connecting incoming

wave amplitudegat x=0) to outgoing wave amplitudggt

x=Lg) is related to the transmission amplitutig(E',E)

_ through

Ug(w1)Ug(w,p)eX(wrtw2lve,

2m* v (7) Se(E',E)=€¥e'tetg(E',E). 1D

rG,Z(Xvwl ,(1)2) =

While the transmission amplitudg(E’,E) was determined
through the continuity of the wave function in the point
Herer g ; gives the contribution to the action due to absorp-=| . [t;(E’,E) thus connects amplitudes at the same
tion or emission of a single modulation quantdre, while point], the scattering matriSg(E’,E) connects amplitudes
re. corresponds to the absorption and emission of twqn x=0 to amplitudes irx=Lg . This difference in the defi-
modulation quantéiw; andfiw,. We now proceed to the pitions of the two quantities leads to the phase factor
formulation of the scattering problem in terms of a scatteringeprkE,LG) in Eq. (11). The scattering matrix as it is derived
matrix with elements of the forrSg(E’,E) describing tran-  herea priori relates wave function amplitudes and not cur-
sitions between states at different energies. The amplitudgnt amplitudes. To be consistent with the usual definition of
ts(E',E) for a transition from a state with enerdyto a  the scattering matrix as a relation between current ampli-
state with energ’ of an electron is found from the bound- tydes,S;(E’,E) should be multiplied by/v g, /v . This fac-
ary condition atx=Lg, Wg(Lg,t)=xg(Lg.t). For the tor, however, is of the ordefw/E; and can thus be ne-
matching we expand the WKB wave functifsee Eq(4)]in  glected. The scattering matrices found to describe a single
X=Lg to second order in the perturbing potential: arm can now be integrated into the full scattering matrix for
the MZI [see Eq.(1)].
In the discussion presented here the transmission of the
i carrier through the fluctuating potential region is described
1+ 5 realle ) as a unitary scattering process. The “final” scattering chan-
nels are always open. We emphasize that up to now we have
investigated a perfectly coherent process. Decoherence in our
. (8) model will be introduced through the statistical averaging
(cf. Sec. V. Our next task is to find the statistical properties
of the potential fluctuations. These fluctuations can be found

) ) . from the dynamic conductance matrix via the fluctuation-
Furthermore, the wave function at the right-hand side of theﬂissipation theorem.

barrier (outside the fluctuating potential regiois

‘I’E(X,t) — e_iEt/ﬁ"'ikG,Ex

i 1
+ —rgollg,t)— —r2 (Lg,t
% c2lg,t) o2 ealle,t)

IV. POTENTIAL FLUCTUATIONS

In this section we proceed to the calculation of the admit-
tance matrixG(w)=dl, ,/dV,, for the joint system of
interferometer and gates. We concentrate on the Ifnait
=<h/7<kT. The dynamic conductance matr (w) is a
In principle, also the derivatives of the wave functions6x6 matrix (,k=1, 2, 3,4 A, B), I, , andV,,, denoting,
should be matched. However, here we describe transmissioBspectively, the current measured at and the voltage applied
through the fluctuating potential region as reflectionlesgo one of the four contacts of the ring or to one of the two
which is accurate up to corrections of the orderiad/Ef . gates. We use the following convention for the indices: low-
To determine the transmitted wave with the same accuracy grcase Roman indices can take the values 1, 2, 3, 8,
is sufficient to match amplitudes only. The transmission amiowercase Greek indices take the values 1, 2, 3, 4, while the
plitude is found by Fourier transforming the WKB wave uppercase Roman indic&H areA,B. We will first calcu-
function, Eq.(8), and comparing with the wave function Eq. late the matrix element&s(w) from which, via the fluc-

(9), atx=Lg. The transmission amplitude can be expresseduation dissipation theorem, we can derive the spectra of po-
in terms of the phaseg(Lg,t). To second order in the po- tential fluctuations in the two arms. These will later be
tential we have needed in the discussion of the decoherence of AB oscilla-

dE’ . -
XE(x,t)= f 5 (B E)gkeni® i, )
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tions. The remaining elements of the conductance matrix and p(r,0)=pO(r,w)+ 8p,(r,w). (14)

the resulting total conductance matrix are given in Appendix ) i
A. The elements of the conductance matrix obey the sunyVhen calculating the quantum average of the charge density

rules =,Gy(0) =0 and 3,G,(w)=0, reflecting gauge in- operator the effect of th_e ext_ern_al v_oltage is_ taken into ac-
variance and current conservation, respectively. A problenfOUnt through the modified distribution function for charge
closely related to the one addressed here is concerned wiiTiers coming in from reservoit. The distribution for con-
the calculation of ac-transport properties of a ballistic wiretacta to linear order in the applied voltage’is
attached to reservoirs and capacitively coupled to a Gate.
Contrary to the classical calculations done for a wire in Ref(éz(E)éa(EﬁLhm)): S(thw)f (E)+ SVa JF(E,0), (15
21 the ac-scattering approach allows us to take into account h -«
the quantum nature of the system investigated here as manjjerey  is the Fourier component to frequenayof the
fested in the AB oscillations. voltage\ij(t) and

The ac properties and the potential distribution which are *
of interest here depend not only on the mesoscopic conductor f(E)—f (E+hw)
but also on the properties of the external circuit. Here we F(E,0)= o : (16)
consider the case where all external current loops exhibit
zero impedance. This requires some explanation since esp€arriers in the other reservoirs are Fermi distributed:
cially voltages at the gates are typically controlled with the<é;(E)éy(E+ﬁw)>: S(hw)dg,f(E) (herea#pBor a#y).
help of an external impedance. However, what counts in OUfhe scattering stateg(r;E) in the arms of the interferom-
problem is the range of frequencies up to the traversal timéster for a constant internal potential are of the form
whereas the external impedance might be very large only ”Zbﬁ(r;E)=AﬁX(rL)exmkEx+i<I>G(x)], where Ag=i JR or

a very narrow frequency range aroung-0. Thus we are o — [T depending on the arm and the injecting confat
justified to consider in the following a zero-impedance exter-Eq_ (1)]. As in most of the paper we will in the following use

nal circgit. btain th g ot R=T=1/2. Furthermored(x) is the magnetic phase ac-
In order to obtain the conductance matrix from an ac scaty i going through am® to point x and x(r ) is the

tering e_lpproach we _need the eff(_ec'uve mt_ernal pOtent""‘Fr:’:msverse part of the wave function. The simple form of the
eUg(t) inarmG. The internal potentia Ug(t) is related 1o goayering states in the arms is a consequence of the absence
the total chargeQg(t) in the same region througRc(t) o packscattering in the intersections. The injected charge
=Cq[ Ug(t) ~Vg(t)] whereVg(t) is the voltage applied 0 5, (v ) is the part of the total charge, E6L3), propor-
gateG and Cg is a geometrical capacitance characterizingiiona| to the nonequilibrium contribution to the distribution
the strength of the coupling between arm and gate. The otg)nction, Eq.(15). Substituting the expressions for the scat-
chargeQg(t) consists of a contribution due to injection from tering states into Eq(13), using Eq.(15), and integrating
the contacts labele@g(t) and a screening paQg(t), thus  gyerr | we find
Qg(t) = Qg (t) —Qg(t). We will now assume that a voltage
V(1) is applied to contactr while V4(t) =0 for a# . e? dE _

First we consider the charge densftynjected into the  9pa(X, )= ?J \/:ele/vEVa’wF(E,w), 17
arm G due to a modulation of the voltage at contacias- VaElaEtho
suming a fixed internal potentibl; . The charge distribution where we have Useﬁ“a|2=1/2- To find the total charge
in the sample can be expressed through the Fermi field Q% .(w) injected into armG of the MZI we integrate over

e the length of the arana(w):ngdxapa(x,w). Perform-
W(r,t)= f_efiEt/ﬁ rE)asE), (12 ing the integration we get
(r,t) % ey yp(riE)ag(E), (12

e? i .
which annihilates an electron at pointand timet. Here Q%,a(w)zﬁj dE F(Elw)(Z)(l_eleG)Va,w' (18)
#(r;E) is a scattering state describing carriers with energy o
E incident from contac. The charge density in the ring at In the limit 2 w/kT<1 we haveng F(E,0)~1. We can
pointr and timet is p(r,t)=e¥T(r,t)¥(r,t). Fourier trans- rewrite the charge aQg (@) =€"vg.(w)V,,, Where we
forming with regard to time and quantum averaging we gef'ave introduced the injectivityg,(w), defined as
p(r,w)={(p(r,w)), where 1 i _
VGa(w):EZ(l_éwTG)' (19
dE
p(r,w)=eﬁ2y j W%(f:E) Yy(HE+ho) Here 7g=Lg/vg is the traversal time through ar.
' BEZvEtho Now if interactions are taken into account, the excess in-
x(al(E)a,(E+fiw)). (13)  Jected charge will induce a shift in the effective internal po-
p ’ tential, which in turn gives rise to a screening charge. This
The average charge may be split into an equilibrium parscreening charge is proportional to the internal potential
pO(r,») and a contributiondpa(r,w) due to the time- eug(w) and to the total charge density available for screen-
dependent external voltage at contact ing vg(w). Thus Qg (w)=—e?vg(w)ug(w), wherevg(w)
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=34 vs(w)=4vs.(w). The last equation is a consequencenection provides an additional path for charge relaxation. For
of the symmetry of the MZI. In the zero-frequency limit example a ballistic wire connected to two reservoirs has a
vo(w) reduces torg(0)=2Lg/(hv). The total charge in charge relaxation resistancB,=(G{"+G{") ~*=h/4e?.
regionG is Qg(®) = €2r( @) (V4 — 4Ug(w)). For the MZI considered here an excess charge in the upper or
We generalize now to the case were a voltage is app"e{pwer branch has the possibility to relax into the four reser-

labeled Vs(t). In this situation the charge in ars is  are only open with probability andR (see Sec. )l Thus the
Qc(®)=Cq[Ug(®)— Ve ,]. Combining with our previous two connections act like one perfect channel. As a conse-
re(;ult for tﬁe c?harge IeGéas to quence the charge relaxation resistance for our MZI is just

that of a perfect wire and also given lﬁ%zh/(4e2).

Q@) =CglUg(®) = Vg, o] =€*rg(®)[V, o —4Ug(@)]. In the low-frequency limit we get from Ed22)
_ _ _ o (2_0?_ Gog(w)=—iC, co+RC: o
Solving for the internal potential and invoking the definition
of the injectivity vg(w) [see below Eq(19)] allows us to 1-39¢% 23 3
express the internal potentialus(w) through the applied —I 302 RyCLgw™t - (23
voltages: Y

This is in agreement with the result of Blanttral?! for a
: (1) single wire coupled to a gate. We have introduced the dimen-
—iwCg+(2e?/h)(1—€“o) sionless (Luttinger parametergg as a measure of the
. L . strength of coupling between ar® and gateG. If arm and
The current in gatés is given byl ,=iwQg(w), Where a0 are decoupled, the interaction parameter takes the value
—Qg(w) is the charge accumulated in the gate. Since withy _ 1 \hile it goes to zero as the strength of coupling is

the help of Eq(21) we can expresQg(w) as a function of  jncreased. The parametgg is related to the capacitan@;
external voltages only, we can calculate the conductance ma; 4 tq the density of statefEq. (19)] Dg=rg(w=0)

trix elements Ggg(w)=dlg,/dVs, and Gg,(w) =2L¢/(hvg) of the wire throught
=dlg,,/dV, ,. Note that the matrix elemenG,g(w) and

Gga(w) vanish since the charge in regi@is independent ga= 1 (24)
of the voltage applied to the gate further away fron(This G 1+e?Dg/Cq

is a consequence of our assumption of forward scatteringi_ ) ] ]
only at the junctions and of the absence of capacitive coul heﬁlectrochemlcal capacitante,, ¢ of am G is C,, &
pling between the two armskor later use we here state the =Cg +(e’Dg) "

—iwCgV, ,+€%(2h)(1-€“e)Vg ,,

Ug(w)=

result forGgg(w), which is The remain_ing el_ements of the (_;onductance matrix—
_ namely those involving the currents in the contacts of the
dlg,, —1wCqg MZl—can be derived from an ac-scattering approach. These

Goolw)= Voo 1-2iwCR [(1-dom) (22 calculations are presented in Appendix A.
@ GRqg . . . .
_ _ _ To discuss the influence of potential fluctuations on dc
In Eq. (22) we have introduced theharge-relaxatiorresis-  transport we need the spectru®y u, (@) of these fluctua-

_ 2 H
tanceR,=h/(4€%) of the interferometer. The charge relax- yong gince the spectrum of the current fluctuatisng. (o)
ation resistancé is a measure of the dissipation generated. &G

by the relaxation of excess charge on the conductor into th& region G is related 1o the rea{dlsspatlve) part of the
reservoirs. For a structure with perfect channels connected t'?:»lementGGG(_“’) _Of the emittance matrix through the _fluc-
a reservoir each reservoir channel connection contribute&iations dissipation theore () =2kTReGgg(w) (in
with a conductanc& ()= 2e?/h: the conductances of differ- the limit Zo<kT), we getS, y (w) from the relation

ent channels add in parallel since each channel reservoir coSUGUG(w) =S,G,G(w)/(wzcé):
|

(@) =kT (1-g3)’[1—cogwg)]
Vel @R 2 2(1-g2)q1—cod wrg)]+293(1—092) wrg SiNwg) + g&(wrg)?

Sy (25

The spectrum, Eqg(25), is shown in Fig. 3 as a function of If the spatial dependence of the potential is taken into
the dimensionless parameterrs for different values of account, Blanteet al?! find that the traversal time is renor-
the interaction parametegs. Zeros of Sy _y (w) occur  malized through the interactiont¢—gg7s) and conse-

when wr is a multiple of 27. This is a consequence of quently the zeros o8y _y (w) are shifted accordingly. In-
our approximation which considers only uniform potential stead of the dynamics of single carriers, it is plasmons which
fluctuations. govern the high-frequency dynamics. This comparison indi-
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S (®) [kTh/e? V. ATTENUATION OF THE dc CONDUCTANCE
vu THROUGH COUPLING TO A GATE

We now come to the discussion of the dephasing of the
coherent part of the dc conductance in the linear transport
regime due to(equilibrium) charge fluctuations. In the last
section we have shown that interactions lead to effective
charge and potential distributions in the arms of the ring
which in turn give rise to displacement currents in the gates
= and contribute to the ac component of the particle currents in
4r the contacts of the ring. The zero-frequency contribution to
_ _ the currents in the contacts remained unchanged. Here we go

FIG. 3. The spectrum Eq25) is shown as a function of the 6 step further and will discuss how charge fluctuations act
parameterwr. The solid curve corresponds to an interaction ey on the dc conductance. In contrast to the last section we
strengthg=0.6, for the middie(dashedi curveg=0.7 and for the iy 1,5 only discuss the zero-frequency component of the
lowest(dotted curveg=0.8. conductance. Electron-electron interactions affect the coher-

o ) ent part of the dc conductance only. This can be understood
cates thus the limitation of our approach: Since we start from,om the well-known resu¥ that interactions do not change
a one-particle picture, our approach is most reliable in thgne conductance of a one-dimensional wire attached to res-
case of weak couplingg—1. In the weak coupling limit g qirs. In the interferometer, when interactions are consid-
(ge—1) we expand the spectrum, E@5), to the leading gred, AB oscillations of the conductance are suppressed. The

order inC, ¢/Cg=(1-g) which leads to dc-conductance matrix for the case without interactions is
given in Appendix Alsee Eq(A9)]. Throughout this section
Ci o Sin(w7e/2)? we chooseu;= ugt+eV gnd,uzz 3= pa= po. We will first
Su u (@) =2kTR,— . (26)  assume that only arrA is coupled to a gateQg— ). The
G- G C2 /2 2 . .
c (016/2) generalization to the case where both arms are coupled to

gates is straightforward and will be discussed at the end of
The spectrum vanishes in the noninteracting lingig this section.
=1 (C,,c/Cs=0). In Fig. 4 the full spectrum, Ed25), is We will from now on treat the potential as a function with
compared to the approximate form, EQ@6). The function  certain statistical properties. The potential fluctuations are
sin(wre/2)/ (w7/2) reflects the ballistic flight of carriers characterized by the spectruly,y,(») which is defined
through an interval of length. In the limit of strong cou- through
pling the potential noise is white and

2md(w+o')Sy,u,(0) =(Ua(w)up(w’)).  (28)

The spectrum was evaluated in Sec. [Bée Eqs(25) and
Remarkably in the strong-coupling limit for the ballistic ring (26)]. In_a(;jd::lon the po('j[ennal haﬁ a vams_hlr:g mean valude
considered here the spectrum is universal. The only propert a(1))=0. Here(. - -) denotes the statistical average an
of the system which enters is the number of leads whici€Ua(@) are the Fourier components Bf(t) [cf. Eq. (3)].

The overbar is to emphasize the distinction between quantum

permit charge relaxation. o
averages- - -) and statistical averages.

Having found the fluctuation spectra of the internal poten- Th ity of i i th isticall d
tials we are now in the position to investigate the influence ofd € dquantlty 0 d'Ter%Sthto UShIS the statistically average
fluctuations on dc transport. ¢ conductance, defined throug

SUGUG(w)=2kTRq=2kTh/(4e2). (27

G,p) = lim (dl )/dV,. (29
Syy(®) [kTh/e? (Gael vﬁo< Ve
A convenient starting point for the calculation of the conduc-
tagce is the following expression for the current in a contact
a®
- e . )
()= Hf dE dE ¢(E-EIvA
== =~ ax x[ay(E)a(E")—b(E)bL(EN], (30

. ~t ~ . _
FIG. 4. The exact expression for the spectrum &%) (solid n terms IOf the Qperatoraa(I_E)h [a.(E)] Cregtlngr[]destroy
line) is compared to the expression H&6) (dashed lingin the ing] an electron in a state with energyentering the system

weak coupling limit. Hereg=0.9 is chosen for the interaction through contactr and the operatorb(E) andb,(E), re-
parameter. spectively, creating and annihilating an electron outgoing at
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energyE and contactr. The operators,(E) andb,(E’) are
related through the scattering matfsee Fig. 2 and Eq1)]

- dE’ -
bo(B)=2, fmsw(E,E Jag(E). (3

As described in Sec. lll, Eq€10), and(11), we determine

the scattering matrix elements from the WKB solution of the

Schralinger equation for the arm of the ring. Doing this we

PHYSICAL REVIEW B 64 245313

Eq. (34) is strictly correct only to second order in the fluc-
tuating potential. We can now proceed to further evaluate Eq.
(34). Usingra 1(La,t) as given in Eq(7) and invoking the
definition of the spectrum, E¢28), we obtain:

Si(wal2)

. @

— d
<r/2A,1(|—-t)>:492f %SUAUA(Q’)

go to second order in the perturbing potential. This is necesthe fluctuation spectrun$y,;,(w) has been calculated in
sary since due to the assumption of a vanishing mean valug@ec. IV. The integral in Eq(35) can be done analytically
of the statistically averaged internal potential there exist nan the two limiting cases of very strongy{-0) and weak

first-order corrections to the averaged conductance(Z9j.
Combining Eqs(30) and Eq.(31) with the scattering matrix

(1) and statistically averaging leads to the following expres-

sion for the average conductance:

e

2 o 2o

<G a,3> = (32)

(g—1) coupling between arm and gate. Since the spectrum
SUAUA(w) [Eq. (25)] is a function ofw only throughw7, it
can be seen from E@35) that we can then write

(ras(La, ) (202 =1pl7,, (36)

where 7, is the traversal time and,, is a function of tem-

In above equation we have introduced the statistically averperature and the coupling parameter only. Equati6) de-

aged transmission probability
— 1
(Tap(E))= E[licos{@(E)—Zmb/dbo]

X[1=(ra(La,t))/2?]
FSINO(E)—27®/Do)(raoLa,))/h]. (33

Here @ =k, gLpo—Kkg glg is a geometric phasep is the
magnetic flux enclosed by the ring, afyg is the flux quan-
tum. The upper sign is for the pairs of indicés,p)
=(1,3,(2,4); the lower sign is fofa,8)=(1,4),(2,3). Further-
more, (T ,5(E)) and(Tz,(E)) are related via the Onsager
relations. Expressions fora(La,t) and rp(La,t) are
given in Egs.(5), (6), and(7). If charge fluctuations are not

taken into account, the transmission probability simply is

(Top(E))={1~cod O(E)—27d/D,]}/2 [compare Eq(A9)].

Interactions thus decrease the amplitude of the AB oscilla-
tions and lead to an additional out-of-phase contribution

Equation(33) can be rewritten in an approximate but more
convenient form as

ToA(E)= {1xe halba 00

X co§ @ (E) — 27D/ Do+ (r p AL a,1))/A]}.
(34

fines the dephasing time,. It is expressed through the
phase shift 5 1(L A ,t) acquired by a WKB wave function in
the presence of a time-dependent potentialative to the
case without potentiabnd quantifies the strength of the sup-
pression of the AB oscillations in the dc conductafsee
Eqg. (34)]. In the limit where gate and ring are weakly
coupled we use the approximate spectrum, E2f), to
evaluate Eq(35). The dephasing rat€ ,= 7-(;1 is found to
be

2

a\ kT 2.2 2e
ry= 3 7(1_9A) = 372

2
WA
2
Ca

KTR,.  (37)

The dephasing ratg,, is linear in temperature. Very recently
experimental results were reported by Hanseal® on the
temperature dependence of the decoherence of AB oscilla-
tions in ballistic rings. In these measurements a dephasing
rate linear in temperature was found. The dephasingligte
[Eq. (37)] also depends on the coupling parameggy.
Dephasing goes to zero when the gate and ring are com-
pletely decoupledd,—1). We can similarly determine the
dephasing rate in the strong-coupling limit. We know that in
this case the potential noise is white and the spectrum is
given by SUAUA(w)ZZKTRq. The dephasing rate i$',
=Ry(€?/h?)KT. Due to the more complicated form of the
fluctuation spectrurﬁ;UAUA(w) in the intermediate parameter

range forg, we cannot give a simple analytical expression

Note that also in the presence of interactions current is congyr the dephasing rate. However, the integral in B§) can
served and the system is gauge invariant. This is reflectege performed numerically. We have mentioned earlier that

in the fact that= ,(G,z)=0 andZ G,z =0 (with (G,,)
= —e?/h). Equation(34) has a rather intuitive interpretation
since (T zo(E))~(|WE(x,t) + WE(x,1)[?), where WE(x,t)

our approach applies fdi/ 7<kT since we have considered
only classical Nyquist noise and since all the frequencies in
the range up tav~ 1/7, contribute to dephasing. An upper

andW2(x,t) are wave functions for the upper and lower pathlimit of validity follows from the fact that we have deter-

respectively. Here the wave functiOI’iE(x,t) is the WKB
wave function for arnG to energyE [Eq. (4)] multiplied by

mined the scattering matrix, E¢L1), only to second order in
the fluctuating potential. This implies thét2(L,t))/(2%2)

the amplitudes for going through the intersections and by the= 7,/ 7,<1 [see Eqs(33) and (34)]. Combining 7,/ 7,<1

magnetic phase picked up going through a@nNote that

with the expression for the dephasing rate in the weak-
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VI. CONCLUSIONS

In this work we have examined dephasing due to electron-
electron interactions in a simple Mach-Zehnder interferom-
eter. Without interactions the MZI exhibits only forward
scattering.(However, screening will generate displacement
currents at all contacts in response to a carrier entering the
conducton. We have shown how a scattering matrix ap-
proach can be used to calculate the effect of charge fluctua-
tions on the conductance. We have first determined the inter-
0.6 0.7 0.8 0.9 1 g nal potentials and their statistical properties in a

nonperturbative way. Subsequently we calculated corrections

FIG. 5. The ratio of traversal time and dephasing timie, Vs tg the dc conductance up to the second order in the effective
the coupling paramete. The uppe(solid) line shows the numeri- ;y1ema potentials. In the expression for the averaged dc con-
tck?élywi\;?(lucegﬁdl_exact rESL[.m' Eq. (36)], wh|Iehthe o:aslhe_d line is  4,ctance a dephasing timg occurs in a natural way. It is a

pling approximation EB7). In the calculations we measure of the strength of the attenuation of the AB oscilla-
used the parameters of Ref. 8, namdly~1.5 um, kg~1.5 . . .
x 10 m~1. Furthermore, we assumdd=1.5 K and for the effec- tions as a “?”C“O” of temperature and c_oupllng Strfpgth be-
tive massm* of the electron we used the value for Gaas: ~ Ween the ring and gates. The dephasing aje-7," is
=0.067m,. With these parameters the Fermi velocity o  found to belinear in temperature and to depend on the Lut-
= fike IM* ~2.6X 10° mVs. tinger coupling parametey throughT" 4c(1—g?)?, at least

in the weak-coupling limit. Alternatively, it depends on the

coupling limit, Eq.(37), we obtaink T<#/[(1—g?)2r,]. We  ratio of the electrochemical capacitanCe, and the geo-
remark that this is a technical limit; possibly our result is Metrical gate capacitand@ like (C,/C)?. In terms of the
valid over a much wider range. In Fig. 5/, is plotted ~ Coulomb energyE;=€?/2C needed to charge the wire and
versus the interaction parametgy for (relatively) weak in-  the density of stateginverse level spacing D=2L/hve,

teractions where our theory is most reliable. this ratio is[1+1/(2DE.)] % Such a dependence
Returning to the weak-coupling limit we further evaluate cannot be obtained from a golden rule argument in which the
ras(La,t) and find coupling between the ring and the gate is treated perturba-

tively. Such a treatment would lead to a dephasing rate pro-

T C2 Al KT portional to Eﬁ. A dephasing rate proportional E)g is ob-
00 =(rpala,t)/i=— 2 = (E_ : (38 tained only in the limit that the level spacing far exceeds the
Ca \FF Coulomb energy. On the other hand, we found that the evalu-

To be consistent with our previous approximations this ternftion of the phase accumulated during traversal of the con-
should be neglected since it is of the ordt@/E¢ . Still it is ductor is surprisingly well described just by first-order per-

interesting to compare the size of the two corrections due t&rPation theory in the fluctuating potential. .

scattering from the internal potential. We find that Recently the temperature dependence of AB oscillations
(7al74)1 80 ~keL>1 which implies that taking scattering in ba7ll|s¢|c rings was mvestlgated_experlmentally _by Casse
into account to first order in the potential is a surprisingly €t &l Since both thermal averaging and dephasing of the

good approximation. Combining the information gathered scelectronic wave functions lead to a decrease in the visibility
of the AB oscillations as temperature is increased, a separa-

far allows us to rewrite the transmission matrix elements, Eq: X X X ,
(34), in the more convenient form tion of these different effects is of interest. Such %n analysis
of experimental data was carried out by Hanséal® They
1 find that the dephasing ratelisear in temperature in agree-
(Tup(E))= 5{1i67’A/T‘ﬁC05{®(E)—ZW‘I’/‘Do]}- (39  ment with our work. We have here not addressed thermal
averaging. It can be said, however, that the effect of thermal
The theory developed so far can be readily adapted to thaveraging is very small in the MZI at least for temperatures
case where both arms are coupled to gatgg#0,G kT<Et, where the Thouless energyls=Eg(Ag/L).
=A,B) by making the replacement The dephasing length {=ve7) we have calculated can
be of the order of the dephasing length observed in this
TA TA 7B experimerft when the couplingg is taken to be strong
T_d)_) m % (40) enough. A more detailed comparison of our result to the ex-
. ) ] ) ) periment is difficult, since the setup of Ref. 8 is different
in Eq. (39). The simple result, Eq(40), is an immediate  from the MZI presented here. In the experimental setup a top
consequence of the fact that potential fluctuations in the tW%ate is used to cover tHewo-termina) AB ring and no side
arms are uncorrelateds(,y,=Sy,u,=0). This can either gates are used.
be seen from the corresponding matrix elements of the ad- Interestingly a linear temperature dependence has also
mittance matrix(cf. Appendix A or by directly calculating been observed in experiments on chaotic cavifiééTheo-
potential correlations, as is done in the low-frequency limitretical work which gives a linear temperature dependence for
in Appendix B. the dephasing rate in chaotic cavities connected to open leads
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is presented in Refs. 28 and 6. Tak&hdinds I'y  examined. We hope therefore that the work reported here
=c(Ag/W)kT/A with c a constant of order 1 an@/ the  stimulates further experimental and theoretical investiga-
width of the leads. Using the approach of Ref. 13 the dephagions.

ing rate of a chaotic cavity coupled via a geometrical capaci-

tance C to a gate is given b)l“(f(e/h)sz(CM/C)ZRq ACKNOWLEDGMENTS
whereC,, is the electrochemical capacitance aRglis the N )

in the experimentally relevant regim€( /C)~1 and since manuscript. This work was supported by the Swiss National

the ensemble-averaged charge relaxation resistéqcés Science Foundation.
Ry=(h/€®)(N;+Ny) ! for a quantum dot coupled vibl;
>1 andN,>1 open channels to reservoirs, the dephasing APPENDIX A:  ADMITTANCE MATRIX

rate i . . .
ateis We here give the admittance matrixG, (w)

=dl ,/dVy, (1,k=1,2,3,4A,B) for a symmetric [,=Lg
27KT =L and 7,= 7g=7) Mach-Zehnder interferometer. The re-
Fqs:m- (41) sults for the asymmetric case are similar but notationally
more cumbersome. As in the rest of the paper we consider

o . the limit 2w <kT and% o, kT<Eg. We have shown in Sec.
In contrast to the conductance which is determined by they, 1, the admittance matrix elements that relate the dis-

smaller of the two contacts the charge relaxation reSiStancgracement currents in the gates to voltages applied at a gate
{ahnd thence tthe tdeghasmt% rate ar?I dqg:;]na]tcetg bKNthe Iartge: a contact can be calculated. It remains to derive the matrix
€ two contacts. ince the overall wi of the two contacly, e ments that relate currents in the contacts to external volt-

s gi_ven bYWOC).‘F(Nl_" No), it i.S seen that the_ two results ages. To this end we employ the ac-scattering approach fol-
are in fact identical. Both theories make also similar assumprowing Ref. 22. We here give a slightly formalized derivation

tions. In partlcglar It is assumed thqt the. dpmmant eff_ectof the results found in Ref. 22 and generalize the results to
comes from uniform potential fluctuations inside the cavity. . .commodate a system like the MZ| containing several re-

Taken together these results suggest that a linear temperatyie o qescribed by different internal potentidlsthe two
dependence can be expected whenever self-polarization fms in the case of the MEIFor recent related work we

fects are unimportant. Since the electrochemical capacitan(}%fer the reader to Refs. 33 and 34. A time-domain version of
and more mportantly 'ég;ea charge relaxt|on resistance arg,q ac-scattering approach was recently introduced in Ref. 35
sample specific q“af‘““ -Seven for chaotic cawﬂgs poupled }0 the investigation of charge pumping in open quantum dots.
to perfect leads, this discussion leads to a distribution of " \\x. ~onsider the situation where a time-dependent voltage

derl)tha5|lrlg r_a’;es mfthetfew-;:hﬁ]nr;el I"!E't' hasing i h V,(t) is applied to contacy of the system. We start from
IS also interesting to note that our dephasing Ume shows,g ¢, rent operator, E¢30). Fourier transforming gives
features similar to the inelastic scattering time for a ballistic

one-dimensional wire. The inelastic scattering time of Ref. _ R R R R

30 is inversely proportional to temperature and can be writ- Ia(w)=ef dE[aZ(E)aa(E"‘ﬁw)—bL(E)ba(E-f—ﬁw)].

ten as a simple function of the Luttinger liquid parameter (A1)
measuring the strength of electron-electron interactions.

Whether the inelastic time of Ref. 30 is in fact also theTo take into account scattering from internal potential fluc-

dephasing time remains to be clarified. tuations we use Eq31) and write
Our discussion has emphasized the close connection be-
tween the ac conductance of a mesoscopic sample and B f e
. ) : , = +
dephasing. We have given the entire ac-conductance matrix l(0)=¢ | dB a,(B)a.(E+he)

for the model system investigated here. A current and charge

conserving ac-conductance theory requires a self-consistent _ E E S st (E,Ey)S
approach to determine the internal potentials and requires the 2wh 2wh 5 AT V=ay
evaluation of the displacement currents.

The displacement currents at the gates can in principle be
measured. Nevertheless, the thermal potential fluctuations in
the arms of the ring do not act as a which path detettbr.
fact the dephasing rate increases with decreasing capacitan@é!l next step is to average this expression quantum me-
and is maximal ifC=0. In this limit there are no displace- Cchanically. Doing this it has to be taken into account that the
ment currents at the gates. The absence of which path dete@istribution of charge carriers coming in from reservpiis
tion is reflected in the fact that the charge correlations in thénodified due to the time-dependent voltage applied to this
two arms of the ring vanish in the equilibrium state of the contact[see Eq.(15)]. Since we consider only the linear
ring. response, we expand the scattering matrix to first order in the

The work presented here can be extended in many diredaternal potentialsig(w). We write
tions. Multichannel systems and systems with backscattering ) ' (0) ()
can be considered. The role of the external circuit can be Sap(E".E)=27h6(E—E")S,4(E)+S4(E",E), (A3)

X (E+hw,Epay(Ey)a,(Ey)|. (A2)
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WhereSE,f’g(E) is the scattering matrix of the ideal ballistic =iwQg(w) and the currents in the contadts(w)=1¢(w)
system[see below Eq(1)] and S(alg(E’,E) is linearly pro-  +15(w) [see Eqs(A6) and(A7)] we can now calculate all
portional to the perturbing potential. Substituting E¢ES) elements of the conductance matrix. We here consider the
and (A3) into the current operator, EGA2), and taking the case of a perfectly symmetrid.g=Lg) interferometer and
guantum average we see that average current in coatact give the result to first order im. Expanding the admittance
may be written in the form matrix in the low-frequency limit we can writ&(w)

R =GPk—in,k+o(w2). Explicitly, the zeroth-order term is
l(@)=(T () =1% o)+ (o) +15(0). (A4

— + p— -
The first terml%(w) in Eq. (A4) is the dc contribution Go 0 Go ~Go 00
0 Go -Gy -G 0 O
1%(w)=ed(hw), def,;(E)[@aB—|sg‘2(E)|2]. G -Gy -Gy G, O 00 a9
B = 1
(A5) | —6; -G o Gy, 0 0
In the case of interest to us herigy(E)=f(E) and |g(w) 0 0 0 0 0
=0 due to the unitarity of the scattering mat8{)(E). The 0 0 0 0 0 0
current ,
where we have introduced
eZ
15(0)= 5 [ B, SO (E)SOE+ o] Go=eh, (10
f(E)—f(E+nh Gz =¢e%(2h)[1+ 27D/ D). All
o (E)—f( w)vﬂ(w) (A6) o =€/ (2h)[1£cod27P/Dy)] (A11)

hw . . .
Note that in the dc limit there are no currents in the gates.

can be understood as the part of the total current directlyrhe first order ternk,, is called the emittance matrix. It is of
injected into contactr due to the oscillations of the external the form
potential vV ,(t) (see Ref. 22 The third contribution to the

total currentl$(w) is the response to the internal potential -E -E E; Es —Ep —Eg
distribution (compare also Ref. 22 -

istribution (comp 2 ~E -E E, Ej —Ex —Eg

e E. E; -E -E —E, —E

o)== 72 f dE[S{}* (E)S{A(E+fiw,E)] E={ * ¥ AR

5 E, E, -E —-E —Ex —Eg

X[f(E)—f(E+hw)]. (A7) —E, —E, —E, —E, 4E, O

We now want to apply the theory developed so far to the —Eg —-Eg —Eg —Eg O 4Eg

calculation of the dynamic conductance of the MZI. For this (A12)

example the full scattering matrix is given in Ed). Inelas-

. » . . . The entries of the emittance matrix are defined through
tic transitions are absorbed in the scattering matrices of the 9

armsS,(E’,E) andSg(E',E). From Eqs(7), (10), and(11) e 1
we know that to first order in the potential E= v g(C#YA/CA'F C.s/Cp)T, (A13)
So(E+hw,E)=2m8 )ékELe+ékELeM(1—é%)
, mTo(w ho ’ EG: C,u,G/4' (A14)
(A8)

Ey=*Eg+E+Ea2+Eg/2, Al5
where we usedtg, ;,,~ke+ w/v. Expressions for the matrix ® ® A B (A15)
elementsSY(E’ E) for the interferometer are now easily o2
derived from Eqs(1) and (A8). For the calculation of the Eg=——7Cog®). (A16)
admittance matrix it is furthermore important to note that in 2h

the limit of interest here{w<<kT) Eqgs.(A6) and (A7) can . . 1 . . 1
be considerably simplified. The Fermi functions appearing inThe_cleIectr;)che[nlmal capacitan€z, ¢ is defined asC, g
these equations are expanded to linear ordéwifkT. Since  —Cc (6°Dg) *, whereDg=2Lg/(hve) is the density
in addition the products of scattering matrix elements conOf states per unit length. The charge relaxation resist&qce

tained in Eqs(A6) and(A7) do not depend on the energy 1S diven by Ry=h/(4e®) and the traversal time is

but only on the energy differendg’ — E=%w for the scat- ~Le/ve. Current conservation implie§?:1G,k(w)=o
tering matrix used here, the energy integrations can be pewhile as a consequence of gauge invariaiie ;G ()
formed. =0. Similar sum rules hold for every coefficient in the ex-

Combining the scattering matrix elements defined in Eqpansion of G, (w) as a function ofw (e.g., EF:1E|k:O,
(1) with the expressions for the currents in the gdigkw) >0 Ex=0).
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APPENDIX B: CHARGE-CHARGE CORRELATIONS Ds=2,D®,. The elements of the time-delay matrix can

The spectra of charge fluctuations in the gates or, equivaqolg\t’ii?figamly be found from the scattering matrix via the

lently, the arms of the interferometer, as well as correlationd®
between the charges in the two gates, can be calculated di- 1 dSs,(E)
rectly from the knowledge of the scattering matB{)(E) D.y(E)= 5~ > S5 (E)——.
. . . . m "B dE
without first calculating the dynamic conductance as we have
done in Sec. IV. This approach which is particularly conve-The scattering matrix for the MZI is given in E@l). We
nient in the low-frequency limit was introduced in Ref. 29 here only need the matri§\J(E) which is found from Eq.
for a mesoscopic structure coupled to a single gate and gent) by replacing Sg(E’,E) in Eq. (1) by Sg(E’,E)
eralized to the case of coupling to more than one gate in Ret-2 7, 5(E’ — E) S{)(E) with S{(E) = exp(kelLg) (here we
36. In this section we apply the approach of Refs. 29 and 3@jmply have® g =keLg). To calculate the time-delay matrix
tra of the charges in the gates of the MZI. In contrast to th&yjth regard to the local potential/dE— —d/dUg. Since

rest of this paper we calculate both equilibrium and nonequithe scattering matrix depends on energy only through the
librium fluctuations. From Ref. 36 it is known that in equi- ppase factor® s=kgL g, it is easy to show that

librium, to leading order in frequency, the charge-charge cor-
relations are given by dSg, dSg,

dUs " %deg’

We can now use Eq$B3)—(B6) to calculate the generalized
whereG andH specify the gates in the system. H@glg charge relaxation and Schottky resistances:
=Cgl+(e’Dg) ! is the electrochemical capacitance of
gateG, D¢ being the density of states. FurthermaRg." is
the generalized charge relaxation resistance to be introduced
below. ForG=H, Eq. (B1) gives the spectrum of charge
fluctuations in gateG, while for G#H, Eq. (B1) gives the RQB: REA: 0, (B8)
equilibrium charge correlations between gaieandH. With
a small voltage applied to one contact of the system the

(B5)

(B6)
S8.0,=2KTCLcCunRg ", (B1)

h
AA_ pBB_
Ry =Ri*= 2 (B7)

fluctuation spectra to leading order in the applied voltage RCA= R\B/B=—2, (B9)
are® 16e
\"% _ GH
SQGQH—2|eV|CM,GCM'HRV . (B2) RAB_REA_ _ hz. (B10)
16e

The generalized charge relaxation resistaﬁ%ﬁ@' and the o _ _
corresponding quantity in the driven case, the Schottky reCombining these equations with Eq81) and (B2) we get
sistanceR\C;H, can be expressed through tteff-diagona) charge-charge correlations for the equilibrium and out-of-

elements of a generalized Wigner Smith time-delay matrix: €quilibrium situations. It is interesting to note that in equi-
librium the charges in the two gates anecorrelated This is

S p&, pH a consequence of the absence of closed electronic orbits in

h 43 @F b the ring and the fact that we have not introduced a Coulomb

(B3) coupling between the two branches of the ring. For the same
reason correlations are independent of the magnetic field.
This implies that despite the fact that AB oscillations are

GH:_—
9 2¢2 Dgby

S (DC,DM* +DC pH* observed in the currents measured at one of the contacts, the
ap“ ap Ba™ Ba H : : H H _
h a7p interior of the ring behaves like a classical system. In con
Ry =— (B4) i i
VT o DDy : trast, the charge fluctuations generated by the shot noise are

correlated. Like the equilibrium charge fluctuations they are
The density of stateBg in regionG is the sum of the diag- for the geometry investigated here independent of the AB
onal matrix elements of the Wigner Smith time-delay matrix,flux.
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