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Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer

Georg Seelig* and Markus Bu¨ttiker†
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~Received 6 June 2001; published 3 December 2001!

The reduction of the amplitude of Aharonov-Bohm oscillations in a ballistic one-channel mesoscopic inter-
ferometer due to charge fluctuations is investigated. In the arrangement considered the interferometer has four
terminals and is coupled to macroscopic metallic side gates. The Aharonov-Bohm oscillation amplitude is
calculated as a function of temperature and the strength of coupling between the ring and the side gates. The
resulting dephasing rate is linear in temperature in agreement with recent experiments. Our derivation empha-
sizes the relationship between dephasing, ac-transport, and charge fluctuations.
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I. INTRODUCTION

Dephasing processes suppress quantum mechanical
ference effects and generate the transition from a mic
scopic quantum coherent world in which interference is c
cial to a macroscopic world characterized by the absenc
~quantum! interference effects. Mesoscopic systems are n
ther entirely microscopic nor macroscopic but at the bord
line between the two. Clearly, therefore, dephasing proce
play a central role in mesoscopic physics.1–5At low tempera-
tures, it is thought that the predominant processes which g
erates dephasing are electron-electron interactions.1,2,5 In this
work, we investigate a ballistic Aharonov-Bohm~AB! inter-
ferometer, in which electrons~in the absence of interactions!
are subject only to forward scattering processes~see Fig. 1!.

Our work is motivated by the following questions: A m
soscopic conductor connects two or more electron reserv
inside a reservoir screening is effective and electron inte
tions are of little importance. In contrast, inside the mes
copic structure screening is poor and interactions are im
tant. Thus the process of a carrier entering or leaving
mesoscopic structure is essential since this process gives
to potential fluctuations. We ask how this process affects
dephasing. In standard treatments of dephasing the cond
is considered to be charge neutral and the elementary e
tations are electron-hole scattering processes. In a g
structure we can, however, have an electron inside the
ductor and a hole on a nearby capacitor~see Fig. 1!. As a
consequence the conductor is charge neutral only when
surroundings are taken into account~reservoir banks, nearb
capacitors!.

A second question we seek to answer is the followi
instead of calculating a dephasing rate, it is desirable to
a way to directly evaluate the quantity of interest~here the
conductance!. In small mesoscopic systems the dephas
rate might be a sample specific quantity6 and there would be
little justification in using an ensemble averaged dephas
rate even if we are interested only in the ensemble avera
conductance. Clearly to answer such conceptual questio
is useful to have a model which is as simple as possible
this paper we theoretically investigate dephasing of AB
cillations in a ballistic ring with a single transport chann
The one-channel limit is of actual experimental interest~see,
e.g., Refs. 7–9!. Our idealized setup consists of an AB rin
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with four terminals, the arms of the ring being capacitive
coupled to lateral gates~see Fig. 1!. For a recent experimen
on a ballistic ~two-terminal! AB ring with lateral gates
coupled to both arms see Ref. 10.

The structure we examine has no closed orbits: as a c
sequence in its equilibrium state it exhibits no persistent c
rent and in the transport state there is no weak localiza
correction to the conductance. It exhibits, however,
Aharonov-Bohm effect11 due to superposition of partia
waves in the outgoing final quantum channel. In fact this
the situation discussed in the original work of Aharonov a
Bohm.11 It is also sometimes assumed in mesoscopic phy
without a detailed specification of the conditions~multiter-
minal geometry, absence of backscattering! which are neces-
sary for interference to appear only in the final outgoi
channel. The system investigated here is the electric an
of an optical interferometer in which the path is divided
forward scattering only. An example of such an arrangem
is the Mach-Zehnder12 interferometer~MZI !. In the MZI the

FIG. 1. The figure shows the four-terminal AB ring threaded
a magnetic flux. The two arms of the ring are each coupled to a
gate via a capacitanceCG (G5A,B). We consider junctions which
are perfectly transmitting and divide the incoming current into
upper and lower branches of the ring. The system then is the e
tronic equivalent of an optical Mach-Zehnder interferometer~MZI !.
The total charge in a Gauss sphereV drawn around the system o
gates and ring is assumed to be zero, implying that current in
system is conserved. It is assumed that each arm is characteriz
a single potentialUA ~or UB) and the charge1QA ~or 1QB).
©2001 The American Physical Society13-1
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sample specific AB oscillations are a consequence of su
position in the outgoing scattering channel only. We calcul
the effect of internal potential fluctuations on the linear
sponse dc conductance in the ring as a function of
strength of the coupling between ring and gates and of t
perature. In this approach the conductance and the depha
time are not calculated separately but a dephasing time
appear in the expression for the conductance in a nat
way. It quantifies the degree of the attenuation of AB os
lations due to randomization of the phases of the electr
going through the ring~as opposed to attenuation due
thermal averaging!. From our calculations we find that th
coherent part of the conductance is diminished by a fa
12t/tf'exp(2t/tf) relative to the ideal case due to tem
perature and coupling to the gates. Heret is the traversal
time for going through one arm of the ring. For temperatu
\/t!kT we find a dephasing ratetf

21 linear in temperature.
In an experiment on a two-terminal AB ring, a dephasing r
linear in temperature was recently measured by Han
et al.8

In our model the dephasing is due to inelastic scattering
electrons from charge fluctuations in the arms of the ring.
treat the gates as macroscopic entities with perfect screen
The carrier dynamics in the gates is irrelevant for the disc
sion presented here. They do not represent an external
or dephasing agent. The irreversible source necessary
dephasing is given by the electron dynamics of the ring
self: the phase and energy of a carrier exiting into a con
are unrelated to the phase and energy of a carrier enterin
sample.

Our approach is similar in spirit to the one used in Ref.
where dephasing due to charge fluctuations was discusse
two coupled mesoscopic structures. The influence of inte
potential fluctuations on the persistent current in a clo
ring were examined in Ref. 14. Very recently the effect o
fluctuating vector potential on persistent current and cot
neling transport through a mesoscopic ring have also b
investigated.15 To simplify the discussion we assume that
is possible to draw a Gauss sphere around the system
gates and ring such that all electric field lines emanat
within the sphere also end in it~see Fig. 1!. This implies that
the total charge in the sphere is zero at any time. Howeve
is possible to charge up one part of the system~an arm of the
ring! relative to another part~the nearby gate!, creating
charge dipoles. Charge fluctuations in the arms of the rin
lead to fluctuations of the effective internal potentials. Ele
trons going through the ring are exposed to these pote
fluctuations and scatter inelastically. The strength of the c
pling between the gates and the arms determines the am
of screening and thus the strength of the effective electr
electron interaction. When the capacitanceC between arm
and gate becomes very large, the Coulomb energye2/C of
the system goes to zero. This means that it is in princ
possible to put any amount of charge on the ring with
causing any reaction. The charge fluctuations in the ring
thus completely free. We say that in this limit (C→`) gate
and arm aredecoupled.

The main goal of this work is the calculation of the d
conductance of the ring taking into account the effects of
24531
r-
e
-
e
-

ing
ill
al
-
s

r

s

e
n

f
e
g.

s-
ath
for
-
ct
the

3
for
al
d

-
en

of
g

it

-
ial
u-
unt
n-

le
t
re

e

gate-mediated interactions. Applying the ac-scattering
proach of Ref. 16 we start by calculating the dynamic co
ductance matrix of our system. From the real~dissipative!
part of the dynamic conductance matrix element relating
current in one of the gates to the voltage applied to the sa
gate we can find the spectrum of the equilibrium poten
fluctuations in the nearby arm of the ring via the fluctuati
dissipation theorem. When calculating the dc conducta
we statistically average over the scattering potential ass
ing that the potential has a vanishing statistical mean and
the spectrum of fluctuations is given by the spectrum of eq
librium fluctuations. Taking into account interactions in th
manner outlined above results in an attenuation of the am
tude of AB oscillations of the statistically averaged condu
tance.

In the next two sections we derive the scattering ma
for the MZI. Inelastic scattering from internal potential flu
tuations is taken into account. In Sec. IV we determine
internal potential distribution of the ring and then go on
calculate the admittance matrix. We will show that by taki
into account screening effects a current conserving theory
the system consisting of the ring and the two gates can
formulated. In the following~Sec. V! we calculate the dc
conductance and investigate the influence of equilibri
fluctuations on dc transport.

II. MACH-ZEHNDER INTERFEROMETER

We consider an MZI with a single transport channel. A
electron arriving at one of the two intersections coming fro
a reservoir can enter either of the two arms of the ring,
cannot be reflected back to a reservoir. An electron comin
the intersection from the ring will enter one of the reservoi
The amplitudes for going straight through the intersect
and for being deflected to the adjacent lead in the forw
direction aret5AT and r 5 iAR, respectively, whereT1R
51. Transmission through the intersections is taken to
independent of energy. In the remainder, we assume sym
ric intersections: that is,R5T51/2 in @Eq. ~1!#. Due to the
potential fluctuations in the arms of the ring, a carrier c
gain or lose energy. This process is described by a scatte
matrix SG(E8,E) for each arm which depends on both th
energyE of the incoming and the energyE8 of the exiting
carrier. The scattering matrixSG(E8,E) thus connects cur-
rent amplitudes at a junction of the ring incident on t
branch to the amplitudes of current at the other junction le
ing the branch. We have a matrixSG(E8,E) for the upper
arm @SA(E8,E)# and one for the lower arm@SB(E8,E)#. As
a consequence of the inelastic transitions in the arms of
ring the full scattering matrixSab(E8,E) describing trans-
mission through the entire interferometer from contactb to
contacta is also a function of two energy arguments. Th
scattering matrix can be found by combining the scatter
matrices for the two arms with the amplitudes for goi
through the intersections following a specified path. Due
the geometry of the system, we have the symmet
S13,1B(E8,E)5S24,1B(E8,E) and S32,1B(E8,E)
5S41,1B(E8,E). In addition the scattering matrix elemen
calculated for the system in a magnetic fieldBW are related to
3-2



-
ve

in

la

r

he

B

he
e
a
A
t
ta
r
vi
e

rm
t

c
t i
tia

th
ke
n

re

ct-

-

n-
the

way.
.

n
ed
use
t-

the

-
ite

i-

ally
r
se of
ns.

CHARGE-FLUCTUATION-INDUCED DEPHASING IN A . . . PHYSICAL REVIEW B64 245313
the matrix elements found at an inverted field2BW by
Sab,1B(E8,E)5Sba,2B(E8,E). All elements of the scatter
ing matrix can then be found from the three elements gi
below:

S13~E8,E!5S24~E8,E!

5 iATR@SA~E8,E!e2 iFA1SB~E8,E!e1 iFB#,

S14~E8,E!52RSA~E8,E!e2 iFA1TSB~E8,E!e1 iFB,

S23~E8,E!5TSA~E8,E!e2 iFA2RSB~E8,E!e1 iFB. ~1!

HereFG is the magnetic phase picked up by a particle go
through armG clockwise. ThenFA1FB52pF/F0, where
F is the flux through the ring andF0 is the flux quantum.
All scattering matrix elementsSab(E8,E) with ua2bu<1
are zero since transport through the junctions takes p
only in forward direction. The on-shell~one-energy! scatter-
ing matrix elements for the~free! one-channel interferomete
in the absence of gates which we denote bySab

(0)(E) are
found by replacingSG(E8,E) in Eq. ~1! by SG(E8,E)
52p\d(E82E)SG

(0)(E) with SG
(0)(E)5exp(ikELG). Our first

task is now to determine the scattering matricesSG(E8,E)
for the arms of the ring.

III. S MATRIX FOR A TIME-DEPENDENT POTENTIAL

In this section we calculate the scattering matrix for t
interacting ring system. We first solve the Schro¨dinger equa-
tion for a single branch of the interferometer using a WK
approach. The amplitude for a transition from energyE to
energyE1\v of a particle passing through this arm and t
corresponding scattering matrix element are determin
Subsequently the scattering matrices for the two arms
included into a scattering matrix for the full interferometer.
WKB approach similar to ours has been used previously
discuss photon-assisted transport in a quantum point con
~QPC!17 or to the investigation of traversal times fo
tunneling.18 The influence of a time-dependent bosonic en
ronment on transport through a QPC was addressed in R
19 and 20 also applying a WKB ansatz.

The gate situated opposite to armG (G5A,B) is as-
sumed to be extended over the whole length of this a
Fluctuations of the charge in the gate capacitively couple
the charge in the neighboring arm of the MZI and influen
electron transport through this arm. This interaction effec
taken care of by introducing a time-dependent poten
VG(x,t) into the Hamiltonian

H52
\2

2m*

]2

]x2
1EG1VG~x,t !, ~2!

for arm G. Herex is the coordinate along the arm,EG is the
subband energy due to the lateral confining potential of
arm andm* is the effective mass of the electron. We ma
the assumption that the fluctuating potential factorizes i
space- and a time-dependent part, writingVG(x,t)
5hG(x)eUG(t). For the ballistic structure considered he
the internal potential is a slowly varying function ofx. For
24531
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practical calculations we will, however, often employ a re
angular potential barrier@hG(x)5const if 0<x<LG , where
LG is the length of armG]. Using a space-independent in
ternal potential is a valid approximation21 at least in the low-
frequency limitvtG&1 where a passing electron sees a co
stant or slowly changing barrier. We have here introduced
traversal timetG5LG /vG,F wherevG,F is the Fermi velocity
in arm G. We will show in Sec. IV how the potentials

UG~ t !5E dv

2p
uG~v!e2 ivt ~3!

and their spectra can be determined in a self-consistent
To solve the Schro¨dinger equation with the Hamiltonian, Eq
~2!, we make the ansatz

CE
G~x,t !5e2 iEt/\1 ikG,Ex1 ir G(x,t)/\, ~4!

wherekG,E5A2m* (E2EG)/\ andr G(x,t) is the action due
to inelastic scattering~see Fig. 2!. We will omit the indexG
of the wave vector~or of the velocity vG,E5\kG,E /m* )
from now on and only write it when the distinction betwee
wave vectors in different arms is important. It is assum
that transmission is perfect: the potential fluctuations ca
only forward scattering. This is justified if all energies rela
ing to the fluctuating potential are much smaller than
Fermi energyEF , in particular\v!EF .

In determiningr G(x,t) we will take into account correc
tions up to the second order in the potential. We wr
r G(x,t)5r G,1(x,t)1r G,2(x,t), where

r G,1~x,t !5E dv

2p
e2 ivtr G,1~x,v! ~5!

is linear in the perturbing potential and

r G,2~x,t !5E dv1

2p E dv2

2p
e2 i (v11v2)tr G,2~x,v1 ,v2! ~6!

FIG. 2. Scattering statesCE
G and CE6\v

G @see Eq.~4!# with
amplitudesa(E) anda(E6\v) respectively due to electrons inc
dent from the left at energiesE and E6\v are indicated in the
figure. For didactic purposes the special case of a harmonic
oscillating barrierU(t)}cos(vt) is considered and only first orde
side bands are drawn. In the rest of the paper we discuss the ca
a randomly oscillating barrier and include second-order correctio
The scattering state which may be described by a simple~outgoing!
plane wave at energyE with amplitudeb(E) to the right of the
barrier is emphasized in the figure. The amplitudesa(E) andb(E)
are related through the scattering matrix viab(E)5(s50,6S(E,E
1s\v)a(E1s\v).
3-3
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is a second-order correction. The linear term was calcula
in Ref. 18 for a general form ofhG(x). The corresponding
expression for the term quadratic in the potential is read
found but is quite cumbersome. We here giver G,1(x,v) and
r G,2(x,v1 ,v2) for the case werehG(x) is a rectangular bar
rier of lengthLG :

r G,1~x,v!5 i
uG~v!

v
~eixv/vF21!,

r G,2~x,v1 ,v2!52
x

2m* vF
3

uG~v1!uG~v2!eix(v11v2)/vF.

~7!

Herer G,1 gives the contribution to the action due to abso
tion or emission of a single modulation quantum\v, while
r G,2 corresponds to the absorption and emission of t
modulation quanta\v1 and \v2. We now proceed to the
formulation of the scattering problem in terms of a scatter
matrix with elements of the formSG(E8,E) describing tran-
sitions between states at different energies. The amplit
tG(E8,E) for a transition from a state with energyE to a
state with energyE8 of an electron is found from the bound
ary condition at x5LG , CE

G(LG ,t)5xE
G(LG ,t). For the

matching we expand the WKB wave function@see Eq.~4!# in
x5LG to second order in the perturbing potential:

CE
G~x,t !5e2 iEt/\1 ikG,ExF11

i

\
r G,1~LG ,t !

1
i

\
r G,2~LG ,t !2

1

2\2
r G,1

2 ~LG ,t !G . ~8!

Furthermore, the wave function at the right-hand side of
barrier ~outside the fluctuating potential region! is

xE
G~x,t !5E dE8

2p\
tG~E8,E!eikE8x2 iE8t/\. ~9!

In principle, also the derivatives of the wave functio
should be matched. However, here we describe transmis
through the fluctuating potential region as reflectionle
which is accurate up to corrections of the order of\v/EF .
To determine the transmitted wave with the same accura
is sufficient to match amplitudes only. The transmission a
plitude is found by Fourier transforming the WKB wav
function, Eq.~8!, and comparing with the wave function E
~9!, at x5LG . The transmission amplitude can be expres
in terms of the phaser G(LG ,t). To second order in the po
tential we have
24531
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tG~E8,E!5ei (kE2kE8)LGH 2p\d~«!1
i

\
r G,1~LG ,«/\!

1E dv

2p F i

\
r G,2~LG ,v,«/\2v!

2
1

2\2
r G,1~LG ,v!r G,1~LG ,«/\2v!G J , ~10!

where«5E82E. The scattering matrix connecting incomin
wave amplitudes~at x50) to outgoing wave amplitudes~at
x5LG) is related to the transmission amplitudetG(E8,E)
through

SG~E8,E!5eikE8LGtG~E8,E!. ~11!

While the transmission amplitudetG(E8,E) was determined
through the continuity of the wave function in the pointx
5LG @ tG(E8,E) thus connects amplitudes at the sam
point#, the scattering matrixSG(E8,E) connects amplitudes
in x50 to amplitudes inx5LG . This difference in the defi-
nitions of the two quantities leads to the phase fac
exp(ikE8LG) in Eq. ~11!. The scattering matrix as it is derive
herea priori relates wave function amplitudes and not cu
rent amplitudes. To be consistent with the usual definition
the scattering matrix as a relation between current am
tudes,SG(E8,E) should be multiplied byAvE8 /vE. This fac-
tor, however, is of the order\v/EF and can thus be ne
glected. The scattering matrices found to describe a sin
arm can now be integrated into the full scattering matrix
the MZI @see Eq.~1!#.

In the discussion presented here the transmission of
carrier through the fluctuating potential region is describ
as a unitary scattering process. The ‘‘final’’ scattering cha
nels are always open. We emphasize that up to now we h
investigated a perfectly coherent process. Decoherence in
model will be introduced through the statistical averagi
~cf. Sec. V!. Our next task is to find the statistical properti
of the potential fluctuations. These fluctuations can be fou
from the dynamic conductance matrix via the fluctuatio
dissipation theorem.

IV. POTENTIAL FLUCTUATIONS

In this section we proceed to the calculation of the adm
tance matrixGlk(v)5dIl ,v /dVk,v for the joint system of
interferometer and gates. We concentrate on the limit\v
&\/t!kT. The dynamic conductance matrixGlk(v) is a
636 matrix (l ,k51, 2, 3, 4,A, B), I l ,v andVk,v , denoting,
respectively, the current measured at and the voltage app
to one of the four contacts of the ring or to one of the tw
gates. We use the following convention for the indices: lo
ercase Roman indices can take the values 1, 2, 3, 4,A, B,
lowercase Greek indices take the values 1, 2, 3, 4, while
uppercase Roman indicesG,H areA,B. We will first calcu-
late the matrix elementsGGG(v) from which, via the fluc-
tuation dissipation theorem, we can derive the spectra of
tential fluctuations in the two arms. These will later b
needed in the discussion of the decoherence of AB osc
3-4
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CHARGE-FLUCTUATION-INDUCED DEPHASING IN A . . . PHYSICAL REVIEW B64 245313
tions. The remaining elements of the conductance matrix
the resulting total conductance matrix are given in Appen
A. The elements of the conductance matrix obey the s
rules ( lGlk(v)50 and (kGlk(v)50, reflecting gauge in-
variance and current conservation, respectively. A prob
closely related to the one addressed here is concerned
the calculation of ac-transport properties of a ballistic w
attached to reservoirs and capacitively coupled to a ga21

Contrary to the classical calculations done for a wire in R
21 the ac-scattering approach allows us to take into acc
the quantum nature of the system investigated here as m
fested in the AB oscillations.

The ac properties and the potential distribution which
of interest here depend not only on the mesoscopic condu
but also on the properties of the external circuit. Here
consider the case where all external current loops exh
zero impedance. This requires some explanation since e
cially voltages at the gates are typically controlled with t
help of an external impedance. However, what counts in
problem is the range of frequencies up to the traversal ti
whereas the external impedance might be very large onl
a very narrow frequency range aroundv50. Thus we are
justified to consider in the following a zero-impedance ext
nal circuit.

In order to obtain the conductance matrix from an ac sc
tering approach we need the effective internal poten
eUG(t) in armG. The internal potentialeUG(t) is related to
the total chargeQG(t) in the same region throughQG(t)
5CG@UG(t)2VG(t)# whereVG(t) is the voltage applied to
gateG and CG is a geometrical capacitance characteriz
the strength of the coupling between arm and gate. The t
chargeQG(t) consists of a contribution due to injection fro
the contacts labeledQG

e (t) and a screening partQG
s (t), thus

QG(t)5QG
e (t)2QG

s (t). We will now assume that a voltag
Va(t) is applied to contacta while Vb(t)50 for aÞb.

First we consider the charge density22 injected into the
arm G due to a modulation of the voltage at contacta as-
suming a fixed internal potentialUG . The charge distribution
in the sample can be expressed through the Fermi field

Ĉ~r ,t !5(
b

E dE

Ahvb,E

e2 iEt/\cb~r ;E!âb~E!, ~12!

which annihilates an electron at pointr and time t. Here
cb(r ;E) is a scattering state describing carriers with ene
E incident from contactb. The charge density in the ring a
point r and timet is r̂(r ,t)5eĈ†(r ,t)Ĉ(r ,t). Fourier trans-
forming with regard to time and quantum averaging we
r(r ,v)5^r̂(r ,v)&, where

r~r ,v!5e(
b,g

E dE

Avb,Evg,E1\v

cb* ~r ;E!cg~r ;E1\v!

3^âb
†~E!âg~E1\v!&. ~13!

The average charge may be split into an equilibrium p
r (0)(r ,v) and a contributiondra~r ,v! due to the time-
dependent external voltage at contacta:
24531
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r~r ,v!5r (0)~r ,v!1dra~r ,v!. ~14!

When calculating the quantum average of the charge den
operator the effect of the external voltage is taken into
count through the modified distribution function for char
carriers coming in from reservoira. The distribution for con-
tact a to linear order in the applied voltage is23

^âa
†~E!âa~E1\v!&5d~\v! f a~E!1

e

h
Va,vF~E,v!, ~15!

whereVa,v is the Fourier component to frequencyv of the
voltageVa(t) and

F~E,v!5
f a~E!2 f a~E1\v!

\v
. ~16!

Carriers in the other reservoirs are Fermi distribute

^âb
†(E)âg(E1\v)&5d(\v)dbg f b(E) ~hereaÞb or aÞg!.

The scattering statescb(r ;E) in the arms of the interferom
eter for a constant internal potential are of the fo
cb(r ;E)5Abx(r�)exp@ikEx1iFG(x)#, where Ab5 iAR or
Ab5AT depending on the arm and the injecting contact@cf.
Eq. ~1!#. As in most of the paper we will in the following us
R5T51/2. Furthermore,FG(x) is the magnetic phase ac
quired going through armG to point x and x(r�) is the
transverse part of the wave function. The simple form of
scattering states in the arms is a consequence of the abs
of backscattering in the intersections. The injected cha
dra(x,v) is the part of the total charge, Eq.~13!, propor-
tional to the nonequilibrium contribution to the distributio
function, Eq.~15!. Substituting the expressions for the sca
tering states into Eq.~13!, using Eq.~15!, and integrating
over r' we find

dra~x,v!5
e2

2 E dE

Ava,Eva,E1\v

eivx/vEVa,vF~E,v!, ~17!

where we have useduAau251/2. To find the total charge
QG,a

e (v) injected into armG of the MZI we integrate over
the length of the armQG,a

e (v)5*0
LGdxdra(x,v). Perform-

ing the integration we get

QG,a
e ~v!5

e2

2hE dE F~E,v!S i

v D ~12eivtG!Va,v . ~18!

In the limit \v/kT!1 we have*dE F(E,v)'1. We can
rewrite the charge asQG,a

e (v)5e2nGa(v)Va,v where we
have introduced the injectivitynGa(v), defined as

nGa~v!5
1

2h

i

v
~12eivtG!. ~19!

HeretG5LG /vF is the traversal time through armG.
Now if interactions are taken into account, the excess

jected charge will induce a shift in the effective internal p
tential, which in turn gives rise to a screening charge. T
screening charge is proportional to the internal poten
euG(v) and to the total charge density available for scre
ing nG(v). ThusQG

s (v)52e2nG(v)uG(v), wherenG(v)
3-5
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5(a51
4 nGa(v)54nGa(v). The last equation is a consequen

of the symmetry of the MZI. In the zero-frequency lim
nG(v) reduces tonG(0)52LG /(hvF). The total charge in
regionG is QG(v)5e2nGa(v)(Va,v24uG(v)).

We generalize now to the case were a voltage is app
not only to contacta but also to gateG. The gate voltage is
labeled VG(t). In this situation the charge in armG is
QG(v)5CG@uG(v)2VG,v#. Combining with our previous
result for the charge leads to

QG~v!5CG@uG~v!2VG,v#5e2nGa~v!@Va,v24uG~v!#.
~20!

Solving for the internal potential and invoking the definitio
of the injectivity nG(v) @see below Eq.~19!# allows us to
express the internal potentialeuG(v) through the applied
voltages:

uG~v!5
2 ivCGVa,v1e2/~2h!~12eivtG!VG,v

2 ivCG1~2e2/h!~12eivtG!
. ~21!

The current in gateG is given by I G,v5 ivQG(v), where
2QG(v) is the charge accumulated in the gate. Since w
the help of Eq.~21! we can expressQG(v) as a function of
external voltages only, we can calculate the conductance
trix elements GGG(v)5dIG,v /dVG,v and GGa(v)
5dIG,v /dVa,v . Note that the matrix elementsGAB(v) and
GBA(v) vanish since the charge in regionG is independent
of the voltage applied to the gate further away from it.~This
is a consequence of our assumption of forward scatte
only at the junctions and of the absence of capacitive c
pling between the two arms.! For later use we here state th
result forGGG(v), which is

GGG~v!5
dIG,v

dVG,v
5

2 ivCG

122ivCGRq /~12eivtG!
. ~22!

In Eq. ~22! we have introduced thecharge-relaxationresis-
tanceRq5h/(4e2) of the interferometer. The charge rela
ation resistance16 is a measure of the dissipation genera
by the relaxation of excess charge on the conductor into
reservoirs. For a structure with perfect channels connecte
a reservoir each reservoir channel connection contrib
with a conductanceGq

(1)52e2/h: the conductances of differ
ent channels add in parallel since each channel reservoir
f

f
ia
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nection provides an additional path for charge relaxation.
example a ballistic wire connected to two reservoirs ha
charge relaxation resistanceRq5(Gq

(1)1Gq
(1))215h/4e2.

For the MZI considered here an excess charge in the uppe
lower branch has the possibility to relax into the four res
voirs of the MZI. But at each junction the two connectio
are only open with probabilityT andR ~see Sec. II!. Thus the
two connections act like one perfect channel. As a con
quence the charge relaxation resistance for our MZI is
that of a perfect wire and also given byRq5h/(4e2).

In the low-frequency limit we get from Eq.~22!

GGG~v!52 iCm,Gv1RqCm,G
2 v2

2 i
123gG

2

3gG
2

Rq
2Cm,G

3 v31•••. ~23!

This is in agreement with the result of Blanteret al.21 for a
single wire coupled to a gate. We have introduced the dim
sionless ~Luttinger! parametergG as a measure of the
strength of coupling between armG and gateG. If arm and
gate are decoupled, the interaction parameter takes the v
gG51 while it goes to zero as the strength of coupling
increased. The parametergG is related to the capacitanceCG
and to the density of states@Eq. ~19!# DG5nG(v50)
52LG /(hvF) of the wire through21

gG
2 5

1

11e2DG /CG

. ~24!

The electrochemical capacitance16 Cm,G of arm G is Cm,G
21

5CG
211(e2DG)21.

The remaining elements of the conductance matrix
namely those involving the currents in the contacts of
MZI—can be derived from an ac-scattering approach. Th
calculations are presented in Appendix A.

To discuss the influence of potential fluctuations on
transport we need the spectrumSUGUG

(v) of these fluctua-

tions. Since the spectrum of the current fluctuationsSI GI G
(v)

in region G is related to the real~dissipative! part of the
elementGGG(v) of the emittance matrix through the fluc
tuations dissipation theoremSI GI G

(v)52kT ReGGG(v) ~in

the limit \v!kT), we get SUGUG
(v) from the relation

SUGUG
(v)5SI GI G

(v)/(v2CG
2 ):
SUGUG
~v!5kT

h

e2

~12gG
2 !2@12cos~vtG!#

2~12gG
2 !2@12cos~vtG!#12gG

2 ~12gG
2 !vtG sin~vtG!1gG

4 ~vtG!2
. ~25!
nto
-

ich
di-
The spectrum, Eq.~25!, is shown in Fig. 3 as a function o
the dimensionless parametervtG for different values of
the interaction parametergG . Zeros of SUGUG

(v) occur

when vt is a multiple of 2p. This is a consequence o
our approximation which considers only uniform potent
fluctuations.
l

If the spatial dependence of the potential is taken i
account, Blanteret al.21 find that the traversal time is renor
malized through the interaction (tG→gGtG) and conse-
quently the zeros ofSUGUG

(v) are shifted accordingly. In-

stead of the dynamics of single carriers, it is plasmons wh
govern the high-frequency dynamics. This comparison in
3-6
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cates thus the limitation of our approach: Since we start fr
a one-particle picture, our approach is most reliable in
case of weak couplinggG→1. In the weak coupling limit
(gG→1) we expand the spectrum, Eq.~25!, to the leading
order inCm,G /CG5(12gG

2 ) which leads to

SUGUG
~v!52kTRq

Cm,G
2

CG
2

sin~vtG/2!2

~vtG/2!2
. ~26!

The spectrum vanishes in the noninteracting limitgG
51 (Cm,G /CG50). In Fig. 4 the full spectrum, Eq.~25!, is
compared to the approximate form, Eq.~26!. The function
sin(vtG/2)/(vtG/2) reflects the ballistic flight of carrier
through an interval of lengthL. In the limit of strong cou-
pling the potential noise is white and

SUGUG
~v!52kTRq52kTh/~4e2!. ~27!

Remarkably in the strong-coupling limit for the ballistic rin
considered here the spectrum is universal. The only prop
of the system which enters is the number of leads wh
permit charge relaxation.

Having found the fluctuation spectra of the internal pote
tials we are now in the position to investigate the influence
fluctuations on dc transport.

FIG. 3. The spectrum Eq.~25! is shown as a function of the
parametervt. The solid curve corresponds to an interacti
strengthg50.6, for the middle~dashed! curve g50.7 and for the
lowest ~dotted! curveg50.8.

FIG. 4. The exact expression for the spectrum Eq.~25! ~solid
line! is compared to the expression Eq.~26! ~dashed line! in the
weak coupling limit. Hereg50.9 is chosen for the interactio
parameter.
24531
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V. ATTENUATION OF THE dc CONDUCTANCE
THROUGH COUPLING TO A GATE

We now come to the discussion of the dephasing of
coherent part of the dc conductance in the linear trans
regime due to~equilibrium! charge fluctuations. In the las
section we have shown that interactions lead to effec
charge and potential distributions in the arms of the r
which in turn give rise to displacement currents in the ga
and contribute to the ac component of the particle current
the contacts of the ring. The zero-frequency contribution
the currents in the contacts remained unchanged. Here w
one step further and will discuss how charge fluctuations
back on the dc conductance. In contrast to the last section
will thus only discuss the zero-frequency component of
conductance. Electron-electron interactions affect the co
ent part of the dc conductance only. This can be underst
from the well-known result24 that interactions do not chang
the conductance of a one-dimensional wire attached to
ervoirs. In the interferometer, when interactions are cons
ered, AB oscillations of the conductance are suppressed.
dc-conductance matrix for the case without interactions
given in Appendix A@see Eq.~A9!#. Throughout this section
we choosem15m01eV andm25m35m45m0. We will first
assume that only armA is coupled to a gate (CB→`). The
generalization to the case where both arms are couple
gates is straightforward and will be discussed at the end
this section.

We will from now on treat the potential as a function wi
certain statistical properties. The potential fluctuations
characterized by the spectrumSUAUA

(v) which is defined
through

2pd~v1v8!SUAUA
~v!5^uA~v!uA~v8!&. ~28!

The spectrum was evaluated in Sec. IV@see Eqs.~25! and
~26!#. In addition the potential has a vanishing mean va
^UA(t)&50. Here^•••& denotes the statistical average a
theuA(v) are the Fourier components ofUA(t) @cf. Eq. ~3!#.
The overbar is to emphasize the distinction between quan
averageŝ•••& and statistical averages.

The quantity of interest to us is the statistically averag
dc conductance, defined through

^Gab&5 lim
Vb→0

^dIa&/dVb . ~29!

A convenient starting point for the calculation of the condu
tance is the following expression for the current in a cont
a:25

Î a~ t !5
e

hE dE dE8ei (E2E8)t/\

3@ âa
†~E!âa~E8!2b̂a

†~E!b̂a~E8!#, ~30!

in terms of the operatorsâa
†(E) @ âa(E)# creating@destroy-

ing# an electron in a state with energyE entering the system
through contacta and the operatorsb̂a

†(E) and b̂a(E), re-
spectively, creating and annihilating an electron outgoing
3-7
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energyE and contacta. The operatorsâa(E) andb̂a(E8) are
related through the scattering matrix@see Fig. 2 and Eq.~1!#

b̂a~E!5(
b

E dE8

2p\
Sab~E,E8!âb~E8!. ~31!

As described in Sec. III, Eqs.~10!, and ~11!, we determine
the scattering matrix elements from the WKB solution of t
Schrödinger equation for the arm of the ring. Doing this w
go to second order in the perturbing potential. This is nec
sary since due to the assumption of a vanishing mean v
of the statistically averaged internal potential there exist
first-order corrections to the averaged conductance, Eq.~29!.
Combining Eqs.~30! and Eq.~31! with the scattering matrix
~1! and statistically averaging leads to the following expr
sion for the average conductance:

^Gab&5
e2

h E dES 2
] f

]ED ^Tab~E!&. ~32!

In above equation we have introduced the statistically av
aged transmission probability

^Tab~E!&5
1

2
@16cos@Q~E!22pF/F0#

3@12^r A,1
2 ~LA ,t !&/2\2#

7sin~Q~E!22pF/F0!^r A,2~LA ,t !&/\#. ~33!

Here Q5kA,ELA2kB,ELB is a geometric phase,F is the
magnetic flux enclosed by the ring, andF0 is the flux quan-
tum. The upper sign is for the pairs of indices~a,b!
5~1,3!,~2,4!; the lower sign is for~a,b!5~1,4!,~2,3!. Further-
more, ^Tab(E)& and ^Tba(E)& are related via the Onsage
relations. Expressions forr A,1(LA ,t) and r A,2(LA ,t) are
given in Eqs.~5!, ~6!, and~7!. If charge fluctuations are no
taken into account, the transmission probability simply
^Tab(E)&5$16cos@Q(E)22pF/F0#%/2 @compare Eq.~A9!#.
Interactions thus decrease the amplitude of the AB osc
tions and lead to an additional out-of-phase contributi
Equation~33! can be rewritten in an approximate but mo
convenient form as

^Tab~E!&5
1

2
$16e2^r A,1

2 (LA ,t)&/(2\2)

3cos@Q~E!22pF/F01^r A,2~LA ,t !&/\#%.

~34!

Note that also in the presence of interactions current is c
served and the system is gauge invariant. This is refle
in the fact that(a^Gab&50 and(b^Gab&50 ~with ^Gaa&
52e2/h). Equation~34! has a rather intuitive interpretatio
since ^Tba(E)&;^uCE

A(x,t)1CE
B(x,t)u2&, where CE

A(x,t)
andCE

B(x,t) are wave functions for the upper and lower pa
respectively. Here the wave functionCE

G(x,t) is the WKB
wave function for armG to energyE @Eq. ~4!# multiplied by
the amplitudes for going through the intersections and by
magnetic phase picked up going through armG. Note that
24531
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Eq. ~34! is strictly correct only to second order in the flu
tuating potential. We can now proceed to further evaluate
~34!. Using r A,1(LA ,t) as given in Eq.~7! and invoking the
definition of the spectrum, Eq.~28!, we obtain:

^r A,1
2 ~L,t !&54e2E dv

2p
SUAUA

~v!
sin2~vtA/2!

v2
. ~35!

The fluctuation spectrumSUAUA
(v) has been calculated in

Sec. IV. The integral in Eq.~35! can be done analytically
in the two limiting cases of very strong (g→0) and weak
(g→1) coupling between arm and gate. Since the spect
SUAUA

(v) @Eq. ~25!# is a function ofv only throughvt, it
can be seen from Eq.~35! that we can then write

^r A,1
2 ~LA ,t !&/~2\2!5tA /tf , ~36!

wheretA is the traversal time andtf is a function of tem-
perature and the coupling parameter only. Equation~36! de-
fines the dephasing timetf . It is expressed through th
phase shiftr A,1(LA ,t) acquired by a WKB wave function in
the presence of a time-dependent potential~relative to the
case without potential! and quantifies the strength of the su
pression of the AB oscillations in the dc conductance@see
Eq. ~34!#. In the limit where gate and ring are weak
coupled we use the approximate spectrum, Eq.~26!, to
evaluate Eq.~35!. The dephasing rateGf5tf

21 is found to
be

Gf5S p

3 D kT

\
~12gA

2 !25S 2e2

3\2D Cm,A
2

CA
2

kTRq . ~37!

The dephasing rateGf is linear in temperature. Very recentl
experimental results were reported by Hansenet al.8 on the
temperature dependence of the decoherence of AB osc
tions in ballistic rings. In these measurements a depha
rate linear in temperature was found. The dephasing rateGf
@Eq. ~37!# also depends on the coupling parametergA .
Dephasing goes to zero when the gate and ring are c
pletely decoupled (gA→1). We can similarly determine the
dephasing rate in the strong-coupling limit. We know that
this case the potential noise is white and the spectrum
given by SUAUA

(v)52kTRq . The dephasing rate isGf

5Rq(e2/\2)kT. Due to the more complicated form of th
fluctuation spectrumSUAUA

(v) in the intermediate paramete
range forg, we cannot give a simple analytical expressi
for the dephasing rate. However, the integral in Eq.~35! can
be performed numerically. We have mentioned earlier t
our approach applies for\/t!kT since we have considere
only classical Nyquist noise and since all the frequencies
the range up tov;1/tA contribute to dephasing. An uppe
limit of validity follows from the fact that we have deter
mined the scattering matrix, Eq.~11!, only to second order in
the fluctuating potential. This implies that^r 1

2(L,t)&/(2\2)
5tA/tf!1 @see Eqs.~33! and ~34!#. CombiningtA/tf!1
with the expression for the dephasing rate in the we
3-8
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coupling limit, Eq.~37!, we obtainkT!\/@(12g2)2tA#. We
remark that this is a technical limit; possibly our result
valid over a much wider range. In Fig. 5,tA/tf is plotted
versus the interaction parametergA for ~relatively! weak in-
teractions where our theory is most reliable.

Returning to the weak-coupling limit we further evalua
r A,2(LA ,t) and find

dQ5^r A,2~LA ,t !&/\52
p

4

Cm,A
2

CA
2 S kT

EF
D . ~38!

To be consistent with our previous approximations this te
should be neglected since it is of the orderkT/EF . Still it is
interesting to compare the size of the two corrections du
scattering from the internal potential. We find th
(tA/tf)/dQ;kFL@1 which implies that taking scatterin
into account to first order in the potential is a surprising
good approximation. Combining the information gathered
far allows us to rewrite the transmission matrix elements,
~34!, in the more convenient form

^Tab~E!&5
1

2
$16e2tA/tfcos@Q~E!22pF/F0#%. ~39!

The theory developed so far can be readily adapted to
case where both arms are coupled to gates (gGÞ0,G
5A,B) by making the replacement

tA

tf
→S tA

tf,A
1

tB

tf,B
D ~40!

in Eq. ~39!. The simple result, Eq.~40!, is an immediate
consequence of the fact that potential fluctuations in the
arms are uncorrelated (SUAUB

5SUBUA
50). This can either

be seen from the corresponding matrix elements of the
mittance matrix~cf. Appendix A! or by directly calculating
potential correlations, as is done in the low-frequency lim
in Appendix B.

FIG. 5. The ratio of traversal time and dephasing timet/tf vs
the coupling parameterg. The upper~solid! line shows the numeri-
cally evaluated exact result@cf. Eq. ~36!#, while the dashed line is
the weak coupling approximation Eq.~37!. In the calculations we
used the parameters of Ref. 8, namely,LA;1.5 mm, kF;1.5
3108 m21. Furthermore, we assumedT51.5 K and for the effec-
tive massm* of the electron we used the value for GaAs,m*
50.067me . With these parameters the Fermi velocity isvF

5\kF /m* ;2.63105 m/s.
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VI. CONCLUSIONS

In this work we have examined dephasing due to electr
electron interactions in a simple Mach-Zehnder interfero
eter. Without interactions the MZI exhibits only forwar
scattering.~However, screening will generate displaceme
currents at all contacts in response to a carrier entering
conductor.! We have shown how a scattering matrix a
proach can be used to calculate the effect of charge fluc
tions on the conductance. We have first determined the in
nal potentials and their statistical properties in
nonperturbative way. Subsequently we calculated correct
to the dc conductance up to the second order in the effec
internal potentials. In the expression for the averaged dc c
ductance a dephasing timetf occurs in a natural way. It is a
measure of the strength of the attenuation of the AB osci
tions as a function of temperature and coupling strength
tween the ring and gates. The dephasing rateGf5tf

21 is
found to belinear in temperature and to depend on the Lu
tinger coupling parameterg throughGf}(12g2)2, at least
in the weak-coupling limit. Alternatively, it depends on th
ratio of the electrochemical capacitanceCm and the geo-
metrical gate capacitanceC like (Cm /C)2. In terms of the
Coulomb energyEc5e2/2C needed to charge the wire an
the density of states~inverse level spacing!, D52L/hvF ,
this ratio is @111/(2DEc)#22. Such a dependence onEc
cannot be obtained from a golden rule argument in which
coupling between the ring and the gate is treated pertu
tively. Such a treatment would lead to a dephasing rate p
portional toEc

2 . A dephasing rate proportional toEc
2 is ob-

tained only in the limit that the level spacing far exceeds
Coulomb energy. On the other hand, we found that the ev
ation of the phase accumulated during traversal of the c
ductor is surprisingly well described just by first-order pe
turbation theory in the fluctuating potential.

Recently the temperature dependence of AB oscillati
in ballistic rings was investigated experimentally by Cas´
et al.7 Since both thermal averaging and dephasing of
electronic wave functions lead to a decrease in the visibi
of the AB oscillations as temperature is increased, a sep
tion of these different effects is of interest. Such an analy
of experimental data was carried out by Hansenet al.8 They
find that the dephasing rate islinear in temperature in agree
ment with our work. We have here not addressed ther
averaging. It can be said, however, that the effect of ther
averaging is very small in the MZI at least for temperatu
kT!ET , where the Thouless energy isET5EF(lF /L).

The dephasing length (l f5vFt) we have calculated can
be of the order of the dephasing length observed in
experiment8 when the couplingg is taken to be strong
enough. A more detailed comparison of our result to the
periment is difficult, since the setup of Ref. 8 is differe
from the MZI presented here. In the experimental setup a
gate is used to cover the~two-terminal! AB ring and no side
gates are used.

Interestingly a linear temperature dependence has
been observed in experiments on chaotic cavities.26,27 Theo-
retical work which gives a linear temperature dependence
the dephasing rate in chaotic cavities connected to open l
3-9
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is presented in Refs. 28 and 6. Takane28 finds Gf
5c(lF /W)kT/\ with c a constant of order 1 andW the
width of the leads. Using the approach of Ref. 13 the deph
ing rate of a chaotic cavity coupled via a geometrical capa
tance C to a gate is given byGf5(e/\)2kT(Cm /C)2Rq
whereCm is the electrochemical capacitance andRq is the
charge relaxation resistance@see Eq.~14.15! in Ref. 6#. Since
in the experimentally relevant regime (Cm /C)'1 and since
the ensemble-averaged charge relaxation resistanceRq is
Rq5(h/e2)(N11N2)21 for a quantum dot coupled viaN1
@1 andN2@1 open channels to reservoirs, the dephas
rate is

Gf5
2pkT

\~N11N2!
. ~41!

In contrast to the conductance which is determined by
smaller of the two contacts the charge relaxation resista
and hence the dephasing rate are dominated by the larg
the two contacts. Since the overall width of the two conta
is given byW}lF(N11N2), it is seen that the two result
are in fact identical. Both theories make also similar assum
tions. In particular it is assumed that the dominant eff
comes from uniform potential fluctuations inside the cav
Taken together these results suggest that a linear temper
dependence can be expected whenever self-polarizatio
fects are unimportant. Since the electrochemical capacita
and more importantly the charge relaxtion resistance
sample specific quantities29 even for chaotic cavities couple
to perfect leads, this discussion leads to a distribution
dephasing rates in the few-channel limit.6

It is also interesting to note that our dephasing time sho
features similar to the inelastic scattering time for a ballis
one-dimensional wire. The inelastic scattering time of R
30 is inversely proportional to temperature and can be w
ten as a simple function of the Luttinger liquid parame
measuring the strength of electron-electron interactio
Whether the inelastic time of Ref. 30 is in fact also t
dephasing time remains to be clarified.

Our discussion has emphasized the close connection
tween the ac conductance of a mesoscopic sample
dephasing. We have given the entire ac-conductance m
for the model system investigated here. A current and cha
conserving ac-conductance theory requires a self-consis
approach to determine the internal potentials and requires
evaluation of the displacement currents.

The displacement currents at the gates can in principle
measured. Nevertheless, the thermal potential fluctuation
the arms of the ring do not act as a which path detector.31 In
fact the dephasing rate increases with decreasing capaci
and is maximal ifC50. In this limit there are no displace
ment currents at the gates. The absence of which path d
tion is reflected in the fact that the charge correlations in
two arms of the ring vanish in the equilibrium state of t
ring.

The work presented here can be extended in many di
tions. Multichannel systems and systems with backscatte
can be considered. The role of the external circuit can
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examined. We hope therefore that the work reported h
stimulates further experimental and theoretical investi
tions.
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APPENDIX A: ADMITTANCE MATRIX

We here give the admittance matrixGlk(v)
5dIl ,v /dVk,v ( l ,k51,2,3,4,A,B) for a symmetric (LA5LB
5L and tA5tB5t) Mach-Zehnder interferometer. The re
sults for the asymmetric case are similar but notationa
more cumbersome. As in the rest of the paper we cons
the limit \v!kT and\v,kT!EF . We have shown in Sec
IV how the admittance matrix elements that relate the d
placement currents in the gates to voltages applied at a
or a contact can be calculated. It remains to derive the ma
elements that relate currents in the contacts to external v
ages. To this end we employ the ac-scattering approach
lowing Ref. 22. We here give a slightly formalized derivatio
of the results found in Ref. 22 and generalize the results
accommodate a system like the MZI containing several
gions described by different internal potentials32 ~the two
arms in the case of the MZI!. For recent related work we
refer the reader to Refs. 33 and 34. A time-domain version
the ac-scattering approach was recently introduced in Ref
to the investigation of charge pumping in open quantum d

We consider the situation where a time-dependent volt
Vm(t) is applied to contactm of the system. We start from
the current operator, Eq.~30!. Fourier transforming gives

Î a~v!5eE dE@ âa
†~E!âa~E1\v!2b̂a

†~E!b̂a~E1\v!#.

~A1!

To take into account scattering from internal potential flu
tuations we use Eq.~31! and write

Î a~v!5eE dEF âa
†~E!âa~E1\v!

2E dE1

2p\

dE2

2p\ (
b,g

Sab* ~E,E1!Sag

3~E1\v,E2!âb
†~E1!âg~E2!G . ~A2!

Our next step is to average this expression quantum
chanically. Doing this it has to be taken into account that
distribution of charge carriers coming in from reservoirm is
modified due to the time-dependent voltage applied to
contact @see Eq.~15!#. Since we consider only the linea
response, we expand the scattering matrix to first order in
internal potentialsuG(v). We write

Sab~E8,E!52p\d~E2E8!Sab
(0)~E!1Sab

(1)~E8,E!, ~A3!
3-10
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whereSab
(0)(E) is the scattering matrix of the ideal ballist

system@see below Eq.~1!# and Sab
(1)(E8,E) is linearly pro-

portional to the perturbing potential. Substituting Eqs.~15!
and ~A3! into the current operator, Eq.~A2!, and taking the
quantum average we see that average current in contaa
may be written in the form

I a~v!5^ Î a~v!&5I a
0~v!1I a

e~v!1I a
s ~v!. ~A4!

The first termI a
0(v) in Eq. ~A4! is the dc contribution

I a
0~v!5ed~\v!(

b
E dE fb~E!@dab2uSab

(0)~E!u2#.

~A5!

In the case of interest to us here,f b(E)5 f (E) and I a
0(v)

[0 due to the unitarity of the scattering matrixSab
(0)(E). The

current

I a
e~v!5

e2

h E dE@dam2Sam
(0)* ~E!Sam

(0)~E1\v!#

3
f ~E!2 f ~E1\v!

\v
Vm~v! ~A6!

can be understood as the part of the total current dire
injected into contacta due to the oscillations of the extern
potentialVm(t) ~see Ref. 22!. The third contribution to the
total currentI a

s (v) is the response to the internal potent
distribution ~compare also Ref. 22!

I a
s ~v!52

e2

h (
b

E dE@Sab
(0)* ~E!Sab

(1)~E1\v,E!#

3@ f ~E!2 f ~E1\v!#. ~A7!

We now want to apply the theory developed so far to
calculation of the dynamic conductance of the MZI. For th
example the full scattering matrix is given in Eq.~1!. Inelas-
tic transitions are absorbed in the scattering matrices of
armsSA(E8,E) andSB(E8,E). From Eqs.~7!, ~10!, and~11!
we know that to first order in the potential

SG~E1\v,E!52pd~v!eikELG1eikELG
uG~v!

\v
~12eivtG!,

~A8!

where we usedkE1\v'kE1v/v. Expressions for the matrix
elementsS(1)(E8,E) for the interferometer are now easi
derived from Eqs.~1! and ~A8!. For the calculation of the
admittance matrix it is furthermore important to note that
the limit of interest here (\v!kT) Eqs.~A6! and ~A7! can
be considerably simplified. The Fermi functions appearing
these equations are expanded to linear order in\v/kT. Since
in addition the products of scattering matrix elements c
tained in Eqs.~A6! and~A7! do not depend on the energyE,
but only on the energy differenceE82E5\v for the scat-
tering matrix used here, the energy integrations can be
formed.

Combining the scattering matrix elements defined in E
~1! with the expressions for the currents in the gatesI G(v)
24531
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5ivQG(v) and the currents in the contactsI a(v)5I a
e(v)

1I a
s (v) @see Eqs.~A6! and ~A7!# we can now calculate al

elements of the conductance matrix. We here consider
case of a perfectly symmetric (LA5LB) interferometer and
give the result to first order inv. Expanding the admittance
matrix in the low-frequency limit we can writeGlk(v)
5Glk

0 2 ivElk1o(v2). Explicitly, the zeroth-order term is

G05S G0 0 2GF
1 2GF

2 0 0

0 G0 2GF
2 2GF

1 0 0

2GF
1 2GF

2 G0 0 0 0

2GF
2 2GF

1 0 G0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D , ~A9!

where we have introduced

G05e2/h, ~A10!

GF
65e2/~2h!@16cos~2pF/F0!#. ~A11!

Note that in the dc limit there are no currents in the gat
The first order termElk is called the emittance matrix. It is o
the form

E5S 2E 2E EF
1 EF

2 2EA 2EB

2E 2E EF
2 EF

1 2EA 2EB

EF
1 EF

2 2E 2E 2EA 2EB

EF
2 EF

1 2E 2E 2EA 2EB

2EA 2EA 2EA 2EA 4EA 0

2EB 2EB 2EB 2EB 0 4EB

D .

~A12!

The entries of the emittance matrix are defined through

E5
e2

h

1

8
~Cm,A /CA1Cm,B /CB!t, ~A13!

EG5Cm,G/4, ~A14!

EF
656EF1E1EA/21EB/2, ~A15!

EF5
e2

2h
t cos~F!. ~A16!

The electrochemical capacitanceCm,G
21 is defined asCm,G

21

5CG
211(e2DG)21, where DG52LG /(hvF) is the density

of states per unit length. The charge relaxation resistanceRq
is given by Rq5h/(4e2) and the traversal time istG

5LG /vF . Current conservation implies( l 51
6 Glk(v)50

while as a consequence of gauge invariance(k51
6 Glk(v)

50. Similar sum rules hold for every coefficient in the e
pansion ofGlk(v) as a function ofv ~e.g., ( l 51

6 Elk50,
(k51

6 Elk50).
3-11
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APPENDIX B: CHARGE-CHARGE CORRELATIONS

The spectra of charge fluctuations in the gates or, equ
lently, the arms of the interferometer, as well as correlatio
between the charges in the two gates, can be calculated
rectly from the knowledge of the scattering matrixSab

(0)(E)
without first calculating the dynamic conductance as we ha
done in Sec. IV. This approach which is particularly conv
nient in the low-frequency limit was introduced in Ref. 2
for a mesoscopic structure coupled to a single gate and g
eralized to the case of coupling to more than one gate in R
36. In this section we apply the approach of Refs. 29 and
to calculate the zero-frequency limit of the fluctuation spe
tra of the charges in the gates of the MZI. In contrast to t
rest of this paper we calculate both equilibrium and noneq
librium fluctuations. From Ref. 36 it is known that in equ
librium, to leading order in frequency, the charge-charge c
relations are given by

SQGQH

q 52kTCm,GCm,HRq
GH , ~B1!

whereG and H specify the gates in the system. HereCm,G
21

5CG
211(e2DG)21 is the electrochemical capacitance

gateG, DG being the density of states. Furthermore,Rq
GH is

the generalized charge relaxation resistance to be introdu
below. For G5H, Eq. ~B1! gives the spectrum of charg
fluctuations in gateG, while for GÞH, Eq. ~B1! gives the
equilibrium charge correlations between gatesG andH. With
a small voltage applied to one contact of the system
fluctuation spectra to leading order in the applied volta
are36

SQGQH

V 52ueVuCm,GCm,HRV
GH . ~B2!

The generalized charge relaxation resistanceRq
GH and the

corresponding quantity in the driven case, the Schottky
sistanceRV

GH , can be expressed through the~off-diagonal!
elements of a generalized Wigner Smith time-delay matri

Rq
GH5

h

2e2

(
ab

Dab
G Dab

H*

DGDH
, ~B3!

RV
GH5

h

2e2

(
aÞb

~Dab
G Dab

H* 1Dba
G Dba

H* !

DGDH
. ~B4!

The density of statesDG in regionG is the sum of the diag-
onal matrix elements of the Wigner Smith time-delay matr
24531
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DG5(aDaa
G . The elements of the time-delay matrix ca

conveniently be found from the scattering matrix via t
relation37

Dag~E!5
1

2p i (
b

Sba* ~E!
dSbg~E!

dE
. ~B5!

The scattering matrix for the MZI is given in Eq.~1!. We
here only need the matrixSab

(0)(E) which is found from Eq.
~1! by replacing SG(E8,E) in Eq. ~1! by SG(E8,E)
52p\d(E82E)SG

(0)(E) with SG
(0)(E)5exp(ikELG) ~here we

simply haveQG5kELG). To calculate the time-delay matrix
in regionG we replace the energy derivative by a derivati
with regard to the local potentiald/dE→2d/dUG . Since
the scattering matrix depends on energy only through
phase factorsQG5kELG , it is easy to show13 that

dSbg

dUG
52pDG

dSbg

dQG
. ~B6!

We can now use Eqs.~B3!–~B6! to calculate the generalized
charge relaxation and Schottky resistances:

Rq
AA5Rq

BB5
h

4e2
, ~B7!

Rq
AB5Rq

BA50, ~B8!

RV
AA5RV

BB5
h

16e2
, ~B9!

RV
AB5RV

BA52
h

16e2
. ~B10!

Combining these equations with Eqs.~B1! and ~B2! we get
charge-charge correlations for the equilibrium and out-
equilibrium situations. It is interesting to note that in equ
librium the charges in the two gates areuncorrelated. This is
a consequence of the absence of closed electronic orbi
the ring and the fact that we have not introduced a Coulo
coupling between the two branches of the ring. For the sa
reason correlations are independent of the magnetic fi
This implies that despite the fact that AB oscillations a
observed in the currents measured at one of the contacts
interior of the ring behaves like a classical system. In co
trast, the charge fluctuations generated by the shot noise
correlated. Like the equilibrium charge fluctuations they a
for the geometry investigated here independent of the
flux.
os-

.
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Büttiker and T. Christen, inMesoscopic Electron Transport, Vol.
345 of NATO Advanced Study Institute, Series E: Applied S
ence, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Sch¨n
~Kluwer Academic, Dordrecht, 1997!, p. 259.

33Z. S. Ma, J. Wang, and H. Guo, Phys. Rev. B59, 7575~1999!.
34T. De Jesus, Hong Guo, and Jian Wang, Phys. Rev. B62, 10 774

~2000!.
35M. G. Vavilov, V. Ambegaokar, and I. L. Aleiner, Phys. Rev. B63,

195313~2001!.
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