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Intersubband hole-phonon and alloy disorder scattering in SiGe quantum wells
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Using the 636 k•p method we calculate hole-phonon and alloy disorder scattering rates in SiGe quantum
wells, and how these depend on the various parameters of the system. The relative importance of different
branches of nonpolar optical and acoustic phonons is discussed, and a comparison is made with alloy scatter-
ing. The latter is found to be an important mechanism for intersubband hole relaxation, particularly for
low-energy transitions at low temperatures, where it dominates over phonon scattering, while losing signifi-
cance in the opposite case. The results are relevant for the design and operation of SiGe-based quantum
cascade lasers relying on intersubband transitions in the valence band.
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I. INTRODUCTION

P-type Si/SiGe heterostructures are presently being c
sidered as prospective candidates for intersubband~quantum
cascade! lasers operating in a range of wavelengths, fro
midinfrared or even near infrared1–3 to far-infrared4. Possible
advantages offered by thep-Si/SiGe system include those o
fundamental character~no polar optical phonons, in contra
to the AlxGa12xAs and GaxIn12xAs/AlyIn12yAs systems,
and a large nonpolar optical phonon energy in Si, wh
should result in increased relaxation times!, as well as those
of technological character~both in-plane and perpendicula
polarizations of light are optically active, offering the pro
pect of surface-emitting intersubband lasers, and also
cost processing and the potential for integration!.

Very important issues for intersubband laser operation
carrier relaxation rates, since these determine the achiev
gain, the dynamics of the system, and the eventual mod
tion limits. In this paper we consider the relaxation proces
between hole subbands inp-doped SiGe-based quantu
wells ~QW’s! induced by phonon and alloy disorder scatt
ing. The hole subband structure is calculated using th
36 k•p method. In the scattering calculations we do n
use the axial approximation or the parabolic dispersion
proximation; rather the full anisotropy of the quantized ho
states is accounted for.

II. THEORY

A. Hole subband structure

Using basis set and state ordering as in Ref. 5, the blo
diagonalized form of the 636 Hamiltonian@which includes
heavy-hole~HH!, light-hole, and split-off~SO! bands# reads

H5FH1 0

0 H2
G , ~1!

where
0163-1829/2001/64~24!/245311~9!/$20.00 64 2453
n-

h

w

re
ble
a-
s

-
6
t
-

k-

H6

5F P1Q R7 iS A2R6
i

A2
S

R6 iS† P2Q7 iC A2Q7 iA3/2S
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G,

~2!

and

P5S \2

2m0
D @g1~kx

21ky
2!1kzg1kz#,

Q5S \2

2m0
D @g2~kx

21ky
2!22kzg2kz#,

R5A3S \2

2m0
Dgfkuu

2,

S52A3S \2

2m0
D kuu@~s2d!kz1kzp#,

S52A3S \2

2m0
D kuuH F1

3
~s2d!1

2

3
pGkz

1kzF2

3
~s2d!1

1

3
pG J ,

C52S \2

2m0
D kuu@kz~s2d2p!2~s2d2p!kz#,

gf5Aḡ21m222ḡm cosf.

Here g1,2,3 are the Luttinger parameters, and their line
combinations, introduced by Foreman5, are given by ḡ
5(g31g2)/2, m5(g32g2)/2, d5(11g11g223g3)/9, s

5ḡ2d/2, andp5m13d/2. The energy is measured from
the valence band~VB! top downward,kuu

25kx
21ky

2 , and
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Z. IKONIĆ, P. HARRISON, AND R. W. KELSALL PHYSICAL REVIEW B64 245311
tan(f)5ky /kx . This Hamiltonian does not include the axi
approximation. In a one-dimensional-modulated, i.e., laye
structurekz→2 i ]/]z, the quantitiesg1,2,3, m, ḡ, s, d, and
p all vary along thez axis, and the position-dependent V
edge is added to the diagonal terms. This may include
valence-band offset, the external field bias, and, if the ca
lation is self-consistent, the self-consistent potential as w
Furthermore, in@001#-grown SiGe structures there exists
biaxial strain, i.e., exx5eyyÞezz and exy5eyz5ezx50,
where the strain components amount toexx5eyy5(a0
2alat)/alat and ezz52(2C12/C11)exx , with alat denoting
the lattice constant of the substrate~and hence the in-plan
lattice constant of each layer!, anda0 the unstrained lattice
constant of a particular layer. TheP and Q terms are then
amended with strain-dependent terms, i.e.,P→P1Pe ,
where Pe52av(exx1eyy1ezz), and Q→Q1Qe , where
Qe52b(exx1eyy22ezz)/2, whereav and b are the hydro-
static and shear deformation potentials.

The eigenproblem to be solved,

H6C65EC6 , C6~rW !5c6~z!exp@ i ~kxx1kyy!#,
~3!

where c1(z)5@F1(z)F2(z)F3(z)#T and c2(z)
5@F4(z)F5(z)F6(z)#T, is further handled by expanding th
wave functions in Fourier series,

F j~z!5(
l

F j
( l ) exp~ iglz!, gl5 l

2p

L
~4!

whereL is the periodic length of the structure~which, be-
cause of the solution method, is implicitly assumed to b
superlattice!. A finite numberNz of gl vectors is taken. For
each wave-function basis componentFi(z), there is a vector
of Fourier components, which collectively comprise the Fo
rier representation of the total wave function.

The use of the Fourier expansion method was first p
posed in Ref. 6, and was also used more recently,7–9 though
apparently not with Foreman’s formulation of the Ham
tonian with the position-dependent Luttinger paramete
Here we describe briefly how the matrix elements are se
in this case.

Each of the terms in Hamiltonian~2!, when acting upon a
wave function, has one of the following four form
~i! f (z)c(z), ~ii ! (d/dz)@ f (z)c(z)#, ~iii ! f (z)(d/dz)c(z),
and ~iv! (d/dz)@ f (z)(d/dz)c(z)#, where f (z) represents
a particular combination of Luttinger parameters and
the potential, with appropriate constants@i.e., thesef (z)’s
are known functions at the time of setting up the Ham
tonian#. All the more complex derivatives, when they appe
are then expanded to obtain simple derivatives of the w
function, multiplied by anotherknownfunction, or its deriva-
tive; i.e., (d/dz)@ f (z)c(z)#→(d f /dz)c1 f (dc/dz), and
(d/dz)@ f (z)(d/dz)c(z)#→(d f /dz)(dc/dz)1 f (d2c/dz2).

To set up the Hamiltonian in the Fourier representati
the Fourier transforms of all the position-dependent qua
ties appearing in the Hamiltonian~the Luttinger parameters
and the potentials! are calculated. Then, using the fact that
the l th Fourier component ofy(z) is y( l ) then thel th com-
24531
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ponent ofdy(z)/dz is igly
( l ), we proceed in the conven

tional way, i.e., by substituting the Fourier expansion@Eq.
~4!# of the wave function into the Schro¨dinger equation, left
multiplying it by any one conjugate harmonic, integratin
and then using the orthogonality of plane waves. Thus
find that a matrix element (l , j ) of the Hamiltonian, stem-
ming from the operatorf (z)d2/dz2, reads f (k)( ig j )

2; that
from the operator (d f /dz)d/dz reads (igk) f (k)( ig j ), and that
from the potential-like operatorf (z) is just f (k), wherek is
the subscript of the plane wavegk5gl2gj ~if any suchgk
lies outside the range included, then the matrix elemen
equal to zero!. The method can be generalized straightf
wardly to handle structures modulated in more than one
rection, e.g., for quantum wires and dots.

B. Phonon scattering

The absence of polar-optical-phonon scattering in S
means that the two types of phonons relevant for hole s
tering are the acoustic and nonpolar optical modes. The p
non branch dispersions, and the deformation potentials
hole-phonon scattering in pure Si and Ge, have been w
documented. The situation in SiGe alloys is more comp
cated, due to considerable differences in some phonon p
erties in Si and Ge. For optical phonons the alloy has th
distinct branches, corresponding to Ge-Ge, Ge-Si, and S
interatomic vibrations. Each of them has it own distinct fr
quency and scattering deformation potential~that of Ge-Si is
approximately the average of Ge-Ge and Si-Si branch!.
Separate branches are given appropriate strengths, acco
to the number of interatomic bonds present in the all
Thus, for an alloy with a Ge mole fractionx, these strengths
amount tox2, 2x(12x), and (12x)2 for the Ge-Ge, Ge-Si,
and Si-Si branches, respectively10. This concept, however, is
not used for acoustic phonons with their comparatively sm
energies, and weighted averages of the velocities and of
deformation potentials of Si and Ge are usually taken.

Most of papers published so far on hole-phonon scatte
dealt with bulk, or bulklike material~i.e., with no quantized
hole states!.11–18Various approaches to calculating the ho
phonon scattering rates have been used, from assumi
fully isotropic phonon dispersion, and a simple structure
the valence-band states, to including the anisotropy and c
plex structure of both carriers and phonons. The hole-pho
scattering in Si or SiGe QW’s was studied in a limited nu
ber of papers.10,19–22In QW structures the phonons may b
modeled as bulklike or confined. The Monte Carlo simu
tion in Ref. 21 assumed a parabolic dispersion and bulk
phonons, while the calculations presented in Refs. 10,
and 20 used confined phonons but the hole dispersion
taken as parabolic~the last two references dealt with heav
hole subbands only, assuming parabolic subband dispers
and no mixing of heavy- and light-hole states!. In a recent
calculation22 of scattering between LH and HH subbands,
which only acoustic phonons were considered, nonparabo
ity was partly taken into account. More precisely, the disp
sion of the LH1 state was modeled by a nonparabolic~i.e.,
shifted-parabolic! expression, to fit thek•p calculation,
while the lower HH1 state was considered parabolic, and
1-2
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anisotropy of both states was neglected~this is a good ap-
proximation for the LH1 state, but not as good for the HH
state!. Furthermore, the basis overlap of quantized states
modeled by an independent simple expression after Wile23

although the nonparabolicity, the anisotropy, and the wa
function overlap properties all originate from a comm
source, i.e., from the HH-LH-~SO! state mixing.

In this work we have used fully anisotropic hole subba
dispersions, and full wave functions as calculated from
636 k•p method, rather than using the Wiley factor. F
phonons, however, we have adopted the model of bulk
phonons with isotropic dispersion.

The hole scattering rate from a quantized statei to statef
due to acoustic phonon absorption and emission was ca
lated from24

Wi f ~kuu i !5
DA

2\

2r~2p!2E(K )
S Nph1

1

2
6

1

2D uGi f u2

3
K2

\vph
d~Ei2Ef6\vph!dK , ~5!

and that due to nonpolar optical phonons from

Wi f ~kuu i !5
Do

2\

2r~2p!2E(K )
S Nph1

1

2
6

1

2D uGi f u2

3
1

\vph
d~Ei2Ef6\vph!dK , ~6!

where the integration in Eqs.~5! and ~6! is performed over
both the in-plane (K uu) and the perpendicular (Kz) compo-
nents of phonon wave vectorK , DA andDo are the acoustic-
and optical-phonon deformation potentials,r is the material
density,\vph is the phonon energy~which may depend on
its wave vector!, Nph51/@exp(\vph/kBT)21#, and

Gi f 5E
(z)

c i ,kuu i

† ~z!exp~ iK zz!c f ,kuu f
~z!dz ~7!

is the form factor for phonon scattering. The wave functio
are vectors in the basis space, i.e., Eq.~7! accounts for both
the spatial and basis overlaps of the initial and final state

The wave functions in Eq.~7!, and hence in Eqs.~5! and
~6!, depend on the in-plane wave vectorskuu of hole states
~wherekuu f5kuu i6K uu), as does the energy, in an anisotrop
and nonparabolic manner. There is, therefore, only a lim
similarity between Eq.~7! and the corresponding quantity fo
electrons. The rates of various transitions will be determin
by the interplay ofkuu-dependent state mixing and the osc
latory exponential effects in Eq.~7!.

The above expressions give the ‘‘bare’’ scattering ra
~i.e., assume empty final states!, and also depend on th
initial-state wave vector. More relevant quantity are t
averaged scattering rates, which are obtained by inser
into the integrals in Eqs. ~5! and ~6!, the factor
@12 f FD„Ef(kuu f),EF ,kBT…#, where f FD is the Fermi-Dirac
distribution function andEF the Fermi level, and then
24531
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forming averages according to24 * f FD(kuu i)Wi f (kuu i)dkuu i /
* f FD(kuu i)dkuu i . All the results presented in Sec. II C are f
averaged scattering rates.

For the reasons described above, in contrast to the cas
electron scattering, it is not possible to proceed with anal
cal integration in Eqs.~5! and~6!, and further evaluation had
to be done numerically. In the numerical procedure the ho
quantized state energies and wave functions were found
number of points in thekuu plane, and a look-up table wa
made, to be used in a three-dimensional interpolation.
d(•) function was substituted with a Lorentzian whose wid
was determined according to the density of the numer
mesh used in the integration, and otherwise had no phys
meaning. Since the procedure had to be numerical, there
no particular benefit to making the usual approximatio
about phonons ~quasielastic scattering on acoustic
phonons, dispersionless optical phonons!, which are com-
monly employed in analytical considerations of electro
phonon scattering.

C. Alloy scattering

The alloy disorder scattering of electrons or holes w
quite extensively considered in the literature, and included
transport studies of different types and levels of sophisti
tion, in both bulklike18,25–29 and quantized semiconducto
structures.30,31,21,35In a random alloy of two elemental o
binary compound semiconductors, e.g. with two constitue
with nominal~that is, the average taken over an infinite vo
ume! contents of the constituentsx and 12x, there occur
fluctuations of the alloy composition when sampled in a
finite volume. These fluctuations~alloy disorder! translate
into an effective spatially fluctuating potential in the sem
conductor, which gives rise to carrier scattering.

Interestingly, alloy scattering was almost exclusively stu
ied in the context of carrier transport, in both SiGe and ma
III-V alloys, and it was found to be one of the major limitin
mechanisms of carrier mobility, particularly at lower tem
peratures when phonon scattering is reduced. The alloy s
tering is strictly elastic, and in bulklike semiconductors it
basically the direction of the carrier wave vector which
changed ~although the wave-vector modulus may al
change in the case of anisotropic dispersion!. In quantized
states of semiconductor nanostructures alloy scattering m
like all other types of scattering, be either intrasubband
intersubband, depending on whether the quantized sta
conserved in scattering or not, such that in the former cas
is just the in-plane wave vectorkuu which is changed. For
low-temperature carrier transport, almost all carriers resid
the lowest subband. Consequently, the transport prope
are dominated by intrasubband scattering, and hence th
tersubband processes have usually been neglected in the
ical studies of transport in HEMT’s and other heterostruct
devices.31,21,35

However, despite being elastic, alloy scattering can s
contribute to carrier relaxation from excited subbands. In
intersubband alloy scattering process a carrier in a~typically!
small-kuu state, within an excited subband, will scatter into
larger-kuu state of a lower~e.g., ground! subband, so that its
total energy is conserved. From there, the carrier may c
1-3
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i.e., lose energy by subsequent inelastic scattering involv
acoustic or optical phonons. Intrasubband phonon scatte
is generally a fast process, which makes it likely that a c
rier will cool further before having a chance to scatter ba
into a higher subband. Therefore, alloy scattering may o
an alternative carrier relaxation path in QW’s. To the bes
our knowledge, with the exception of the early study of Yo
et al.,30 using simplified variational wave functions for con
duction subbands for GayIn12yAs based QW’s, this mecha
nism has not attracted any further research attention.

It has been a common practice in alloy scattering cal
lations to model the scattering potential as a spherically s
metric square well of depthU0 and radiusr 0. There has been
a degree of ambiguity of the actual definition ofU0 and,
partly for this reason, a considerable spread of the repo
values.31 In fact, the alloy scattering potential is related
band-gap bowing in the alloy, another disorder-induced p
nomenon, which may be calculated using the ionic
theory.32 Since the band-gap bowing is an experimen
quantity, it may provide a means of estimating the scatter
potential in cases where it is not already known. Altern
tively, one may choose a more intuitive approach, using
electron affinity or band discontinuity between the consti
ent materials.33,34 The values thus obtained may help o
obtain a good physical feeling, but to achieve a good qu
titative agreement between the calculated scattering rates
experiment~carriers mobility! the alloy scattering potential i
usually considered as an empirical or adjustable parame

The alloy scattering rate in a structure described by
composition profilex(z), for transitions between the quan
tized statesi and f with wave functionsc i , f(z), is evaluated
from18,21,26,30,31

Wi f ~kuu i !5
V

~2p!3

2p

\ S a0
3

4
U0D 2 N

V2
.

E
(kuu)

zF~ uDkuuu!z2dDkuu E
(z)

x~z!

3@12x~z!#uc i ,kuu i

† ~z!c f ,kuu f
~z!u2

3d@Ei~kuu i !2Ef~kuu i1Dkuu!#dz, ~8!

where V is the volume of the system,N5V/(a0
3/4) is the

total number of scatterers, each one having the~assigned!
volume a0

3/4, where a0 is the lattice constant26, Dkuu
5uDkuuu5ukuu i2kuu f u is the exchanged in-plane wave vecto
and

F~Dkuu!5
3 sin~Dkuur 0!23~Dkuur 0!cos~Dkuur 0!

~Dkuur 0!3
~9!

is the form factor corresponding to the spherical well mod
its radiusr 0 being calculated from 4pr 0

3/35a0
3/4.

While this single-primitive-cell sized scatterer model
usually employed, the above expression may be rea
changed to handle the situation where there is promin
clustering in the alloy. Some degree of clustering may
expected purely on statistical grounds, and there may als
24531
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a strain-related tendency for it to appear during the cours
epitaxial growth, even if it may not minimize the total energ
of the already grown structure. If clustering does occur, o
may assume that the size of an ‘‘effective’’ scatterer is eq
to that of the clusters~though this clearly is a rather crud
model, since there will still be some alloy disorder with
clusters!. With an average numberNc primitive cells in a
cluster, Eq. ~8! may be modified by the substitution
a0

3U0/4→Nca0
3U0/4 andN→Nca0

3/4, and the scatterer radiu
in Eq. ~9! is evaluated from 4pr 0

3/35Nca0
3/4. Mobility cal-

culations using various-sized clusters were reported in
literature.25

A recently reported total-energy calculation for SiG
alloys,36 with and without clustering, found no significan
difference between the two. Hence no tendency toward c
tering is expected, while clusters which occur statistica
would be fully stable~and, with no thermodynamic prefer
ence for their formation, the majority of clusters would b
very small!. On the experimental side, clusters as large
20–30 nm in SiGe/Si HEMT’s were reported only when u
ing pulse laser deposition,37 but not in structures made b
molecular-beam epitaxy~MBE! ~in contrast, clustering in
InxGa12xAs and InyAl12yAs normally appears in MBE as
well25,37!.

In the case of intrasubband scattering~e.g., for a calcula-
tion of the carriers mobility! one always uses the long
wavelength approximation (Dkuu!1/r 0), effectively setting
F(Dkuu)51 in Eq. ~8!. This is fully justified under near-
equilibrium low-temperature conditions, because the ini
statekuu i is small and, even with anisotropy included,Dkuu
cannot much exceed 2kuu i . Consequently, the value of th
radiusr 0 alone is irrelevant in this limit~i.e., one cannot tell
whether there is any clustering present!, because the alloy
potential U0 will eventually be determined by compariso
with experiment~the quantity actually determined in thi
manner is the productNcU0

2).
The computational details are the same as those for p

non scattering, described above. To discuss the importanc
various terms in Eq.~8! briefly, we note that for hole scat
tering in an intrasubband process both the spatial and
basis overlap are good, so scattering is very efficient.
intersubband scattering, however, the spatial overlap
clearly reduced, because anyucu2 overlaps with itself better
than it does with any other function, and the same is true
the basis overlap. However, this reduction is not too gre
for two reasons. First, the spatial overlap involves the in
gral of an entirely positive function. Second, the hole sta
for largekuu are highly mixed in character; hence there w
be a substantial basis overlap of a near-zone-center state
a higher-kuu state, whatever their character is atkuu50. Con-
cerning the overlap, therefore, intersubband scattering is
pected to be smaller than intrasubband scattering, but
remain within an order of magnitude of the latter. Finally, t
form factor@Eq. ~9!# may additionally suppress intersubban
scattering, depending on the magnitude of the exchan
wave vector relative to the inverse scatterer radius.F(Dkuu)
will fall off with Dkuu faster if the cluster sizeNc is larger.
The form factor influences the scaling of the scattering r
1-4
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with the energy difference between states~because this in
turn defines the range of exchanged wave vectors!, but only
in conjunction with the basis- and spatial-overlap argume

III. NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were performed for a range
SiGe/Si QW’s of the conventional rectangular profile, w
either Ge0.3Si0.7 or Ge0.5Si0.5 well layers, and Si barriers
while the substrate~which determines the strain conditions
the whole structure! was Ge0.2Si0.8. This choice of materials
is appropriate for achieving strain-symmetrized structures
a likely form of realization of multiple quantum wells in
tended for use in quantum cascade lasers. The relaxa
rates are primarily determined by the well region, either
rectly ~via its width and composition! or indirectly ~via its
strain conditions imposed by the substrate!, because the
wave functions are mostly localized in the wells, while t
barriers have a much smaller influence~due to the wave
functions repulsion into the well, and the absence of al
disorder if made of pure Si!. The Si and Ge parameters fo
the band structure calculations were taken from Ref. 38,
cept the VB offset which was set to the more realistic va
DEv50.56 eV39. The parameters for the phonon scatteri
calculation were as in Ref. 21. The optical phonons w
taken to be dispersionless, which is a reasonable approx
tion in view of the fact that phonons withKz larger than
;20% of the extent of the Brillouin zone make no contrib
tion to scattering, due to the oscillatory exponential in E
~7!. Acoustic phonons were assumed to have a linear dis
sion, which is adequate in the above range of wave vect
and, as we discuss below, gives a noticeable difference f
the results of the zero-energy acoustic-phonon model.
alloy scattering potential consistent with the scatterer s
used here wasU050.42 eV.31 In all the calculations the
surface hole density was set at 531011 cm22.

In discussing the influence of various parameters on
scattering rates, it is useful to recall some properties of h
bound states in SiGe QW’s. Once the well composition a
the strain conditions~i.e., the substrate! are specified, the
spacing between the HH1 state~always the lowest! and the
LH1 state is almost independent of the well width for a wi
range of values,38 and in the above system amounts
'30 meV in the 30% Ge QW, and to'72 meV in the 50%
Ge QW. In a range of well widths from 20 to 40 ML fo
instance, these LH1-HH1 spacings are stable to within
meV ~where 1 ML is half the lattice constant,'2.8 Å for
the @001# growth direction, as is conventional in SiG
QW’s!. On the other hand, the HH2-HH1 spacing depen
mostly on the well width in the classical textbook mann
and widening the well makes the HH2 state swap posit
with LH1, to become the second lowest state. The HH2-H
spacing changes from;80–90 meV down to;25 meV in
the above range of well widths. Therefore, the LH1-HH1 a
HH2-HH1 spacings in the systems considered span an
ergy range which includes the characteristic values 37.3 m
~the Ge-Ge optical phonon energy! and 64.1 meV~the Si-Si
optical phonon energy!. Quantized states have pure HH
LH1SO character only at the zone center (kuu50), and this
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is used for labeling the states, but they acquire progressi
more mixed character askuu increases. In the case of almo
adjacent~within a few meV! HH and LH states, the mixing
is strong even for very small values ofkuu . The inverted mass
feature, which is considered useful for quantum casc
lasers,4,22 also appears in this case.

Figure 1 shows the scattering rates from all the phon
branches, and the total rate, between the lowest three s
in a 32-ML Ge0.3Si0.7 QW. The subband spacings in this we
at kuu50 areDELH1-HH1531 meV, DEHH2-HH1538 meV,
and DEHH2-LH157 meV, all of which are less than any o
the three optical phonon energies, exceptDEHH2-HH1, which
is only marginally larger than the Ge-Ge phonon energy. O
can indeed see in Fig. 1~a!, and even more so in Fig. 1~c!,
that the acoustic phonons are the most important relaxa
routes for the LH1-HH1 and HH2-LH1 transitions in th
structure. It is interesting to note that acoustical phonons
slightly more important even for the HH2-HH1 transitio
even though it is almost ‘‘resonant’’ with the Ge-Ge optic
phonon energy@Fig. 1~b!#. At low temperatures this is be
cause only a small portion of the finalkuu states are really
accessible to holes which are populating only thekuu'0 ini-
tial states. At high temperatures, with holes populating
larger range of the initialkuu states, the absence of a stron
‘‘resonant’’ scattering with Ge-Ge optical phonons is due
the fact that HH1 and HH2 states, despite having the sa
character, have very different in-plane dispersions, due
mixing effects. Therefore, for the majority of holes the HH
HH1 transition is not resonant with the Ge-Ge optic
phonons at all. Indeed, a consequence of the band mixin
that the concept of resonantly enhanced optical phonon s
tering is much less significant for hole intersubband tran
tions, compared to the case of electrons.

In another example we consider a 22-ML Ge0.5Si0.5 QW.
The state spacings atkuu50 here areDELH1-HH1572 meV,
DEHH2-HH1579 meV, andDEHH2-LH157 meV, the first
two now being larger than all of optical phonon energie
The contributions of the optical phonons now exceed th
of the acoustic phonons@Figs. 2~a! and 2~b!#, except in the
low-energy HH2-LH1 transition where the acoustic phono
are most important@Fig. 2~c!#, as expected. What was no
expected, however, and in contrast to the previous exam
is that the HH2-HH1 optical phonon scattering rates do
show any significant increase with increasing temperat
@Fig. 2~b!#. In fact, in the intermediate temperature ran
these ratesdecreasewith temperature, though only slightly
This is actually a common feature we find in all cases wh
the HH2-HH1 spacing is large~significantly larger than the
energy of the corresponding optical-phonon mode!, hence
the transitions are then necessarily highly skewed ink space.
The phenomenon does not occur in analogous~‘‘character-
preserving’’! scattering between the electronic subbands,
dicating that it is the band mixing, present in hole system
which brings about this unusual result. With increasing te
perature the hole distribution spreads over a larger rang
kuu states of the HH2 subband, and the band-mixing effe
then reduce the average overlap, i.e., the form factor~7!. At
the same time the phonon occupancy factorNph1151
11/@exp(\vph/kBT)21# ~because phonon emission predom
1-5
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FIG. 1. The contributions of different phonon branches to
total intersubband scattering rates, as these depend on temper
in a 32 ML ~88.2 Å! wide Ge0.3Si0.7 QW, with Si barriers, and on
the Ge0.2Si0.8 substrate, calculated for the~a! LH1-HH1, ~b! HH2-
HH1, and~c! HH2-LH1 transitions.
24531
e
ure,FIG. 2. Same as in Fig. 1, but for a 22 ML~60.6 Å! wide
Ge0.5Si0.5 QW. The dashed lines in 2~b! represent the acoustic an
Ge-Ge optical-phonon scattering rates calculated atkuu50 only
~without averaging over the initial states!.
1-6
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nates at these large state spacings! increases. For the optica
modes this increase is rather mild (;33% for temperatures
belowT5300 K for the Ge-Ge mode, even smaller for ot
ers!, and is very large for the acoustic phonons with th
smaller energies~but cannot be specified simply, due to the
dispersive nature!. The net effect is that the band-mixing an
phonon occupancy are counterbalanced, and the aver
scattering rates on optical phonons depend only slightly
temperature. This is very prominent in the example given
Fig. 2~b!, but the balance may be less perfect in other
amples. On the other hand, the acoustic-phonon occup
increases with temperature too strongly to be compens
for in this way, so the corresponding averaged scattering
still increases. If the hole distribution and averaging were
accounted for, and only the scattering rates from thekuu50
initial state were considered, one would obtain the m
naturally looking but~in particular at high temperatures! in-
correct result, also displayed in Fig. 2~b!.

The dependence of the total phonon scattering rates on
well width, calculated atT577 K, is given in Figs. 3~a! and
3~b!. In both cases there is a rather slow variation of
LH1-HH1 rate, which is due to the fact that the spaci
between these two states is almost independent of the
width. On the other hand, the HH2-HH1 scattering rate
creases with the well width, which may be ascribed to
fact that the HH2-HH1 spacing decreases, making one a
another optical phonon type ineffective in scattering. T
HH2-LH1 ~or LH1-HH2, depending on the well width! re-
laxation rate also depends on the well width, and has a m
mum approximately~but not exactly, probably due to th
nonparabolicity and band mixing effects! where these two
states cross atkuu50. In the structures we have considere
this close proximity of the LH1 and HH2 states atkuu50
occurs for a 36-ML well with 30% Ge, or a 23-ML well with
50% Ge.

Figure 4 shows the influence of the quasielastic appro
mation for acoustic phonons~i.e., neglecting the phonon dis
persion in the energy conservation condition, while retain
it in the phonon distribution function!. In effect, forcing the
scattering to be ‘‘horizontal’’ in theE-k space makes the fina
state for phonon emission more remote than it really is,
has the opposite effect in the case of phonon absorpt
These errors apparently do not cancel out, but result in
derestimating of form factor~7!, reducing the calculated
scattering rate by a factor of 1.5–2. We have also chec
the possibility of using the axially isotropic in-plane dispe
sion of hole subbands in phonon scattering calculations,
cause it would clearly save a lot of computational effort. W
have tried sampling the subband dispersions along var
directions in thekuu plane~including that which is equivalen
to using the axial approximation from the outset!. This re-
sulted in variations in the calculated scattering rates of up
one order of magnitude, and we could not find a single sa
pling direction which would be universal, and deliver th
results of the anisotropic calculation. The importance of
counting for the anisotropy stems from the fact that it is qu
strong in SiGe QW’s, in particular for the ground HH1 sta

Next we present the results for the alloy scattering. Fig
5 shows the scattering rates between the lowest three s
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in two QW’s. The scattering rate between the like-charac
states~HH2-HH1! is more prominent for both QW’s, but th
mixed-character transitions are almost as strong, becau
large exchangedkuu vector implies that the composition o
the final state will include a substantial proportion of t
basis states which matches the initial state, as discu
above. For the same reason, and also due to thex(12x)
term in Eq.~8!, the scattering rates are larger in the thinn
well with higher Ge contentx, i.e., with larger energy spac
ings between the states. Although the microscopic scatte
process is temperature independent~in contrast to hole-
phonon scattering!, the averaged rates shown in Fig. 5 d
pend slightly on temperature, because of thekuu-dependent
state mixing taken together with the temperature depende
of the hole distribution over thekuu-states.

The influence of clustering~cluster sizeNc) on the alloy
scattering rates is given in Fig. 6. In this set of calculatio
the value of the productNcU0

2 ~and hence implicitly the hole
mobility, as the experimentally measurable quantity! was

FIG. 3. The total hole-phonon intersubband scattering rates
they depend on the well width, atT577 K, in ~a! Ge0.3Si0.7- and
~b! Ge0.5Si0.5-based QW’s.
1-7
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kept constant. Under such conditions, in the range of tra
tion energies of practical interest there is hardly any infl
ence of the cluster size on intersubband relaxation for c
ters of less than;100 primitive cells, i.e., 200 atoms
Therefore, clustering in real MBE-grown samples~if it ap-
pears at all! probably has only a mild influence on the sca
tering rates.

The dependence of the alloy scattering rates on well w
are shown in Fig. 7. There is clearly a general decrease o
scattering rates with well width, but only within a factor o
;2. The fact that alloy scattering rates are only weakly te
perature dependent, while the phonon scattering rates ge
ally have a stronger, and increasing, dependence on tem

FIG. 4. The hole–acoustic-phonon intersubband scattering r
in 22-ML-wide Ge0.3Si0.7 QW calculated exactly~solid lines!, and
within the quasielastic scattering approximation~dashed lines!.

FIG. 5. The temperature dependence of the averaged alloy
tering rates between the lowest three hole quantized states~HH1,
LH1, and HH2! in a 50.3 Å~18 ML! wide Ge0.5Si0.5 QW and a 60.6
Å ~22 ML! wide Ge0.3Si0.7 QW, both with Si barriers, on a Ge0.2Si0.8

virtual substrate.
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ture, indicates that alloy scattering may be the princi
relaxation mechanism inp-SiGe QW’s with small
(<30 meV) state spacings, at low temperatures. In s
systems, important, e.g., for far-infrared~THz! quantum cas-
cade lasers, alloy scattering may well be the limiting fac
in the intersubband hole lifetimes.

IV. CONCLUSION

Calculations of the hole-phonon and alloy intersubba
scattering rates in a range of SiGe QW’s were perform
The hole subband structure was calculated using the
36 k•p method, and the full anisotropy of the in-plane di
persion of the quantized states was included. The rela
importance of the different nonpolar optical phonons in t
SiGe alloy layers, and of the acoustic phonons, was a

es

at-

FIG. 6. The alloy scattering rates in the QW’s described in F
5, but calculated for a range of scattering cluster sizes, aT
577 K.

FIG. 7. The averaged alloy scattering rates vs the QW wi
calculated for Ge0.3Si0.7 QW’s with Si barriers, on a Ge0.2Si0.8 vir-
tual substrate, atT577 K.
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discussed. For the low-energy transitions, which may be
portant for the operation ofp-SiGe-based intersubband qua
tum cascade lasers, the acoustic phonons are the most im
tant among phonon scattering mechanisms, but the op
phonons ~in particular, the Ge-Ge mode! are also non-
negligible. However, for a range ofp-SiGe QW’s a very
important mechanism for intersubband hole relaxation is
alloy scattering. Its relative importance is largest in case
small spacing between quantized states and at low temp
tures, where phonon scattering is reduced, with typical l
times in the range of 3–10 ps, but it may remain importa
though not dominant, in other cases as well. It should
noted that the importance of alloy scattering is rather spec
uc

p

lin

um

pl
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to p-SiGe among the most common QW systems. T
is because the confining~‘‘well’’ ! layers, in which most
of the wave function is localized, are here made of al
rather than of pure binary or elemental semiconductors,
there are no polar optical phonons. At least one of th
properties is not shared with common GaAs/AlxGa12xAs or
GayIn12yAs/AlzIn12zAs based QW’s.
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