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Diffusion equation and spin drag in spin-polarized transport
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We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equa-
tion, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron inter-
actions are important, because they tend to equilibrate the momentum of the two-spin species. This ‘‘spin drag’’
effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and
should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also
include spin-flip scattering, which has two effects: it equilibrates the spin density imbalance and, provided it
has a non-s-wave component, also a current imbalance.
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I. INTRODUCTION

Recent advances in the fabrication of ferromagne
semiconductor heterostructures1 and the observation of spi
injection into semiconductors2 have lead to interest in th
transport properties of spin-polarized systems. There
been considerable work done in the field of metallic ma
netic multilayers, which has been analyzed in terms of tra
port equations with spin dependent distribution functions3,4

These works based their analysis on diffusion transport eq
tions. The justification of using these equations was given
Valet and Fert,5 who derived a spin diffusion equation from
the Boltzmann equation in the limit where the spin scatter
length is much longer than the momentum relaxation leng
Recently, the transport equations were utilized to analyze
feasibility of spin injection into semiconductors, with the r
sult that the crucial parameter is the conductivity misma
between the semiconductor and the ferromagnet,6 and to
study spin-polarized transport theoretically in inhomog
neous doped semiconductors.7

None of these approaches took electron-electron (e-e)
scattering into account. Clearlye-e interactions play a dif-
ferent role than in usual spin degenerate transport, where
e-e interaction does not provide a mechanism for moment
relaxation and hence has only indirect consequences
transport coefficients. In spin-polarized transport the t
spin species have different drift velocities, ande-e interac-
tions are instrumental in equilibrating this difference. Th
leads to a spin drag effect where the spins carrying the la
current will drag along the spins carrying the smaller curre
This drag effect was recently considered by D’Amico a
Vignale8,9 in three dimensions using linear response theo
They found that the spin drag resistivity was appreciab
and at elevated temperatures can be a fraction of the u
resistivity of the metal. In two dimensions the effect ofe-e
interactions on spin diffusion was considered theoretically
Takahashiet al.10,11 Using a quantum kinetic equation ap
proach, previously utilized in3He24He solutions,12 they
studied the spin diffusion coefficients in two-dimension
electron gases. In order to study this spin diffusion they u
variational functions, but did not include spin-relaxatio
scattering.
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In this paper, we use the Boltzmann equation to stu
spin-dependent transport and spin diffusion. We restrict o
selves to the study of collinear magnetization, and our goa
to derive a set of transport equation in the semiclassical lim
For this purpose the Boltzmann equation is adequate. For
noncolinear case, where phenomena such as damped t
verse spin modes can occur, one must go beyond the pre
approach; see, e.g., Refs. 10 and 11 and references the
We include impurity scattering, both spin independent a
spin flip scattering, as well ase-e scattering. We show that a
shifted Fermi-Dirac~SFD! distribution, is a valid solution at
low temperaturesT!TF , and without spin-flip scattering
This is also the case for weake-e scattering, where the prob
lem in absence of spin-flip reduces to the ordinary Coulo
drag situation.13,14

We then go on to discuss the general case at higher t
peratures, general interaction strength and finite intrin
spin-flip scattering. Using a SFD ansatz, for an isotropic s
tem we find the following macroscopic transport equation

¹•Js5S 2
e

tsf
0

]ns
0

]m D ~m̄s2m̄2s!, ~1a!

¹m̄s5
e

ss
Js1S e

sDas
1

e

ssf,s
D ~Js2asJ2s!. ~1b!

HereJs is the current carried by electrons with spins, m̄s is
the local spin-dependent electrochemical potential,ss is the
conductivity of the spins electron gas,tsf

0 is a spin lifetime
due to intrinsic spin-flip processes,ssf,s is a spin current
conversion conductivity arising from the angle depende
of the spin-flip scattering, andas5ns

0/n2s
0 is the relative spin

density, see Eqs.~35! and ~39! for definitions. FinallysD is
the spin drag conductivity, given by

~sD!215
\2

de2nsn2s
E dq

~2p!dE0

`

dvq2uef~q!u2

3
Imxs~q,v!Imx2s~q,v!

kBT sinh2~\v/2kBT!
, ~2!
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where Imxs is the polarization function:

Imxs~q,v!5pE dk

~2p!d
@ f s

0~ uk1qu!

2 f s
0~k!#d~« uk1qus2«ks2\v!. ~3!

Formula ~2! is well known from Coulomb drag.13 At low
temperatures it is (sD)21}T2 in two and three dimensions
while in one dimension it is proportional toT; see, e.g., Ref.
15.

The first transport equation@Eq. ~1a!# is the continuity
equation, which expresses the conservation of current in
presence of spin-flip processes. The second equation@Eq.
~1b!# is a generalized Ohm’s law. The first term on the rig
hand side is Ohm’s law, while the second term shows th
momentum imbalance between the two spin directions g
rise to an additional resistance if there is a mechanism
conversion of the spin current. There are two such proce
possible. This first one is the spin drag effect mention
above, wheree-e scattering makes a transfer of momentu
possible. The second one is due to the elastic spin-flip s
tering on, for example, magnetic impurities, which can co
vert a current with one spin polarization to a current of t
opposite polarization, if the spin-flip matrix element has
angular dependence. For example if the spin-flip predo
nant scatters forward, this means that spin-flip scatterin
accompanied by a transfer of momentum. In contrast if
spin-flip scattering, is purelys-wave scattering the momen
tum transfer between the spin channels is on average equ
zero. This can be seen mathematically from the expres
for tsf in Eq. ~35c!. The derivation of these two terms is th
main result of the present paper.

Two consequences of the spin current relaxation te
can immediately be read off. First, they give rise to an
creased resistivity in the case where the current is spin
larized. For example, takingJ↓50, the effective resistivity
for electrons with spin ↑ becomes (1/s↑11/sDas
11/ssf,s)

21, and hence is an enhanced resistivity. Seco
from Eqs.~1! we obtain a diffusion equation for the electr
chemical potential difference

¹2~m̄s2m̄2s!5
m̄s2m̄2s

l sf
2

, ~4!

where

1

l sf
2

5F2
e2

tsf
0

]ns
0

]m G(
s

F 1

ss
1S 1

ssf,s
1

1

sDas
D ~11as!G .

~5!

This shows that the intrinsic spin relaxation length is d
creased by the spin-drag- and angle-dependent spin-flip
fects.

Similarly, we obtain that the following weighted sum o
electro chemical potentials must vanish,

“

2~c2sm̄s1csm̄2s!50, ~6!

where
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1S 1

ssf,s
1

1

sDas
D S ]ns

0

]m
1as

]n2s
0

]m D . ~7!

Below, we derive Eqs.~1a! and~1b! and estimate the spin
drag contributions. For the two-dimensional case, we a
perform the integration of Eq.~2! numerically.

II. BOLTZMANN EQUATION FOR COLLINEAR SPIN
TRANSPORT

We base our analysis on the Boltzmann equation for tra
port through a system with lifted spin degeneracy. We ta
the current to run in thex direction, and denote the nonequ
librium distribution function byf s(k) and the equilibrium
Fermi-Dirac distribution function byf 0,

f 0~«ks!5
1

eb(«ks2m0)11
, ~8!

wherem0 is the chemical potential andb, as usual, the in-
verse temperature. The eigenenergies are denoted«ks , where
s is the spin quantum number andk the quantum numbe
labeling the relevant states crossing the Fermi level. For s
plicity, we assume a parabolic dispersion and write

«ks5
\2k2

2m
1«s

0 , ~9!

where«s is the band offset which can be spin dependen
the material is ferromagnetic.

The linearized Boltzmann equation then reads

vx(k)
] f s~k,x!

]x
2

eEx

\

] f 0~«ks!

]kx
5S ] f s~k,x!

]t D
coll.

. ~10!

We take the collision integral to include elastic scattering a
e-e scattering,

S ] f s~k!

]t D
coll.

5H0@ f s#~k!1Hsf@ f s , f 2s#~k!1He-e@ f s , f s#~k!

1He-e@ f s , f 2s#~k!, ~11!

whereH0 is the scattering from impurities~or quasielastic
phonon scattering!, giving rise to a momentum relaxation

H0@ f s#~k!52E dk8

~2p!d
Ws

0~k,k8!

3@ f s~k!2 f s~k8!#d~«ks2«k8s!, ~12!

and whereHs f describes elastic scattering processes that
the spin:

Hsf@ f s , f 2s#~k!52E dk8

~2p!d
Ws f~k,k8!@ f s~k!

2 f 2s~k8!#d~«ks2«k82s!. ~13!

Finally, thee-e scattering is after the linearization given by16
8-2
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He-e@ f s , f s8#7(k)52
2p

\kTE dk8

~2p!dE dq

~2p!d

3uUss8~q,«k2«k1q!u2d~«k1«k82«k1q

2«k82q! f 0~«ks! f 0~«k8s8!

3@12 f 0~« uk1qus!#@12 f 0~« uk82qus8!#

3@Cs~k!1Cs8~k8!2Cs~k1q!

2Cs8~k82q!#, ~14!

where the deviation from equilibrium is expressed in t
function C through

f s(r,k )5 f s
0(k)1S 2

] f 0~«ks!

]«ks
DCs~r ,k!. ~15!

The interactionUss8 is the Coulomb interaction between tw
electrons with spins ands8. It can in principle depend on th
relative direction of the spin if exchange is included. This
of integral equations cannot be solved in general, and
must either solve them numerically~for example as in Ref.
17!, or proceed with approximate methods.

However, one simplification is possible from symmet
Because of the cylindrical symmetry the functionsCs(k…
only depend on the angle betweenk and the direction of the
current, which we here choose to be in thex direction. De-
noting this angle byu, we have cosu5k"x̂/k, and we can
write

Cs~r,k !5Cs~x,k,u!. ~16!

It is convenient to expand the distribution function in ha
monics of the angleu as

Cs~x,k,u!5 (
n50

`

gs
(n)~x,k!cosnu, ~17!

which we utilize in Sec. III.

III. SPIN DRAG WITHOUT SPIN-FLIP PROCESSES
FOR T™TF

In this section we study the Boltzmann equation in t
presence ofe-e interaction, but in the absence of spin-fl
processes, i.e.,Hs f50. Furthermore, because a low
temperature expansion allows for a solution of the Bo
mann equation, we start by examining this limit, and later
discuss the validity of this solution even at elevated tempe
tures. It turns out that the solution in the low-temperatu
regime corresponds to a SFD distribution.

In the low-temperature limit, we see from Eq.~10! that
the second term on the left-hand side~the driving term! re-
stricts«ks to lie close to the Fermi level, such that the dev
tion Cs(k) needs only to be evaluated atkF . This is there-
fore also true for the distribution function in the elas
collision term,H0. Due to the Pauli principle, this will also
be the case for theC8s in thee-e collision integrals, which is
seen as follows. Using standard tricks~see, e.g., Ref. 13!, we
rewrite thee-e collision term as
24530
t
e
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He2e@ f s , f s8#(k)52
2p

\ E
2`

` dv

2pE dk8

~2p!dE dq

~2p!d

3uUss8~q,«k2« uk1qz!u2

3
1

kT sinh2~\v/kBT!
Imxs~k,q;v!

3Imxs8~k8,2q;v!@Cs~k!1Cs8~k8!

2Cs~k1q!2Cs8~k82q…#, ~18!

where

Imxs~k,q;v!5p@ f 0~« uk1qus!2 f 0~«ks!#

3d~« uk1qus2«ks2\v!. ~19!

Now, at low temperatures the factor 1/sinh2 restricts thev
integral to smallv of orderkT, and hence« uk1qus in Eq. ~19!
deviates from«ks by an amount of orderkT, and we expand
Imxs as

Imxs~k,q;v!'p\vS 2
] f 0~«ks!

]«ks
D d~« uk1qus2«ks2\v!.

~20!

From this we conclude that both«ks and «k8s8 ~and hence
also « uk1qus and « uk82qus8) are within a shell of orderkBT
from the Fermi level. To leading order inkT/«F , we can
therefore neglect the dependence onk and keep only the
angular dependence ofCs . Therefore, in the following we
replace

Cs~k!'Cs~kFs ,u!, ~21!

wherekFs is the Fermi wave vector for the spin directions.
Now we expand the functionC in harmonics of the angle

u as in Eq.~17!. Inserting Eq.~15! and ~17! into the Boltz-
mann equation gives, for the left-hand side,

\ksx

m S 2
] f 0~«ks!

]«ks
D S ]Cs

]x
2eExD

5(
n

\ks cosu

m S 2
] f 0~«ks!

]«ks
D S cosnu

]gs
(n)

]x
2

eE

\ D ,

~22!

and for the right-hand side we have two terms. The first o
is the spin conserving impurity scattering term, which b
comes

H0@ f s#52(
n

cos~nu!gs
(n) 1

t tr
n S 2

] f 0~«ks!

]«ks
D , ~23!

where we defined transport times of ordern,

1

t tr,s
n

5E dk8

~2p!d
Ws

0~k,k8!@12 cosnuk,k8#d~«ks2«k8s!,

~24!
8-3
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and whereuk,k8 is the angle betweenk andk8. The second
term is the one with thee-e scattering. When expansion~17!
is inserted into thee-e interaction terms, differentn’s do not
couple; see, for example, the derivation in Ref. 17. T
trick is to write, for example, the angle ofk82q as
cosnu k82q,x5 cosn (uk82q, k1uk,x)5 cosnuk82q,k cosnuk,x
2sinnuk82q,k sinnuk,x , and note that the sin terms vanis
due to symmetry. Therefore we can express thee-e collision
term as

He-e@ f s , f s8#(k,u…Ä(
n

cos~nu!~gs
(n)J(n)1gs8

(n)I (n)!,

~25!

where J(n) corresponds to the first and third terms in E
~18!, while I (n) corresponds to the second and fourth term

Now a set of equations for the coefficientsgs
(n) can be

extracted by multiplying the Boltzmann equation by cosn8u
and integrating overu, while using that*du cosnu cosn8u
}dnn8 . The left-hand side of Eq.~22! is expanded in harmon
ics, using that cosu cosnu51

2@cosu(n11)1 cosu(n21)#. We
find the following set of equations:

]gs
(1)

]x
50, ~26a!

\k

m

]

]x S gs
(0)1

gs
(2)

2
1ef Dhs5S gs

(1) hs

t tr
1

1gs
(1)~J(1)1I (1)!

1g2s
(1)I (1)D , ~26b!

1

2

\k

m

]

]x
~gs

(n21)1gs
(n11)!hs

5S gs
(n) hs

t tr
n

1gs
(n)~J(n)1I (n)!1g2s

(n)I (n)D , n>2

~26c!

where

hs5S 2
] f 0~«ks!

]«ks
D . ~27!

The solution of these equations isgs
(n)50 for n>2. This

is due to the fact that]xgs
(1)50, which decouples the equa

tions for n>2 from the first two equations. Equation~26a!
expresses current conservation within each spin specie
we include spin-flip scattering in the equation, then the eq
tions couple because]xgs

(1)Þ0.
Now we note that settinggs

(n)50 for n>2 corresponds
precisely to a linearized shifted Fermi-Dirac distribution

f s
SFD~k!5 f 0„«s~k1dks!2dms…, ~28!

from which we read off~for dk in the x direction!
24530
e

.
.

If
a-

gs
(0)5dms , gs

(1)cosu5\vxdks⇒gs
(1)52

\2kFs

m
dks .

~29!

From Eqs.~26!, one can now determinegs
0 and gs

1 . They
correspond to the change of the local charge densities an
the local currents, respectively. We will see this in Sec.
where we use the SFD ansatz to study the general case

IV. MACROSCOPIC TRANSPORT EQUATIONS

Above we saw that at low temperature the exact solut
of the Boltzmann equation in the absence of spin-flip wa
shifted Fermi-Dirac function. The same conclusion applies
the situation of arbitrary temperatures but weake-e scatter-
ing, because this limit corresponds to the usual Coulo
drag regime. However, this is no longer necessarily true
arbitrary e-e scattering, when the temperature increases
when spin-flip processes are included. Nevertheless, we s
assume in the following that the SFD distribution is a go
approximation for the exact distribution function. The arg
ment for doing this is as follows: thee-e interactions will
drag the distribution functions toward shifted Fermi-Dir
distributions, because the interspin channele-e collision
terms vanish forf s5 f s

SFD, i.e., He-e@ f s
SFD, f s

SFD#50. Since
the e-e scattering rate increases aste-e

21'(«F /\)(kT/«F)2,
increasing the temperature actually helps. Furthermore, s
the energy dependence of the elastic scattering is impor
in determining the actual shape of the distribution functio
and because we do not go into details of this sort, we v
the SFD distribution functions as reasonable parametr
tions of the true distribution function.

Our starting point is thus an ansatz distribution functi
given by

f s~k!5 f 0~«ks!1S 2
] f 0~«ks!

]«ks
D dms~x!

2S 2
] f 0~«ks!

]«ks
D\vxdks~x!. ~30!

Heredms corresponds to a change of the local chemical
tential, and hence also to the local density, whiledks de-
scribes a shift of the distribution function ink space and thus
gives a finite drift velocity. Inserting this into the Boltzman
equation gives, for the left-hand side,

L5vxS 2
] f 0~«ks!

]«ks
D S ]

]x
~dms2\vxdks!2eExD , ~31!

and for the right-hand side we have three terms. The s
conserving collision term becomes

H0@ f s#52\vxdks

1

t tr,s
S 2

] f 0~«ks!

]«ks
D , ~32!

where the usual transport time is
8-4
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1

t tr,s
5E dk8

~2p!d
Ws

0~k,k8!@12 cosuk,k8#d~«ks2«k8s!.

~33!

The second term on the right-hand side is the spin-flip s
tering term, which becomes

Hsf@ f s , f 2s#5S \vxdks

1

tsf,tr
2~dms2dm2s!

1

tsf
0

2\vx

3~dks2dk2s!
1

tsf
D S 2

] f 0~«ks!

]«ks
D , ~34!

where the three different spin-flip scattering times are giv
by

1

tsf
0

5E dk8

~2p!d
Ws f~k,k8!d~«ks2«k82s!, ~35a!

1

tsf,tr
5E dk8

~2p!d
Ws f~k,k8!@12 cosuk,k8#d~«ks2«k82s!,

~35b!

1

tsf
5E dk8

~2p!d
Ws f~k,k8!cosuk,k8d~«ks2«k82s!.

~35c!

Finally, thee-e scattering is given by(s8He-e@ f s , f s8#. But,
in accordance with detailed balance, thee-e scattering be-
tween two identical Fermi-Dirac distributions is zer
He-e@ f s , f s#50, and we are left with

He-e@ f s , f 2s#52
\2

mE
2`

` dv

2pE dk8

~2p!dE dq

~2p!d

3uUs,2s~q,«k2« uk1qz!u2

3
1

kT sinh2~\v/kBT!
Imxs~k,q;v!

3Imx2s~k8,2q;v!qx@dks2dk2s#.

~36!

The final form of the Boltzmann equation is thus

~31!5~32!1~34!1~36!. ~37!

Next we find the current and the density. They are giv
by

Js[2eE dk

~2p!d
vxf s(k…

5eE dk

~2p!d
\vx

2S 2
] f 0~«ks!

]«ks
D dks5

\e

m
ns

0dks ,

~38a!
24530
t-

n

n

drs[2eE dk

~2p!d F f s~k!2 f s
0~k…#

52eE dk

~2p!d S 2
] f 0~«ks!

]«ks
D dms52e

]ns
0

]m
dms .

~38b!

We find two transport equations for the current and cha
density or chemical potentials by integrating Eq.~37! and
also Eq.~37! multiplied by vx with respect tok, and we
arrive at Eq.~1!, where

as5
ns

0

n2s
0

, ~39a!

ss5
ns

0e2

m
eS 1

t tr,s
1

1

tsf,tr
D 21

, ~39b!

ssf,s5
ns

0e2tsf

m
. ~39c!

In Eq. ~1a! we introduced the drag conductivity defined
Eq. ~2!. In deriving the drag term, we have made use of
result obtained for Coulomb drag in, e.g., Ref. 13. Furth
more, the local electrochemical potential has been define

m̄s5ms1ef, ~40!

wheref is the electrical potential.

V. EVALUATION OF THE SPIN DRAG RESISTIVITY

A. One dimension

The polarization function is in one dimension at sm
temperatures, where we can perform anv expansion, given
by

Imxs~q,v!'v
m2

4\3q2 S 2
] f 0~«q/2,s!

]«q/2,s
D . ~41!

Inserting this into the formula forsD
21 , performing thev

integration for the case of a nonmagnetic conductor«ks

5«k , and using that@ f 08(«)#2.(6kT)21d(«2«F), we find

sD
21'

kT

«F

p2kF
3

64

\

e2

uU~2kF!u2

«F
2

. ~42!

The spin drag resistance is thus proportional to tempera
and dependent on the Coulomb backscattering matrix
ment. Clearly, this contribution can be very large at fin
temperatures. However, in strictly one dimensions, wh
Fermi-liquid theory is not expected to apply, the Boltzma
equation is not a correct starting point, and one should
somewhat careful about drawing firm conclusions from th
Nevertheless, this Fermi golden rule result is indicative
e-e interactions being very important for spin transport
one dimension.
8-5
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B. Two dimensions

For the two-dimensional case we start by deriving a lo
temperature result, and go on to compare it with a full n
merical integration ofsD

21 . At small v andq the imaginary
part of the polarization function is given by

Imxs~q,v!'v
m2

2p\3q3kF

, ~43!

and the screened static Coulomb interaction is

U~q!5
e2

2p«0« r

1

~q1qTF!
. ~44!

In this approximation, theq integral becomes

E dqq3
1

~q1qTF!2
, ~45!

which is clearly not convergent, and therefore we set
upper limit to be 2kF , because Imx is zero for a momentum
exchange larger than 2kF . With these inputs, we arrive at th
approximate expression

sD
21'S kT

«F
D 2 \

e2

p2

3

~11g!ln~11g!2g

g2~11g!
, ~46!

where g52kF /qTF and qTF5me2/2p«0« r\
2 is the two-

dimensional inverse Thomas-Fermi screening length. Ty
cally g is of order 1. This means that the spin drag resistiv
can be equal to a fraction of the quantum resistance,
should therefore indeed be measurable for standard h
mobility quantum wells.

We have also integrated the spin drag formula num
cally; see Ref. 14 for details. The result is shown in Fig. 1
realistic numbers for a two-dimensional GaAs electron g
The integration is done using the full dynamically screen
interaction for a quantum well with finite thickness. The a
proximate formula@Eq. ~46!# is seen to overestimate the sp
drag effect slightly.

VI. CONCLUSIONS

We have derived a set of transport equations for sp
polarized drag which incorporatee-e scattering. This has
been done within the framework of the Boltzmann equati
First we showed that in the absence of spin-flip scatter
and at low temperatures the exact solution of the Boltzm
e
m
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equation corresponds to two shifted Fermi-Dirac distribut
functions. Furthermore, if the interaction is weak, one c
use perturbation theory and arrive at the same conclu
following the lines of argument from Coulomb drag. Havin
observed that the shifted Fermi-Dirac distribution is corr
at low temperatures or weake-e scattering, we go on to the
general case, which is solved approximately by using
SFD as an ansatz, which allows for a solution of the coup
Boltzmann equations.

The main conclusion from this is thate-e interaction in-
troduces a spin drag term, which tend to drag the spin c
rents to be equal. There are two such mechanisms, nam
e-e interactions, which is temperature dependent, a
angular-dependent elastic spin-flip scattering, which is te
perature independent. Therefore, if a spin-polarized cur
is driven through the system, the spin drag will give rise
an additional resistivity. This resistivity increases with tem
perature. We have solved for the spin drag resistivity num
cally in two dimensions, which shows that it can becom
considerable and even exceed the ordinary impur
scattering-induced resistivity. The spin drag should thus
measurable in, for example, a structure combining a tw
dimensional electron gas with ferromagnetic materials or
one-dimensional systems, e.g., fabricated by nanotechno
in semiconductors or by contacting nanotubes to ferrom
netic contacts.

FIG. 1. The spin drag resistivity in the two-dimensional case
a function of temperature. The thick line is the numerical integ
tion of Eq. ~2! for a two-dimensional quantum well of thickness 1
nm and electron density 231015 m22. We have used typical pa
rameters for GasAs-based heterostructures. The rightmost thin
is the approximate expression in Eq.~46!, while the left thin line is
the result of integrating Eq.~2!, but using theT50 expression for
x(q,v).
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