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Diffusion equation and spin drag in spin-polarized transport
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We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equa-
tion, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron inter-
actions are important, because they tend to equilibrate the momentum of the two-spin species. This “spin drag”
effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and
should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also
include spin-flip scattering, which has two effects: it equilibrates the spin density imbalance and, provided it
has a nors-wave component, also a current imbalance.
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[. INTRODUCTION In this paper, we use the Boltzmann equation to study
spin-dependent transport and spin diffusion. We restrict our-

Recent advances in the fabrication of ferromagneticselves to the study of collinear magnetization, and our goal is
semiconductor heterostructutend the observation of spin to derive a set of transport equation in the semiclassical limit.
injection into semiconductotshave lead to interest in the For this purpose the Boltzmann equation is adequate. For the
transport properties of spin-polarized systems. There hagoncolinear case, where phenomena such as damped trans-
been considerable work done in the field of metallic mag-verse spin modes can occur, one must go beyond the present
netic multilayers, which has been analyzed in terms of transapproach; see, e.g., Refs. 10 and 11 and references therein.
port equations with spin dependent distribution functidhs. We include impurity scattering, both spin independent and
These works based their analysis on diffusion transport equapin flip scattering, as well ase scattering. We show that a
tions. The justification of using these equations was given bghifted Fermi-Diraq SFD) distribution, is a valid solution at
Valet and Ferf, who derived a spin diffusion equation from low temperaturesT<Tg, and without spin-flip scattering.
the Boltzmann equation in the limit where the spin scatteringThis is also the case for weake scattering, where the prob-
length is much longer than the momentum relaxation lengthlem in absence of spin-flip reduces to the ordinary Coulomb
Recently, the transport equations were utilized to analyze thdrag situationt>**
feasibility of spin injection into semiconductors, with the re-  We then go on to discuss the general case at higher tem-
sult that the crucial parameter is the conductivity mismatcrperatures, general interaction strength and finite intrinsic
between the semiconductor and the ferromaﬁrm,d to spin-flip scattering. Using a SFD ansatz, for an isotropic sys-
study spin-polarized transport theoretically in inhomoge-tem we find the following macroscopic transport equations:
neous doped semiconductdrs.

None of these approaches took electron-electrew)( e c7n°
scattering into account. Clearlre interactions play a dif- Vids=| — 45 (9,u
ferent role than in usual spin degenerate transport, where the
e-e interaction does not provide a mechanism for momentum
relaxation and hence has only indirect consequences for VﬁzEJ n
transport coefficients. In spin-polarized transport the two S
spin species have different drift velocities, aae interac-
tions are instrumental in equilibrating this difference. ThisHereJs is the current carried by electrons with spiru is
leads to a spin drag effect where the spins carrying the largéhe local spin-dependent electrochemlcal potentiglis the
current will drag along the spins carrying the smaller currentconductivity of the spirs electron gaszy is a spin lifetime
This drag effect was recently considered by D’Amico anddue to intrinsic spin-flip processes,;s is a spin current
Vignalé®? in three dimensions using linear response theoryconversion conductivity arising from the angle dependence
They found that the spin drag resistivity was appreciablepf the spin-flip scattering, and —nS/n,S is the relative spin
and at elevated temperatures can be a fraction of the usudénsity, see Eqg35) and (39) for definitions. Finallyop is
resistivity of the metal. In two dimensions the effecteeeé  the spin drag conductivity, given by
interactions on spin diffusion was considered theoretically by

Ms— M _s), (1a)

e
j(Js_ agd ). (1b)

Opls Ogf

Takahashiet al1%!! Using a quantum kinetic equation ap- 52 dq (=

proach, previously utilized in*He—“He solutions;? they (op) 1= f | deod?leg(q)|®
studied the spin diffusion coefficients in two-dimensional dengn_gJ (2m)?Jo

electron gases. In order to study this spin diffusion they used IMxo(q, ) IMy_(q,)

variational functions, but did not include spin-relaxation o Mxs(9, @)IMx—s(d, @ @)

scattering. kg T sintP(f w/2kgT)
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where Imy; is the polarization function: an? 1 1 1 on® an°
S S —S
L2y
Kk o dp 0s \Ogs Opas/\ du I
Im , @ =77f fo(lk+ ) ) )
Xs(a,e) (277)"[ s(lk+al) Below, we derive Eqg.1a) and(1b) and estimate the spin
0 drag contributions. For the two-dimensional case, we also
—fs(K)]6(e |t gs— exs— ). (3 perform the integration of E¢2) numerically.
Formula (2) is well known from Coulomb dra$f At low
temperatures it isdp) 1= T? in two and three dimensions,  !l. BOLTZMANN EQUATION FOR COLLINEAR SPIN
while in one dimension it is proportional ff see, e.g., Ref. TRANSPORT
15.

The fi . 1a1 is th - We base our analysis on the Boltzmann equation for trans-
e first transport equatiofEq. (1a] is the continuity port through a system with lifted spin degeneracy. We take

equation, which.expresses the conservation of current in thﬁ’]e current to run in th& direction, and denote the nonequi-
presence of spin-flip processes. The second equalion yii,m distribution function byf(k) and the equilibrium
(1b)] is a generalized Ohm’s law. The first term on the ”ght'Fermi-Dirac distribution function by,

hand side is Ohm'’s law, while the second term shows that a

momentum imbalance between the two spin directions gives 1
rise to an additional resistance if there is a mechanism for foleyd=———, (8)
conversion of the spin current. There are two such processes efleksHo) + 1

possible. This first one is the spin drag effect mentioned

above, wheree-e scattering makes a transfer of momentumwgrigeg%'setrr;fufgeﬁ'gagi pg:]tzrr\]téa:l iaer;ﬂérzs dgsual’(jg;]zr'g'
possible. The second one is due to the elastic spin-flip scal’ P ' 9 9 RQLe

S is the spin quantum number akdthe quantum number

tering on, for example, magnetic impurities, which can con—Iab ling the relevant states crossing the Fermi level. For sim-
vert a current with one spin polarization to a current of the peling the relevant states crossing the e Vel Fors
plicity, we assume a parabolic dispersion and write

opposite polarization, if the spin-flip matrix element has an

angular dependence. For example if the spin-flip predomi- 72K2

nant scatters forward, this means that spin-flip scattering is Sks:_+821 (9)

accompanied by a transfer of momentum. In contrast if the

spin-flip scattering, is purelg-wave scattering the momen- \yheres, is the band offset which can be spin dependent if

tum transfer between the spin channels is on average equal {Qe material is ferromagnetic.

zero. This can be seen mathematically from the expression The |inearized Boltzmann equation then reads

for 7 in Eq. (350). The derivation of these two terms is the

main result of the present paper. af(k,x) eE dfg(eys) [ dfs(k,X)
Two consequences of the spin current relaxation terms — vx(K)— —— —=—— =( g

can immediately be read off. First, they give rise to an in- X

creased resistivity in the case where the current is spin pop/e take the collision integral to include elastic scattering and

larized. For example, taking, =0, the effective resistivity e-e scattering,

for electrons with spin T becomes (I +llopas

+1log9 1, and hence is an enhanced resistivity. Second/ df (k)

from Egs.(1) we obtain a diffusion equation for the electro- (T) =Holfs](k) +Hef s, f_s](k) +Heel fs,fs](k)

chemical potential difference coll

. (10

coll.

— — tHedl fs,f-s](k), (11
- — Ms— M
Vi ps—pg) = ———, (4)  whereH, is the scattering from impuritieéor quasielastic
I phonon scattering giving rise to a momentum relaxation
where
dk’ WO ,
1 [ a1 (1 Hol 1,100~ | Pl
|—2: ——Om 0'_+ p +O’ P (1+C¥S) .
S f, ’
R oo e ) X[~ fo(k)]8(ers— 20, (12

This shows that the intrinsic spin relaxation length is de-and whereHsf describes elastic scattering processes that flip
creased by the spin-drag- and angle-dependent spin-flip eff€ spin:

fects.
Similarly, we obtain that the following weighted sum of _ _f ' ,
electro chemical potentials must vanish, Hst fs.f-sl(k)= Tr)dwsf(k’k )Ts(k)
VZ(c_sustCou—g) =0, 6) —foo(k)]8(eks—err—s). (13
where Finally, thee-e scattering is after the linearization given'by
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2w dk’ dq 2w (* do [ dk’ dq

Hed fo 151700~ — o | (Zw)df(md Hodfafllo=— 5 | 52 (Zw)df(%)d
><|Uss’(qﬂgk_8k+q)|25(8k'|'8k’_8k+q ><|Uss’(qrsk_3\k+q|)|2
_8k’7q)f0(8ks)f0(8k’s’)

X - Ime(k!q;w)

><[1—fo(s“ﬁ.q‘s)][l—fo(s‘k/_q|s/)] kTSInhz(ﬁa)/kBT)
[P (k) + Vo (k) — T (k+ ) XM (K, — G o) [Wo(Kk) + War (k')
W (K -], (14 Wkt Q- Tk ~q)].  (18)

where the deviation from equilibrium is expressed in thewhere
function ¥ through

Imxs(K,q; 0) = 7'f'[fo(£|k+q|s;)_fo(sks)]
)‘I’s(r,k). (19 X 8(|k+qls— Exs— Fr ). (19

0 _ dfo(eks)
fs(r,k)—fs(k)+( 98

The interactiorlJ . is the Coulomb interaction between two Now, at low temperatures the factor 1/sinfestricts thew
electrons with spirsands’. It can in principle depend on the integral to smalk of orderkT, and hence |y s in Eq. (19)
relative direction of the spin if exchange is included. This sedeviates frome,s by an amount of ordek T, and we expand
of integral equations cannot be solved in general, and onbMxs as
must either solve them numerical{for example as in Ref. So(eed
17), or proceed with approximate methods. N _ 9Tol&ks L
Howgver, one simpl?i?ication is possible from symmetry. lmXS(k’q'w)NWﬁw( deys )5(8|k+q5 S~ ).
Because of the cylindrical symmetry the functiowg(k) (20

gnlre?]?pe?]qcﬁn tgetheglfhggtsvéezmgf _tr:‘ih‘;'_rr‘i‘?t'% r:] Ong]_e From this we conclude that botk and e,/ (and hence
u » WhiCh W : rection. also &4 qis and g —qsr) are within a shell of ordekgT

noting this angle byd, we have cog=k-x/k, and we can from the Fermi level. To leading order kT/er, we can
write therefore neglect the dependence lorand keep only the
angular dependence df . Therefore, in the following we
W(rk)=W(xk,6). 19 oace s g
It is convenient to expand the distribution function in har-
monics of the angle as W(k)~W(Kes, 0), (21)

o wherekg, is the Fermi wave vector for the spin directien
Wy(x,k )= > g (x,k)cosné, (17 Now we expand the functioW in harmonics of the angle
n=0 0 as in Eqg.(17). Inserting Eq.(15) and (17) into the Boltz-
which we utilize in Sec. III. mann equation gives, for the left-hand side,

1. SPIN DRAG WITHOUT SPIN-FLIP PROCESSES KSX( _ M) (ﬂs —eEX)
FOR T<T: m deys 2

In this section we study the Boltzmann equation in the -y fikscosh | Ifg(eys) ag"  eE
presence of-e interaction, but in the absence of spin-flip < m N o ax B’
processes, i.e.Hg=0. Furthermore, because a low-

temperature expansion allows for a solution of the Boltz- (22

mann equation, we start by examining this limit, and later we; g for the right-hand side we have two terms. The first one
discuss the validity of this solution even at elevated temperay e spin conserving impurity scattering term, which be-
tures. It turns out that the solution in the low-temperatureomes

regime corresponds to a SFD distribution.

de ks

In the low-temperature limit, we see from E@.0) that 1 Ifo(ere)
the second term on the left-hand sidee driving term re- Ho[fs]=— > cos{na)g(sn)—n< - 0—"5), (23)
strictsg s to lie close to the Fermi level, such that the devia- n Tir 98ks

tion W4(k) needs only to be evaluated lgt. This is there-
fore also true for the distribution function in the elastic
collision term,H,. Due to the Pauli principle, this will also

where we defined transport times of order

be the case for th#'s in thee-e collision integrals, which is 1 f dk WK,k )[1— cOSN By 18(&e— £re)
seen as follows. Using standard triqlsge, e.g., Ref. 13we T?r,s (2m)d ° ’
rewrite thee-e collision term as (24
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and wheref, . is the angle betweek andk’. The second
term is the one with the-e scattering. When expansigh?) O=6us,  gPcos=hv,ke=gH=~ Ks .

is inserted into the-e interaction terms, different’s do not (29)
couple; see, for example, the derivation in Ref. 17. The

trick is to write, for example, the angle ok'—q as  From Eqs.(26), one can now determing? and gl. They
COSN B — = COSN (br gkt i) = COSN G i COSN B x  correspond to the change of the local charge densities and to
—sinné,; _q,Sinné ., and note that the sin terms vanish tne |ocal currents, respectively. We will see this in Sec. 1V,

due to symmetry. Therefore we can expressedeecollision  \yhere we use the SED ansatz to study the general case.
term as

ﬁszs

IV. MACROSCOPIC TRANSPORT EQUATIONS

Heo f ,fr k,9)= co ng) (n)J(n)+ ('))l(n), |
el ool ; Anone: % : Above we saw that at low temperature the exact solution

(25  of the Boltzmann equation in the absence of spin-flip was a
shifted Fermi-Dirac function. The same conclusion applies to

() i i i
where J™V corresponds to the first and third terms in Eq'the situation of arbitrary temperatures but weak scatter-

(18), while 1™ corresponds to the second and fourth terMS;ing, because this limit corresponds to the usual Coulomb
Now a set of equations for the Coeff'c'efgﬁ") can be  yraq regime. However, this is no longer necessarily true at
extracted by multiplying the Boltzmann equation by 008 ppitrary e-e scattering, when the temperature increases, or
and integrating oves, while using thatfdécosnécosn’é  \yhen spin-flip processes are included. Nevertheless, we shall
&y - The left-hand side 0‘: Ed22) is expanded in harmon-  a55ume in the following that the SFD distribution is a good
ics, using that cogcosng=3[cosf(n+1)+ cosdn—1)l. We  approximation for the exact distribution function. The argu-
find the following set of equations: ment for doing this is as follows: the-e interactions will
drag the distribution functions toward shifted Fermi-Dirac

59(51)_0 (268 distributions, because the interspin chaneed collision
ox terms vanish forf=fS°, i.e., Ho JfS 2, f5]=0. Since
the e-e scattering rate increases ag_éw(splﬁ)(kT/sF)Z,
) . ggz) 1) 7s ) increasing the temperature actually helps. Fur.ther_m(.)re, since
e g0+ — ted|n= P2 +gPa®+1) the energy dependence of the elastic scattering is important
Tir in determining the actual shape of the distribution functions,
and because we do not go into details of this sort, we view
+g(1)l(1)) (26b) the SFD distribution functions as reasonable parametriza-
—s ) . . . . .
tions of the true distribution function.
Our starting point is thus an ansatz distribution function
17k i(g(nflur gDy 5 given by
2 m gx s s S ool
&
. fs<k>=fo<sks)+( - ;’—k) Sps(x)
=( gn>—j+ggn>(a<n>+|<n>>+g<ng|<n>>, n=2 ke
Ttr dfoers)
(26(3) ( Tks hvx5ks(X). (30)
where

Here Sug corresponds to a change of the local chemical po-
tential, and hence also to the local density, while, de-

ne= ( _ &fO(sks)) _ (27) scribes a shift of the distribution function knspace and thus

deys gives a finite drift velocity. Inserting this into the Boltzmann
equation gives, for the left-hand side,
The solution of these equationsg'g‘)=0 forn=2. This

is due to the fact tha&xggl)zo, which decouples the equa-

tions forn=2 from the first two equations. Equatid@63g ﬁ=vx(

expresses current conservation within each spin species. If

we include spin-flip sca}tlt)aring in the equation, then the €U0 for the right-hand side we have three terms. The spin-

tions couple becausgg;’#0.

() conserving collision term becomes
Now we note that settings’=0 for n=2 corresponds

d

dfo(eks)
_—) 5(6ﬂs_ﬁvxéks)_eEx)’ (31)

&sks

precisely to a linearized shifted Fermi-Dirac distribution
Hol fo]= —fiv, ok i<_M) (32)
£SFO(K) = fo(eo(k+ Sk) — Speo), (29) o s\ dees )
from which we read offfor 8k in the x direction where the usual transport time is
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1 _f dk’
Tir,s (27T)d

WE(K,k)[ 1~ cosby k]8(eks—exrs)-
(33)

The second term on the right-hand side is the spin-flip scat-

tering term, which becomes

1 1
HS'{fS'fS]:<hvx5ks7___(5ﬂs_5ﬂs)_o_ﬁvx
sftr Tof
1 dfo(exs)
X — — || =
(ks 5k_s)7_sf( o ) (34)

where the three different spin-flip scattering times are given

by
k’
iozfd—dst(kak’)ts(Sks_gk’—s)' (353
(27m)

Tst

1

Tsttr

dk’
B f (ZT)dst(kak’)[l_ cosby kr16(eks— ek —s),
(35b

1 [ d ,
— = f stf(k,k )COSHk‘kré(Sks_Skr_s).

Tsf

(359

Finally, thee-e scattering is given b Hg [ fs,fs ]. But,

in accordance with detailed balance, @ scattering be-
tween two identical
Heel fs,fs]=0, and we are left with

Heel fs,fsl= ﬁzjwzwf(;j:)df

><|l-Js,fs(qr$k_3|k+q|)|

277)¢

1
X Im
KT sint (A w/kgT)

Xs(K,Q; )

XImy _s(k", — ;@) 0y oks— ok _¢].
(36)
The final form of the Boltzmann equation is thus
(31)=(32)+(34)+(36). (37

Fermi-Dirac distributions is zero,

PHYSICAL REVIEW B 64 245308

— dk 0
5Ps:_ef (2 fs(k) = fs(k)]
dk afo(sks)) on
=-e - Spus=—€——Ous.
f(Z'n')d( ders | T T s

(38b)

We find two transport equations for the current and charge
density or chemical potentials by integrating E§7) and
also Eq.(37) multiplied by v, with respect tok, and we
arrive at Eq.(1), where

n
==, (393
n-s
ne? (1 1\t
o= el —+ , (39b
m Tirs  Tsftr,
0,2
N €™ 74t
O'sf,s:STS- (399

In Eqg. (1@ we introduced the drag conductivity defined in
Eqg. (2). In deriving the drag term, we have made use of the
result obtained for Coulomb drag in, e.g., Ref. 13. Further-
more, the local electrochemical potential has been defined as

:u*s usteg, (40)

where ¢ is the electrical potential.

V. EVALUATION OF THE SPIN DRAG RESISTIVITY
A. One dimension

The polarization function is in one dimension at small
temperatures, where we can performarexpansion, given
by

(41)

Imxs(q, )~ ‘”o(sq/z,s))_

m2
4ﬁ3q2( - Jeqi2s
Inserting this into the formula forrgl, performing thew
integration for the case of a nonmagnetic conducipys
=g, and using thaff,(s)]?=(6kT) 16(s—eg), we find

kT w2k3 # |U(2k,:)|2
sp 64 g2 2

051

(42)

Next we find the current and the density. They are givenrpe gpin drag resistance is thus proportional to temperature

by

) vxfs(K)

3 j dk
=—e| ——
* (2m)d

dk 2(
=e hoy| —
(2m)"

of he
O(SKS))(SK __n 5k3,

¢9sks

(383

and dependent on the Coulomb backscattering matrix ele-
ment. Clearly, this contribution can be very large at finite

temperatures. However, in strictly one dimensions, where
Fermi-liquid theory is not expected to apply, the Boltzmann

equation is not a correct starting point, and one should be
somewhat careful about drawing firm conclusions from this.

Nevertheless, this Fermi golden rule result is indicative of
e-e interactions being very important for spin transport in

one dimension.
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B. Two dimensions
For the two-dimensional case we start by deriving a low-
temperature result, and go on to compare it with a full nu- !
merical integration ofrgl. At small w andq the imaginary =
part of the polarization function is given by ﬁo
a
2
IMxs(q,0)~ @ ————, (43)
: 275 393Ke
and the screened static Coulomb interaction is 0 0'5 1 Ls
92 1 T/TF
U(q)= : (44)
2meoer (4+0re) FIG. 1. The spin drag resistivity in the two-dimensional case as
In this approximation, the integral becomes a function of temperature. The thick line is the numerical integra-
tion of Eq.(2) for a two-dimensional quantum well of thickness 10
1 nm and electron density>210"> m~2. We have used typical pa-
f dqq3—2, (45 rameters for GasAs-based heterostructures. The rightmost thin line
(9+drr) is the approximate expression in Hg6), while the left thin line is

which is clearly not convergent, and therefore we set thdhe result of integrating Eq2), but using theT=0 expression for
upper limit to be X, because Irg is zero for a momentum x(9,0).
exchange larger thark2 . With these inputs, we arrive at the

approximate expression equation corresponds to two shifted Fermi-Dirac distribution

functions. Furthermore, if the interaction is weak, one can

o, (kT 24 w2 (14 y)In(1+y)—y use p_erturbation theory and arrive at the same concIL_Jsion
oo~ o) 23 5 , (46) following the lines of grgument from Coqlomb Qrag_. Having
eF/ e Y (1+y) observed that the shifted Fermi-Dirac distribution is correct

where y=2ke /qrr and gre=me2mes, h2 is the two- at low temperatures or weake scatterin_g, we go on to the
dimensional inverse Thomas-Fermi screening length. Typigeneral case, which is solved approximately by using the
cally y is of order 1. This means that the spin drag resistivitySFD @s an ansatz, which allows for a solution of the coupled
can be equal to a fraction of the quantum resistance, angeltzmann equations. o _ .
should therefore indeed be measurable for standard high- The main conclusion from this is thate interaction in-
mobility quantum wells. troduces a spin drag term, which tend to drag fche spin cur-
We have also integrated the spin drag formula numeri/€Nts to be equal. There are two such mechanisms, namely,
cally; see Ref. 14 for details. The result is shown in Fig. 1 for&-€ interactions, which is temperature dependent, and
realistic numbers for a two-dimensional GaAs electron gas@ngular-dependent elastic spin-flip scattering, which is tem-
The integration is done using the full dynamically screened?@rature independent. Therefore, if a spin-polarized current
interaction for a quantum well with finite thickness. The ap-iS driven through the system, the spin drag will give rise to

proximate formuldEq. (46)] is seen to overestimate the spin @ additional resistivity. This resistivity increases with tem-
drag effect slightly. perature. We have solved for the spin drag resistivity numeri-

cally in two dimensions, which shows that it can become
considerable and even exceed the ordinary impurity-
scattering-induced resistivity. The spin drag should thus be

We have derived a set of transport equations for spinmeasurable in, for example, a structure combining a two-
polarized drag which incorporate-e scattering. This has dimensional electron gas with ferromagnetic materials or for
been done within the framework of the Boltzmann equationone-dimensional systems, e.qg., fabricated by nanotechnology
First we showed that in the absence of spin-flip scatteringn semiconductors or by contacting nanotubes to ferromag-
and at low temperatures the exact solution of the Boltzmanmetic contacts.
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