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We study the competition between a random potential and a commensurate potential on interacting fermi-
onic and bosonic systems using a variety of methods. We focus on one-dimensional interacting fermionic
systems, but higher-dimensional bosonic and fermionic extensions, as well as classical equivalents, are also
discussed. Our methods, which include the bosonization method, the replica variational method, the functional
renormalization group method, and perturbation around the atomic limit, go beyond conventional perturbative
expansions around the Luttinger liquid in one dimension. All these methods agree on the prediction in these
systems of a phase, the Mott glass, intermediate between the Andeosopressible, with a pseudogap in the
optical conductivity and the Mott(incompressible with a gap in the optical conductiyitysulator. The Mott
glass, which was unexpected from a perturbative renormalization-group point of view has a pseudogap in the
conductivity while remaining incompressible. Having derived the existence of a Mott glass phase in one
dimension, we show qualitatively that its existence can also be expected in higher dimensions. We discuss the
relevance of this phase to experimental systems such as disordered classical elastic systems and dirty bosons.

DOI: 10.1103/PhysRevB.64.245119 PACS nuni®er71.10.Hf, 71.30+h

[. INTRODUCTION niques such as a renormalization grdiR%) approach, due
to the absence of a weak-coupling fixed point at which the
In many systems, a competition between order and disorgap would close. To address this problem one has to tackle
der has drastic consequences for the physical propertiestrong disorder and strong interactions simultaneously. A
Such effects are paramount when the pure system has a ggpestion of interest is of course the nature of such a
in its excitations. This situation occurs in a variety of experi-transition—in particular, how one can go from an extremely
mental systems. The most obvious one is a Mott insulatomrdered(gapped phase to dgapless disordered one, which
where interactions lead to gap in the charge excitationss known to have glassy properties, at least in high enough
Low-dimensional systems also provide many experimentatlimensions.
situations where this competition occurs. On the theoretical Not surprisingly, given the complexity of the problem,
side, examples include disordered spin-11 chaisgin-1/2  very little is known. In one dimension a RG study combining
ladders with nonmagnetic impuritiés,disordered Mott the RG’s for pure commensurate systéhtSand an incom-
insulators>3~° doped spin-1 chainsand disordered ladder mensurate disordered systémvas performed. Since both
system&™! On the experimental side, examples includethe commensurate potentiaimklapp and the disorder are
doped spin-Peierls systertts'®> and spin ladder systems. relevant operators, no controlled analysis of the transition
However, such a phenomenon is not limited to fermioniccould be done. It was inferred from these studies that one
systems. Interacting bosonic systems can also lead to a Magoes from a Mott phase to a disordered phe&sederson
insulating phasé?~1"with which the disorder can compete. depending on which operator became relevant first. The idea
Using the standard analogy betwesn 1 classical problems of a direct Mott-Anderson transition seemed the most natural
andd quantum ones, it is easy to see that such a problem alsane, and was the one usually assumed in the literature. So-
encompasses elastic systems such as vortex lines in the préstions on a special poirituther-Emery ling also supported
ence of a columnar disord&-2° Other pinned elastic struc- such conclusion3.

tures such as charge-density watesr spin-density waves, In the present paper we reexamine this problem. For fer-
for which the competition between a commensurate substratmionic systems it is of course difficult to tackle the interac-
and disorder easily occurs, are also prime candidates. tions in general, so we will mostly focus on the one-

In all these systems the disorder tends to close the gap. ldimensional case where the interactions can be handled via
some cases the mechanism is simple. Indeed, when thie bosonization technique. This allows us to derive a phase
ground state is degenerate and disorder lifts this degeneradyamiltonian that makes a connection between this problem
an infinitesimal disorder causes the formation of domainsand disordered elastic problems. A study of this phase
and leads to a gap closdrdue to the Imry-Ma effect. How- Hamiltonian using better suited methods that capture some
ever, in most cases the ground state is not degenerate. In thisnperturbative effectsH an atomic limit,(ii) a variational
case a finite amount of disorder is needed to induce gamethod, and (iii) a functional renormalization-group
closure? In the latter case, a complete description of the gapmethod—allows one to reach the consistent conclusion that
closure is extremely difficult, with typical analytical tech- the transition between the Mott insulator and the Anderson
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phase(that we call Anderson glass to emphasize its glassy B. Interacting fermions in d=1 and bosonized Hamiltonian
propertie$ is not direct An intermediate phase, which has a In one dimension, many simplifications occur. Indeed, in

gap in some of its excitations and yet is glassy, does exishne dimension, it is possible to reexpress Hamiltorfirin

We determine the characteristics of this phase, that we cafhmg of the collective charge and spin excitations of the
the Mott glass(MG) phase. Since the phase Hamiltonian oy stem This procedure is by now standard in one dimension,
does describe quantum crystals and bosons in arbitrary dijng \ve refer the reader to Refs. 26—29 for more details. In

mensions, but interacting fermions qnly in one dlrlnensmn,[ermS of the bosonic chargg, and sping, collective vari-
we also give an excitonic argument directly for fermions that

S ) . o “ables,(1) becomes
indicates that this phase also exists for fermionic systems in
dimensi_ons greater than _1. Some of these results were pre- H=H +H,+Hy, 2
sented in a shorter form in Ref. 25. ’

The plan of the paper is as follows. In Sec. Il we intro- d
duce fermionic models for disordered Mott systems. We then H :ﬁf ax u K (Il )2+ ﬁ(& P )2}
show in Sec. Il B how in one dimension this model reduces, e | P TP K, TP
using bosonization, to a phase Hamiltonian that will be the 2
core of our study. Section Il C links this phase Hamiltonian 3 f
with the other quantum crystals and classical disordered elas- i (2ma)? dXCOS\/§¢p ' ©
tic systems for which our study is relevant. Section Ill is
devoted to an analysis of this phase Hamiltonian, using an

atomic limit (Sec. lll A), a variational methodSec. I B) Ho=ﬁf ax U K (7, )%+ &(axqﬁg)z}

and a functional renormalization-group stu@yec. 11l O. 2w Ko

We show the existence of the Mott glass phase which is both 29

incompressible and glassy. A reader interested only in the +f dx 1 cos\/§¢>g, (4)
physical properties of the MG phase can skip these relatively (2ma)?

technical sections and go straight to Sec. IV, where we ex-

amine in detail the physical propertiésorrelations func-

tions, transport, etf.Since the link between the phase szf dxW(x)p(X), ®)
Hamiltonian and the interacting fermions only existsdn

=1, we directly examine the fermions in higher dimensionswherep(x) is the continuum limit of the charge density and
in Sec. IV B, and give an atomic limit argument showing thatreads

the physics of the Mott glass phase exists regardless of the

dimension. Finally the conclusions can be found in Sec. V. \/Eaxqsp 1 T
Some technical details are pushed to the appendixes of the?(X)=— t 2ma) [€245 2% G052, + H.C]
paper. B

+o COL\Bh, — 4keX). )

Il. MODELS AND PHYSICAL OBSERVABLES ~ . . .
Herepg and is the renormalized amplitude, asds a length

A. Interacting fermions of the order of the lattice spacing. All microscopic interac-

We want to study the competition between a Mott insula-iONS are absorbed in the Luttinger parameigysand K., .

tor and an Anderson insulator in a dirty fermion system atoPin rotation symmetry leads @, =0 andK,=1 at low
commensurate filling. The prototype model for this problem&N€rgy. For very repulsive interaction& (<1/3) the &g

is the extended Hubbard model with a random on-site poter@€nsity fluctuations are the most relevant, as can be’Seen
tial at half-filling from Eq. (6). In this limit,*! spin fluctuations suppress the

2kg part of the density fluctuations with repect to thke4
part. Let us note that such a limit cannot be achieved within

H=—t > (C-TUC,- ,+H.c) a pure Hubbard model with only on-site interactions. How-
ine 07 ever, it can be achieved within an extended Hubbard model
with interactions of finite rang& >3 Thus one can study a
+UD N, n; lJFVE ninj+2 win, , (1)  Hamiltonian containing only charge degrees of freedom:
T ) i
[ dx L (9ep,)?
where(,) denotes a sum over nearest neighbersis the H‘jﬁﬁup Kp(mIl) "+ K,

spin, andn;=n;;+n;, is the total fermion number on site
W; is the random potential at site For reasons that will

become clear we also include a nearest-neighbor repwsion B ﬁJ’ dXCOS‘/§¢P+ Hw. (@)
A general discussion of the physics of this model will be

given in Sec. IV. Given the complexity of this model, let us One can perform the rescaling= \/§¢>p andH=Hp/\/§,
first examine a much simpler situation in which explicit cal- which leads to the action where we have introdueed
culations can be performed. =u,, K=K,:
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B 1 J, )2 h x®)
%zfdxjo dT[ZWK{( v"’ +v<ax¢>>2} Hdis=fdx£ K(iny 2 8 } jdm(x)— Oxb(X)
g 5( > L2600

IWhere u(X)u(X)=D;d8(x—x") and &(x)&*(x')=Dpd(x
x") andD;=Dp=W.
The random chemical potential can be absorbé8iin the
quadratic part of Hamiltoniafl2) by performing the trans-
formation

Hamiltonian (7) also describes interacting one-dimensional
spinlessfermions in a commensurate periodic plus random
potential. The lattice form of such a model is

H=-t> (clciy1+H.c) K o
| #0000+ 7o [ dx (13

+§i: [Wi+g COS{ZkF'a)]CiTCiJFVZ NN+, (9) Therefore, this term has no role in Anderson localization in
the interacting system, in analogy with the noninteracting
case® The backward scattering causes Anderson localiza-
tion. Using the renormalization-group appro#t#it is easy

to see that is relevant for not too attractive interactioks

< 3/2, and becomes of order 1 at a length scale

H=_iﬁUFJ dX( xR~ ¢I3x¢L)+VJ dxp(x)? 22 | UG
e e

whereWW D g;;, andkg is the Fermi wave vector of the
spinless ferm|ons system. In the continuum E3j.leads to

=a ToNaK? ) (14
—gf X (i + wMRHJ dxW(x)p(x). (10 ¢
identified as the localization length in the interacting system.

g measures the commensurate potentiakhe interaction, Beyond. this lengthy, the phﬁseﬁ becomes random and all
correlations decay exponentially.

andD the disorder strength. Upon bosonization, Hamiltonian
(10) becomes Eq(7). One can thus see that in one dimen-
sion, there is no essential difference in the charge sector be-
tween a band insulatdwith a 2k periodic potentigland a In the absence of disorder a commensurate potential leads
Mott insulator (which can be viewed as a system in k=4 t0 a gap opening fok <2. When disorder is added to such a
periodic potentidl’). We stress that, in order to establish the commensurate phase, its various Fourier components should
equivalence of the bosonized charge sector of Hamiltoniake distinguished. Both forward and backward scatterings can
(1) and the bosonized representation of Hamiltor(@none  compete with the commensurate potential, but, as we have
does not rely on the equivalence of charge excitations of théeen above, they can lead to quite different types of ground
Hubbard model in the limit)/t— with spinless fermions. states. The most interesting case is the competition of the
commensurate potential with the backward scattering.

1. Random potential In order to understand the competition between the com-
mensurate potential and the backward scattering, one can
argue that the phase physically realized will be the one with
®he shortest correlation length. For the Mott phase the rel-
, X ) evant length is the Mott lengtth, which is the inverse of the
D|so_rder, hovyever, _weakly challzes all electronic state ap, or the size of a charge soliton. Thugj#1,, one could
leading to an insulating behavior. However, contrary to wha xpect the system to be a gapped Mott insulator, whereas for
happens in the case of a periodic potential, there is no gap i"t<d the gap would be washed out by disorder and the sys-
the Fermi level but a finite density of states. Also, the actem would be in the Anderson insulating phase. This quali-
conductl\gty does not .ShOV_V agap b.UI a behavior of the form[atlve argument can be put on a more formal basis by writing
o(w)~w" up to logarithmic corrections. In the presence ooperturbatlve RG equations for the coupling consgof the
interactions, disorder can be treated by bosonization. FOL,\mensurate potential and the disorder poteniaBoth
weak disorder, in the random potential one can separate thge ) re commensurate case and the disordered incommen-
Fourier components close ¢p~-0 (forward scattering or ran- g ate case lead to runaway flow where the coupling constant
dom chemical potentialand q~ 2k (backward scattering (g or W) reach strong couplingat lengthsd or | ). A naive
as extrapolation consists of assuming that the phase that is

) ) physically realized is the one for which the coupling constant
W(X) = p(X) + E(x)eZKF* 4 £* (x) e~ 1 2KeX, (1)  reaches strong coupling first. Based on such an extrapolation
of the RG analysis,one thus expects a single transition be-
and treat them separately. Hamiltoniafy) becomes, tween acommensuratecompressiblephase and an Ander-
for g=0, son (compressiblginsulator. In order to go beyond this un-

2. Disorder and commensurate potential

Let us now qualitatively describe the effect of the various
components of the random potential. The effects of disord
on a dimensionahoninteractingsystem are well know#*=®
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(8)] [entering into the path integral ird@-1) dimensions as
D ge %] to an arbitrary dimensiod as follows:

R L
—_——r—> !
g : S fﬁhd f i 2 , 1 )
g = + (a) 7=, d7] dx K (OxP)H Zm;K(&T(b)
i R L L>
— S -3 ---3
: V(X)) V(d(X,7),X)
gA S u(x) + -2 5 + 7 , (15
R L R with V(é,X)V(¢' ,x')=8(x—X")R(d— ¢'). The bare dis-
v order correlator and bare periodic potential can be chosen as
& R(¢)=W/[2(ma)?]cos 2p and V,($) = —g/(ma)cos(2p),

R = R = :g(x) respectively, although higher harmonics, preserving the
periodicity, do appearunder coarse graining and play an
= + (b) important role(even ind=1).

’ R L R Before proceeding, and since tletassical limit of this
L quantum action will be of importance below, let us note that
LA EW) it is obtained by lettingh—0, andK—0, K=K/ fixed,

with B fixed, the zero temperature limit— +« (of interest

FIG. 1. The generation of effective backwa(@ and forward her_e being t’akemt the endjthis can be seen, €.g., by res-
(b) scattering from forwardbackward scattering and commensu- caling 7=7%17' so as to keep the bound of lntegrgtlons fixed
rate potentialu and ¢, respectively, denote the forward and back- as hﬂ_o)' There are two types of systems Wh'c_h can be
ward parts of the random potenti@ee text, andg the commensu- described by Eq(15): quantum elastic systems with point
rate potentialR and L, respectively, denote right- and left-going disorder and classical equivalent systems wilrelated dis-

fermions with a momentum close tokg (—kg). order as we now describe.

. . 1. t tals with point disord
controlled extrapolation to the strong coupling of the RG Quantum crystals with point disorder

results, in this paper we will use several nonperturbative Let us consider a quantum crystal in dimensibrin a
methods. commensurate periodic potential plus a random potential. In
Note that a complication arises from the fact that in thethis case, each particle can be described by its displacement
presence of an commensurate potential, a forw@atk-  with respect to its equilibrium position(x), and the associ-
ward) random potential is generated by the backwéml- ~ ated phonon modes. In general the displacement field\has
ward) component, as shown in Fig. 1. So, in principle, thesecomponents, witiN=d for crystals of bosons or fermions,
two components of the disorder should not be treated sep&=2 andd= 3 for a crystal of vortex lines, etc. At=0, the
rately. However, folK >3/2 the backward scattering is irrel- System can still have quantum fluctuations, leading to a
evant, so one can focus on forward scattering alone. On thguantum crystalfor a review see Ref. 37 Examples of
other hand, in the limit of strong repulsion, it can be shownquantum crystals to which our present study can apply are
that the closure of the gap that would be induced by a purelgharge-density-wave crystdiselectron Wigner crystat; >
forward potential would occur at much stronger disorderelectrons at the surface of heliurd<2), stripes in oxides.
than the one caused by a purely backward disofsiee Ap- Other systems witiN<d such as, e.g., a vortex lattice at
pendix A). It is thus reasonable to expect that in the limit of temperature low enough such that quantum fluctuations of
strong repulsion, and for a backward disorder of the samgortices become important, can also be studied. In this case a
order of magnitude as the forward disorder, the closure of thgeriodic potential also exists from the underlying crystal, or
Mott gap is to be attributed to the backward component ofor layered superconductors when the field is applied parallel
the disorder. This allows one, in the limit of strong repulsion,to the layers.
to neglect the forward component of disorder altogether. The Hamiltonian of such system can be written as
Since in the following we will consider only this case, we

will be justified in dropping the forward component. A de- H=Hy+Hp+Hy. (16)
tailed treatment of the forward scattering can be found in _ o
Appendix A. The harmonic part of the Hamiltonian of the system then
reads
C. Other quantum and classical elastic systems 1 4 IT;11; "
Besides interacting fermions in one dimension, the phase HO:EJ d X[ 2M +Cij Ui Ui (17)

model describes many other physical systems both in one

dimensionl and higher dimension. It is easiest to discuss it invherex=(Xy, ... Xq), C:‘J—' is an elastic matrix, andll; are

the Lagrangian path-integral formulation. To fix notations letthe momenta. The particle density can be written as the
us first generalize the imaginary time quantum acfiq.  sunf®
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' To=h,
p(x)=2 S(x—R+U(R))=po>, €C Ul (18 o
R G
. . 1
over all reciprocal-lattice vector&, and u=uy, ... ,uy. Co=——,
This allows one to write the periodic part of the Hamiltonian mvK
as
- (23
: C=—,
H:f ddxze: Ve ¢ i), (19 K
and the disorder part of the Hamiltonian as with K=K/#. The two equivalent models can thus be stud-

ied simultaneously. The classical limit of tliedimensional
_ d G- u(x) quantum merI corresponds to the zero-temperature limit of
H f d X%: Wo(x)e™= . (20 thed+1 equivalent classical model. Note that the boundary
S o ) o conditions may differ: periodic for quantum particlémnti-
To minimize technicalities we will not explicitly study the periodic for fermiong but usually free for a classical system
general case of an arbitrary lattice, but a simpler 1 ver-  (unless artificially considered on a tojus\lso note that an-

sion where one keeps only one component to the displacesther correspondence could be defined witk 8 and z
ment fieldu. In addition to already being a good approxima- —= /% .

tion in some casedi.e., keeping only the transverse
displacement and its associated shear modulus in a two-
dimensional latticethe general case is rather similar up to
algebraic complications related to the tensor structure. Thus In this section we study the phase model. Before embark-
a quantum crystal with point disorder and commensurate paing on the heavy machinery of the replica variational method
tential can be modeled by quantum actid®) with the cor-  (in d=1) and of the functional RG methoih a d=4—¢
respondencep(x) = wu(x)/a, wherea is the lattice spacing, expansiol, we first show how the three phases of the model

and 1/2%vK the elastic coefficient. We refer the reader tocan be obtained very simply in the followirpuble limit (i)

Ill. STUDY OF THE PHASE MODEL

Refs. 38 and 39 for more detailed descriptionsNor 1. classical limit and(ii) atomic limit. Perturbations around
those limits can then be done, and this is not expected to
2. Equivalent classical systems with correlated disorder yield drastic changes, as confirmed by more sophisticated

A (d+ 1)-dimensional classical elastic system in presencénethOdS below.

of correlated disorder and periodic potential is described at a

temperaturel, by its partition sum A. Phase diagram from the atomic limit
In this section we focus on thelassical limitof model
zclzf D ¢e Hel/Tel, (21 (15, i.e.,A—0, K—0 with K~K/# andp fixed and further

consider the zero temperature limit by taki@g- + o at the

L end We also perform the rescaling— ¢/2 to simplify the
“ dzf A% C(dy )2+ Can 3,)%+ V[ S(x,2)]  equations. As will be shown in the following, the phases

0 identified here survive at small enougfr>0 for d=1. In-
deed perturbations away from this limit are irrelevant in the
) (22 RG sense. As is well known, the classical version is still
nontrivial since there is still a competition between the com-

mensurate potential and disorder on one hand and the elastic

term which produces a nontrivial classical configuration sat-

Hcl

1
Tcl 2Tcl

+V[ p(X,2),X]

where ¢(x,z) is a deformation field and a thickness in the
direction of correlation. For a system with internal periodic-
ity, such as a classical crystal or a classical charge-density='Y'"9
wave (CDW) crystals, one has@=2u/a, a being the lat-

tice spacing andi(x,z) the N=1 displacement field. In this S __ v V249(x) + i[g Sin(40(x)]

case the disordeV(¢,x) and periodic modulatiofii.e., the 5¢°(x) 4K Ta

density for a crystal have the same periodicity as given

above. A prominent example is the flux line lattice in super- +u(x)cog ¢°(x) —{(x)]=0, (24)

conductors(which hasN=2) in the presence of columnar
defects.c andc,,, respectively, are then proportional to the
bulk (or sheay and tilt modulus.

The two problems, i.e., Eq$22) and (15), are thus di-
rectly related via the correspondences

where we definet(x)*/(wa)=iv(x)e'‘™. There may be
several solutions to this equatipapart from the global pe-
riodicity ¢%(x)— ¢°(x) +2mar], but the physically relevant
ones that we consider here are the ones with lowest energy
(or actionS[ ¢°]), which are selected @—0".

zZ=r, We now consider the additional limit /-0, called the
atomic limit because the model effectively becomes zero di-
L=p"h, mensional in this limit. In a second stage we describe the
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deviations from the atomic limit. We assume everywhere that /
the disorder isboundedwhich turns out to be of some im-

portance, the case of Gaussian disorder being discussed

below.

FN

. Tl
1. Atomic model: K-=0 Mott Glass

Dropping the elastic term in E¢24), we are thus left to
study thed=0 model Hamiltonian in the classical limit,

Hi(¢)=—v cod¢—{)—gcog ), (29

with ¢ a random phase distributed uniformly[if, 2], and

v a random variable which we choose to havbainded FIG. 2. Phase diagram in the atomic ||nu11 and v, are the
support—W<p<W. In the absence of disorder the minima disorder strengths of the two disorder harmonics, ani the

are até=2mn. In the presence of disorder this model hasstrength of the commensurate potential. The three different phases
(up to the periodicityh— ¢+ 27rn) a unique localand glo- are MI, which has a unigue local minima with probability 1; MG,

bal) minimum with probability 1 for all parameters. Indeed which corresponds to a nonzero probability to have two local
one can rewrite ) " minima and a zero probability that any minima lie outside of ]

—ml2,7/2[; and AG, which has a nonzero probability to have two
Hy(¢)=—acodd—{"), (26) local minima and a finite probability .that.mlnlma are outside of ]
—ml2,7/2] (and thus that there are kinks; see the jtext

Anderson Glass

Mott Insulator

=

£

a=+v?+2vgcod{)+g?, (27)
B=vyla, x=0—, (32
ae ' =g+pe ¢ (28)
i ) o and « and ' as above. Note thay is still uniform in
and thus there is a single minimuffor a>0) at ¢o=¢". 0,27r]. Let us consider a fixeg. It is easy to see that for
An interesting chqngg of beha\{lor occurs, however, alz-1/4 there is a unique minimum for any value pf and
W=g. ForW<g the distribution of« is bounded away from  he sjtuation is similar to the one discussed above. But, as
0, with g—W<a<W-+g, and another minimum is distrib- go0n asg>1/4, there is a value of for which there is a
uted in the interval- ¢may< ¢’ < dmax With sin(¢ma) <WIG.  second minimumAt = 1/4" the second minimum appears
ForW>g, « is distributed in the interval @a<W+g and  for y=0. Thus interesting things happen in this model. The
thus can take values arbitrarily close to zero. Smultaneousl;bhase diagram is shown in Fig. 2. Let us consider, for sim-
the minimum positiory” is now distributed in all of 0,27 ]. plicity, the case where,=v anduv, are fixed and positive
Thus in this simple model two things happen simulta-5,q only the phases are randdine general case is simiar

neously as the disorder widtW increases beyondV=g.  There are three phases in this simple, exactly solvable,
First the distribution of the Hessian eigenvaldé(¢q) = « model.

extends down to Gwhile it is bounded away from zero for (i) Fory,<g, « is bounded from belowd>g—v,) and

changes abruptly a/>g (while it is bounded in a subinter- s corresponds to the Mott insulattvll) phase shown in
val of [ — 7/2,m/2]) below. As will become clear below, this Figs. 3 and 4.

abrupt change of behavior corresponds to a direct transition (jj) Fory,<g andv,>%(g—v,) two minima existThis
from Mott insulator to Anderson glass phases, which is incorresponds to the MG phase. Just above thedipe (g
fact a multicritical point in theh=0 phase diagram.

It turns out that the above form fat,(¢) does not yield | X
a generic behavior fad=0. This can easily be seen by add-
ing higher harmonics, and we will illustrate it by simply
adding a small second harmonic to the disorder. It must be
stressed that these higher harmonics are always generated in
perturbation theory beyond the atomic linigee, e.g., Sec.
[Il C) and that they are generically present in realistic models
and should thus be included. Thus we now study

Ho(¢)=—vcos¢p—{)—v,c082¢—2{;)—gcod ¢),
(29

with ¢, another random phase uniform [i0,27] indepen-
dent of . One can rewrite

Ho(p)=alcosy+ B cod2¢—2x) ], (30

¢

—

FIG. 3. Pure Mott insulator phase without disorder. A ground
y=¢—1', (31 state in the classical limipy(x) =0 is represented.
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‘X ‘X

| o

$

FIG. 4. Mott insulator phasavith disorder. The ground state in FIG. 6. Anderson glass phaséhe ground state in the classical
the classical limitpo(x) is represented. It is only slightly deformed limit ¢y(x) is represented. Many other metastable states exist, and
with respect togy(x)=0. No other local minima exist&p to the  the stability Hessian matrix spectrum extends down to 0. There is
global periodicity ¢o(X) — ¢o(X) + 27r). The stability eigenvalues no gap in the conductivity. The wandering of the ground state along
of the Hessian matrix ado(x) are strictly positive, and bounded x, |py(X) — ¢o(X')], is unbounded. The compressibility is nonzero
from below by a positive numbem"F;. There is a gapvmé in the as the ground state reorganizes in response to adjlé (i.e., a
conductivity. The compressibility is still zero, since the response tachange in chemical potentjabecause kinks of energies arbitrary
a tilt ho,¢ vanishes as no kinks exist. close to zero now exist.

—vy), the equilibrium positions arg=x~0, ¢o~{’, and 2. Expansion around the atomic limit, g1
| pol < pm< /2 with sin¢,,=v,/g. Thus, with a probability o .
as exactly 1, the two minima remain in the wells of the We can now expand around the atomic limit and consider
original cosine, i.e., the probability that the second minimuma large but finite. Let us consided=1 for simplicity, but
is outside of the intervdl— 7/2,77/2] is exactly zero. This is similar arguments apply to arg=1. We must construct the
represented in Fig. 5. classical configuration of the Hamiltonian,

(iif) Forv,>g, a has a finite probability to be arbitrarily c
close to zero, and one easily sees that the probability of H :f_ V.4)2—0 co _
having two minima is nonzero and the probability that the (¢) x2( x$)" v c0g $(x) = {(x)]
second minimum is outside of the intervfal 7/2,7/2] is
nonzero. This phase corresponds to the Anderson glass, as —v2€0§2¢(X) = 2{>(X)]—gcog (x)], (33

shown on Fig. 6. with c=v/mwK. Assume again for simplicity that andv,

3¢ finite constants. Let us work in the limit of elastic coefficient

- very small[large but finiteK, or equivalently a long corre-
lation length for the independent random phagés) and
£,(x)]. Then we can think of the model as a succession along
x of d=0 models(slices with different realizations of the
disorder, and consider, e.g., a discretized version

‘X

c
H(®)=2 5 (¢ne1=bn)~v O b= Lp)

_U2C032¢n_2§2,n)_g cog ¢), (34)

where(, and{,, are independent from slice to slice.
o Let us think of a formal perturbation in the elastic coeffi-
- cientc. Forc=0 we know the minima for each slice, ana-
n .
FIG. 5. Mott glass phasethe ground state in the classical limit lyzed above, not(_ad b¢0+2.77k”' Forc>0, one e_a§|Iy Sees
at to lowest(naive) order inc, to construct a minimal en-

do(X) is represented. Other metastable states exist, and the stabilig) . . . . L
rgy configuration one must first choose which minima of

Hessian matrix atpy(x) spectrum extends down to 0. There is no . . . .
gap in the conductivity. The wandering of the ground state along SUCCeSSive slices to connect together. The small shifts in

is bounded asco(x) — do(x')| is finite (and thex averaged posi- Minima positions and .the ensuing changes in minima ener-
tions is at¢=0). The compressibility is still zero, since the re- gies are formally of higher orddthey become relevant in
sponse to a tilhd,¢ (i.e., a change in chemical potentiganishes ~ the MG and Anderson glas#G) phases, and are discussed
as no kinks exist between the well-separated original minima of th@elow but they do not change our main argument héreus
cosine¢=2n. at eachx slice we must choose whether to connefg} to
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0*1 (defined as the minimum ifi—,7] of the corre- struction this approximate model cannot distinguish between
spondingd=0 mode) or to ¢8+1i277 (which we call a the MG and AG phases, and is only used to describe the

kink). This is equivalentformally to lowest order irc) to ~ MIMG transition.

choosing iteratively the one of the three minima which mini- ©On€ must emphasize that none of the transitions in the
mizes the distance ming, (|#0— n+1+2mﬂ_|) The d=0 model in Fig. 2 survives if the local distribution of
=0,1— 0 0 .

way these minima are connected define the three phases. (rjr:?rﬁ:gl?rrnlfs i?lejlzsfr;o:]nzﬁgd’alttrr]]iuprr? t:?té'g:]y boef sxsﬁﬁg?f
(i) In the MI regime defined abovev(<g, v,<(g y ' 9 P

o4 tina th o s obvi d leads t tially small, resulting in a sharp crossover behavior rather
v1)/4) connecting the minima is obvious, and leads to &han transitions. However, it is not so clear whether the same

typical ground state as represented in Fig. 4, which defineg,jies in higher dimensions. We know that the gap is robust
the MI phase. _ to small bounded disorder. However for unbounded disorder,
(i) In the MG regime ¢;,<9, v>>(g—v1)/4) the key  formation of terraces if sizé become energetically favor-
observation is that connecting the minima remaimam-  aple in rare regions with exponentially small probability.
biguousthanks to the fact that the distribution of the position This leads to a gapless spectrum, with an exponentiaily
of these minima remains confined with probability 1 within d>1) small density of states at low energy. Note that al-
[~ &ém:dm] With ¢, <7/2. Indeed, as long ag,< /2 the  though the gap itself can no longer be used as an order pa-
distance for a kink¢p— ¢b " +2m|>27—2¢,, is always rameter, one can still clearly define a phase transition be-
larger than 25, the distance to connect two minima maxi- tween Ml and MG phases, since in the MG phase the
mally separated. Thus the elastic energy always penalizes tis@ectrum is expected to become algebraic.
kinks. One thus finds that the strirgf) will remain confined, To conclude this section, we have established that for
for small ¢, within the interval[ — ¢/, $/,] with ¢/ < /2. bounded disorder three phas@él, MG, and AG) already

. - xist in the atomic classical limit. Previous attempts at ana-
Th Fig. he M ; . ;
gla::slzgzsgesented in Fig. 5, and corresponds to the OtI‘@zmg the classical limftt assumed that, beyond a lendt,

i) In the AG redi _ hd=0 slice &" the distribution of the phase becomes random. As we find
(_'”) nthe > regime ¢1<9), in eachd= ) S ice ¢o €an  here, this is incorrect for weak disorder, and the phase in-
be in any position of — r,7r]. Thus connecting the minima

s = stead has a narrow distribution aroue: 0. Thus these ar-
becomes qualitativelyalthough not quantitativejpthe same g ments missed the existence of the Mott glass phase, and

problem as for a standard CDW crystal without the periodicihe correlation length., identified in Ref. 41 is not the cor-
potential. This is the Anderson glass phase. rect one. In order to obtain more detailed information on the

Thus these semirigorous arguments show that the thre@ree phases whed=1 and higher we now turn to more
phases which already exist in the atomic lindid survive sophisticated methods.

upon adding a smaikt>0. This also implies that for very
small c we expect the phase boundaries to be close to the
ones atc=0 (i.e., to belong to thel=0 atomic phase dia-
gram, Fig. 2. In practice there are of course some limita- L€t Us now use a Gaussian variational mefig to
tions. The perturbation is can be used, strictly, only in the Study the action originating from Hamiltonig@d2). In this

MI phase. In the MG phase perturbationdrcannot strictly section we only retain the backward scattering, which |s_the
apply, as the effect of on ¢, is of orderc/a and thus one leading to localization. The effect of forward scattering

generate terms ag/« in the energy, which dominate over is analyzed in Appendix A. Let us recall that backward scat-

. ) tering is generated even if only commensurate and forward
for small «. Thus as soon as the Hessian eigenvalues exteng 9 15 9 y

to O perturbation theory fails. In the MG phase this justscatterlngs are present.
means that due to possible multiple minima the ground state
cannot be determined perturbatively. However, this only con- . _ o
cerns the precise position @ in the well, but does not Let us first briefly recall the principle of the method we

have any consequence on the fact thatdf}l remain in a use. The partition function of a disordered quantum system is

single well. These effects, which go beyond perturbation

theory, will change the precise dependence of the boundaries 7= f d[ pleSlevh (35)
as a function ot from a naive perturbative estimate, but we '

believe that the boundaries atentinuousas c—0. Thed

—0 phase diagram should thus also approximately give ihwhere§ ¢] is the Euclidean action that depends explicitly
d=1 diagram for smalt. on the quenched disorder. In physical problems, one usually

needs the average of the free energy

B. Replica variational method

1. Derivation of the variational equations

A useful approximation, used in Sec. Il C to study the
MG/AG transition, and which consists of replacing the inter-
action term by a massm?¢?, can be checked in the atomic Feo Eﬁ (36)
limit. It correctly gives the multicritical point ai=m?, since BT
it has a transition folWW=m? (for W<m? there is a unique
minimum with probability 1, while forW>m? there is a where the overbar denotes a disorder average. This average
finite probability that there is a second minimunBy con-  can be done via a replica triég:
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Z"—1 tions is performed in Appendix B. IntroducinG.(d,,)

InZ=lim (B7)  =3,Gap(q, @) and Bap(X,7)=Gaa(X,7) — Gap(x,7) and
n—0 parametrizing theseXx n hierarchical matrices using Parisi’'s

One has, for integen, ansatz [G,.p—G(U), G,a—G, and similarly for any
quantity; see Appendix B we obtain the saddle-point

Zn:f H di¢ale” a[¢a/ﬁ_f H d[ po]e~ Senlballh equationgB6):
(38)

whereS,,, is a disorder-free quantity that depends on the
fields ¢, . In the end, one has traded the disorder average to 4g B
a analytical continuation from an integer number of fietds + —exg —24AG(x=0,7=0)]
to n=0. In our particular case, after having averaged over ma
disorder action8) leads to the replicated action

Srep._ dxdr ((97.¢a)2) ﬁ(wa
h _Ea: fZﬂ'K v

g
Wf dxdr cos 2¢a}

(1)2

2 n
v+ —
q 1%

,1 h
G, (q,wn)zm

f drfl1-coqw,7)]

U(é’x(ﬁa)z"_

x| exy] —4#B(x=0,7)]

—flduexq—4ﬁB(u)) , (44
0

(2777)2ab fdxf drf d7’ cod2[ ¢pa(X,7)

— (X, 7))} (39

in which one has to take the limit—0. One way to perform
this limit is to use a Gaussian variational meth@\VM)
initially introduced to study classical disordered systems
such as random heteropolyméfsandom manifoldé? and  In the absence of the commensurate potential, (B4) is
vortex lattices’®?° This ansatz has been extended to treaknown to lead to a one-step replica symmetry-broken solu-
correlated disorder, and thus to apply to quantum systems a®n describing an Anderson localized ph&%¢he replica-
well.?° Since this method has been shown to describe with aymmetric solution being unstable. On the other hand, in the
good accuracy both the pure commensurate phase and thbsence of disorder the commensurate pliase the Mott
Anderson insulator phase on can also expect to obtain goddsulator phaseis obviously replica symmetric. Therefore,
results in this more complicated situation. we will search first for a replica symmetric solution that we
The ansatz consists of finding the “best” quadratic actionexpect to be associated with a Mott insulating phase in Sec.
Il B 2. Above a certain disorder this solution will become
q unstable, and one has to turn to replica-symmetry-broken
Z,Bﬁ E f 5 $a(0,00) Gap (0, @n) $p(d, @p), solutions. As we will see in Sec. Ill B 3, in the presence of a
(400  commensurate term, besides the saddle-point solution corre-
sponding to the Anderson insulator phase there is room for a
third saddle-point solution corresponding to the Mott glass
D)2+ 02 phase.
vGap (g, @)= %5ab_ oan(q,@),  (41)

with

2Wv
o(q,wy,u)= >Bexp—h4B(u))é, o- (45
Ta) n

with

2. Gapped replica-symmetric solution: Mott Insulator
i.e., the one that minimizes the trial free energy: For the replica-symmetric  solution, G(q,w, ,u)
1 =G(0,w,). The saddle-point equations then read
Fva=Fo™t B_ﬁ (Srep._ SO)SO (42

h
-1 _ 2 2 2
(---)s, designates the averages performed with respect to vGe (G, wn) = —[(vA) "+ W]+ M7+ (),  (46)

the Gaussian action, ard, is the free energy associated
with Eq. (40), i.e.,

owgk? e s, o
G(q,wn,u)= —— (47
dg 1 n 2 2 272
Fo= | 5. 5 2 (ING)ag(d,0p). (43 () Lwq)™+mkm]
v B n
In this method the full Green’s functionG(q,w) are the mz:@efzﬁé(o,m (48)
variational parameters. A derivation of the saddle-point equa- Ta ’
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2Wo Bh f(®)
()= e—4hGC(o,0)f dr(e*Ge0n) _ 1
(o= e ) e
X[1—-cogw,7)]. (49

In the general case, Eq816)—(49) can only be solved nu-

merically. However, in the limitsh—0 and K—0, K
=K/# fixed, it is possible to solve these equations analyti-

cally. This is due to the fact that in that limib® has no /e
dependence oh(w,), so thatmis given by the simple equa- FIG. 7. The functiorf as a function ofw for A=1 (full curve)
tion and 2(dashed curve Note that as\ =2, f starts linearly with fre-

. guency, contrary ta. <2, for whichf is quadratic at smalkb.
, 4gv WK
m =H9X - m . (50 Going to Eourier space and performingjantegration leads
to to the final form

Self-consistent equatiofb0) always has the trivial solu-

tion m=0. Let us determine under which conditions it can l(wg)= AWvK 1 _ 1
also have a nontrivial solution wittm= 0. In order to obtain " 2 | [~ 2. - 5 '
the answer in physical terms, it is convenient to reexpress all Wa mKm \/w“+ mKIM™+ 1 (wn)] (56)
guantities as a function of the physical lengthsand d:
o Obviously,
1 16WK? 5
3 2 w
o (av) l(wn>=m2f( = ) (57)
_ VaKm
1 49K 57 o .
2 (av) (52)  wheref satisfies the equations
These correspond, respectively, to the localizatipnning) F(x)=\| 1— 1 (59)
length in the absence of commensurability, and to the soliton [1+x2+f(x)
size of the pure gap phase. We introduce the length q
an
U2 —
52:( ) (53) 4WK % 1( 5)3 (59
mKm = “_[=
m3202m3 4\,

which, as we will see, is the correlation length in the pres- ) _
ence of both the commensurate potential and the disordef'S can be seen from Eq46), m defines the correlation
One can then rewrite E¢50) as: length ¢ in the presence dfoth the commensurate and ran-
dom potentials.
1 1 1[¢\3 Oncem=0 is known from Eq(50), A and thereford and
—2=—2ex;{—§5(|— } (54 I(w,) are entirely determined. The above equations thus
& d 0 completely fix all the parameters of the gapped replica-
Forl,/d>1(3e/4)Y3 this equation admits two solutions. It SYMmetric(RS) phase. . _
can be seen, by considering the limit of large disorder, that FOrA<2, there is a physical solution of E(8) ZSUCh tgat
solutions withl,/é<2(2)' are spurious. Thus, fok,/d limy_...f(x) =1+ and forx<1, f(x)=1+ax +0o(x’)

1 3 L0 2val o o » 0 with @=\/(2—X\). The corresponding behavior bfx) as a
>3(3e/4)™ we have a unique solution of Egs4). For function of w is shown in Fig. 7 foix=1. ForA =2, for x
Io/d_<%(3e/4)1’3., there is no solution, which means that the_<1’ F() =1+ (2/\3)|x|+ O(x2) and |im<%ocf(x)=é- The
replica-symmetric solution with a mass is unstable. Since 'tcorres onding graph di(x) is also shown in Fig. 7. Fok
is knowrf? that a replica symmetric phase with no mass is_ 5 Ep 59 %g P hvsical solution. Th 92 ' th
unphysical forh—0, this means that, for large enough dis- boundg.r for tﬁz ng pe)éSI;Z Sﬁ;s:aonbut _us,z— intlos E N
order, we obtain a breaking of replica symmetry. Y gl ppl 3y13 0 N t)ng .q.

Let us now examine the equation fiqiw,). An expansion (59) leads toly/é=3>3(3)"". Reinjecting this value into
around% =0 in Eq. (49) gives the self-consistent equation Ed. (54) gives
for 1 (wy):

o 1 1/4
—=ze" 60
)= s [ G x =011 coswym]0 | ~
wn)= X=0U,7 —COo T T.
" (ma)?Jo ¢ “n This point is in the domain where E4) still has solutions.

(55  Therefore, as disorder increases the system attains the point
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where\ =2 beforereaching the point wheren=0. Beyond L

. . . . m2=—g~41G(0) (65)
the pointA =2 the replica-symmetric solution becomes un- Ta '
stable. This leads us to consider a replica-symmetry-breaking
solution of Eq.(44) for |,/d<e%¥/2, allowing for a nonzero where we look for a one step RSB solution, as is adapted to
m. The corresponding phase will thus not be the simpled=1+1. The parameten, %, and the breakpoini, have
Anderson-localized phase expected from the strong-couplintp be determined self-consistently. The full solution is given

RG argument? in Appendix C. The parametar, is determined from the
marginality of the replicon condition, which has been
3. Replica-symmetry-broken solution showrf® to be the correct condition to impose. This leads to

I(w,)*|w,|. One can checksee Appendix C and Sec.
11l B 2) that this condition is also satisfied Byw,) at the
limit of stability of the RS solution. The two other param-
etersm and2; depend on the ratid/l .

As is shown in Appendix C fod/l;>1.86, one hasn
=0 and;#0. This solution is thus similar to the one of a

for A>2, and is known to correctly describe the simpled. dered ¢ hout th ¢ tential. and
Anderson insulating phase for the simple disordered #hse. ISordered System without the commensurate potential, an
%eresponds to an Anderson gldgssulato). Such a phase

Compared to the case in the absence of commensurate ph in th tical ductivig.Si th .
tential, we have to allow, in our RSB solution, far?#0. as no gap In the optical conductivity.since there 1S no

However, contrary to the RS case, a RSB solution with ~ |'o>° in propagatof61) for »,=0, the compressibility is
=0 is perfectly possiblé? and corresponds to the case in finite.

which the commensurate potential is completely washed out On thg other hand de/|0.<1'86 the solutlop has a finite
by the random potential, mass. This regime is thus different from the simple Anderson

Two scenarios could thus lzepriori possible. Either one insulator. The physical propertigsonductivity, phason den-

obtains a RSB solution witm?=0 similar to the solution of sity of states, compressibilitgwill be d|spussed at length in
%ec. IV. An important result of Sec. IV is that because of the

Ref. 2 n he replica-symmetri lution m i )
ef. 20 as soon as the replica-symmetric solution become resence of the mass the system is still incompressible while

unstable, or there exists an intermediate regime with both ; o . :
RSB selection andn?+0. The first case would correspond | aving the conductivity of an Anderson insulator phase. This

to the simple scenario, suggested from extrapolating the R the Mqtt glass Phagé'Wh'ch _s_hares some properties of
of a direct transition between the commensurate phase a e Mott |nsuIator(mcompres_3|b|l|ty phase with those of a
the Anderson insulator. On the other hand the behavior in thé a_ls_ﬁy p?asébrr(]eak|2g (.Jf rlep'hca sy'mrr;]et}%y lowina: fof

RS solution strongly suggests the existence of an intermedi- ,el'ij" ore, :] €Pp ys'ﬁa picture 'S.t elolowm_gr.] o
ate phase: the Mott glass phase. Indeed in the RS phase thee® ~ o onehasarep |ca_—symmetr|c SO L.|t|onﬂ\£v1|/'z agapin
optical gap closes, leading to a conductivity very similar to e conductivity, the Mott ms.ulato.r phase; foe. <d/lo

the simple Anderson conductivity, whereas the compressibil—< 1.86, one has a RSB solution without a gap in the conduc-

ity remains zero. This suggests that all effects of the comdVity but zero compressibility, the Mott Glass phase; and

mensurate potential have not yet disappeared, and that tﬁigally, ford/l0>1.86_, t-here is a finite compressibility and no
' gap in the conductivity, the anderson insulator phase. In

system is not in a simple Anderson regime. As we will see, h d h luti f Ref. 20
this is the second possibility that is obtained, leading thus gQther wor s_,1</34ne recovers the solution of Ret. 20 not as soon
sd/ly>2e **, as we would expect from extrapolations of

a much richer physical behavior than could have beer?lh batived = lizati lculati
guessed from the RG extrapolations. the perturbatived=1 renormalization-group calculations,

The saddle point equatiorid4) are first rewritten as but only at the higher valud/ly>1.86. This is due to the
formation of an intermediate phase, which is both incom-
pressible but without a gap in the conductivity. This interme-
diate phase being an intermediate coupling one, the failure of
the perturbative renormalization-group approach to predict
its existence is not a surprise. In a forthcoming section, we

In Sec. llIB2, we have seen that in the limit-0 a
replica-symmetric solution of Eq$44) can exist forh<2
but is unstable foh>2. In this section, we consider in the
limit #—0 the one-step replica-symmetry-breaki(lgSB)
solution of Egs.(44). Such a RSB solution should be valid

1
vG, H(q,0n)=—=[(vq)?+ wZ]+m?
wK

+21(1=8n0) +1(wp), (61)  will discuss its properties in detail. The phase diagram as a
function ofd/l is represented in Fig. 8. Let us remark that
oWy  (Bh - all transitions appear to be first order within the GVM for-
I (wp)= f e 4hB(1) _ g~ 41B(u>Uo)] malism.
(ma)?hto
X[1—cogw,7)]dT, (62 C. Mott insulator to Mott glass transition: ~Functional
renormalization-group study and classical equivalent
Si=Ufo(u>uy) —o(u<ug)]=[o](u>ug), (63 In this section we study phase mod&b) in an arbitrary
dimensiond using a renormalization-group method perturba-
2Wo tive_ly contr(_)lled in_d=4—e_ and smallﬁ. T_his provides use-
o(u)= ——e MBS (64)  fulinformation on interacting fermions with disorder by con-
(ma)? ’ tinuation down tad=1 (as we do not expect drastic changes
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! relevant, and may lead to a description of the transition be-

Replica EReplica Symmetry Replica Symmetry tween a gapless Anderson glass phase to a gapped phase. But
Symmetric !  Breaking !  Breaking this route would not give us the information we want about
Gapin , , the nature of the gapped phase_, i.e., it cannot distinguish
conductivity | G(0)oc P o) between the Mott glass and Mott msulat(_)r phase. Indeed, the
; i approach of Refs. 49-51 fails to describe the phase where
Incompressible!  Incompressible {  Compressible the commensurate potential is relevant since the FRG
! ' - method then flows to strong coupling.
=].558 =186 dily

Thus, in order to test for the existence of a Mott glass
FIG. 8. The phase diagram of a commensurate system witiphase, we consider from the start a situation where the com-

backward scattering only as a function afl, (disorder increases Mensurate potential is relevant and replace the full model
when d/l, increases At weak disorderd/l,<1, one obtains an LEds. (15—(22)] by an effective model in which the sine
incompressible phase with a gap in the conductivity i.e., a MottGordon term is replaced by a quadratic mass term:
Insulator. For strong disorded/l;>1, one has a compressible 5

phase with a conductivity that behavessdso) = w?, i.e., an Ander- V (h)— m_¢2 (66)

son glass. The surprising feature of this phase diagram is the ap- P 2 '

pearance of an intermediate incompressible phéke the Mott . . . .
insulatoy having the same conductivity as an Anderson glass forThls should be a reasonable approximation when the sine

dilg~1. Gordon term is relevant, and is in the spirit of the self-
consistent harmonic approximation. Our approximation

in this model down tad=1 for small#). We will perform ~ @mounts to neglecting some soliton excitations by giving
the analysis in the notations of the classical equivalenth®m large energy, and to neglecting the renormalization of
model, but also give some conclusions in terms of the pathe gap by disorder. This simplified model has the merit of
rameters of the quantum model, via relatid@s). being amenable to gerturbatively controlled study ind

As is well known for classical problems such as mani-=4—¢€. We will show that it does exhibit a phase transition
folds in random medi&~*" the functional renormalization atT¢=0 (7=0) which survives aff;;>0 (4>0), and can
group(FRG) method provides an alternative to the GaussiarPe identified with the Mott insulator to Mott glass phase
variational method. The FRG method accurately treats th&ansition. This model thus allows us to study the formation
nonlinearities, and does not use replica symmetry breakingf the Mott glass phase.
When the two methods are supposed to be exact and are We have obtained the FRG equations for the effective
compared, they do agree, as found for the random manifol@odel [Eq. (66)]. They can be derived by integrating out
problenf® for N—c, and generally give consistent iteratively short wavelength modes, extendffig”*~>*They
physics*® Here we will use the FRG method as a check ofare obtained in terms of the running dimensionless disorder
the correctness of the prediction by the GVM of the MottA(¢,1)=—R"(,1), the running dimensionless temperature
glass phase, and as a way to obtain additional detailed infoff, ~ T both defined in Appendix D, and the tilt modulus
Enation ongthe Mott insulator to Mott glass phase transitionc, (1), These RG equations read
see Fig. 9.

Although this is not th_e route we follow here one can OA(P)=€A(p)+T,A"(p)
apply the FRG method directly to the model of E¢k5)—
(22). This amounts to generalizing to correlated disorder the —f(H{A"(p)[A(0)—A(¢p)]-A"($)%,
study of Refs. 49-51 made for the case of uncorrelated dis-
order. This shows that a commensurate potential becomes

/e

Mott Glass

1
cusp f(l)=——— (69)
¢, = 00 (14 pe?)?
44 no Cusp

C44< OO

(67)

9iCaq=—T(1)A"(0)Cyy (68)

with e=4—d, settingc=1 (asc is not renormalized

comes from the integration of the high momentum modes.
Here u=(ma)?. These FRG equations are analyzed in Ap-
pendix D. Here we describe only the main results.
Mott Insulator At T=0 (i.e., A—0 for the quantum probleywe find
m that there is a phase transition. One can measure the strength
— of the bare disorder using the Larkin lengtR,

FIG. 9. Phase diagram of the effective model from the FRG~[1/A]_o(¢=0)]"“*"9 of the problem without commensu-
phase, aff=0 (£=0). R,~(1M)Y“~9 is the Larkin length(lo- rate potential(corresponding to the localization length for
calization length, and parametrizes disorder strength. These phasedhed=1 fermion problem Then we find that, for a givem,
and transition survive af>0 (#>0). there is a transition at a critical disorder strength
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1 1/(4—d) 1 C
R.= ( ~—) =C—, (70) A=m/ch~ ( Re— E) ; (72)
f’:o(¢=0) m
thus it vanishes linearlA ~[R.— (C/m)] at the MI to MG
whereC is a constant. The two phases are the followifig: phase transition. Correlation functions are also estimated in
For strong disorderR,<C(1/m), we find that A,(I)= Appendix D.

—74"(0)), the fourth derivative of the renormalized disorder ~One of the most crucial test is to show that the above
i.e., the disorder correlator becomes nonanalytic and devez O (thermal fluctuationsT>0 for the d+1 classical
ops a cusp singularity at a scak (m). For the problem in mode). This is the case, and the calculation is detailed in

the absence of a mass the cusp generation at the Larkfmppendix D. There is no doubt that the MI phase survives to
length R* (m=0)=R, is well known to be associated with quantum fluctuations; however, it is less obvious that the MG
C C

the existence of many metastable states beypd This phase_ would survive. Indeegl, the cusp is rounded by the
cusp generation is associated with the apparition of the tran&ffective temperature variablB~T/\cq,(l). However, the
verse Meissner effect in vortex lattices pinned by columnakey point is thatc,,(I) becomes very large as soon as the
disorder? (and to the appearance of RSB in the GVM second derivativé , grows, and as a consequence the effec-
treatment). As will be discussed below, this phase corre-tive temperaturél renormalizes to exactly zerat a finite
sponds to theMott glassphase,(ii) For weak disordeR,  scale(as it does in the absence of a maskhus the Mott
>C(1/m), the flow is cut by the presence of the mass beforgylass phase survives at a finite temperature. A similar phe-
a cusp can be generated. This phase does not exhibit meta@menon was also found recently in the dynamics of classi-
stable states and corresponds to thett insulator phase. cal periodic systems with correlated disorgfer.

Since the mass can be chosen arbitrarily small, the study To conclude this section, the FRG approach shows, within
is thus perturbative in disorder th=4— € for model(66). It ad=4— e analysis of the effective model with mass, that a
is interesting to note that thif=0 transition exists both for transition exists at larg& in the quantum problentand at
correlated and uncorrelated disorders. However, this translow temperature in the equivalent classical probl&etween
tion is stable to finite temperature only for correlated disor-a Ml phase at weak disorder with analytic Green function, no
der. Indeed, for pointlike disorder the temperature rounds thenetastable states and a gap in the conductivity and a Mott
cusp®>*¢which implies that there can exist no sharp distinc-Glass phase with metastable states, no gap in the conductiv-
tion between the two phases at finite temperature. In addity at stronger disorder. This allows one to predict that the
tion, the quadratic part of the Hamiltonian is not renormal-conductivity gap should close linearly at the transiti@t
ized by disorder, and thus even®t0 there cannot be any least in the limit of smalK—0).
signature of the transition on two-point correlation functions
of ¢. Thus it is possible that the transition observed in Ref. IV. PHYSICAL PROPERTIES, RESULTS IN d=1,
57 is an artifact of the method used. On the contrary, for AND EXTENSIONS TO HIGHER DIMENSIONS
correlated disorder, there is a genuine transition, and
(because of the lack of rotational invariande (x,7)], the A. d=1
existence of a cusp, and the transition directly affects for 1. compressibility, density of states, and correlation functions
correlated disordgy two-point correlation functions.

The FRG approach gives immediate information on themolg t:;ﬂ_scecn(;r:&_;/_ve defir;]e ar:g calculate e.gﬂ?iibriu?] thehr-
renormalized tilt modulugsee Eq.(23)] cf,=cau(+). ynamic quantiies such as the compressibiiity or the pha-

. L g . ; son density of states of the system. One of the most striking
?(';(;e tg;]‘c’e's’c:rl]s?ntfg? fi?)?:ﬂic';lfrr:;tmii:m ;Qiiﬁtr:iﬂgugfggg differences between the Anderson insulatat) and (Ml)
A : Al . phases is that the former is compressible whereas the latter is
function is likely to remain analytic, and thtisat there is a

gap in the conductivityIf ¢, becomes infinite then the incompressible. The compressibility is given, in any dimen-

S . L sion, b
Green function is not analytic and no gap should exist in the y

conductivity. The FRG approach gives that 1 Bh )
x(q,w,)= %J ddXJ dre (@~ en7)
0

R\ €
Caal + ) =) 1 X (T [n(x,7) —(n(x,7)][n(0,0—(n(0,0)1),
= ¥ e (71)
C44(0) Re E_(RC(M) (73
a a wheren is the density. This leads to the average static com-

pressibility xs=limg_ o[ lim,,_ox(d,w)]. In d=1, using the
and thus we find that phagig above, which corresponds to a bosonic expression for the densjfgq. (73)] leads to
cusp @:ff4= +), can be identified with a Mott glass phase
while phase(ii) above, which corresponds to no cusgy(
< +), can be identified with a Mott insulator phase. The
gap itself can be estimated as where

XS: llm Ilm qZGC(qyw)! (74)
q—0w—0
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Gc(q1w):<¢q,w¢7q,7w>_<¢q,w><¢7q,7w>- (75

Another thermodynamic quantity of interest is the phason
density of states:

h ~
p(w):_W_UIm[iwnG(X’Xviwn)]|iwn~>w+i0+' (76)

In the K—0 limit, Eq. (76) describes the phason density -
of states of a classical charge-density wave pinnedbditj ®
the commensurate and random potenttafS. Using

. . - . FIG. 10. The behavior of the density of states as a functioa of
Eq. (46), one obtains the following expression for the density;,, Y

A=1/2,1,and 2. Fok=1, and 1/2, there is a gap in the density

of statesp: of states foro<wc(\). w, decreases with increasing. For A
] =2, the gap disappears, and the density of states behaves as
K oy p(w)~w?, i.e., there is a pseudogap. The pseudogap persists in the
pw)=— E Im P ] whole RSB phase. Note that the maximum in the density of states
\/wn+ mK(M?+ 1 (w,)) decreases as increases, indicating a transfer of spectral weight to

io,—w+i0,

(77 low frequencies.

Various correlation functions can also be computed. In PR
particular the on-sitdCDW) and bond(BOW) charge den- X<X.=1\/1+A—-3 E) . (83

sity. For spinless fermions these read

R . As a consequence, in the MI phase, there is a gap in the
xcow=((CiCi)(cjc))), (78)  phason density of states far< w.= w* X,

xsow={(cl1ci+H.c)(c],c;+H.c)). (79 p(w)=0, w<o. (84)

In the boson representation th&2part of these correlation 1he physical interpretation of such a form for the density of

function are related to the cosgp and sin(2) correlation ~ States is obvious: no states are available below the gap. Thus,
functions: in the Gaussian variational framework, there are no discrete

two particle stategi.e., exciton$ below the gap. Forw
Xcow* (—1)(cog 2¢(x)Jcog 24(0)])=K(x), (80) — wc+0 we obtainp(w)~(w— wc) Y2 At high frequencies,
we obtainp(w)—K/2, i.e., the density of state goes to a
Xeow”(—1)X(siN2¢(x)]siM24(0)])=K, (x). (81)  constant. A plot ofp(w) is shown in Fig. 10. _
In the replica framework, we have the following general
Let us now compute these various quantities using the resultsxpressions foK| andK, [see Eqs(A12) and(A13)]:
of the variational method presented in Sec. Il B for each of

the three phases. K“ze*hze(o)cosrﬁhzé(x)], (85)
(@) Mott insulator phase This corresponds to the RS
phase obtained at weak disordell,<2e™ 4. Because of K, =e "28Osini{#2G(x)]. 86)

the nonzerom the whole MI phase is thus incompressible

[see Eq.46)]. The MI phase is thus the direct continuation In the replica-symmetric case, fér—0 andK =K/# fixed,
of the nondisordered commensurate phase. In the MI phasene finds

the disorder is too weak to be able to overcome the gap.

In the replica-symmetric casg{w) can be expressed in ~ & IX| _xlie
terms of the functiorf defined by Eq(58) in the form hG(x)= E 1+ ? e : (87)
0
(@) K | X K im (= ix) The resulting correlation functions are
w)=—=IM| ————=| = z—xImf(—ix).
P 2 0\ I+ f—ix—x?] 2\ e[ i
(82) Kjx)=e"¢ ’15'0005&{ 5|1+ ) X’gl (88)
Where x=w/w* and o* =v/&. To perform the analytical 16
continuation in Eq(82), we transform Eq(58) into a cubic 3
equation forf with coefficients depending ox? and\. Al- K, (x)=e" &8 ’16'osm 3 1+ m oIl 89)
though this transformation adds two spurious solutions that g 3 '

do not satisfyf(0)=0, it proves extremely useful, as per- 5

forming an analytical cont|nuat|on amounts to solving theFor x—«, one has K|(x)—>e €185 This implies that
cubic equation forf with x2— —x2. Equation(82) implies  (cos 2p)=d/& Therefore, in the Mott insulator phase,
that the phason density of states in nonzero only wiesis  charge-density-wave order is still present, but the order is
a nonzero imaginary part. Far<2, f(—ix) is real for reduced with respect to the pure system in which one would
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have(cos 2p)=1. Even forx— 0, the CDW order of the pure tion length of BOW and CDW fluctuations id @ u(¢). Itis
system is not recovered. Another interesting property is thaihteresting to note that at the Mott insulator—Mott glass
some BOW order is also induced at short distances, althougphase transition, the correlation length is continuous. How-
BOW order is not present at long distance. The presence aver, there could be a slope discontinuity which would be
BOW order is due to the random phase dninduced by characteristic of a second order phase transition.

disorder. When the random phase is of ore€R, this im-

plies local BOW order. However, the positions at which 2. Transport properties

BOW order is obtained are not correlated with each other in . .
the system. This explains the exponential decay of BOW, To differentiate between Mott and Anderson glass phases,

order a crucial physical quantity is the ac conductivity. In the Mott
(b). Anderson glass and Mott glass phasgor d/l, insulator phase, the ac conductivity is zero for frequencies
>1.86 the system is in the AG phase. In this phase, using E maller than the gap whereas in the Anderson glass phase the

.. _ 2 2 .
(74) and the expression @, one finds that the compress- aC_conductivity behaves asr(w)=w*(Inw)” in one
L . — dimensior>3* Within the GVM, in order to compute the
ibility is identical to the one of the pure system=K/mu.

. . L onductivity it is sufficient to known, X ;, and the analytical
Such a result is due to_the fact that the Gauss'af‘ Va.mat'on%clontinuation ofl (w,) to real frequencies. Using the Kubo
method does not take into account the renormalizatioK of

by disorder. Nevertheless, the replica variational approximaf-ormma’ itis straightforward to shotthat

tion correctly gives a nonzero compressibility for an Ander-
son glass. We stress that these results are valid independently o(w)=— — '
of the presence and absefftef the commensurate potential. T gK[Mm?+1(—iw)]— »?

In the intermediate MG phase, with both RSB and a gap . . . .
that is obtained for @ Y<d/l,<1.86, m#0, we obtain a wherel (iw) represents the analytical continuationl¢é,,)

zero compressibility. One would therefore be tempted to ast-o real frequencies. Introducing the functibrdefined in Eq.

sociate this phase with a Mott insulator. However, the forth—(58)’ one has
coming calculation of the conductivity in Sec. IV A 2 will — .
show that this intermediate phasenist a Mott Insulator. o(w)= vK X , (94)
In the replica-symmetry-breaking case, formuldg and mw* (1+f(—ix)—x?)
(82) remain valid. However, the functiainthat must be used v e )
in Eq. (82) corresponds ta =2 in Eq.(58). This means that yvherex=w/w . Slmll_a_r to _the density of states, the behav-
ior of the conductivity is therefore controlled by

as long as there is a RSB solution of the variational equa™", 3 - g
tions, there is a pseudogap in the phason density of states. s(¢/l0)”. One can explicitly check that E¢93) satisfies

The behavior of the density of states as a functionools € Sum rule
represented in Fig. 10.

vK —iw

(93

In the case with broken replica symmetry, one has ”dwa(w): ﬁ (95)
Kj(x) =&~ 2"Ccosti 2 (G(x))], (90) ° i
KL(x):e‘2h<G(°)>sinr[2ﬁ(G(x))], (91) _ _(a) Mott insu_lator_ phaselet us begin with the c_onduq-

) tivity for A<2, i.e., in the Mott insulator phase. It is easily
where we have taken into account the fact thathasO,  seen that in order to obtain a nonzero real part of the con-
1Gc(X)—0, and(G(x))=JgduG(x,u). Using one-step ex- ductivity one must havéif(ix)#0. As a consequence, the
pressions, we obtain real part of the frequency dependent conductivity is zero for

. w<w; Wherew, is the threshold below which the two par-
__ ¢ 11X — ulx|/(2lg) ticle density of states is ze{@ee Eq.[84)]. Physically, this
h{(G(x)) 3 1+ e 0 ; . )
w 21, means that there are no available two-particle excitations to

absorb energy ib<w, i.e., at energies below the Mott gap.
Forx>x. (0> w), the analytical continuation dfto imagi-
nary x has a nonzero imaginary part that leads to a nonzero
real part of the frequency dependent conductivity. ¥olose

(92)  to the threshold,

We see that in the Mott glass phase the CDW order is still
. . . 1/3

present, in analogy with the Mott insulator phase. Such a Im f(x) = _(_) e~ (96)

behavior is in agreement with the predictions from the J312 ¢

atomic limit of Sec. IllA. This time, (cos 2p)=exp

{—e?[2u3(¢)]}. When the system becomes an Anderson in-As a consequence, fes>w, and close to the threshold, the

sulator phase(cos 26)=0, which seems to indicate a first- real part of the conductivity behaves as R¢w)~(w

order transition. Such a first-order transition is likely to be —w¢)¥? i.e., it is controlled by the available two-particle

only an artifact of the variational approach. Some subdomidensity of states. At large frequency, it can be shown that

nant BOW correlations are also present in the system. TheRReo(w)~\/x*. This behavior can be recovered by a simple

decay exponentially witk, and sinceu(¢)<1, the correla- perturbative calculation in disorder strength. Obviously, the

1—e¥ e—p|x|/2I0

+
2(1- p*(¢))

— e—|><|/(2|o)} i
M
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b (o) b o(m)

ey
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FIG. 11. The real part of the frequency dependent conductivity F'G- 13. The real part of the frequency-dependent conductivity
in the MI phase fom =1 as a function of frequency. in the MG and AG phases for=2 as a function of frequency. For
small o, o(w)~w?.

conductivity shows a maximum at a frequenay,, . . . . .
= w*X(\). The typical behavior of the real part of the con- attempt this complicated calculation here, and instead give
ductivity for \=1 is represented in Fig. 11. The behavior of Physical arguments.

the threshold frequency, a function of\ is represented in It is clear that repulsive enough and finite range interac-
Fig. 12. tions are needed for the existence of a MG phase. A general

(b) Mott glass and Anderson glass phasésr \—2 the argument is given in Sec. IV B. We note here that the case of
gap goes to zero as-2\. Quite remarkably, fon =2, there infinite range(Coulomb interaction is rather peculigrex-

is no gap in the real part of the conductivity although the @MPI€ of a MG phase. Indeed, a one-dimensional Wigner
system isstill incompressible. The real part of the conduc- Crystaf” has a compressibility
tivity goes to zero asn—0 as Rer(w)~ w? . The behavior

of the conductivity forn =2 is represented in Fig. 13. As for ) q
A <2 whenx—oo, the real part of the conductivity decreases s Imw -0
as\/x*. In fact, this form of the conductivity is the one that a-09700(219
is obtained in the Anderson glass phase inahsencef any

commensurate potentidl. Moreover, in the GVM frame-

work the Anderson las s RSP pndican be easiy O (0) Lo". One 0 o shon at, 2 nemerectng
seen that for alh=2, i.e., in all the RSB phases, the scaled y ' P ygapis eq gap 9

o é)article excitations. In particular, this means that the inter-
conductivity is equal to the one of the Anderson glass phas - ediate phase cannot exist f6e= 1. This result is in aaree-
The conductivity in the MG and AG phases is thus also the X ' 9

one shown in Fig. 13. This remarkable pinning of the scaled“ent with the self-consistent Born approximation calculation

conductivity ath=2 is a consequence of the marginalit of Mori and Fukuyam#for the noninteracting case, which
condition y q 9 Y do not show any intermediate phase. Thus it can only exist

for K=K .<1.
Let us now give a schematic phase phase diagram, which
summarizes the effects of both backward and forward scat-
We have thus generically identified three phases for a distering in one dimension. As shown in this section forward
ordered commensurate system. The bosonization representgattering can also lead to gap closure. The phase diagram, as
tion being quite general id=1 this also applied to bosons function of the Luttinger liquid parametét and the strength
or spin chains. of the forwardD; and backward, scattering is represented
All the previous results having been obtained in the limitin Fig. 14.
whereK is small, an important question is the range of sta-
bility of these three phases. Although, in principle, the varia-
tional method could help answering this questions, we do not

2

nevertheless it has only a pseudogap in the conductivity

3. General phase diagram in =1

B. General arguments and higher dimensiongl>1

1. Interacting fermionic systems: excitonic argument
o8
A (’)LPUIC

The physics leading to the MG phase is quite general, and
persists in higher dimensions as well, as can be understood
1 through a physical argument. Let us consider the atomic
limit, where the hopping is zero. One can compute in this
limit the gaps to create both single particle and particle-hole
excitations(see Fig. 15 Let us consider for example fermi-
ons with spin with both an onsite repulsidthand a nearest-
neighbor repulsiorv, with one particle per site. Such a sys-
tem is described by

>y

0 2
FIG. 12. The variation of the gap in the frequency-dependent  p—y>} n”nil_kvz ninj+2 Win,—u> ni,
i &n i i

conductivity as a function af. The gap in the conductivity goes to
zero linearly forn—2. (97
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Db A B U
AG Ap—? (101
AG MG MG LL Ag=U—V; (102
this is the well-known excitonic binding that occurs in sys-
[ MI ‘ his is the well-k itonic binding th i
. NII 3'/ 5 tems with a gap.
y /4 K In the presence of disorder one can minimize the single-
.54 particle gap by choosing the site where the disorder potential
iS minimum, giving
Df
. ) . _ U  min(W;)—maxW,
FIG. 14. Phase diagram of a one-dimensional system with both Apzf + 5 , (103

forward and backward scattering random potentials. The dashed
lines correspond to phase boundaries between the Mott (V&G$

and the Mott InsulatofMI), the Anderson InsulatofAl) and the where we choos#; =0 for convenience. On the other hand,

Luttinger liquid (LL) phases. The separation between the MG aln(]Ihe minimal particle hole interaction corresponds to choosing

MI phases in the presence of forward scattering disorder is drawme nearest nei_ghpor pfa.zji,j}. for which the difference in
with question marks, since we do not know how forward scatteringdisorder potential is minimal:

f h iti f the MI of the MG phase. .
affects the competition of the Ml of the MG phase AEXZU—V—m|n|WJ-—Wi|. (104)

wheren;=n;;+n;;, andW, is the disorder potential. The @
energies to ad& , ; or removeE _; a particle at or from site  For an uncorrelated bounded disorder one has
i are
min(W;) ~ —W, (105
E.1j=EgtU+zV—u+W, (99)

E-1j=Bgm2Viu=W, (9 Thus, in the presence of a nearest-neighbor interadfjdhe
andE is the energy of the ground state of the system withparticle-hole gap closes faster,\&t = (U —V)/2, when dis-
one particle per site. If one considers a particle-hole excitaerder increases, than the single-particle gap. For an homoge-
tion where the particle moves from sitéo sitej, the energy neous system this would simply signal an instability of the
cost isE, 1j—E_,; if i andj are not nearest neighbors. On ground state. For a disordered system this need not be so,
the other hand, if the particles are nearest neighbexsi-  since only a fraction of the sites have their gap closing. Thus,

tonic excitation, this costs in the presence of a small kinetic energy, the conductivity
gap would close near this point, the compressibility remain-
Aphjj=U—V+W;—W,;. (100 ing zero. Within this zero-kinetic-energy model one thus al-

ready finds three phases. The phase for which the particle-
I,§1ole gap has closed for some sites but the single-particle gap
Is still finite can of course be identified with the Mott glass.
Thus the physics of the Mott glass, that has been derived
un for finite kinetic energy by the methods of the previous sec-
tions has its origin in excitonic effects. This is quite general,

For the pure case, one thus sees from E2f3.and(100) that
the gap for creating a single-particle excitation is larger tha
for particle holes

@ | 4 | 4] ] 4 | 4 . h !
v 1 ¥ v v [ v 1 and does not rely on any special one-dimensional features.
A=UT2 One dimension here was thus only a tool, allowing us to
U perform the calculation. We thus expect a Mott glass phase to
+U/72 . . . . . . .
® | * | * I * ~ * be present in arbitrary dimension, and it would be interesting
v vivy ~ N to check either through numerical calculations or mean-field
Ap=l methods whether one can recover the properties that we have
U U identified here. The excitonic argument also shows clearly
that some finite-range interaction is needed for a MG phase
© * | * H © | * | to appear. For a simple Hubbard model both the single-
v Ae=U-V particle and particle-hole gap would close simultaneously

FIG. 15. Possible excitations in the atomic limit. Drawings are (UP 0 the distribution of disordermnd most likely the MG

made for a chain for clarity, but the arguments are valid in arbitrary®?N@se does not exist. In the presence of finite-range interac-
dimensiond. (a) Energy cost to add one particléb) Generic tions the MG glass can be stabilized. A similar construction

particle-hole excitation(c) Exciton, where the particle and the hole €an be made for the spinless case, although it involves longer
are on neighboring sites. In the presence of disorder the gap fdid2nge(third-neighboy interactions.

excitonic excitations will close, first leading to the absence of agap According to this physical picture of the MG phase, the
in the optical conductivity, but still to an incompressible systemlow-frequency behavior of the conductivity is dominated by
(see the teyt leading to a Mott glass phase. excitons (involving neighboring sites This is at variance
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w4 V. CONCLUSION

In this paper, we have investigated the competition of a
random and a commensurate potential. This question is rel-
evant for host of physical systems, ranging from one-
dimensional interacting fermions or bosons to classical sys-
tems in the presence of correlated disorder. The
commensurate potential induces an incompressible Mott in-
g sulating phase with a gap in the conductivity. On the other

/g hand, disorder induces a compressible Anderson insulating

FIG. 16. Phase diagram of bosons in the limits-0 and%#  Phase. While naive expectations predict a direct transition
—0. Wis the strength of the disorder, agcthe amplitude of the ~between these two phases, we find that if interactions are
commensurate potential for a fixed repulsive interactions. For weakepulsive enough, an intermediate phase, the Mott glass
disorder the boson system should retain a perfect topological ordgsghase, does exist. Although this phase is incompressible, like
(i.e., no defects such as dislocatipné/hether or not the line for a Mott insulator phase, it does not have a gap in the optical
which topological order is logdashed lingenters the MG phase is  conductivity, in a way similar to the Anderson insulator.
an open question. It is represented hereder3. The incompress- To obtain this phase we had to go beyond standard
ible phases are the Mott insulatdvll) or Mott glass(MG) phase.  yanormalization-group techniques which are perturbative in
The compressuc_)le phases are either the Bragg Bose glass phese "i8th commensurate and disorder potentials. We therefore
ferfeCt .tOPOIOQ'CaI orde(BBG), or the Bose glaseBC) phase if used a bosonization associated with several nonperturbative
opological order is lost. . . . . .

techniques. The first one is a replica variational method, that

from the AG phase, where the particle and hole are createﬁIIOWS for a complete calculatioln .Of the various physical O.b'
on distant sites. This has consequences on the precise Iy VaPles such as the conductivity. The second method is a
frequency form of the conductivity such as logarithmic cor-functional renormalization group approach, which is pertur-
rections. In addition, since the excitons are neutral objectd@tive ind=4—e dimensions and is well suited to study the
although they can participate to the optical absorption, theyansition from a Mott glass phase to a Mott insulator phase,
need to be broken to give a dc current. One can thus give @S well as equivalent classical systems. In addition we have

naive estimate of the conductivity in the MG phase, looked at the limit of zero kinetic energy, both for the
bosonized Hamiltonian and directly on the fermion problem
o~Nee VT, (107 (both for the spinless problem and for the problem with

spin). The latter yields a very general argument in favor of
wheren,, is the number of excitons in the ground state andthe existence of a Mott glass phase in any dimension. It also
V is the typical excitonic binding energy, which depends onlyshows that the underlying mechanism for this phase is the

weakly on the disorder. creation of low-energy bound statésxcitong coming from
the competition between interactions and disorder. These ex-
2. Consequences for other systems citations play no role in the compressibility but contribute to

The above arguments also directly apply to other systemdhe optical conductivity. .
In one dimension the spinless fermions can be mapped to a This phase could be observable in systems close to a
disordered spin systems. In this case the commensurafetal-insulator transition, such as oxides, provided that one
phase can either come from an antiferromagnetic staggere@®n measure simultaneously the optical conductivity and the
field, or more reasonably from a spin-Peierls distortion of thecompressibility. Numerical simulations for disordered boson
lattice. Such a perturbation would force the spin to lock intosystems could be prime candidates to observe this effect.
a singlet state. The disorder would be a random magnetiblote that since all the phases have finite correlation lengths,
field. this should be observable even in moderately small systems.

Another system of interest is provided by hard coreMany problems remain open. In particular, it would be inter-
bosons. In one dimension, one can use exactly the phassting to understand in detail the effect of a chemical poten-
Hamiltonian to represent interacting bosdfié] but the ex-  tial on the Mott glass phase. Another open problem is the
citonic arguments given in Sec. IV B 1 would also apply toeffect of temperature on the Mott glass phase. Finally, it

interacting bosons in higher dimensions as well. In this cas§,ouid be interesting to investigate the possibility of aging
the Anderson glass phase becomes a Bose glass fidse. dynamics in the Mott glass phase.

For classical systems the phase diagram is shown in Fig. 16.

Even in the Bose glass phase, for weak disorder perfect to- We thank R. Bhatt, S. Fujimoto, H. Fukuyama, A. Furu-
pological order(stability to dislocations in the lattigecan ~ saki, L. loffe, C. Itoi, N. Nagaosa, Y. Suzumura, C. M.
persist ind= 3, resulting in a Bragg Bose glass ph4%&’ Varma and H. Yoshioka for discussions. E. O. acknowledges
On the other hand, in any dimension the Mott insulatorsupport from the NSF under Grant Nos. DMR 96-14999 and
should exhibit perfect topological order. Thus an interestingDMR 9976665(during his stay at Rutgers University where
and open issue is whether this topological order also subsigart of this work was complet¢dnd from Nagoya Univer-

in at least a portion of the Mott glass phase. sity.
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APPENDIX A: FORWARD SCATTERING DISORDER It is easy to check that EqsiA5) only have replica-
AND PERIODIC POTENTIAL symmetric solutions in contrast to the case of backward scat-
tering.

In this appendix we examine the effects of the forward Using the standard techniques for inversion of matrices in

scattering disorder;, and neglect backward scattering alto- the limit n—02 one finds the following expressions for
gether. For fermions, such an approximation is surely justh G 1S, .G

fied when 3/2K<2. Then the backward component of dis- aa™ Zb#aab:

order is irrelevant and can be neglected. In the other case,

K<3/2, backward scattering will be relevant, and drive the _ v (A6)

. G.(q,w,)=
system into an Anderson glass state. (G @n) oo, 5 5
—xlent(@a))+m

1. Solution of the variational equations

The action of the problem is For G(d,@n ),

2 2

= [ ax[ oo (u(amz (af)z] G(q,wn,w:(%i) %, (A7)

—ic 52¢_ H(X) x¢} (A1) where
which, after replication and average over disorder, gives mZZ%e*ZﬁGaa(FOFO) (A8)

2
=> fdxfoﬁﬁdT ZiK[v(ﬁx%)er (arzsa) ] and £2=v%/(7Km?). One has
g 7 DK?2

- —cos 2¢a} e ;) dx hH!2|XEdﬁG(0 0= 75, (A9)

B Bh . . . .
> j de A7’ Ay dba(X, 7) Iy br(X, 7). (A2) leading to the self-consistent equation &t
0 0
We use the GVM ansat£q. (40)] with

Il) g) (Il 2
_f ex |1 |
[(Uq)Z 2]

K %a~0an(d,@),  (A3)  where we have defined '=DK?/(2v?).

It is straightforward to show that EGA10) has two solu-
as in the case of the backward scattering disorder. Using Eqgions for |, /d>e/2, and no solutions otherwise. In the first
(40) and (42), the variational energy,,, for the forward case, the solution with, /¢é<1/2 is a spurious solution, as
scattering problem is can be seen by taking the limit of zero disordér—¢«).
Physically, the Mott gap is preservéout reduceglas long as
I,/d>e/2, whereas folt;/d<<1/2 the Mott gap disappears.
The transition gapped-gapless appears first order in the
GVM, which is likely to be an artifact of the variational
method. Note that the condition for the transitigrid~ e/2
is in agreement with strong coupling extrapolations of the
perturbative RG treatment.

, (A10)

vGap (g, )=

2
wn

Uq Gaald,@p)

Var Zﬁj 27T n,a 7TK

2/3 2 (In G)ag(d, )

g
— = > exf —2AG,(x
Ta g 2. Correlation functions

Another advantage of the GVM is to allow for a calcula-

=07r=0)]-— 2 f—qﬁq Gap(q,w,=0). tion of the correlation functions. Using E73), one sees
27°h a that the density-density correlation function is given by
(Ad)
i26(X, 1) o= 12¢(0,0) —#[2G(0,0)%2G(x, 2k
Minimizing Eq. (A4) with respect td5(q, w) gives the varia- (T.e ¢ )=e (AL1)
tional equations which leads to
Dvq? 4gqv - -
Tan(Q,wp) = — qzﬁ Su 0~ %e*maaW:Ow:Oma,b. K, (x,7)=(T,sin2¢(x,7)si 2¢(0,0/)
o ~
(A5) =e "2600sinty; 2G(x, 1), (A12)
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Kj(x,7)=(T,cog 2¢(x,7)]cog24(0,0])
— e 726000c0sH; 2G5 (x, 7). (A13)

Since G(x,7)=G(x,7)+G(x) and lim, ohG(x,7)=0,

PHYSICAL REVIEW B64 245119

only the static correlations survive. It is straightforward towith G,=G_,+ =, ,G,, and

show that

lim  #AG(x )—1<£—|X|) —hreg (A14)

| I
A—0, Kfixed 1 1

leading to the following expressions for the correlation func-

tions:

K,(x)=e &1 sinl'{ ( |£ - “1') e—lxl“f}, (A15)
1 1

K||(x)=e§”1cosr{(|§ ||) —Ire| (A16)
1

It is easily seen that fog<<oo, IimxﬂwKH:e*s‘/IL In the

2Wu
Cars(Thon) = f dr cos wy7)
Xexd —4haB,p(x=0,7)], (B3)
Bab(xaT)zGaa(XaT)_Gab(XrT)- (B4)

As was the case for fermions in a random poterffiaine has
dB,.,/d7=0, leading to the following simplified expres-
sion of the replica off-diagonal self-energy:

2Wo

Tarb="——,BeXp(—4nB,.p) 4, o (B5)
(ma) "

We still need to perform an analytical continuation from
positive integento n=0 in Eqgs.(B2) and(B3). In the GVM
this is done assuming that far— 0, theG,, become hierar-
chical matrices. Using the Parisi parametrization of hierar-
chical matrices in th@—0 limit.*? Equations(B2) and(B3)
give the equations

absence of disorder, this limit would be exactly 1. Forward-

scattering disorder thus leads to a reduction of the charge-
F@—o, one recovers
~e X1 3 result that could have been derived di-

density-wave long-range order.
Kj(x)
rectly.

APPENDIX B: SADDLE-POINT EQUATIONS

In this appendix we derive the saddle point equations ob-

tained by minimizing the variational free enerpfyq. (42)].
Using Eqgs.(42) and(39), we obtain

2

2 (1)
v+ —|Gaa(q, @)

Var Zﬂf 2 n,a 7TK

o S (ING)au(d,0n)

a,n
g
- Ea ex — 2/ G ,(x=0,7=0)]

w
(Wa)zh
—Gap(x=0,7)1}.

f dTE exp{ — 4A[G,,(x=0,7=0)

(B1)

Varying in Eq.(B1) with respect taG, we obtain the follow-

ing saddle-point equations:

2

w 49
vQg v

+ %exr[ —2hG,4(x=0,r

h
Gc(q,wn)_lzﬁ

Bh
_0)]+h( )ZJO dr{1-cogwy7)]

e—4hBaa(X:0,T)+ 2 e—4ﬁBab(X:O,T)
b#a

X , (B2)

2
(O]

Vet

4 h
G, (Q-wn)ZR

49 ~
+ —exd —2AG(x=0,7=0)]
T

2W fﬁﬁ
drfl1—cogw,7)]

Jf_
h(ma)?lo

x| exd —44B(x=0,7)]

—flduexp(—4hB(u)) , (B6)
0

Wo
o(q,@p,u)= )Zﬂ exd —74B(u)]6, o0, (B7)

whereu e[ 0,1] is the Parisi parameter replacing the discrete
replica indexa.

APPENDIX C: SOLUTION OF RSB EQUATIONS

We want to solve the RSB saddle-point equations

ngl<q,wn>=i-((vq>2+wﬁ>+m2
wK
+§(1—5n,0>+|<wn>, (C1)
_ 2Woy  (Bh —4#B(7) _ o 45B(ug)
I(wp) (mv)zﬁfo [e e ]
X[1—cogw,7)]dT, (C2
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S =udo(u>ug) — o (u<ug)], (3
2W
o(U)= e HBUIgs (Ca)
(ma)? *
m2:4ﬂe—4hé(0). (CS)
mTo

Using the inversion formulas for hierarchical matriéés,

G(q,w,=0)—G(q,w,=0,u<uc)

1 1
BIP
Gc (q,a)n=0) Ue

1 1

X S, o-L -
G (A wp=0)+ =2 Ce (den=0)
(Co)
- 1
G(9,w,=0)—G(g,w,=0,u<u;) = S
_1 1
c (q,wn=0)+7
(C7
we obtain
1 dq
B(U<uc)_ﬁ_ﬁ§n fﬂGc(van)
1 dq
+E 1__) 27
« 1 1
S, G-t _
G H(Awp=0)+ — Ce (den=0)
(C8
1 (dq
B(U>UC)_ 2 c(q wn) ,B_ﬁjﬁ
« 1 1
51 G Yq,0.=0) |
G (A wp=0)+ =2 Ce (den=0)
(C9
Since
"L“mﬁ_ﬁE Ge(q,0,)=0, (C10
h~>0
we obtain
lim —%AB(u>u.)=0,
5%
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3

6

1 1

lim —4aB(u<ug)=2 (s m .

B—x
h—0

(C1)

Here we have assumed that wh@rgoes to infinity,u. goes
to zero in such a way thg8u.= & remains finite. Therefore,

2W

Sv[1— e2(VKI){[L/(m2+3 ) VA ~(myy,
(ma)

21:

(C12

Next we derive a self-consistent equation foby taking the
—0 limit of the equation:

4gu

T

m?= e 216(0), (C13

We use first the general inversion formtfia

S ~[rdu_ (67w
e e qem | Jow? 6o [e )
()]
- o — 7 |(Q,@p). (C14
In which we have

[G 1(u<ugy)=0, (C15

(G H(u>ug)= — (C16

G {0)=— —U(u: o) , (C17

so that

G(0,0= f ZGc(qwn>

N 1 f dq vo(u<ug)
phl on|THh .,
R(vq) +m

UE]_

f
2 2
_WK(UQ) +m

h
(R(UQ)Z'F m2+21
(C18

leading to the expression fon in the S— limit:
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hamyso L F(p)

0 -

DIAO) T ' -
. 0 0]

FIG. 17. The reduction of the gap with forward scattering dis-
order strength. FIG. 18. The graph of(¢). Only the region withe<O0 is
physical.F has a minimum foro= ¢.. When 4{,/d)? is smaller
thanF(¢.), Eq. (C28 has no solution.

2_4gv
= . .
To solve Eq.(C24) we introduceg= n(u—1)/n. Physical
21(77?)1/2 1 solutions havep>0, Osu<1, and thuse<0. Excluding
X 2 5 5 7 5 7 the solutionw=1 from Eq.(C24), we obtain the following
m(m?+ 2" m+(m*+3 )" equations in terms of:
W(7K) Y2 p(zx/wi 1 1 ) — .
- ex -—1]- ev—
(ma)m? o [(mP+xyr2 m we)=\z+2——3 (C27)

(C19

A final equation for the breakpoint; is needed to close the )2 e¥
4(—) =u?(p)exg — =+ =F(¢). (C28

®
system of equations. As discussed in Ref. 20, the physical c(i) CRIPYETIRY
choice corresponds to the so called marginality of the repli- 2p°(o)
con condition which yields td(w,)*|w,| and to

We have thus reduced the self-consistent equations to a

AW( 7K) V2 single equation forp. Puttinge=0 in Eqs.(C27) and(C28),
> 3= L (C20 we obtainu=1 and recover conditiof60) on d/l, i.e. the
(ma)“(Mm*+2) limit of validity of the RS solution. A plot of (¢) in shown

in Fig. 18. As can be seen from this plét,has a minimum

We use the quantities for o= ¢.. This implies that there can be no solution of Egs.

) (C27) and(C28 whenly/d<\F(¢.)/2. The physical values
m2= ”_ 2 (Cc21) of ¢ are thus located in the interviad.,0]. Numerically, it is
47KI2T found thate,= — 3.4325+ 0.0025 and=(¢.) =1.15338. The
corresponding critical value df,/d is thenl,/d=0.536977
2 i.e.d/1;=1.86....
v
3= puERel (C22
0 APPENDIX D: FUNCTIONAL RENORMALIZATION-
4K GROUP APPROACH
a
o (C23 In this appendix we detail the analysis using the func-

tional renormalization-group method of the effective model

wherel, andd are defined by Eqs51) and (52), respec- [Eqg. (66)] in the presence of a mass term and correlated
tively. The reduced variablg is defined in such way that disorder in dimensiod. We use the notations of the classical

The point at which the replica symmetric solution becomesfduivalent mode[Eg. (22)]. The method is a Wilson mo-

unstable hag.=1 (see Fig. 17. mentum shell integration which it is an extension of Ref. 52
The Se'f-consistent equations are rewritten to the case of a finite masﬂz>0. Similar extensions can
also be found in Refs. 55,56,53 and 61.
2 u—1 We start by studyin@;=0. In the quantum problem this
= 1—ex;{ 7| (C24  corresponds to the limiK—0, #—0, and K=K/# fixed

[see EQ.(23)]. We consider a ground state whichssnde-
pendent¢(x,7) = ¢(x). It is in this limit that the GVM
(C25 method revealed the presence of the Mott glass phase. It is
more convenient to work with the functiom\(¢)=
—R"(¢), where the bar®(¢) has been defined through Eq.
wlto=1. (C26 (15). One first defines the running dimensionless disorder

24| O aln(u—1)ip]-1/(2upderlrDik
=4 e
a ( d)
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~ Ad  4_a RE () C(d)

A|(<f>):§/\| A(o), (D1) a NTM’ (D8)
with Aq=Sy/(2)9, which is found to obey th&,=0 FRG  whereC(d) is a dimension-dependent constant.
equation: The physical quantity which is directly affected by the

presence of the cusp is the tilt modulug(l). One finds that
aA=eA—f(N{(A")?>+A"[A-A(0)]}, (D2) it satisfies the RG flow equation

a1In cag)=—A5(DF (D), (DY)

fy=——%-, w=miA% (D3)  while ¢ remains unrenormalized. This, clearly, eithies(1)
(1+pe”) diverges sufficiently fast andy (I = + )=+ (interpreted
The UV cutoff is reduced t\,=Ae~' (A~1/a, whereais S a Mott glass phagser the mass cuts off the divergence
lattice constant One can check that fom=0, Eq.(D2) &'y enough and,(| =+ ) remains finite(a Mott insula-
reduces to the equation derived in Ref. 52. This equatioffo” Phase From the FRG approach, itis possible to compute

turns out to be identical to the one describing point disordefn® largel behavior of the tilt modulus exactly. For this, and
in dimensiond. to make further progress in the analysis of the two phases,

It is well knowrP? that, in the casen=0 atT=0, a cusp Wwe need to first consider the full flow of the functidn( ).

develops at the origin fot—o. One finds thafA(¢,) It can be shown easily that the solution of the flow equations
—Z(O,oo)|oc|¢| for  $—0. This implies that at u#0 can be obtained as a function of the solutionuat

) Z ) ) ’ =0 in the following ways:
lim_,.,A"(0])=—o0. It is thus important as a first step to

analyze the cusp generation in the case 0. If we define K (6H)=h(DA,_o[$,t(1)],
A,(l1)=—A"(0]), we have, from Eq(D2),

el

AA,=eM,+f(1)A3. (D4) h(l)= . X
eE
e di ; i i 1+ ef dl' ——————
This differential equation has, for a solution, 0 (1+pue?’)?
1 e 1 (e? 1 el’dl’
—— ——=5| dXx———7-———, (DY) 1 f'
A,(O Ao(] 2'[ (d=2)/2 2 t(Hh=—-Inl 1+ _ , D10
2(0)  Ax(l) 10X (1+ ux) (H== € o(1+ pe?')? (D10)

where A,(0) is the bare disorder. Introducing the Larkin

: ; with the same initial condition. The behaviors at latgare
lengthR; in the absence of a masg €0), defined as the

length scale at whick, diverges, i.e., h(|)~ee[|7|§(ﬂ)1' (D11)
! :EJ<Rc/a>2 ax_ 06) t)~1E (), (D12)
A,(0)  2); x(d-2)/2

whereR?* (1) =a€< ® was defined above. From E@9) it
One also obtains an equation that determines the Larkiis then easy to see thaj(l)=c44(0)A,(1)/A,(0)e which
length in the presence of a maRs(x) defined as the length Yields, e.9..C44(+) in the no-cusp phase as

whereA,= +o0 for a nonzerou as a function oR, and u:

4-d Caal +0)
C44(0) - & € R:(M) € (D13)

a a

R
a

—1].

J(Eec/a)z dx 2
1 x(d’z)’2(1+,ux)2_ 4—d

(D7)

One thus finds that the renormalized tilt modulus diverges as

Equation(D7) has two types of solutions, one witR,= o
d ©7) yp R one approaches the transition as

for weak disorder and another wif.<o for stronger dis-
order . As dis_cusse_d in _the text, this means that there are two Cas( +)~[Re—R¥ ()]~ % (D14)
phases: one in which disorder is strong enough to generate a _

cusp, and a second one in which the flow is cut by the presin d=4 one has, instead,

ence of the mass before a cusp can be generated. The former

corresponds to a Mott glass phase, while the second one _ In(R./a)

corresponds to a Mott insulator phase. The equation of the Caa( +%)=Cg4(0) R IR ()] (D15
transition line between these two phases is obtained by set- o

ting R.= in Eq. (D7), and readR.=R} (u). At small In all cases one hasy(«)— + < in the cusp phase. Con-
and ford<4, we find that it behaves as versely, in the no-cusp phasg,(e) remains finite. We ex-
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pect that having44() — + 0 leads to no conductivity gap, one finds that the FRG equation becomes

but that havingc,s(e) <o produces a conductivity gap. In

the cusp phase one can also expect that a feyu| is

generated? Such a term gives rise to the transverse Meiss-
ner effect. The critical fieldh.; needed to bend vortices can

be easily computed from the FRG approach.

We are now in position to estimate correlation functions
in the case of point disorder or their(i.e., 7) independent
part in the case of correlated disordee., atw,=0). One

has

(p(@p(—q)=T(q)=e"T[qe ,A(l),me].
(D16)

In the regimeqa~1, the correlation functiod’ can be

OA=eA+TA"—f(H{(A")?+A"[A—A(0)]}.
(D21)

Note that in the quantum parametdig~K.

In the absence of a mags=0, it is easy to sed that the
temperaturel, runs to exactly zero at a finite length scale
1* (To) =1 c~c(d) T, for small T, with |.=In(R./a) the Lar-
kin scale. This is because fbr | the cusp is roundéd>at
finite T, with

Ax(l) AT"(07)" 21 (D22)
~ = T X€ —,
2 T, X T,

obtaineq by pert_urbat_ion theory ih. Our strategy to obtain whereA*(¢) is the T=0 fixed-point function, angy a nu-
correlation functior® is therefore to integrate the RG equa- merical constant. Thus one can write

tions untilqaé~ 1. At this point, we can calculate the cor-

relation functionI’ perturbatively and dedudg. We obtain

~ _ A[0)=In(1/aq)]

I = . D1
(@ (aq)® *(g?+m?)? (017
Thus, ford=2, one obtains
- C
T'(q)=—g>m,
q
- Cc’
(D18

I'(q)=—q<m.
m

~ 1
(9| |nT|:l_d_§(9| |nCZ(|) (D23)

=1—d—Xe2?—. (D24)

|
This yield thatd, T~ — ye? and thus the temperature van-
ishes beyond the scal&(To) — .~ (1/x€?)To.
It is thus clear that ifu is small enough so thdt (TO)
<I%(u) introduced above, the temperature will vanish be-
fore the termf(l) starts to deviate from 1, and change the

behavior of the solutions. Thus at small nonzero temperature
the divergence ot,, is not suppressed and the transition

Note that thestatictwo point correlation functions or equiva- gyrvives.

lently the correlations for point disorder do not exhibit a

sharp transition.

It is crucial to check that the transition we found foy;
=0 (i.e., h=0) survives at finite temperatuféinite #). In
the original quantum problem this correspond«te 0 i.e.,

A more detailed analytical study can be performed by
noting that the relation between the solution at finiteand
zero mass,

A3 (a.D=h(DA o [4t()], (D25)

whether the intermediate phase exists for interactions that are
not.ir?finitely repulsivg. The RG approach can be performedyith the same functiondi(l) and t(1) as above andT,
at finite T, . Introducing the effective running temperatures =T,/[h(1)f(1)]. This confirms the above conclusions, but

d-1

Fo7, B D19
| — clzm ()v ( )
k()= (1+ ue?)~12 (D20)

will not be detailed here.

Note, finally, that the above RG procedure assumes that
the thicknesd is constant. Sincé runs to zero, this means
that 8 runs to infinity; thus the temperature is also irrelevant
in the quantum system.
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