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Competition of random and periodic potentials in interacting fermionic systems
and classical equivalents: The Mott glass
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We study the competition between a random potential and a commensurate potential on interacting fermi-
onic and bosonic systems using a variety of methods. We focus on one-dimensional interacting fermionic
systems, but higher-dimensional bosonic and fermionic extensions, as well as classical equivalents, are also
discussed. Our methods, which include the bosonization method, the replica variational method, the functional
renormalization group method, and perturbation around the atomic limit, go beyond conventional perturbative
expansions around the Luttinger liquid in one dimension. All these methods agree on the prediction in these
systems of a phase, the Mott glass, intermediate between the Anderson~compressible, with a pseudogap in the
optical conductivity! and the Mott~incompressible with a gap in the optical conductivity! insulator. The Mott
glass, which was unexpected from a perturbative renormalization-group point of view has a pseudogap in the
conductivity while remaining incompressible. Having derived the existence of a Mott glass phase in one
dimension, we show qualitatively that its existence can also be expected in higher dimensions. We discuss the
relevance of this phase to experimental systems such as disordered classical elastic systems and dirty bosons.

DOI: 10.1103/PhysRevB.64.245119 PACS number~s!: 71.10.Hf, 71.30.1h
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I. INTRODUCTION

In many systems, a competition between order and di
der has drastic consequences for the physical proper
Such effects are paramount when the pure system has a
in its excitations. This situation occurs in a variety of expe
mental systems. The most obvious one is a Mott insula
where interactions lead to gap in the charge excitatio
Low-dimensional systems also provide many experime
situations where this competition occurs. On the theoret
side, examples include disordered spin-11 chains,1 spin-1/2
ladders with nonmagnetic impurities,2 disordered Mott
insulators,6,3–5 doped spin-1 chains,7 and disordered ladde
systems.8–11 On the experimental side, examples inclu
doped spin-Peierls systems,12,13 and spin ladder systems2

However, such a phenomenon is not limited to fermio
systems. Interacting bosonic systems can also lead to a
insulating phase,14–17 with which the disorder can compete
Using the standard analogy betweend11 classical problems
andd quantum ones, it is easy to see that such a problem
encompasses elastic systems such as vortex lines in the
ence of a columnar disorder.18–20 Other pinned elastic struc
tures such as charge-density waves21 or spin-density waves
for which the competition between a commensurate subs
and disorder easily occurs, are also prime candidates.

In all these systems the disorder tends to close the ga
some cases the mechanism is simple. Indeed, when
ground state is degenerate and disorder lifts this degene
an infinitesimal disorder causes the formation of doma
and leads to a gap closure4 due to the Imry-Ma effect. How-
ever, in most cases the ground state is not degenerate. In
case a finite amount of disorder is needed to induce
closure.5 In the latter case, a complete description of the g
closure is extremely difficult, with typical analytical tech
0163-1829/2001/64~24!/245119~25!/$20.00 64 2451
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niques such as a renormalization group~RG! approach, due
to the absence of a weak-coupling fixed point at which
gap would close. To address this problem one has to ta
strong disorder and strong interactions simultaneously
question of interest is of course the nature of such
transition—in particular, how one can go from an extreme
ordered~gapped! phase to a~gapless! disordered one, which
is known to have glassy properties, at least in high eno
dimensions.

Not surprisingly, given the complexity of the problem
very little is known. In one dimension a RG study combinin
the RG’s for pure commensurate systems22,23 and an incom-
mensurate disordered system24 was performed.5 Since both
the commensurate potential~umklapp! and the disorder are
relevant operators, no controlled analysis of the transit
could be done. It was inferred from these studies that
goes from a Mott phase to a disordered phase~Anderson!
depending on which operator became relevant first. The i
of a direct Mott-Anderson transition seemed the most natu
one, and was the one usually assumed in the literature.
lutions on a special point~Luther-Emery line! also supported
such conclusions.3

In the present paper we reexamine this problem. For
mionic systems it is of course difficult to tackle the intera
tions in general, so we will mostly focus on the on
dimensional case where the interactions can be handled
the bosonization technique. This allows us to derive a ph
Hamiltonian that makes a connection between this prob
and disordered elastic problems. A study of this pha
Hamiltonian using better suited methods that capture so
nonperturbative effects—~i! an atomic limit,~ii ! a variational
method, and ~iii ! a functional renormalization-group
method—allows one to reach the consistent conclusion
the transition between the Mott insulator and the Anders
©2001 The American Physical Society19-1
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T. GIAMARCHI, P. LE DOUSSAL, AND E. ORIGNAC PHYSICAL REVIEW B64 245119
phase~that we call Anderson glass to emphasize its gla
properties! is not direct. An intermediate phase, which has
gap in some of its excitations and yet is glassy, does e
We determine the characteristics of this phase, that we
the Mott glass~MG! phase. Since the phase Hamiltoni
does describe quantum crystals and bosons in arbitrary
mensions, but interacting fermions only in one dimensi
we also give an excitonic argument directly for fermions th
indicates that this phase also exists for fermionic system
dimensions greater than 1. Some of these results were
sented in a shorter form in Ref. 25.

The plan of the paper is as follows. In Sec. II we intr
duce fermionic models for disordered Mott systems. We th
show in Sec. II B how in one dimension this model reduc
using bosonization, to a phase Hamiltonian that will be
core of our study. Section II C links this phase Hamiltoni
with the other quantum crystals and classical disordered e
tic systems for which our study is relevant. Section III
devoted to an analysis of this phase Hamiltonian, using
atomic limit ~Sec. III A!, a variational method~Sec. III B!
and a functional renormalization-group study~Sec. III C!.
We show the existence of the Mott glass phase which is b
incompressible and glassy. A reader interested only in
physical properties of the MG phase can skip these relativ
technical sections and go straight to Sec. IV, where we
amine in detail the physical properties~correlations func-
tions, transport, etc.! Since the link between the phas
Hamiltonian and the interacting fermions only exists ind
51, we directly examine the fermions in higher dimensio
in Sec. IV B, and give an atomic limit argument showing th
the physics of the Mott glass phase exists regardless of
dimension. Finally the conclusions can be found in Sec
Some technical details are pushed to the appendixes o
paper.

II. MODELS AND PHYSICAL OBSERVABLES

A. Interacting fermions

We want to study the competition between a Mott insu
tor and an Anderson insulator in a dirty fermion system
commensurate filling. The prototype model for this proble
is the extended Hubbard model with a random on-site po
tial at half-filling,

H52t (
^ i , j &s

~ci ,s
† cj ,s1H. c.!

1U(
i

ni ,↑ni ,↓1V(
^ i , j &

ninj1(
i

Wini , ~1!

where ^,& denotes a sum over nearest neighbors,s is the
spin, andni5ni↑1ni↓ is the total fermion number on sitei.
Wi is the random potential at sitei. For reasons that will
become clear we also include a nearest-neighbor repulsioV.
A general discussion of the physics of this model will
given in Sec. IV. Given the complexity of this model, let u
first examine a much simpler situation in which explicit ca
culations can be performed.
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B. Interacting fermions in dÄ1 and bosonized Hamiltonian

In one dimension, many simplifications occur. Indeed,
one dimension, it is possible to reexpress Hamiltonian~1! in
terms of the collective charge and spin excitations of
system. This procedure is by now standard in one dimens
and we refer the reader to Refs. 26–29 for more details
terms of the bosonic chargefr and spinfs collective vari-
ables,~1! becomes

H5Hr1Hs1HW , ~2!

Hr5\E dx

2p FurKr~pPr!21
ur

Kr
~]xfr!2G

1
2g3

~2pa!2E dx cosA8fr , ~3!

Hs5\E dx

2p FusKs~pPs!21
us

Ks
~]xfs!2G

1E dx
2g1'

~2pa!2
cosA8fs , ~4!

HW5E dxW~x!r~x!, ~5!

wherer(x) is the continuum limit of the charge density an
reads

r~x!52
A2]xfr

p
1

1

~2pa!
@eiA2fr22kFx cosA2fs1H.c.#

1 r̃0 cos~A8fr24kFx!. ~6!

Herer̃0 and is the renormalized amplitude, anda is a length
of the order of the lattice spacing. All microscopic intera
tions are absorbed in the Luttinger parametersur and Kr .
Spin rotation symmetry leads tog1'50 andKs51 at low
energy. For very repulsive interactions (Kr,1/3) the 4kF
density fluctuations are the most relevant, as can be se30

from Eq. ~6!. In this limit,31 spin fluctuations suppress th
2kF part of the density fluctuations with repect to the 4kF
part. Let us note that such a limit cannot be achieved wit
a pure Hubbard model with only on-site interactions. Ho
ever, it can be achieved within an extended Hubbard mo
with interactions of finite range.31–33 Thus one can study a
Hamiltonian containing only charge degrees of freedom:

H5E dx

2p
\urFKr~pPr!21

~]xfr!2

Kr
G

2
g

paE dx cosA8fr1HW . ~7!

One can perform the rescalingf5A2fr and P5Pr /A2,
which leads to the action where we have introducedv
5ur , K5Kr :
9-2
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S

\
5E dxE

0

b\

dtH 1

2pK F ~]tf!2

v
1v~]xf!2G

2
g

pa\
cos 2f1HWJ . ~8!

Hamiltonian ~7! also describes interacting one-dimension
spinlessfermions in a commensurate periodic plus rand
potential. The lattice form of such a model is

H52t(
i

~ci
†ci 111H. c.!

1(
i

@Wi1g cos~2kFia !#ci
†ci1V(

i
nini 11 , ~9!

whereWiWj5Dd i j , andkF is the Fermi wave vector of the
spinless fermions system. In the continuum Eq.~9! leads to

H52 i\vFE dx~cR
†]xcR2cL

†]xcL!1VE dxr~x!2

2gE dx~cR
†cL1cL

†cR!1E dxW~x!r~x!. ~10!

g measures the commensurate potential,V the interaction,
andD the disorder strength. Upon bosonization, Hamilton
~10! becomes Eq.~7!. One can thus see that in one dime
sion, there is no essential difference in the charge sector
tween a band insulator~with a 2kF periodic potential! and a
Mott insulator ~which can be viewed as a system in a 4kF
periodic potential17!. We stress that, in order to establish t
equivalence of the bosonized charge sector of Hamilton
~1! and the bosonized representation of Hamiltonian~9!, one
does not rely on the equivalence of charge excitations of
Hubbard model in the limitU/t→` with spinless fermions.

1. Random potential

Let us now qualitatively describe the effect of the vario
components of the random potential. The effects of disor
on a dimensionalnoninteractingsystem are well known.34,35

Disorder, however, weakly localizes all electronic sta
leading to an insulating behavior. However, contrary to w
happens in the case of a periodic potential, there is no ga
the Fermi level but a finite density of states. Also, the
conductivity does not show a gap but a behavior of the fo
s(v);v2 up to logarithmic corrections. In the presence
interactions, disorder can be treated by bosonization.
weak disorder, in the random potential one can separate
Fourier components close toq;0 ~forward scattering or ran
dom chemical potential! and q;2kF ~backward scattering!
as

W~x!5m~x!1j~x!e2ikFx1j* ~x!e2 i2kFx, ~11!

and treat them separately. Hamiltonian~7! becomes,
for g50,
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Hdis5E dx
\v
2p FK~pP!21

~]xf!2

K G2E dxm~x!
1

p
]xf~x!

1E dx
j~x!

2pa
ei2f(x)1H.c., ~12!

where m(x)m(x)5D fd(x2x8) and j(x)j* (x8)5Dbd(x
2x8) andD f5Db5W.

The random chemical potentialm can be absorbed24 in the
quadratic part of Hamiltonian~12! by performing the trans-
formation

f~x!→f~x!1
K

\vE
x

m~x!dx. ~13!

Therefore, this term has no role in Anderson localization
the interacting system, in analogy with the noninteract
case.35 The backward scatteringj causes Anderson localiza
tion. Using the renormalization-group approach36,24 it is easy
to see thatj is relevant for not too attractive interactionsK
,3/2, and becomes of order 1 at a length scale

l 05aS \2v2

16WaK2D 1/(322K)

, ~14!

identified as the localization length in the interacting syste
Beyond this lengthl 0, the phasef becomes random and a
correlations decay exponentially.

2. Disorder and commensurate potential

In the absence of disorder a commensurate potential le
to a gap opening forK,2. When disorder is added to such
commensurate phase, its various Fourier components sh
be distinguished. Both forward and backward scatterings
compete with the commensurate potential, but, as we h
seen above, they can lead to quite different types of gro
states. The most interesting case is the competition of
commensurate potential with the backward scattering.

In order to understand the competition between the co
mensurate potential and the backward scattering, one
argue that the phase physically realized will be the one w
the shortest correlation length. For the Mott phase the
evant length is the Mott lengthd, which is the inverse of the
gap, or the size of a charge soliton. Thus, ifd, l 0, one could
expect the system to be a gapped Mott insulator, whereas
l 0,d the gap would be washed out by disorder and the s
tem would be in the Anderson insulating phase. This qu
tative argument can be put on a more formal basis by writ
perturbative RG equations for the coupling constantg of the
commensurate potential and the disorder potentialW. Both
the pure commensurate case and the disordered incom
surate case lead to runaway flow where the coupling cons
(g or W) reach strong coupling~at lengthsd or l 0). A naive
extrapolation consists of assuming that the phase tha
physically realized is the one for which the coupling const
reaches strong coupling first. Based on such an extrapola
of the RG analysis,5 one thus expects a single transition b
tween a commensurate~incompressible! phase and an Ander
son ~compressible! insulator. In order to go beyond this un
9-3
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controlled extrapolation to the strong coupling of the R
results, in this paper we will use several nonperturbat
methods.

Note that a complication arises from the fact that in t
presence of an commensurate potential, a forward~back-
ward! random potential is generated by the backward~for-
ward! component, as shown in Fig. 1. So, in principle, the
two components of the disorder should not be treated s
rately. However, forK.3/2 the backward scattering is irre
evant, so one can focus on forward scattering alone. On
other hand, in the limit of strong repulsion, it can be sho
that the closure of the gap that would be induced by a pu
forward potential would occur at much stronger disord
than the one caused by a purely backward disorder~see Ap-
pendix A!. It is thus reasonable to expect that in the limit
strong repulsion, and for a backward disorder of the sa
order of magnitude as the forward disorder, the closure of
Mott gap is to be attributed to the backward component
the disorder. This allows one, in the limit of strong repulsio
to neglect the forward component of disorder altogeth
Since in the following we will consider only this case, w
will be justified in dropping the forward component. A d
tailed treatment of the forward scattering can be found
Appendix A.

C. Other quantum and classical elastic systems

Besides interacting fermions in one dimension, the ph
model describes many other physical systems both in
dimensionl and higher dimension. It is easiest to discuss
the Lagrangian path-integral formulation. To fix notations
us first generalize the imaginary time quantum action@Eq.

FIG. 1. The generation of effective backward~a! and forward
~b! scattering from forward~backward! scattering and commensu
rate potential.m andj, respectively, denote the forward and bac
ward parts of the random potential~see text!, andg the commensu-
rate potential.R and L, respectively, denote right- and left-goin
fermions with a momentum close to1kF (2kF).
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~8!# @entering into the path integral in (d11) dimensions as
*Dfe2S/\# to an arbitrary dimensiond as follows:

S
\

5E
0

b\

dtE ddxF v
2pK

~]xf!21
1

2pvK
~]tf!2

1
Vp~f~x!!

\
1

V~f~x,t!,x!

\ G , ~15!

with V(f,x)V(f8,x8)5d(x2x8)R(f2f8). The bare dis-
order correlator and bare periodic potential can be chose
R(f)5W/@2(pa)2#cos 2f and Vp(f)52g/(pa)cos(2f),
respectively, although higher harmonics, preserving thep
periodicity, do appearunder coarse graining and play a
important role~even ind51).

Before proceeding, and since theclassical limit of this
quantum action will be of importance below, let us note th
it is obtained by letting\→0, andK→0, K̄5K/\ fixed,
with b fixed, the zero temperature limitb→1` ~of interest
here! being takenat the end~this can be seen, e.g., by re
caling t5\t8 so as to keep the bound of integrations fix
as \→0). There are two types of systems which can
described by Eq.~15!: quantum elastic systems with poin
disorder and classical equivalent systems withcorrelated dis-
order as we now describe.

1. Quantum crystals with point disorder

Let us consider a quantum crystal in dimensiond in a
commensurate periodic potential plus a random potentia
this case, each particle can be described by its displacem
with respect to its equilibrium positionu(x), and the associ-
ated phonon modes. In general the displacement field haN
components, withN5d for crystals of bosons or fermions
N52 andd53 for a crystal of vortex lines, etc. AtT50, the
system can still have quantum fluctuations, leading to
quantum crystal~for a review see Ref. 37!. Examples of
quantum crystals to which our present study can apply
charge-density-wave crystals,21 electron Wigner crystal,38,39

electrons at the surface of helium (d52), stripes in oxides.
Other systems withN,d such as, e.g., a vortex lattice a
temperature low enough such that quantum fluctuations
vortices become important, can also be studied. In this ca
periodic potential also exists from the underlying crystal,
for layered superconductors when the field is applied para
to the layers.

The Hamiltonian of such system can be written as

H5H01HP1HW . ~16!

The harmonic part of the Hamiltonian of the system th
reads

H05
1

2E ddxFP iP i

2M
1Ci j

kl]xi
uk]xj

ul G , ~17!

wherex5(x1 , . . . ,xd), Ci j
kl is an elastic matrix, andP i are

the momenta. The particle density can be written as
sum40
9-4
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r~x!5(
R

d~x2R1u~R!!5r0(
G

eiG•[x2u(x)] ~18!

over all reciprocal-lattice vectorsG, and u5u1 , . . . ,ud .
This allows one to write the periodic part of the Hamiltoni
as

H5E ddx(
G

VGeiG•u(x), ~19!

and the disorder part of the Hamiltonian as

H5E ddx(
G

WG~x!eiG•u(x). ~20!

To minimize technicalities we will not explicitly study th
general case of an arbitrary lattice, but a simplerN51 ver-
sion where one keeps only one component to the displ
ment fieldu. In addition to already being a good approxim
tion in some cases~i.e., keeping only the transvers
displacement and its associated shear modulus in a
dimensional lattice! the general case is rather similar up
algebraic complications related to the tensor structure. T
a quantum crystal with point disorder and commensurate
tential can be modeled by quantum action~15! with the cor-
respondencef(x)5pu(x)/a, wherea is the lattice spacing
and 1/2a2vK̄ the elastic coefficient. We refer the reader
Refs. 38 and 39 for more detailed descriptions forN.1.

2. Equivalent classical systems with correlated disorder

A (d11)-dimensional classical elastic system in prese
of correlated disorder and periodic potential is described
temperatureTcl by its partition sum

Zcl5E Dfe2Hcl /Tcl, ~21!

Hcl

Tcl
5

1

2Tcl
F E

0

L

dzE ddxc~]xf!21c44~]zf!21Vp@f~x,z!#

1V@f~x,z!,x#G , ~22!

wheref(x,z) is a deformation field andL a thickness in the
direction of correlation. For a system with internal period
ity, such as a classical crystal or a classical charge-den
wave~CDW! crystals, one has 2f52pu/a, a being the lat-
tice spacing andu(x,z) the N51 displacement field. In this
case the disorderV(f,x) and periodic modulation~i.e., the
density for a crystal! have the same periodicity as give
above. A prominent example is the flux line lattice in sup
conductors~which hasN52) in the presence of columna
defects.c andc44, respectively, are then proportional to th
bulk ~or shear! and tilt modulus.

The two problems, i.e., Eqs.~22! and ~15!, are thus di-
rectly related via the correspondences

z5t,

L5b\,
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Tcl5\,

c445
1

pvK̄
,

c5
v

pK̄
, ~23!

with K̄5K/\. The two equivalent models can thus be stu
ied simultaneously. The classical limit of thed-dimensional
quantum model corresponds to the zero-temperature lim
the d11 equivalent classical model. Note that the bound
conditions may differ: periodic for quantum particles~anti-
periodic for fermions!, but usually free for a classical syste
~unless artificially considered on a torus!. Also note that an-
other correspondence could be defined withL5b and z
5t/\.

III. STUDY OF THE PHASE MODEL

In this section we study the phase model. Before emba
ing on the heavy machinery of the replica variational meth
~in d51) and of the functional RG method~in a d542e
expansion!, we first show how the three phases of the mo
can be obtained very simply in the followingdouble limit: ~i!
classical limit and~ii ! atomic limit. Perturbations around
those limits can then be done, and this is not expected
yield drastic changes, as confirmed by more sophistica
methods below.

A. Phase diagram from the atomic limit

In this section we focus on theclassical limit of model
~15!, i.e.,\→0, K→0 with K̄;K/\ andb fixed and further
consider the zero temperature limit by takingb→1` at the
end. We also perform the rescalingf→f/2 to simplify the
equations. As will be shown in the following, the phas
identified here survive at small enoughK.0 for d>1. In-
deed perturbations away from this limit are irrelevant in t
RG sense. As is well known, the classical version is s
nontrivial since there is still a competition between the co
mensurate potential and disorder on one hand and the el
term which produces a nontrivial classical configuration s
isfying

dS

df0~x!
52

v

4pK̄
¹x

2f0~x!1
1

pa
@g sin~f0~x!#

1v~x!cos@f0~x!2z~x!#50, ~24!

where we definej(x)* /(pa)5 iv(x)ei z(x). There may be
several solutions to this equation@apart from the global pe-
riodicity f0(x)→f0(x)12mp#, but the physically relevan
ones that we consider here are the ones with lowest en
~or actionS@f0#), which are selected as\→01.

We now consider the additional limit 1/K̄→0, called the
atomic limit because the model effectively becomes zero
mensional in this limit. In a second stage we describe
9-5
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deviations from the atomic limit. We assume everywhere t
the disorder isboundedwhich turns out to be of some im
portance, the case of Gaussian disorder being discu
below.

1. Atomic model: K̄À1Ä0

Dropping the elastic term in Eq.~24!, we are thus left to
study thed50 model Hamiltonian in the classical limit,

H1~f!52v cos~f2z!2g cos~f!, ~25!

with z a random phase distributed uniformly in@0,2p#, and
v a random variable which we choose to have abounded
support2W,v,W. In the absence of disorder the minim
are atf52pn. In the presence of disorder this model h
~up to the periodicityf→f12pn) a unique local~and glo-
bal! minimum with probability 1 for all parameters. Indee
one can rewrite

H1~f!52a cos~f2z8!, ~26!

a5Av212vg cos~z!1g2, ~27!

ae2 i z85g1ve2 i z, ~28!

and thus there is a single minimum~for a.0) at f05z8.
An interesting change of behavior occurs, however,

W5g. ForW,g the distribution ofa is bounded away from
0, with g2W,a,W1g, and another minimum is distrib
uted in the interval2fmax,z8,fmax with sin(fmax),W/g.
For W.g, a is distributed in the interval 0,a,W1g and
thus can take values arbitrarily close to zero. Simultaneou
the minimum positionz8 is now distributed in all of@0,2p#.

Thus in this simple model two things happen simul
neously as the disorder widthW increases beyondW5g.
First the distribution of the Hessian eigenvalueH9(f0)5a
extends down to 0~while it is bounded away from zero fo
weaker disorder!. Second, the probability distribution off0
changes abruptly atW.g ~while it is bounded in a subinter
val of @2p/2,p/2#) below. As will become clear below, thi
abrupt change of behavior corresponds to a direct trans
from Mott insulator to Anderson glass phases, which is
fact a multicritical point in the\50 phase diagram.

It turns out that the above form forH1(f) does not yield
a generic behavior ford50. This can easily be seen by ad
ing higher harmonics, and we will illustrate it by simp
adding a small second harmonic to the disorder. It mus
stressed that these higher harmonics are always generat
perturbation theory beyond the atomic limit~see, e.g., Sec
III C ! and that they are generically present in realistic mod
and should thus be included. Thus we now study

H2~f!52v cos~f2z!2v2 cos~2f22z2!2g cos~f!,
~29!

with z2 another random phase uniform in@0,2p# indepen-
dent ofz. One can rewrite

H2~f!5a@cosc1b cos~2c22x!#, ~30!

c5f2z8, ~31!
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b5v2 /a, x5z22z8, ~32!

and a and z8 as above. Note thatx is still uniform in
@0,2p#. Let us consider a fixedb. It is easy to see that fo
b,1/4 there is a unique minimum for any value ofx, and
the situation is similar to the one discussed above. But
soon asb.1/4, there is a value ofx for which there is a
second minimum. At b51/41 the second minimum appear
for x50. Thus interesting things happen in this model. T
phase diagram is shown in Fig. 2. Let us consider, for s
plicity, the case wherev1[v and v2 are fixed and positive
and only the phases are random~the general case is similar!.
There are three phases in this simple, exactly solva
model.

~i! For v1,g, a is bounded from below (a.g2v1) and
for small enoughv2, 1

4 (g2v1) a single minimumexists:
this corresponds to the Mott insulator~MI ! phase shown in
Figs. 3 and 4.

~ii ! For v1,g andv2. 1
4 (g2v1) two minima exist. This

corresponds to the MG phase. Just above the linev25 1
4 (g

FIG. 2. Phase diagram in the atomic limit:v1 and v2 are the
disorder strengths of the two disorder harmonics, andg is the
strength of the commensurate potential. The three different ph
are MI, which has a unique local minima with probability 1; MG
which corresponds to a nonzero probability to have two lo
minima and a zero probability that any minima lie outside of
2p/2,p/2@ ; and AG, which has a nonzero probability to have tw
local minima and a finite probability that minima are outside o
2p/2,p/2@ ~and thus that there are kinks; see the text!.

FIG. 3. Pure Mott insulator phase without disorder. A grou
state in the classical limitf0(x)50 is represented.
9-6
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COMPETITION OF RANDOM AND PERIODIC . . . PHYSICAL REVIEW B64 245119
2v1), the equilibrium positions arec5x'0, f0'z8, and
uf0u,fm,p/2 with sinfm5v1 /g. Thus, with a probability
as exactly 1, the two minima remain in the wells of t
original cosine, i.e., the probability that the second minim
is outside of the interval@2p/2,p/2# is exactly zero. This is
represented in Fig. 5.

~iii ! For v1.g, a has a finite probability to be arbitrarily
close to zero, and one easily sees that the probability
having two minima is nonzero and the probability that t
second minimum is outside of the interval@2p/2,p/2# is
nonzero. This phase corresponds to the Anderson glas
shown on Fig. 6.

FIG. 4. Mott insulator phasewith disorder. The ground state i
the classical limitf0(x) is represented. It is only slightly deforme
with respect tof0(x)50. No other local minima exists~up to the
global periodicityf0(x)→f0(x)12p). The stability eigenvalues
of the Hessian matrix atf0(x) are strictly positive, and bounde
from below by a positive numbermR

2 . There is a gap;mR
2 in the

conductivity. The compressibility is still zero, since the response
a tilt h]xf vanishes as no kinks exist.

FIG. 5. Mott glass phase: the ground state in the classical lim
f0(x) is represented. Other metastable states exist, and the sta
Hessian matrix atf0(x) spectrum extends down to 0. There is n
gap in the conductivity. The wandering of the ground state alonx
is bounded asuf0(x)2f0(x8)u is finite ~and thex averaged posi-
tions is atf50). The compressibility is still zero, since the r
sponse to a tilth]xf ~i.e., a change in chemical potential! vanishes
as no kinks exist between the well-separated original minima of
cosinef52np.
24511
of
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2. Expansion around the atomic limit, dÐ1

We can now expand around the atomic limit and consi
a large but finiteK̄. Let us considerd51 for simplicity, but
similar arguments apply to anyd>1. We must construct the
classical configuration of the Hamiltonian,

H~f!5E
x

c

2
~¹xf!22v cos@f~x!2z~x!#

2v2 cos@2f~x!22z2~x!#2g cos@f~x!#, ~33!

with c5v/pK̄. Assume again for simplicity thatv and v2
constants. Let us work in the limit of elastic coefficientc

very small@large but finiteK̄, or equivalently a long corre-
lation length for the independent random phasesz(x) and
z2(x)#. Then we can think of the model as a succession al
x of d50 models~slices! with different realizations of the
disorder, and consider, e.g., a discretized version

H~f!5(
n

c

2
~fn112fn!22v cos~fn2zn!

2v2 cos~2fn22z2,n!2g cos~f!, ~34!

wherezn andz2,n are independent from slice to slice.
Let us think of a formal perturbation in the elastic coef

cient c. For c50 we know the minima for each slice, ana
lyzed above, noted byf0

n12pkn . For c.0, one easily sees
that to lowest~naive! order inc, to construct a minimal en-
ergy configuration one must first choose which minima
successive slices to connect together. The small shifts
minima positions and the ensuing changes in minima en
gies are formally of higher order@they become relevant in
the MG and Anderson glass~AG! phases, and are discusse
below but they do not change our main argument here#. Thus
at eachx slice we must choose whether to connectf0

n to

o

lity

e

FIG. 6. Anderson glass phase: the ground state in the classica
limit f0(x) is represented. Many other metastable states exist,
the stability Hessian matrix spectrum extends down to 0. Ther
no gap in the conductivity. The wandering of the ground state al
x, uf0(x)2f0(x8)u, is unbounded. The compressibility is nonze
as the ground state reorganizes in response to a tilth]xf ~i.e., a
change in chemical potential! because kinks of energies arbitra
close to zero now exist.
9-7
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T. GIAMARCHI, P. LE DOUSSAL, AND E. ORIGNAC PHYSICAL REVIEW B64 245119
f0
n11 ~defined as the minimum in@2p,p# of the corre-

spondingd50 model! or to f0
n1162p ~which we call a

kink!. This is equivalent~formally to lowest order inc) to
choosing iteratively the one of the three minima which mi
mizes the distance minm50,1,21(uf0

n2f0
n1112mpu). The

way these minima are connected define the three phase
~i! In the MI regime defined above (v1,g, v2,(g

2v1)/4) connecting the minima is obvious, and leads to
typical ground state as represented in Fig. 4, which defi
the MI phase.

~ii ! In the MG regime (v1,g, v2.(g2v1)/4) the key
observation is that connecting the minima remainsunam-
biguousthanks to the fact that the distribution of the positi
of these minima remains confined with probability 1 with
@2fm ,fm# with fm,p/2. Indeed, as long asfm,p/2 the
distance for a kinkuf0

n2f0
n1162pu.2p22fm is always

larger than 2fm the distance to connect two minima max
mally separated. Thus the elastic energy always penalize
kinks. One thus finds that the stringf0

n will remain confined,
for small c, within the interval@2fm8 ,fm8 # with fm8 ,p/2.
This is represented in Fig. 5, and corresponds to the M
glass phase.

~iii ! In the AG regime (v1,g), in eachd50 slicef0
n can

be in any position of@2p,p#. Thus connecting the minima
becomes qualitatively~although not quantitatively! the same
problem as for a standard CDW crystal without the perio
potential. This is the Anderson glass phase.

Thus these semirigorous arguments show that the t
phases which already exist in the atomic limitdo survive
upon adding a smallc.0. This also implies that for very
small c we expect the phase boundaries to be close to
ones atc50 ~i.e., to belong to thed50 atomic phase dia
gram, Fig. 2!. In practice there are of course some limit
tions. The perturbation inc can be used, strictly, only in th
MI phase. In the MG phase perturbation inc cannot strictly
apply, as the effect ofc on f0 is of order c/a and thus
generate terms asc2/a in the energy, which dominate overc
for smalla. Thus as soon as the Hessian eigenvalues ex
to 0 perturbation theory fails. In the MG phase this ju
means that due to possible multiple minima the ground s
cannot be determined perturbatively. However, this only c
cerns the precise position offn

0 in the well, but does not
have any consequence on the fact that allfn

0 remain in a
single well. These effects, which go beyond perturbat
theory, will change the precise dependence of the bounda
as a function ofc from a naive perturbative estimate, but w
believe that the boundaries arecontinuousas c→0. The d
50 phase diagram should thus also approximately give
d51 diagram for smallc.

A useful approximation, used in Sec. III C to study t
MG/AG transition, and which consists of replacing the int
action term by a mass12 m2f2, can be checked in the atom
limit. It correctly gives the multicritical point atv5m2, since
it has a transition forW5m2 ~for W,m2 there is a unique
minimum with probability 1, while forW.m2 there is a
finite probability that there is a second minimum!. By con-
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struction this approximate model cannot distinguish betw
the MG and AG phases, and is only used to describe
MI/MG transition.

One must emphasize that none of the transitions in
d50 model in Fig. 2 survives if the local distribution o
disorder is Gaussian. Indeed, the probability of a sec
minimum is always nonzero, although it can be expon
tially small, resulting in a sharp crossover behavior rath
than transitions. However, it is not so clear whether the sa
applies in higher dimensions. We know that the gap is rob
to small bounded disorder. However for unbounded disor
formation of terraces if sizeL become energetically favor
able in rare regions with exponentially small probabilit
This leads to a gapless spectrum, with an exponentially~in
d.1) small density of states at low energy. Note that
though the gap itself can no longer be used as an order
rameter, one can still clearly define a phase transition
tween MI and MG phases, since in the MG phase
spectrum is expected to become algebraic.

To conclude this section, we have established that
bounded disorder three phases~MI, MG, and AG! already
exist in the atomic classical limit. Previous attempts at a
lyzing the classical limit41 assumed that, beyond a lengthL0,
the distribution of the phase becomes random. As we fi
here, this is incorrect for weak disorder, and the phase
stead has a narrow distribution aroundf50. Thus these ar-
guments missed the existence of the Mott glass phase,
the correlation lengthL0 identified in Ref. 41 is not the cor
rect one. In order to obtain more detailed information on
three phases whend51 and higher we now turn to mor
sophisticated methods.

B. Replica variational method

Let us now use a Gaussian variational method42,20 to
study the action originating from Hamiltonian~12!. In this
section we only retain the backward scattering, which is
one leading to localization. The effect of forward scatteri
is analyzed in Appendix A. Let us recall that backward sc
tering is generated even if only commensurate and forw
scatterings are present.

1. Derivation of the variational equations

Let us first briefly recall the principle of the method w
use. The partition function of a disordered quantum system

Z5E d@f#e2S[f]/\, ~35!

whereS@f# is the Euclidean action that depends explici
on the quenched disorder. In physical problems, one usu
needs the average of the free energy

F52
1

b
ln Z, ~36!

where the overbar denotes a disorder average. This ave
can be done via a replica trick:43
9-8
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COMPETITION OF RANDOM AND PERIODIC . . . PHYSICAL REVIEW B64 245119
ln Z5 lim
n→0

Zn21

n
. ~37!

One has, for integern,

Z̄n5E )
a51

n

d@fa#e2Sa[fa]/\5E )
a51

n

d@fa#e2Srep.[fa]/\,

~38!

whereSrep. is a disorder-free quantity that depends on thn
fields fa . In the end, one has traded the disorder averag
a analytical continuation from an integer number of fieldsn
to n50. In our particular case, after having averaged o
disorder action~8! leads to the replicated action

Srep.

\
5(

a
F E dxdt

2pK S v~]xfa!21
~]tfa!2

v D
2

g

pa\E dxdt cos 2faG
2

W

~2pa\!2 (
a,b

E dxE
0

b

dtE
0

b

dt8 cos$2@fa~x,t!

2fb~x,t8!#%, ~39!

in which one has to take the limitn→0. One way to perform
this limit is to use a Gaussian variational method~GVM!
initially introduced to study classical disordered syste
such as random heteropolymers,44 random manifolds,42 and
vortex lattices.40,20 This ansatz has been extended to tr
correlated disorder, and thus to apply to quantum system
well.20 Since this method has been shown to describe wi
good accuracy both the pure commensurate phase and
Anderson insulator phase on can also expect to obtain g
results in this more complicated situation.

The ansatz consists of finding the ‘‘best’’ quadratic acti

S05
1

2b\ (
vn

E dq

2p
fa~q,vn!Gab

21~q,vn!fb~q,vn!,

~40!

with

vGab
21~q,v!5

~~vq!21v2!

pK
dab2sab~q,v!, ~41!

i.e., the one that minimizes the trial free energy:

Fvar5F01
1

b\
^Srep.2S0&S0

~42!

^•••&S0
designates the averages performed with respec

the Gaussian action, andF0 is the free energy associate
with Eq. ~40!, i.e.,

F05E dq

2p

1

b (
n

~ ln G!aa~q,vn!. ~43!

In this method the full Green’s functionsG(q,v) are the
variational parameters. A derivation of the saddle-point eq
24511
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tions is performed in Appendix B. IntroducingGc(q,vn)
5(bGab(q,vn) and Bab(x,t)5Gaa(x,t)2Gab(x,t) and
parametrizing thesen3n hierarchical matrices using Parisi
ansatz @GaÞb→G(u), Gaa→G̃, and similarly for any
quantity; see Appendix B#, we obtain the saddle-poin
equations~B6!:

Gc
21~q,vn!5

\

pK S vq21
vn

2

v D
1

4g

pa
exp@22\G̃~x50,t50!#

1
2W

\~pa!2E0

b\

dt@12cos~vnt!#

3Fexp@24\B̃~x50,t!#

2E
0

1

du exp~24\B~u!!G , ~44!

with

s~q,vn ,u!5
2Wv

~pa!2
b exp~2\4B~u!!dvn,0 . ~45!

In the absence of the commensurate potential, Eq.~44! is
known to lead to a one-step replica symmetry-broken so
tion describing an Anderson localized phase,20 the replica-
symmetric solution being unstable. On the other hand, in
absence of disorder the commensurate phase~i.e., the Mott
insulator phase! is obviously replica symmetric. Therefore
we will search first for a replica symmetric solution that w
expect to be associated with a Mott insulating phase in S
III B 2. Above a certain disorder this solution will becom
unstable, and one has to turn to replica-symmetry-bro
solutions. As we will see in Sec. III B 3, in the presence o
commensurate term, besides the saddle-point solution co
sponding to the Anderson insulator phase there is room f
third saddle-point solution corresponding to the Mott gla
phase.

2. Gapped replica-symmetric solution: Mott Insulator

For the replica-symmetric solution, G(q,vn ,u)
5G(q,vn). The saddle-point equations then read

vGc
21~q,vn!5

\

pK
@~vq!21vn

2#1m21I ~vn!, ~46!

G~q,vn ,u!5
2WbK2

~\a!2

e24\Gc(0)dvn,0

@~vq!21pK̄m2#2
, ~47!

m25
4gv
pa

e22\G̃(0,0), ~48!
9-9
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I ~vn!5
2Wv

~pa!2\
e24\Gc(0,0)E

0

b\

dt~e4\Gc(0,t)21!

3@12cos~vnt!#. ~49!

In the general case, Eqs.~46!–~49! can only be solved nu
merically. However, in the limits\→0 and K→0, K̄
5K/\ fixed, it is possible to solve these equations anal
cally. This is due to the fact that in that limitm2 has no
dependence onI (vn), so thatm is given by the simple equa
tion

m25
4gv
pa

expF2
WK̄1/2

a2p3/2v1/2m3G . ~50!

Self-consistent equation~50! always has the trivial solu
tion m50. Let us determine under which conditions it c
also have a nontrivial solution withmÞ0. In order to obtain
the answer in physical terms, it is convenient to reexpress
quantities as a function of the physical lengthsl 0 andd:

1

l 0
3

5
16WK̄2

~av !2
, ~51!

1

d2
5

4gK̄

~av !
. ~52!

These correspond, respectively, to the localization~pinning!
length in the absence of commensurability, and to the sol
size of the pure gap phase. We introduce the length

j25
v2

~pK̄m2!
, ~53!

which, as we will see, is the correlation length in the pr
ence of both the commensurate potential and the disor
One can then rewrite Eq.~50! as:

1

j2
5

1

d2
expF2

1

16S j

l 0
D 3G . ~54!

For l 0 /d. 1
2 (3e/4)1/3, this equation admits two solutions.

can be seen, by considering the limit of large disorder, t

solutions with l 0 /j, 1
2 ( 3

4 )1/3 are spurious. Thus, forl 0 /d
. 1

2 (3e/4)1/3, we have a unique solution of Eq.~54!. For
l 0 /d, 1

2 (3e/4)1/3, there is no solution, which means that t
replica-symmetric solution with a mass is unstable. Sinc
is known20 that a replica symmetric phase with no mass
unphysical for\→0, this means that, for large enough d
order, we obtain a breaking of replica symmetry.

Let us now examine the equation forI (vn). An expansion
around\50 in Eq. ~49! gives the self-consistent equatio
for I (vn):

I ~vn!5
8Wv

~pa!2E0

b\

Gc~x50,t!@12cos~vnt!#dt.

~55!
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Going to Fourier space and performing aq integration leads
to to the final form

I ~vn!5
4WvK̄

pa2 F 1

ApK̄m
2

1

Avn
21pK̄@m21I ~vn!#

G .

~56!

Obviously,

I ~vn!5m2f S vn

ApK̄m
D , ~57!

wheref satisfies the equations

f ~x!5lF12
1

A11x21 f ~x!
G ~58!

and

l5
4WK̄1/2v

p3/2a2m3
5

1

4 S j

l 0
D 3

. ~59!

As can be seen from Eq.~46!, m defines the correlation
lengthj in the presence ofboth the commensurate and ran
dom potentials.

OncemÞ0 is known from Eq.~50!, l and thereforef and
I (vn) are entirely determined. The above equations th
completely fix all the parameters of the gapped repli
symmetric~RS! phase.

For l,2, there is a physical solution of Eq.~58! such that
limx→6` f (x)511l and for x!1, f (x)511ax21o(x2)
with a5l/(22l). The corresponding behavior off (x) as a
function of v is shown in Fig. 7 forl51. For l52, for x
!1, f (x)511(2/A3)uxu1O(x2) and limx→` f (x)53. The
corresponding graph off (x) is also shown in Fig. 7. Forl
.2 Eq. ~58! has no physical solution. Thus,l52 is the
boundary for the gapped RS phase. Puttingl52 into Eq.

~59! leads tol 0 /j5 1
2 . 1

2 ( 3
4 )1/3. Reinjecting this value into

Eq. ~54! gives

l 0

d
5

1

2
e1/4. ~60!

This point is in the domain where Eq.~54! still has solutions.
Therefore, as disorder increases the system attains the

FIG. 7. The functionf as a function ofv for l51 ~full curve!
and 2~dashed curve!. Note that asl52, f starts linearly with fre-
quency, contrary tol,2, for which f is quadratic at smallv.
9-10
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COMPETITION OF RANDOM AND PERIODIC . . . PHYSICAL REVIEW B64 245119
wherel52 beforereaching the point wherem50. Beyond
the pointl52 the replica-symmetric solution becomes u
stable. This leads us to consider a replica-symmetry-brea
solution of Eq.~44! for l 0 /d,e1/4/2, allowing for a nonzero
m. The corresponding phase will thus not be the sim
Anderson-localized phase expected from the strong-coup
RG argument.62

3. Replica-symmetry-broken solution

In Sec. III B 2, we have seen that in the limit\→0 a
replica-symmetric solution of Eqs.~44! can exist forl<2
but is unstable forl.2. In this section, we consider in th
limit \→0 the one-step replica-symmetry-breaking~RSB!
solution of Eqs.~44!. Such a RSB solution should be val
for l.2, and is known to correctly describe the simp
Anderson insulating phase for the simple disordered cas20

Compared to the case in the absence of commensurate
tential, we have to allow, in our RSB solution, form2Þ0.
However, contrary to the RS case, a RSB solution withm2

50 is perfectly possible,20 and corresponds to the case
which the commensurate potential is completely washed
by the random potential.

Two scenarios could thus bea priori possible. Either one
obtains a RSB solution withm250 similar to the solution of
Ref. 20 as soon as the replica-symmetric solution beco
unstable, or there exists an intermediate regime with bo
RSB selection andm2Þ0. The first case would correspon
to the simple scenario, suggested from extrapolating the
of a direct transition between the commensurate phase
the Anderson insulator. On the other hand the behavior in
RS solution strongly suggests the existence of an interm
ate phase: the Mott glass phase. Indeed in the RS phas
optical gap closes, leading to a conductivity very similar
the simple Anderson conductivity, whereas the compress
ity remains zero. This suggests that all effects of the co
mensurate potential have not yet disappeared, and tha
system is not in a simple Anderson regime. As we will s
this is the second possibility that is obtained, leading thu
a much richer physical behavior than could have be
guessed from the RG extrapolations.

The saddle point equations~44! are first rewritten as

vGc
21~q,vn!5

1

pK̄
@~vq!21vn

2#1m2

1S1~12dn,0!1I ~vn!, ~61!

I ~vn!5
2Wv

~pa!2\
E

0

b\

@e24\B̃(t)2e24\B(u.uc)#

3@12cos~vnt!#dt, ~62!

S15uc@s~u.uc!2s~u,uc!#5@s#~u.uc!, ~63!

s~u!5
2Wv

~pa!2
e2\4B(u)bdn,0 , ~64!
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m25
4gv
pa

e24\G̃(0), ~65!

where we look for a one step RSB solution, as is adapte
d5111. The parametersm, S1 and the breakpointuc have
to be determined self-consistently. The full solution is giv
in Appendix C. The parameteruc is determined from the
marginality of the replicon condition, which has bee
shown20 to be the correct condition to impose. This leads
I (vn)}uvnu. One can check~see Appendix C and Sec
III B 2 ! that this condition is also satisfied byI (vn) at the
limit of stability of the RS solution. The two other param
etersm andS1 depend on the ratiod/ l 0.

As is shown in Appendix C ford/ l 0.1.86, one hasm
50 andS1Þ0. This solution is thus similar to the one of
disordered system without the commensurate potential,
corresponds to an Anderson glass~insulator!. Such a phase
has no gap in the optical conductivity.20 Since there is no
mass in propagator~61! for vn50, the compressibility is
finite.

On the other hand ford/ l 0,1.86 the solution has a finite
mass. This regime is thus different from the simple Anders
insulator. The physical properties~conductivity, phason den
sity of states, compressibility! will be discussed at length in
Sec. IV. An important result of Sec. IV is that because of t
presence of the mass the system is still incompressible w
having the conductivity of an Anderson insulator phase. T
is the Mott glass phase,25 which shares some properties
the Mott insulator~incompressibility! phase with those of a
glassy phase~breaking of replica symmetry!.

Therefore, the physical picture is the following: ford/ l 0
,2e21/4, one has a replica-symmetric solution with a gap
the conductivity, the Mott insulator phase; for 2e21/4,d/ l 0
,1.86, one has a RSB solution without a gap in the cond
tivity but zero compressibility, the Mott Glass phase; a
finally, for d/ l 0.1.86, there is a finite compressibility and n
gap in the conductivity, the anderson insulator phase.
other words, one recovers the solution of Ref. 20 not as s
asd/ l 0.2e21/4, as we would expect from extrapolations
the perturbatived51 renormalization-group calculations
but only at the higher valued/ l 0.1.86. This is due to the
formation of an intermediate phase, which is both inco
pressible but without a gap in the conductivity. This interm
diate phase being an intermediate coupling one, the failur
the perturbative renormalization-group approach to pre
its existence is not a surprise. In a forthcoming section,
will discuss its properties in detail. The phase diagram a
function of d/ l 0 is represented in Fig. 8. Let us remark th
all transitions appear to be first order within the GVM fo
malism.

C. Mott insulator to Mott glass transition: Functional
renormalization-group study and classical equivalent

In this section we study phase model~15! in an arbitrary
dimensiond using a renormalization-group method perturb
tively controlled ind542e and small\. This provides use-
ful information on interacting fermions with disorder by co
tinuation down tod51 ~as we do not expect drastic chang
9-11
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in this model down tod51 for small \). We will perform
the analysis in the notations of the classical equival
model, but also give some conclusions in terms of the
rameters of the quantum model, via relations~23!.

As is well known for classical problems such as ma
folds in random media,45–47 the functional renormalization
group~FRG! method provides an alternative to the Gauss
variational method. The FRG method accurately treats
nonlinearities, and does not use replica symmetry break
When the two methods are supposed to be exact and
compared, they do agree, as found for the random mani
problem48 for N→`, and generally give consisten
physics.40 Here we will use the FRG method as a check
the correctness of the prediction by the GVM of the M
glass phase, and as a way to obtain additional detailed in
mation on the Mott insulator to Mott glass phase transit
~see Fig. 9!.

Although this is not the route we follow here one c
apply the FRG method directly to the model of Eqs.~15!–
~22!. This amounts to generalizing to correlated disorder
study of Refs. 49–51 made for the case of uncorrelated
order. This shows that a commensurate potential beco

FIG. 8. The phase diagram of a commensurate system
backward scattering only as a function ofd/ l 0 ~disorder increases
when d/ l 0 increases!. At weak disorder,d/ l 0!1, one obtains an
incompressible phase with a gap in the conductivity i.e., a M
Insulator. For strong disorder,d/ l 0@1, one has a compressibl
phase with a conductivity that behaves ass(v)}v2, i.e., an Ander-
son glass. The surprising feature of this phase diagram is the
pearance of an intermediate incompressible phase~like the Mott
insulator! having the same conductivity as an Anderson glass
d/ l 0;1.

FIG. 9. Phase diagram of the effective model from the FR
phase, atT50 (\50). Rc;(1/W)1/(42d) is the Larkin length~lo-
calization length!, and parametrizes disorder strength. These pha
and transition survive atT.0 (\.0).
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relevant, and may lead to a description of the transition
tween a gapless Anderson glass phase to a gapped phas
this route would not give us the information we want abo
the nature of the gapped phase, i.e., it cannot distingu
between the Mott glass and Mott insulator phase. Indeed,
approach of Refs. 49–51 fails to describe the phase wh
the commensurate potential is relevant since the F
method then flows to strong coupling.

Thus, in order to test for the existence of a Mott gla
phase, we consider from the start a situation where the c
mensurate potential is relevant and replace the full mo
@Eqs. ~15!–~22!# by an effective model in which the sin
Gordon term is replaced by a quadratic mass term:

Vp~f!→ m2

2
f2. ~66!

This should be a reasonable approximation when the
Gordon term is relevant, and is in the spirit of the se
consistent harmonic approximation. Our approximati
amounts to neglecting some soliton excitations by giv
them large energy, and to neglecting the renormalization
the gap by disorder. This simplified model has the merit
being amenable to aperturbatively controlled study ind
542e. We will show that it does exhibit a phase transitio
at Tcl50 (\50) which survives atTcl.0 (\.0), and can
be identified with the Mott insulator to Mott glass pha
transition. This model thus allows us to study the formati
of the Mott glass phase.

We have obtained the FRG equations for the effect
model @Eq. ~66!#. They can be derived by integrating ou
iteratively short wavelength modes, extending.46,47,52–54They
are obtained in terms of the running dimensionless disor
D̃(f,l )52R̃9(f,l ), the running dimensionless temperatu
T̃l;T, both defined in Appendix D, and the tilt modulu
c44( l ). These RG equations read

] lD̃~f!5eD̃~f!1T̃lD̃9~f!

2 f ~ l !$D̃9~f!@D̃~0!2D̃~f!#2D̃8~f!2%,

~67!

] lc4452 f ~ l !D̃9~0!c44 ~68!

with e542d, settingc51 ~asc is not renormalized!,

f ~ l !5
1

~11me2l !2
~69!

comes from the integration of the high momentum mod
Herem5(ma)2. These FRG equations are analyzed in A
pendix D. Here we describe only the main results.

At T50 ~i.e., \→0 for the quantum problem! we find
that there is a phase transition. One can measure the stre
of the bare disorder using the Larkin lengthRc

;@1/D̃ l 509 (f50)#1/(42d) of the problem without commensu
rate potential~corresponding to the localization length fo
thed51 fermion problem!. Then we find that, for a givenm,
there is a transition at a critical disorder strength

th

tt

p-

r

es
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Rc[S 1

D̃ l 509 ~f50!
D 1/(42d)

5C
1

m
, ~70!

whereC is a constant. The two phases are the following:~i!
For strong disorderRc,C(1/m), we find that D2( l )5

2D̃9(0,l ), the fourth derivative of the renormalized disord
correlatorRl(u), becomes infinite at a finite scaleRc* (m),
i.e., the disorder correlator becomes nonanalytic and de
ops a cusp singularity at a scaleRc* (m). For the problem in
the absence of a mass the cusp generation at the La
length Rc* (m50)5Rc is well known to be associated wit
the existence of many metastable states beyondRc . This
cusp generation is associated with the apparition of the tr
verse Meissner effect in vortex lattices pinned by colum
disorder52 ~and to the appearance of RSB in the GV
treatment20!. As will be discussed below, this phase corr
sponds to theMott glassphase,~ii ! For weak disorderRc
.C(1/m), the flow is cut by the presence of the mass bef
a cusp can be generated. This phase does not exhibit m
stable states and corresponds to theMott insulatorphase.

Since the mass can be chosen arbitrarily small, the st
is thus perturbative in disorder ind542e for model~66!. It
is interesting to note that thisT50 transition exists both for
correlated and uncorrelated disorders. However, this tra
tion is stable to finite temperature only for correlated dis
der. Indeed, for pointlike disorder the temperature rounds
cusp,55,56which implies that there can exist no sharp distin
tion between the two phases at finite temperature. In a
tion, the quadratic part of the Hamiltonian is not renorm
ized by disorder, and thus even atT50 there cannot be an
signature of the transition on two-point correlation functio
of f. Thus it is possible that the transition observed in R
57 is an artifact of the method used. On the contrary,
correlated disorder, there is a genuine transition,
„because of the lack of rotational invariance@in (x,t)#, the
existence of a cusp, and the transition directly affects
correlated disorder…, two-point correlation functions.

The FRG approach gives immediate information on
renormalized tilt modulus@see Eq. ~23!# c44

R 5c44(1`).
Since this is also the coefficient ofv2 in the Green function
^ff&, one can infer from it that ifc44 is finite the Green
function is likely to remain analytic, and thusthat there is a
gap in the conductivity. If c44 becomes infinite then the
Green function is not analytic and no gap should exist in
conductivity. The FRG approach gives that

c44~1`!

c44~0!
5

S Rc

a D e

21

S Rc

a D e

2S Rc* ~m!

a D e , ~71!

and thus we find that phase~i! above, which corresponds to
cusp (c44

R 51`), can be identified with a Mott glass phas
while phase~ii ! above, which corresponds to no cusp (c44

R

,1`), can be identified with a Mott insulator phase. T
gap itself can be estimated as
24511
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D5m/Ac44
R ;S Rc2

C

mD ; ~72!

thus it vanishes linearlyD;@Rc2(C/m)# at the MI to MG
phase transition. Correlation functions are also estimate
Appendix D.

One of the most crucial test is to show that the abo
MI-MG phase transition survives to quantum fluctuations\
.0 ~thermal fluctuationsT.0 for the d11 classical
model!. This is the case, and the calculation is detailed
Appendix D. There is no doubt that the MI phase survives
quantum fluctuations; however, it is less obvious that the M
phase would survive. Indeed, the cusp is rounded by
effective temperature variableT̃l;T/Ac44( l ). However, the
key point is thatc44( l ) becomes very large as soon as t
second derivativeD2 grows, and as a consequence the eff
tive temperatureT̃ renormalizes to exactly zeroat a finite
scale ~as it does in the absence of a mass!. Thus the Mott
glass phase survives at a finite temperature. A similar p
nomenon was also found recently in the dynamics of cla
cal periodic systems with correlated disorder.53

To conclude this section, the FRG approach shows, wit
a d542e analysis of the effective model with mass, that
transition exists at largeK in the quantum problem~and at
low temperature in the equivalent classical problem! between
a MI phase at weak disorder with analytic Green function,
metastable states and a gap in the conductivity and a M
Glass phase with metastable states, no gap in the condu
ity at stronger disorder. This allows one to predict that t
conductivity gap should close linearly at the transition~at
least in the limit of smallK→0).

IV. PHYSICAL PROPERTIES, RESULTS IN dÄ1,
AND EXTENSIONS TO HIGHER DIMENSIONS

A. dÄ1

1. Compressibility, density of states, and correlation functions

In this section, we define and calculate equilibrium th
modynamic quantities such as the compressibility or the p
son density of states of the system. One of the most strik
differences between the Anderson insulator~AI ! and ~MI !
phases is that the former is compressible whereas the latt
incompressible. The compressibility is given, in any dime
sion, by

x~q,vn!5
1

\E ddxE
0

b\

dte2 i (qx2vnt)

3ŠTt@n~x,t!2^n~x,t!&#@n~0,0!2^n~0,0!&#‹,

~73!

wheren is the density. This leads to the average static co
pressibilityxs5 limq→0@ limv→0x(q,v)#. In d51, using the
bosonic expression for the density@Eq. ~73!# leads to

xs5 lim
q→0

lim
v→0

q2Gc~q,v!, ~74!

where
9-13
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Gc~q,v!5^fq,vf2q,2v&2^fq,v&^f2q,2v&. ~75!

Another thermodynamic quantity of interest is the phas
density of states:

r~v!52
\

pv
Im@ ivnG̃~x,x,ivn!#u ivn→v1 i01

. ~76!

In the K̄→0 limit, Eq. ~76! describes the phason densi
of states of a classical charge-density wave pinned byboth
the commensurate and random potentials.41,58 Using
Eq. ~46!, one obtains the following expression for the dens
of statesr:

r~v!52
K

2
Im F ivn

Avn
21pK̄~m21I ~vn!!

G
ivn→v1 i01

~77!

Various correlation functions can also be computed.
particular the on-site~CDW! and bond~BOW! charge den-
sity. For spinless fermions these read

xCDW5^~ci
†ci !~cj

†cj !&, ~78!

xBOW5^~ci 11
† ci1H.c.!~cj 11

† cj1H.c.!&. ~79!

In the boson representation the 2kF part of these correlation
function are related to the cos(2f) and sin(2f) correlation
functions:

xCDW}~21!x^cos@2f~x!#cos@2f~0!#&5K i~x!, ~80!

xBOW}~21!x^sin@2f~x!#sin@2f~0!#&5K'~x!. ~81!

Let us now compute these various quantities using the res
of the variational method presented in Sec. III B for each
the three phases.

~a! Mott insulator phase. This corresponds to the R
phase obtained at weak disorder (d/ l 0,2e21/4). Because of
the nonzerom the whole MI phase is thus incompressib
@see Eq.~46!#. The MI phase is thus the direct continuatio
of the nondisordered commensurate phase. In the MI ph
the disorder is too weak to be able to overcome the gap

In the replica-symmetric case,r(v) can be expressed i
terms of the functionf defined by Eq.~58! in the form

r~v!52
K

2
ImS x

A11 f ~2 ix !2x2D 5
K

2l
x Im f ~2 ix !.

~82!

Where x5v/v* and v* 5v/j. To perform the analytica
continuation in Eq.~82!, we transform Eq.~58! into a cubic
equation forf with coefficients depending onx2 andl. Al-
though this transformation adds two spurious solutions
do not satisfyf (0)50, it proves extremely useful, as pe
forming an analytical continuation amounts to solving t
cubic equation forf with x2→2x2. Equation~82! implies
that the phason density of states in nonzero only whenf has
a nonzero imaginary part. Forl,2, f (2 ix) is real for
24511
n

n

lts
f

e,

at

x,xc5A11l23S l

2D 2/3

. ~83!

As a consequence, in the MI phase, there is a gap in
phason density of states forv,vc5v* xc :

r~v!50, v,vc . ~84!

The physical interpretation of such a form for the density
states is obvious: no states are available below the gap. T
in the Gaussian variational framework, there are no disc
two particle states~i.e., excitons! below the gap. Forv
→vc10 we obtainr(v);(v2vc)

1/2. At high frequencies,
we obtainr(v)→K/2, i.e., the density of state goes to
constant. A plot ofr(v) is shown in Fig. 10.

In the replica framework, we have the following gener
expressions forK i andK' @see Eqs.~A12! and ~A13!#:

K i5e2\2G̃(0)cosh@\2G̃~x!#, ~85!

K'5e2\2G̃(0)sinh@\2G̃~x!#. ~86!

In the replica-symmetric case, for\→0 andK̄5K/\ fixed,
one finds

\G̃~x!5
j3

32l 0
3 S 11

uxu
j De2uxu/j. ~87!

The resulting correlation functions are

K i~x!5e2j3/16l 0
3
coshF j3

16l 0
3 S 11

uxu
j De2uxu/jG , ~88!

K'~x!5e2j3/16l 0
3
sinhF j3

16l 0
3 S 11

uxu
j De2uxu/jG . ~89!

For x→`, one hasK i(x)→e2j3/16l 0
3
. This implies that

^cos 2f&5d/j. Therefore, in the Mott insulator phase
charge-density-wave order is still present, but the orde
reduced with respect to the pure system in which one wo

FIG. 10. The behavior of the density of states as a function ov
for l51/2, 1, and 2. Forl51, and 1/2, there is a gap in the densi
of states forv,vc(l). vc decreases with increasingl. For l
52, the gap disappears, and the density of states behave
r(v);v2, i.e., there is a pseudogap. The pseudogap persists in
whole RSB phase. Note that the maximum in the density of sta
decreases asv increases, indicating a transfer of spectral weight
low frequencies.
9-14
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have^cos 2f&51. Even forx→0, the CDW order of the pure
system is not recovered. Another interesting property is
some BOW order is also induced at short distances, altho
BOW order is not present at long distance. The presenc
BOW order is due to the random phase inf induced by
disorder. When the random phase is of orderp/2, this im-
plies local BOW order. However, the positions at whi
BOW order is obtained are not correlated with each othe
the system. This explains the exponential decay of BO
order.

(b) Anderson glass and Mott glass phase. For d/ l 0
.1.86 the system is in the AG phase. In this phase, using
~74! and the expression forGc , one finds that the compress
ibility is identical to the one of the pure systemxs5K̄/p2u.
Such a result is due to the fact that the Gaussian variati
method does not take into account the renormalization oK
by disorder. Nevertheless, the replica variational approxim
tion correctly gives a nonzero compressibility for an And
son glass. We stress that these results are valid independ
of the presence and absence20 of the commensurate potentia

In the intermediate MG phase, with both RSB and a g
that is obtained for 2e21/4,d/ l 0,1.86, mÞ0, we obtain a
zero compressibility. One would therefore be tempted to
sociate this phase with a Mott insulator. However, the for
coming calculation of the conductivity in Sec. IV A 2 wi
show that this intermediate phase isnot a Mott Insulator.

In the replica-symmetry-breaking case, formulas~77! and
~82! remain valid. However, the functionf that must be used
in Eq. ~82! corresponds tol52 in Eq.~58!. This means that
as long as there is a RSB solution of the variational eq
tions, there is a pseudogap in the phason density of st
The behavior of the density of states as a function ofv is
represented in Fig. 10.

In the case with broken replica symmetry, one has

K i~x!5e22\^G(0)&cosh@2\^G~x!&#, ~90!

K'~x!5e22\^G(0)&sinh@2\^G~x!&#, ~91!

where we have taken into account the fact that as\→0,
\Gc(x)→0, and^G(x)&5*0

1duG(x,u). Using one-step ex-
pressions, we obtain

\^G~x!&5
ew

m3~w!
F S 11

muxu
2l 0

De2muxu/~2l 0!G
1

12ew

2~12m2~w!!
Fe2muxu/2l 0

m
2e2uxu/~2l 0!G .

~92!

We see that in the Mott glass phase the CDW order is
present, in analogy with the Mott insulator phase. Suc
behavior is in agreement with the predictions from t
atomic limit of Sec. III A. This time, ^cos 2f&5exp
$2ef/@2m3(f)#%. When the system becomes an Anderson
sulator phase,̂cos 2f&50, which seems to indicate a firs
order transition. Such a first-order transition is likely to
only an artifact of the variational approach. Some subdo
nant BOW correlations are also present in the system. T
decay exponentially withx, and sincem(f),1, the correla-
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tion length of BOW and CDW fluctuations is 2l 0 /m(w). It is
interesting to note that at the Mott insulator–Mott gla
phase transition, the correlation length is continuous. Ho
ever, there could be a slope discontinuity which would
characteristic of a second order phase transition.

2. Transport properties

To differentiate between Mott and Anderson glass phas
a crucial physical quantity is the ac conductivity. In the Mo
insulator phase, the ac conductivity is zero for frequenc
smaller than the gap whereas in the Anderson glass phas
ac conductivity behaves ass(v)5v2(ln v)2 in one
dimension.35,34 Within the GVM, in order to compute the
conductivity it is sufficient to knowm, S1, and the analytical
continuation ofI (vn) to real frequencies. Using the Kub
formula, it is straightforward to show20 that

s~v!5
vK̄

p

2 iv

pK̄@m21I ~2 iv!#2v2
, ~93!

whereI ( iv) represents the analytical continuation ofI (vn)
to real frequencies. Introducing the functionf, defined in Eq.
~58!, one has

s~v!5
vK̄

pv*

ix

~11 f ~2 ix !2x2!
, ~94!

wherex5v/v* . Similar to the density of states, the beha
ior of the conductivity is therefore controlled byl
5 1

4 (j/ l 0)3. One can explicitly check that Eq.~93! satisfies
the sum rule

E
0

`

dvs~v!5
vK̄

p
. ~95!

(a) Mott insulator phase. Let us begin with the conduc
tivity for l,2, i.e., in the Mott insulator phase. It is easi
seen that in order to obtain a nonzero real part of the c
ductivity one must haveIf ( ix)Þ0. As a consequence, th
real part of the frequency dependent conductivity is zero
v,vc wherevc is the threshold below which the two pa
ticle density of states is zero@see Eq.~84!#. Physically, this
means that there are no available two-particle excitation
absorb energy ifv,vc i.e., at energies below the Mott gap
For x.xc (v.vc), the analytical continuation off to imagi-
nary x has a nonzero imaginary part that leads to a nonz
real part of the frequency dependent conductivity. Forx close
to the threshold,

Im f ~x!5
2

A3
S l

2D 1/3

Ax22xc
2. ~96!

As a consequence, forv.vc and close to the threshold, th
real part of the conductivity behaves as Res(v);(v
2vc)

1/2 i.e., it is controlled by the available two-particl
density of states. At large frequency, it can be shown t
Res(v);l/x4. This behavior can be recovered by a simp
perturbative calculation in disorder strength. Obviously,
9-15
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conductivity shows a maximum at a frequencyvm
5v* xm(l). The typical behavior of the real part of the co
ductivity for l51 is represented in Fig. 11. The behavior
the threshold frequencyvc a function ofl is represented in
Fig. 12.

(b) Mott glass and Anderson glass phases. For l→2 the
gap goes to zero as 22l. Quite remarkably, forl52, there
is no gap in the real part of the conductivity although t
system isstill incompressible. The real part of the condu
tivity goes to zero asv→0 as Res(v);v2 . The behavior
of the conductivity forl52 is represented in Fig. 13. As fo
l,2 whenx→`, the real part of the conductivity decreas
asl/x4. In fact, this form of the conductivity is the one th
is obtained in the Anderson glass phase in theabsenceof any
commensurate potential.20 Moreover, in the GVM frame-
work, the Anderson glass is a RSB phase.20 It can be easily
seen that for alll>2, i.e., in all the RSB phases, the scal
conductivity is equal to the one of the Anderson glass pha
The conductivity in the MG and AG phases is thus also
one shown in Fig. 13. This remarkable pinning of the sca
conductivity at l52 is a consequence of the marginali
condition.

3. General phase diagram in dÄ1

We have thus generically identified three phases for a
ordered commensurate system. The bosonization repres
tion being quite general ind51 this also applied to boson
or spin chains.

All the previous results having been obtained in the lim
whereK is small, an important question is the range of s
bility of these three phases. Although, in principle, the var
tional method could help answering this questions, we do

FIG. 11. The real part of the frequency dependent conducti
in the MI phase forl51 as a function of frequency.

FIG. 12. The variation of the gap in the frequency-depend
conductivity as a function ofl. The gap in the conductivity goes t
zero linearly forl→2.
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attempt this complicated calculation here, and instead g
physical arguments.

It is clear that repulsive enough and finite range inter
tions are needed for the existence of a MG phase. A gen
argument is given in Sec. IV B. We note here that the cas
infinite range~Coulomb! interaction is a~rather peculiar! ex-
ample of a MG phase. Indeed, a one-dimensional Wig
crystal31 has a compressibility

xs5 lim
q→0

q2

q2log~1/q!
50;

nevertheless it has only a pseudogap in the conductivity30,59

of s(v);va. One can also show that, in a noninteracti
system, the compressibility gap is equal to the gap for sing
particle excitations. In particular, this means that the int
mediate phase cannot exist forK51. This result is in agree-
ment with the self-consistent Born approximation calculat
of Mori and Fukuyama3 for the noninteracting case, whic
do not show any intermediate phase. Thus it can only e
for K<Kc,1.

Let us now give a schematic phase phase diagram, w
summarizes the effects of both backward and forward s
tering in one dimension. As shown in this section forwa
scattering can also lead to gap closure. The phase diagram
function of the Luttinger liquid parameterK and the strength
of the forwardD f and backwardDb scattering is represente
in Fig. 14.

B. General arguments and higher dimensionsdÌ1

1. Interacting fermionic systems: excitonic argument

The physics leading to the MG phase is quite general,
persists in higher dimensions as well, as can be unders
through a physical argument. Let us consider the ato
limit, where the hopping is zero. One can compute in t
limit the gaps to create both single particle and particle-h
excitations~see Fig. 15! Let us consider for example fermi
ons with spin with both an onsite repulsionU and a nearest-
neighbor repulsionV, with one particle per site. Such a sy
tem is described by

H5U(
i

ni↑ni↓1V(
^ i , j &

ninj1(
i

Wini2m(
i

ni ,

~97!

FIG. 13. The real part of the frequency-dependent conducti
in the MG and AG phases forl52 as a function of frequency. Fo
small v, s(v);v2.
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where ni5ni↑1ni↓ , and Wi is the disorder potential. The
energies to addE11 or removeE21 a particle at or from site
i are

E11,i5Egs1U1zV2m1Wi , ~98!

E21,i5Egs2zV1m2Wi , ~99!

andEgs is the energy of the ground state of the system w
one particle per site. If one considers a particle-hole exc
tion where the particle moves from sitei to site j, the energy
cost isE11,j2E21,i if i and j are not nearest neighbors. O
the other hand, if the particles are nearest neighbors~exci-
tonic excitation!, this costs

Dph,i j 5U2V1Wj2Wi . ~100!

For the pure case, one thus sees from Eqs.~98! and~100! that
the gap for creating a single-particle excitation is larger th
for particle holes

FIG. 14. Phase diagram of a one-dimensional system with b
forward and backward scattering random potentials. The das
lines correspond to phase boundaries between the Mott glass~MG!
and the Mott Insulator~MI !, the Anderson Insulator~AI ! and the
Luttinger liquid ~LL ! phases. The separation between the MG a
MI phases in the presence of forward scattering disorder is dr
with question marks, since we do not know how forward scatter
affects the competition of the MI of the MG phase.

FIG. 15. Possible excitations in the atomic limit. Drawings a
made for a chain for clarity, but the arguments are valid in arbitr
dimension d. ~a! Energy cost to add one particle.~b! Generic
particle-hole excitation.~c! Exciton, where the particle and the ho
are on neighboring sites. In the presence of disorder the gap
excitonic excitations will close, first leading to the absence of a
in the optical conductivity, but still to an incompressible syste
~see the text!, leading to a Mott glass phase.
24511
h
-

n

Dp5
U

2
, ~101!

D ex5U2V; ~102!

this is the well-known excitonic binding that occurs in sy
tems with a gap.

In the presence of disorder one can minimize the sing
particle gap by choosing the site where the disorder poten
is minimum, giving

Dp5
U

2
1

min~Wi !2maxWi

2
, ~103!

where we chooseW̄i50 for convenience. On the other han
the minimal particle hole interaction corresponds to choos
the nearest neighbor pair^ i , j & for which the difference in
disorder potential is minimal:

Dex5U2V2min
^ i , j &

uWj2Wi u. ~104!

For an uncorrelated bounded disorder one has

min~Wi !;2W, ~105!

min~Wj2Wi !;22W. ~106!

Thus, in the presence of a nearest-neighbor interactionV, the
particle-hole gap closes faster, atWc5(U2V)/2, when dis-
order increases, than the single-particle gap. For an hom
neous system this would simply signal an instability of t
ground state. For a disordered system this need not be
since only a fraction of the sites have their gap closing. Th
in the presence of a small kinetic energy, the conductiv
gap would close near this point, the compressibility rema
ing zero. Within this zero-kinetic-energy model one thus
ready finds three phases. The phase for which the part
hole gap has closed for some sites but the single-particle
is still finite can of course be identified with the Mott glas

Thus the physics of the Mott glass, that has been deri
for finite kinetic energy by the methods of the previous s
tions has its origin in excitonic effects. This is quite gener
and does not rely on any special one-dimensional featu
One dimension here was thus only a tool, allowing us
perform the calculation. We thus expect a Mott glass phas
be present in arbitrary dimension, and it would be interest
to check either through numerical calculations or mean-fi
methods whether one can recover the properties that we
identified here. The excitonic argument also shows clea
that some finite-range interaction is needed for a MG ph
to appear. For a simple Hubbard model both the sing
particle and particle-hole gap would close simultaneou
~up to the distribution of disorder! and most likely the MG
phase does not exist. In the presence of finite-range inte
tions the MG glass can be stabilized. A similar construct
can be made for the spinless case, although it involves lon
range~third-neighbor! interactions.

According to this physical picture of the MG phase, t
low-frequency behavior of the conductivity is dominated
excitons ~involving neighboring sites!. This is at variance
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from the AG phase, where the particle and hole are crea
on distant sites. This has consequences on the precise
frequency form of the conductivity such as logarithmic co
rections. In addition, since the excitons are neutral obje
although they can participate to the optical absorption, t
need to be broken to give a dc current. One can thus giv
naive estimate of the conductivity in the MG phase,

s;nexe
2V/T, ~107!

wherenex is the number of excitons in the ground state a
V is the typical excitonic binding energy, which depends o
weakly on the disorder.

2. Consequences for other systems

The above arguments also directly apply to other syste
In one dimension the spinless fermions can be mapped
disordered spin systems. In this case the commensu
phase can either come from an antiferromagnetic stagg
field, or more reasonably from a spin-Peierls distortion of
lattice. Such a perturbation would force the spin to lock in
a singlet state. The disorder would be a random magn
field.

Another system of interest is provided by hard co
bosons. In one dimension, one can use exactly the p
Hamiltonian to represent interacting bosons,14,24 but the ex-
citonic arguments given in Sec. IV B 1 would also apply
interacting bosons in higher dimensions as well. In this c
the Anderson glass phase becomes a Bose glass phas24,15

For classical systems the phase diagram is shown in Fig
Even in the Bose glass phase, for weak disorder perfec
pological order~stability to dislocations in the lattice! can
persist ind53, resulting in a Bragg Bose glass phase.40,60

On the other hand, in any dimension the Mott insula
should exhibit perfect topological order. Thus an interest
and open issue is whether this topological order also sub
in at least a portion of the Mott glass phase.

FIG. 16. Phase diagram of bosons in the limitsT→0 and \
→0. W is the strength of the disorder, andg the amplitude of the
commensurate potential for a fixed repulsive interactions. For w
disorder the boson system should retain a perfect topological o
~i.e., no defects such as dislocations!. Whether or not the line for
which topological order is lost~dashed line! enters the MG phase i
an open question. It is represented here ford53. The incompress-
ible phases are the Mott insulator~MI ! or Mott glass~MG! phase.
The compressible phases are either the Bragg Bose glass phas
perfect topological order~BBG!, or the Bose glass~BG! phase if
topological order is lost.
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V. CONCLUSION

In this paper, we have investigated the competition o
random and a commensurate potential. This question is
evant for host of physical systems, ranging from on
dimensional interacting fermions or bosons to classical s
tems in the presence of correlated disorder. T
commensurate potential induces an incompressible Mott
sulating phase with a gap in the conductivity. On the oth
hand, disorder induces a compressible Anderson insula
phase. While naive expectations predict a direct transit
between these two phases, we find that if interactions
repulsive enough, an intermediate phase, the Mott g
phase, does exist. Although this phase is incompressible,
a Mott insulator phase, it does not have a gap in the opt
conductivity, in a way similar to the Anderson insulator.

To obtain this phase we had to go beyond stand
renormalization-group techniques which are perturbative
both commensurate and disorder potentials. We there
used a bosonization associated with several nonperturba
techniques. The first one is a replica variational method,
allows for a complete calculation of the various physical o
servables such as the conductivity. The second method
functional renormalization group approach, which is pert
bative ind542e dimensions and is well suited to study th
transition from a Mott glass phase to a Mott insulator pha
as well as equivalent classical systems. In addition we h
looked at the limit of zero kinetic energy, both for th
bosonized Hamiltonian and directly on the fermion proble
~both for the spinless problem and for the problem w
spin!. The latter yields a very general argument in favor
the existence of a Mott glass phase in any dimension. It a
shows that the underlying mechanism for this phase is
creation of low-energy bound states~excitons! coming from
the competition between interactions and disorder. These
citations play no role in the compressibility but contribute
the optical conductivity.

This phase could be observable in systems close t
metal-insulator transition, such as oxides, provided that
can measure simultaneously the optical conductivity and
compressibility. Numerical simulations for disordered bos
systems could be prime candidates to observe this eff
Note that since all the phases have finite correlation leng
this should be observable even in moderately small syste
Many problems remain open. In particular, it would be inte
esting to understand in detail the effect of a chemical pot
tial on the Mott glass phase. Another open problem is
effect of temperature on the Mott glass phase. Finally
would be interesting to investigate the possibility of agi
dynamics in the Mott glass phase.

We thank R. Bhatt, S. Fujimoto, H. Fukuyama, A. Fur
saki, L. Ioffe, C. Itoi, N. Nagaosa, Y. Suzumura, C. M
Varma and H. Yoshioka for discussions. E. O. acknowled
support from the NSF under Grant Nos. DMR 96-14999 a
DMR 9976665~during his stay at Rutgers University whe
part of this work was completed! and from Nagoya Univer-
sity.
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APPENDIX A: FORWARD SCATTERING DISORDER
AND PERIODIC POTENTIAL

In this appendix we examine the effects of the forwa
scattering disorderh, and neglect backward scattering alt
gether. For fermions, such an approximation is surely ju
fied when 3/2,K,2. Then the backward component of di
order is irrelevant and can be neglected. In the other c
K,3/2, backward scattering will be relevant, and drive t
system into an Anderson glass state.

1. Solution of the variational equations

The action of the problem is

S

\
5E dxE

0

b\

dtF 1

2pK H v~]xf!21
~]tf!2

v J
2

g

pa\
cos 2f2

m~x!

p\
]xfG , ~A1!

which, after replication and average over disorder, gives

Srep.5(
a
E dxE

0

b\

dtF 1

2pK H v~]xfa!21
~]tfa!2

v J
2

g

pa
cos 2faG2

D

2~p\!2 (
a,b

E dx

3E
0

b\

dtE
0

b\

dt8]xfa~x,t!]xfb~x,t8!. ~A2!

We use the GVM ansatz@Eq. ~40!# with

vGab
21~q,v!5

@~vq!21v2#

pK
dab2sab~q,v!, ~A3!

as in the case of the backward scattering disorder. Using
~40! and ~42!, the variational energyFvar for the forward
scattering problem is

Fvar5
1

2bE dq

2p (
n,a

\

pK S vq21
vn

2

v DGaa~q,vn!

2
1

2bE dq

2p (
a,n

~ ln G!aa~q,vn!

2
g

pa (
a

exp@22\Gaa~x

50,t50!#2
D

2p2\
(
a,b

E dq

2p
\q2Gab~q,vn50!.

~A4!

Minimizing Eq. ~A4! with respect toG(q,v) gives the varia-
tional equations

sab~q,vn!52
Dvq2b

p2
dvn,02

4gv
pa

e22\Gaa(x50,t50)da,b .

~A5!
24511
i-

e,

s.

It is easy to check that Eqs.~A5! only have replica-
symmetric solutions in contrast to the case of backward s
tering.

Using the standard techniques for inversion of matrices
the limit n→0,42 one finds the following expressions fo
Gc5Gaa1(bÞaGab :

Gc~q,vn!5
v

\

pK
~vn

21~vq!2!1m2

. ~A6!

For G(q,vn ,u),

G~q,vn ,u!5S pK̄

\
D 2 Dq2bdvn,0

p2v2~q21j22!2
, ~A7!

where

m25
4gv
pa

e22\Gaa(x50,t50) ~A8!

andj25v2/(pK̄m2). One has

lim
\→0,K̄fixed

\G̃~0,0!5
p

2

DK̄2

v2
j, ~A9!

leading to the self-consistent equation forj2,

S l 1

j D 2

expS j

l 1
D5S l 1

d D 2

, ~A10!

where we have definedl 1
215DK̄2/(2v2).

It is straightforward to show that Eq.~A10! has two solu-
tions for l 1 /d.e/2, and no solutions otherwise. In the fir
case, the solution withl 1 /j,1/2 is a spurious solution, a
can be seen by taking the limit of zero disorder (l 1→`).
Physically, the Mott gap is preserved~but reduced! as long as
l 1 /d.e/2, whereas forl 1 /d,1/2 the Mott gap disappears
The transition gapped-gapless appears first order in
GVM, which is likely to be an artifact of the variationa
method. Note that the condition for the transitionl 1 /d;e/2
is in agreement with strong coupling extrapolations of t
perturbative RG treatment.

2. Correlation functions

Another advantage of the GVM is to allow for a calcul
tion of the correlation functions. Using Eq.~73!, one sees
that the density-density correlation function is given by

^Tte
i2f(x,t)e6 i2f(0,0)&5e2\[2G̃(0,0)62G̃(x,t)] , ~A11!

which leads to

K'~x,t!5^Tt sin@2f~x,t!#sin@2f~0,0!#&

5e2\2G̃(0,0)sinh\2G̃~x,t!, ~A12!
9-19
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K i~x,t!5^Tt cos@2f~x,t!#cos@2f~0,0!#&

5e2\2G̃(0,0)cosh\2G̃~x,t!. ~A13!

Since G̃(x,t)5Gc(x,t)1G(x) and lim\→0\Gc(x,t)50,
only the static correlations survive. It is straightforward
show that

lim
\→0,K̄fixed

\G~x!5
1

2 S j

l 1
2

uxu
l 1

De2uxu/j, ~A14!

leading to the following expressions for the correlation fun
tions:

K'~x!5e2j/ l 1 sinhF S j

l 1
2

uxu
l 1

De2uxu/jG , ~A15!

K i~x!5e2j/ l 1coshF S j

l 1
2

uxu
l 1

De2uxu/jG . ~A16!

It is easily seen that forj,`, limx→`K i5e2j/ l 1. In the
absence of disorder, this limit would be exactly 1. Forwa
scattering disorder thus leads to a reduction of the cha
density-wave long-range order. Forj→`, one recovers
K i(x);e2uxu/ l 1, a result that could have been derived d
rectly.

APPENDIX B: SADDLE-POINT EQUATIONS

In this appendix we derive the saddle point equations
tained by minimizing the variational free energy@Eq. ~42!#.
Using Eqs.~42! and ~39!, we obtain

Fvar5
1

2bE dq

2p (
n,a

\

pK S vq21
vn

2

v DGaa~q,vn!

2
1

2bE dq

2p (
a,n

~ ln G!aa~q,vn!

2
g

pa (
a

exp@22\Gaa~x50,t50!#

2
W

~pa!2\
E

0

b\

dt(
a,b

exp$24\@Gaa~x50,t50!

2Gab~x50,t!#%. ~B1!

Varying in Eq.~B1! with respect toG, we obtain the follow-
ing saddle-point equations:

Gc~q,vn!215
\

pK S vq21
vn

2

v D 1
4g

pa
exp@22\Gaa~x50,t

50!#1
2W

\~pa!2E0

b\

dt@12cos~vnt!#

3Fe24\Baa(x50,t)1 (
bÞa

e24\Bab(x50,t)G , ~B2!
24511
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-

saÞb~q,vn!5
2Wv

\~pa!2E0

b\

dt cos~vnt!

3exp@24\Bab~x50,t!#, ~B3!

with Gc5Gaa1(bÞaGab and

Bab~x,t!5Gaa~x,t!2Gab~x,t!. ~B4!

As was the case for fermions in a random potential,20 one has
dBaÞb /dt50, leading to the following simplified expres
sion of the replica off-diagonal self-energy:

saÞb5
2Wv

~pa!2
b exp~24\BaÞb!dvn,0 . ~B5!

We still need to perform an analytical continuation fro
positive integern to n50 in Eqs.~B2! and~B3!. In the GVM
this is done assuming that forn→0, theGab become hierar-
chical matrices. Using the Parisi parametrization of hier
chical matrices in then→0 limit.42 Equations~B2! and~B3!
give the equations

Gc
21~q,vn!5

\

pK S vq21
vn

2

v D
1

4g

pa
exp@22\G̃~x50,t50!#

1
2W

\~pa!2E0

b\

dt@12cos~vnt!#

3Fexp@24\B̃~x50,t!#

2E
0

1

du exp~24\B~u!!G , ~B6!

s~q,vn ,u!5
2Wv

~pa!2
b exp@2\4B~u!#dvn,0 , ~B7!

whereuP@0,1# is the Parisi parameter replacing the discre
replica indexa.

APPENDIX C: SOLUTION OF RSB EQUATIONS

We want to solve the RSB saddle-point equations

vGc
21~q,vn!5

1

pK̄
~~vq!21vn

2!1m2

1(
1

~12dn,0!1I ~vn!, ~C1!

I ~vn!5
2Wv

~pav !2\
E

0

b\

@e24\B̃(t)2e24\B(uc)#

3@12cos~vnt!#dt, ~C2!
9-20
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S15uc@s~u.uc!2s~u,uc!#, ~C3!

s~u!5
2Wv

~pa!2
e2\4B(u)bdn,0 , ~C4!

m25
4gv
pa

e24\G̃(0). ~C5!

Using the inversion formulas for hierarchical matrices,42

G̃~q,vn50!2G~q,vn50,u,uc!

5
1

Gc
21~q,vn50!

1S 12
1

uc
D

3S 1

Gc
21~q,vn50!1

S1

v

2
1

Gc
21~q,vn50!D ,

~C6!

G̃~q,vn50!2G~q,vn50,u,uc!5
1

Gc
21~q,vn50!1

S1

v

,

~C7!

we obtain

B~u,uc!5
1

b\ (
vn

E dq

2p
Gc~q,vn!

1
1

b\ S 12
1

uc
D E dq

2p

3S 1

Gc
21~q,vn50!1

S1

v

2
1

Gc
21~q,vn50!D ,

~C8!

B~u.uc!5
1

b\ (
vn

E dq

2p
Gc~q,vn!1

1

b\E dq

2p

3F 1

Gc
21~q,vn50!1

S1

v

2
1

Gc
21~q,vn50!G .

~C9!

Since

lim
b→`
\→0

1

b\ (
vn

E dq

2p
Gc~q,vn!50, ~C10!

we obtain

lim
b→`
\→0

2\B~u.uc!50,
24511
lim
b→`
\→0

24\B~u,uc!52
ApK̄

d F 1

~m21S1!1/2
2

1

mG .

~C11!

Here we have assumed that whenb goes to infinity,uc goes
to zero in such a way thatbuc5d remains finite. Therefore

S15
2W

~pa!2
dv@12e2(ApK̄/d)$[1/(m21S1)1/2] 2(1/m)%#.

~C12!

Next we derive a self-consistent equation form by taking the
\→0 limit of the equation:

m25
4gv
pa

e22\G̃(0). ~C13!

We use first the general inversion formula42

G̃~q,vn!5
1

Gc
21~q,vn!

F12E
0

1du

u2

@G21#~u!

Gc
212@G21#~u!

2
G21~0!

Gc
21 G ~q,vn!. ~C14!

In which we have

@G21#~u,uc!50, ~C15!

@G21#~u.uc!5
2S1

v
, ~C16!

G21~0!52
s~u,uc!

v
, ~C17!

so that

G̃~0,0!5
1

b\E dq

2p (
vn

Gc~q,vn!

1
1

b\E dq

2p F vs~u,uc!

S \

pK
~vq!21m2D 2 1S 12

1

uc
D

3
vS1

S \

pK
~vq!21m2D S \

pK
~vq!21m21S1D G ,

~C18!

leading to the expression form in the b→` limit:
9-21
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m25
4gv
pa

3expF2
S1~pK̄ !1/2

d

1

m~m21S1!1/2@m1~m21S1!1/2#

2
W~pK̄ !1/2v

~pa!2m3
expS 2

ApK̄

d F 1

~m21S1!1/2
2

1

mG D G .

~C19!

A final equation for the breakpointuc is needed to close th
system of equations. As discussed in Ref. 20, the phys
choice corresponds to the so called marginality of the re
con condition which yields toI (vn)}uvnu and to

4W~pK̄ !1/2v

~pa!2~m21S1!3/2
51. ~C20!

We use the quantities

m25
v2

4pK̄l 0
2
m2, ~C21!

S15
v2

4pK̄l 0
2
s1 , ~C22!

4pK̄

vd
5h, ~C23!

where l 0 and d are defined by Eqs.~51! and ~52!, respec-
tively. The reduced variablem is defined in such way tha
The point at which the replica symmetric solution becom
unstable hasm51 ~see Fig. 17!.

The self-consistent equations are rewritten

s15
2

h F12expS h
m21

m D G , ~C24!

m254S l 0

d D 2

e[h(m21)/m] 21/(2m3)eh[(m21)/m]
, ~C25!

m21s151. ~C26!

FIG. 17. The reduction of the gap with forward scattering d
order strength.
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To solve Eq.~C24! we introducew5h(m21)/m. Physical
solutions haveh.0, 0<m<1, and thusw<0. Excluding
the solutionm51 from Eq. ~C24!, we obtain the following
equations in terms ofw:

m~w!5A1

4
12

ew21

w
2

1

2
, ~C27!

4S l 0

d D 2

5m2~w!expF2
w

2
1

ew

2m3~w!
G5F~w!. ~C28!

We have thus reduced the self-consistent equations
single equation forw. Puttingw50 in Eqs.~C27! and~C28!,
we obtainm51 and recover condition~60! on d/ l 0, i.e. the
limit of validity of the RS solution. A plot ofF(w) in shown
in Fig. 18. As can be seen from this plot,F has a minimum
for w5wc . This implies that there can be no solution of Eq
~C27! and~C28! whenl 0 /d,AF(wc)/2. The physical values
of w are thus located in the interval@fc,0#. Numerically, it is
found thatwc523.432560.0025 andF(wc)51.15338. The
corresponding critical value ofl 0 /d is thenl 0 /d50.536977
i.e. d/ l 051.86 . . . .

APPENDIX D: FUNCTIONAL RENORMALIZATION-
GROUP APPROACH

In this appendix we detail the analysis using the fun
tional renormalization-group method of the effective mod
@Eq. ~66!# in the presence of a mass term and correla
disorder in dimensiond. We use the notations of the classic
equivalent model@Eq. ~22!#. The method is a Wilson mo
mentum shell integration which it is an extension of Ref.
to the case of a finite massm2.0. Similar extensions can
also be found in Refs. 55,56,53 and 61.

We start by studyingTcl50. In the quantum problem this
corresponds to the limitK→0, \→0, and K̄5K/\ fixed
@see Eq.~23!#. We consider a ground state which ist inde-
pendentf(x,t)5f(x). It is in this limit that the GVM
method revealed the presence of the Mott glass phase.
more convenient to work with the functionD(f)5
2R9(f), where the bareR(f) has been defined through Eq
~15!. One first defines the running dimensionless disorde

-
FIG. 18. The graph ofF(w). Only the region withw,0 is

physical.F has a minimum forw5wc . When 4(l 0 /d)2 is smaller
thanF(wc), Eq. ~C28! has no solution.
9-22
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D̃ l~f!5
Ad

c2
L l

d24D l~f!, ~D1!

with Ad5Sd /(2p)d, which is found to obey theTcl50 FRG
equation:

] lD̃5eD̃2 f ~ l !$~D̃8!21D̃9@D̃2D̃~0!#%, ~D2!

f ~ l !5
1

~11me2l !2
, m5m2/L2. ~D3!

The UV cutoff is reduced toL l5Le2 l (L;1/a, wherea is
lattice constant!. One can check that form50, Eq. ~D2!
reduces to the equation derived in Ref. 52. This equa
turns out to be identical to the one describing point disor
in dimensiond.

It is well known52 that, in the casem50 at T50, a cusp
develops at the origin forl→`. One finds thatuD̃(f,`)
2D̃(0,̀ )u}ufu for f→0. This implies that
lim l→1`D̃9(0,l )52`. It is thus important as a first step t
analyze the cusp generation in the casemÞ0. If we define
D2( l )52D̃9(0,l ), we have, from Eq.~D2!,

] lD25eD21 f ~ l !D2
2 . ~D4!

This differential equation has, for a solution,

1

D2~0!
2

ee l

D2~ l !
5

1

2E1

e2l

dx
1

x(d22)/2~11mx!2
, ~D5!

where D2(0) is the bare disorder. Introducing the Lark
length Rc in the absence of a mass (m50), defined as the
length scale at whichD2 diverges, i.e.,

1

D2~0!
5

1

2E1

(Rc /a)2 dx

x(d22)/2
. ~D6!

One also obtains an equation that determines the La
length in the presence of a massR̃c(m) defined as the length
whereD251` for a nonzerom as a function ofRc andm:

E
1

(R̃c /a)2 dx

x(d22)/2~11mx!2
5

2

42d F S Rc

a D 42d

21G .
~D7!

Equation~D7! has two types of solutions, one withR̃c5`

for weak disorder and another withR̃c,` for stronger dis-
order . As discussed in the text, this means that there are
phases: one in which disorder is strong enough to genera
cusp, and a second one in which the flow is cut by the p
ence of the mass before a cusp can be generated. The fo
corresponds to a Mott glass phase, while the second
corresponds to a Mott insulator phase. The equation of
transition line between these two phases is obtained by
ting R̃c5` in Eq. ~D7!, and readsRc5Rc* (m). At small m
and ford,4, we find that it behaves as
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Rc* ~m!

a
;

C~d!

Am
, ~D8!

whereC(d) is a dimension-dependent constant.
The physical quantity which is directly affected by th

presence of the cusp is the tilt modulusc44( l ). One finds that
it satisfies the RG flow equation

] l ln c44~ l !52D2~ l ! f ~ l !, ~D9!

while c remains unrenormalized. This, clearly, eitherD2( l )
diverges sufficiently fast andc44( l 51`)51` ~interpreted
as a Mott glass phase! or the mass cuts off the divergenc
early enough andc44( l 51`) remains finite~a Mott insula-
tor phase!. From the FRG approach, it is possible to compu
the largel behavior of the tilt modulus exactly. For this, an
to make further progress in the analysis of the two phas
we need to first consider the full flow of the functionD̃ l(f).
It can be shown easily that the solution of the flow equatio
at mÞ0 can be obtained as a function of the solution atm
50 in the following ways:

D̃m~f,l !5h~ l !D̃m50@f,t~ l !#,

h~ l !5
ee l

11eE
0

l

dl8
ee l 8

~11me2l 8!2

,

t~ l !5
1

e
lnS 11eE

0

l ee l 8dl8

~11me2l 8!2D , ~D10!

with the same initial condition. The behaviors at largel are

h~ l !;ee[ l 2 l c* (m)] , ~D11!

t~ l !; l c* ~m!, ~D12!

whereRc* (m)5ael c* (m) was defined above. From Eq.~D9! it
is then easy to see thatc44( l )5c44(0)D2( l )/D2(0)ee l which
yields, e.g.,c44(1`) in the no-cusp phase as

c44~1`!

c44~0!
5

S Rc

a D e

21

S Rc

a D e

2S Rc* ~m!

a D e . ~D13!

One thus finds that the renormalized tilt modulus diverges
one approaches the transition as

c44~1`!;@Rc2Rc* ~m!#21. ~D14!

In d54 one has, instead,

c44~1`!5c44~0!
ln~Rc /a!

ln@Rc /Rc* ~m!#
. ~D15!

In all cases one hasc44(`)→1` in the cusp phase. Con
versely, in the no-cusp phasec44(`) remains finite. We ex-
9-23
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pect that havingc44(`)→1` leads to no conductivity gap
but that havingc44(`),` produces a conductivity gap. In
the cusp phase one can also expect that a termu]zuu is
generated.52 Such a term gives rise to the transverse Mei
ner effect. The critical fieldhc1 needed to bend vortices ca
be easily computed from the FRG approach.

We are now in position to estimate correlation functio
in the case of point disorder or theirz ~i.e., t) independent
part in the case of correlated disorder~i.e., atvn50). One
has

^f~q!f~2q!&5G̃~q!5edlG@qel ,D̃~ l !,me2l #.
~D16!

In the regimeqa;1, the correlation functionG can be
obtained by perturbation theory inD̃. Our strategy to obtain
correlation functions40 is therefore to integrate the RG equ
tions until qael;1. At this point, we can calculate the co
relation functionG perturbatively and deduceG̃. We obtain

G̃~q!5
D̃@0,l 5 ln~1/aq!#

~aq!d24~q21m2!2
. ~D17!

Thus, ford52, one obtains

G̃~q!5
C

q2
q@m,

G̃~q!5
C8

m4
q!m. ~D18!

Note that thestatic two point correlation functions or equiva
lently the correlations for point disorder do not exhibit
sharp transition.

It is crucial to check that the transition we found forTcl
50 ~i.e., \50) survives at finite temperature~finite \). In
the original quantum problem this corresponds toK.0 i.e.,
whether the intermediate phase exists for interactions tha
not infinitely repulsive. The RG approach can be perform
at finite Tcl . Introducing the effective running temperature

T̃l5Tcl

AdL l
d21

2Accz~ l !
k~ l !, ~D19!

k~ l !5~11me2l !21/2, ~D20!
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one finds that the FRG equation becomes

] lD̃5eD̃1T̃lD̃92 f ~ l !$~D̃8!21D̃9@D̃2D̃~0!#%.
~D21!

Note that in the quantum parametersT̃0;K.
In the absence of a mass,m50, it is easy to see53 that the

temperatureT̃l runs to exactly zero at a finite length sca
l * (T̃0)2 l c;c(d)T̃0 for small T̃0 with l c5 ln(Rc /a) the Lar-
kin scale. This is because forl . l c the cusp is rounded55,56at
finite T̃l with

D2~ l !;
D* 8~01!2

T̃l

;xe2
1

T̃l

, ~D22!

whereD* (f) is theT50 fixed-point function, andx a nu-
merical constant. Thus one can write

] l ln T̃l512d2
1

2
] l ln cz~ l ! ~D23!

512d2xe2
1

T̃l

. ~D24!

This yield that] l T̃l'2xe2 and thus the temperature va
ishes beyond the scalel * (T̃0)2 l c;(1/xe2)T̃0.

It is thus clear that ifm is small enough so thatl * (T̃0)
! l c* (m) introduced above, the temperature will vanish b
fore the termf ( l ) starts to deviate from 1, and change t
behavior of the solutions. Thus at small nonzero tempera
the divergence ofc44 is not suppressed and the transiti
survives.

A more detailed analytical study can be performed
noting that the relation between the solution at finitem and
zero mass,

D̃m,T̃l
~f,l !5h~ l !D̃m50,T̂l

@f,t~ l !#, ~D25!

with the same functionsh( l ) and t( l ) as above andT̂l

5T̃l /@h( l ) f ( l )#. This confirms the above conclusions, b
will not be detailed here.

Note, finally, that the above RG procedure assumes
the thicknessL is constant. Since\ runs to zero, this mean
thatb runs to infinity; thus the temperature is also irreleva
in the quantum system.
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