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Thermal transport in the Falicov-Kimball model
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We prove the Jonson-Mahan theorem for the thermopower of the Falicov-Kimball model by solving explic-
itly for correlation functions in the large dimensional limit. We prove a similar result for the thermal conduc-
tivity. We separate the results for thermal transport into the pieces of the heat current that arise from the kinetic
energy and those that arise from the potential energy. Our method of proof is specific to the Falicov-Kimball
model, but illustrates the near cancellations between the kinetic- and potential-energy pieces of the heat current
implied by the Jonson-Mahan theorem.
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I. INTRODUCTION

The Jonson-Mahan1,2 theorem shows that there is a simp
relation between the transport coefficient for the electri
conductivity and that needed for the thermopower. The re
tion is that the integral for theL12 coefficient has one more
power of frequency in the integrand than theL11 coefficient.
This result has been known for many years3 for a noninter-
acting system—the Jonson-Mahan theorem generalizes
result for a wide class of many-body systems~including the
Falicov-Kimball model, the Holstein model, the period
Anderson model with on-site hybridization, and the Hubba
model!.

We use the exact solution of the Falicov-Kimball model
the large-dimensional limit to provide an alternate derivat
of the Jonson-Mahan theorem by explicitly evaluating
relevant correlation functions needed for the thermal tra
port. Our exact analysis also allows us to separate the
tributions to thermal transport that arise from the kinetic- a
potential-energy pieces of the heat current. These results
vide an interesting interpretation of thermal transport in c
related systems.

In Sec. II we develop a formalism for deriving the d
conductivity, the thermopower, and the thermal conductiv
We derive exact results for the relevant correlation functio
and use them to prove the Jonson-Mahan theorem an
generalization to the thermal conductivity. In Sec. III we pr
vide numerical results for the thermal transport illustrati
the different contributions to the thermal coefficients for
number of illustrative cases. Conclusions are presente
Sec. IV.

II. FORMALISM FOR THE THERMAL TRANSPORT

The Hamiltonian for our system is the spin-1
2 Falicov-

Kimball model4

H52
t*

2Ad
(

^ i , j &s
cis

† cj s1Ef(
i

wi1U(
is

wicis
† cis ,

~1!

wherecis
† (cis) is the electron creation~annihilation! opera-

tor for an electron at sitei with spins, Ef is the energy level
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of the localized electrons,wi is a variable that is equal to
zero or one and corresponds to the localized electron n
ber, andU is the interaction strength. The hopping integral
scaled with the spatial dimensiond so as to have a finite
result in the limit5 d→`; we measure all energies in units o
t* 51. We work on a hypercubic lattice where the nonint
acting density of states is a Gaussianr(e)5exp(2e2)/Ap.

The Falicov-Kimball model can be solved exactly by em
ploying dynamical mean-field theory6,7. Because the self-
energyS(z) is local, the local Green’s function satisfies

G~z!5E der~e!
1

z1m2S~z!2e
, ~2!

with z anywhere in the complex plane~we suppress the spin
index here!. The self-energy, the local Green’s function, a
the effective mediumG0 are related by

G0
21~z!2G21~z!5S~z!, ~3!

and the Green’s function also satisfies

G~z!5~12w1!G0~z!1w1

1

G0
21~z!2U

. ~4!

Herew1 is the average concentration of localized electro

w152 exp@2b~Ef2m!#Z↑~m2U !Z↓~m2U !/Z, ~5!

with Z5Z↑(m)Z↓(m)12 exp@2b(Ef2m)#Z↑(m2U)Z↓(m
2U) and

Zs~m!52ebm/2)
n

ivn1m2ls~ ivn!

ivn
. ~6!

The factor of 2 in Eq.~5! arises from the spin degeneracy
the f electrons, and the constraint that no more than onf
electron is allowed on any site. The symbolls(z) is defined
from the effective medium via ls( ivn)5 ivn1m
2G0s

21( ivn). vn5pT(2n11) is the fermionic Matsubara
frequency, andb51/T. The algorithm for determining the
Green’s function begins with the self energy set equal
zero. Then Eq.~2! is used to find the local Green’s function
The effective medium is found from Eq.~3!, and the local-
ized electron filling from Eq.~5!. The new local Green’s
©2001 The American Physical Society18-1
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function is then found from Eq.~4!, and the new self-energ
from Eq. ~3!. This algorithm is repeated until it converges

Transport properties are calculated within a Kub
Greenwood formalism.8 This relates the transport coeffi
cients to correlation functions of the corresponding transp
current operators. We will deal with two current operato
here—the particle current9

j5(
qs

vqcqs
† cqs ~7!

„where the velocity operator isvq5¹qe(q) and the Fourier
transform of the creation operator is cq

†

5( jexp@iq•Rj #cj
†/N… and the heat current1,9

jQ5(
qs

~eq2m!vqcqs
† cqs1

U

2

3 (
qq8s

W~q2q8!@vq1vq8#cqs
† cq8s , ~8!

@whereW(q)5( jexp(2iq•Rj )wj /N#. The heat current can
be broken into two pieces:~i! a kinetic-energy piecejQ

K ,
which is the first term in Eq.~8!; and ~ii ! a potential-energy
piecejQ

P , which is the second term in Eq.~8!.
The particle current is defined by the commutator of

Hamiltonian with the polarization operator.9 When evaluated
on a lattice with nearest-neighbor hopping, one finds fac
that involve the weighted summation of the nearest-neigh
translation vectorsd weighted by phase factors exp(iqd),
which yield the velocity operator terms above. The definiti
of the heat-current operator is more involved, and requ
the Hamiltonian to be separated into operatorshi that involve
the site i ~in decomposing the kinetic-energy operator in
‘‘localized’’ pieces, one symmetrically assigns half of th
cis

† cj s1cj s
† cis term to sitei and half to sitej ). These opera-

tors can be combined with the position operator to const
an ‘‘energy’’ polarization operator( iRihi , which is com-
muted with the Hamiltonian to determine the energy curr
operator; the heat current operator is just this energy cur
operator shifted by the chemical potential multiplied by t
number current operator. Important operator relations
tween the heat-current operator and the particle-current
erator are described fully below@see the discussion aroun
Eq. ~60!#.

The dc conductivitys, thermopowerS, and electronic
thermal conductivityk can all be determined from relevan
correlation functions of the current operators. We defi
three transport coefficientsL11, L125L21, andL22. Then

s5
e2

T
L11, ~9!

S52
kB

ueuT
L12

L11
, ~10!

and
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k5kB
2FL222

L12L21

L11
G . ~11!

The transport coefficients are found from the analytical c
tinuation of the relevant ‘‘polarization operators’’ at zero fr
quency,

L115 lim
n→0

Re
i

n
L̄11~n!,

L̄11~ in l !5pTE
0

b

dtein lt^Tt j a
†~t! j b~0!&, ~12!

wheren l52pTl is the bosonic Matsubara frequency, thet
dependence of the operator is with respect to the full Ham
tonian in Eq.~1!, and we must analytically continueL̄11( in l)
to the real axisL̄11(n) before taking the limitn→0. Similar
definitions hold for the other transport coefficients:

L125 lim
n→0

Re
i

n
L̄12~n!,

L̄12~ in l !5pTE
0

b

dtein lt^Tt j a
†~t! j Qb~0!&, ~13!

and

L225 lim
n→0

Re
i

n
L̄22~n!,

L̄22~ in l !5pTE
0

b

dtein lt^Tt j Qa
† ~t! j Qb~0!&. ~14!

In all of these equations, the subscriptsa andb denote the
respective spatial indexes of the current vectors.

We begin with a derivation that shows the analytic co
tinuation for the conductivity. Substituting the definition o
the particle current operator of Eq.~7! into Eq. ~12! for L̄11
yields

L̄11~ in l !5pTE
0

b

dtein lt (
qq8ss8

vqavq8b

3^Ttcqs
† ~t!cqs~t!cq8s8

†
~0!cq8s8~0!&. ~15!

The correlation function can be determined from Dyso
equation, which relates the dressed correlation function
the bare correlation function via the irreducible charge v
tex. Since the charge vertex is local in the infinit
dimensional limit, it is an even function of momentum, a
any sum over momentum that is weighted by just one fac
of vq will vanish. Hence the dressed correlation function
equal to just the bare correlation function10 ~note that the
contractions of the operators at equal times also vanish w
summed over momentum!. This produces
8-2
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L̄11~ in l !52pTE
0

b

dtein lt(
qs

vqavqbGqs~t!Gqs~2t!.

~16!

Now we introduce the Fourier transform of the Green’s fun
tion G(t)5T(nexp(2ivnt)Gn with Gn

5*0
bdt exp(ivnt)G(t). Substituting into Eq.~16! allows us

to perform the integral overt. This finally produces

L̄11~ in l !52pT2(
n

(
qs

vqavqbGqs~ ivn!Gqs~ ivn1 l !.

~17!
The next step is to perform an analytical continuati

from the imaginary axis to the real axis. The procedure
standard.9 We first write the summation over Matsubara fr
quencies as an integral over the contourC shown in Fig.
1~a!, which has contributions at the poles of the Fermi fun
tion f (v)51/@11exp(bv)# which lie at the fermionic Mat-
subara frequencies. The contour is then deformed to l

FIG. 1. Contours used in the analytical continuation:~a! contour
needed for the Matsubara frequency summation and~b! deformed
contour to lines parallel to the real axis.
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parallel to the real axis, with the Green’s functions evalua
with either retarded~R! or advanced~A! functions. The result
is

L̄11~ in l !52
T

2i EC
dv f ~v!(

qs
vqavqbGqs~v!Gqs~v1 in l !

52
T

2i E2`

`

dv f ~v!(
qs

vqavqb

3@Gqs
R ~v!2Gqs

A ~v!#Gqs
R ~v1 in l !2

T

2i

3E
2`

`

dv f ~v2 in l !(
qs

vqavqbGqs
A ~v2 in l !

3@Gqs
R ~v!2Gqs

A ~v!#. ~18!

The analytical continuation is performed by first rewritin
f (v2 in l)5 f (v), then takingin l→n1 id and shifting the
integration variablev→v1n in the second integral. Then
using the definition forL11, we finally arrive at

L115 lim
n→0

2
T

2nE2`

`

dv(
qs

vqavqbRe$ f ~v!Gqs~v!

3Gqs~v1n!2 f ~v1n!Gqs* ~v!Gqs* ~v1n!

2@ f ~v!2 f ~v1n!#Gqs* ~v!Gqs~v1n!%. ~19!

SinceGqs(v)51/@v1m2S(v)2e(q)#, we can perform a
summation overq directly. Becausee(q) is an even function
of q and vq is odd, we must havea5b. Converting the
fraction into the integral of an exponential then allows t
summation overq to be performed directly.11 The summation
over q can be written as an integral over energy with
weighting factor ofr(e)t* 2/d. This yields

L115 lim
n→0

2
Tt* 2

2nd
dabE

2`

`

dv(
s

E
2`

`

der~e!

3Re$ f ~v!Gqs~v!Gqs~v1n!

2 f ~v1n!Gqs* ~v!Gqs* ~v1n!

2@ f ~v!2 f ~v1n!#Gqs* ~v!Gqs~v1n!%. ~20!

If we defines05e2t* 2/(2d), and we perform the integra
over e, we arrive at

L115 lim
n→0

Ts0

e2
dabE

2`

`

dv
f ~v!2 f ~v1n!

n

3ReF2
G~v!2G~v1n!

n1S~v!2S~v1n!

1
G* ~v!2G~v1n!

n1S* ~v!2S~v1n!
G . ~21!
8-3
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The final step is to take the limit ofn→0. Using the facts
that

lim
n→0

f ~v!2 f ~v1n!

n
52

d f~v!

dv
~22!

and

lim
n→0

G~v!2G~v1n!

n1S~v!2S~v1n!
52212@v1m2S~v!#G~v!

~23!

produces our final result forL11,

L115
Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D t~v!, ~24!

with the relaxation timet(v) defined by
or
m

ic
th

24511
t~v!5
Im G~v!

Im S~v!
1222 Re$@v1m2S~v!#G~v!%.

~25!

This result appears different from that originally derived f
the hypercubic lattice,12 but Eqs.~24! and ~25! do yield the
same result; the form presented here has the integral ove
noninteracting density of states performed exactly.

The derivation for the transport coefficientL12, needed
for the thermopower, proceeds in a similar fashion. We c
divide the heat current into two pieces; one correspondin
the kinetic energy, and one corresponding to the poten
energy. This allows us to writeL125L12

K 1L12
P . The deriva-

tion for the kinetic-energy piece follows exactly like the de
vation for L11 except there is an extra factor ofe2m that
appears in Eq.~20!. The integral overe can then be per-
formed straightforwardly, producing
L12
K 5 lim

n→0

Ts0

e2
dabE

2`

`

dv
f ~v!2 f ~v1n!

n
ReH 2

@v2S~v!#G~v!2@v1n2S~v1n!#G~v1n!

n1S~v!2S~v1n!

1
@v2S* ~v!#G* ~v!2@v1n2S~v1n!#G~v1n!

n1S* ~v!2S~v1n!
J . ~26!
out

the

,

e
er-
Evaluating the limitn→0 is simple. The final result is

L12
K 5

Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D $@v2ReS~v!#t~v!

22 ImS~v!Im@~v1m2S~v!!G~v!#%, ~27!

with t(v) defined in Eq.~25!.
The derivation of the potential-energy piece is much m

involved. The first step is to replace the momentu
dependent operatorW(q2q8) by its Fourier transform. Sim-
plifying the expression forL̄12

P yields

L̄12
P ~ in l !5

pTU

2 E
0

b

dtein lt (
qq8ss8

1

N (
j

vqavq8b

3@e2 iq8•Rj^Ttwjcqs
† ~t!cqs~t!cq8s8

†
~0!cj s8~0!&

1eiq8•Rj^Ttwjcqs
† ~t!cqs~t!cj s8

†
~0!cq8s8~0!&#.

~28!

Noting that thewj operator commutes with the fermion
operators allows us to use Wick’s theorem to rewrite
terms in the square bracket as

1

N (
j

@2e2 iq•Rj^Ttwjcqs
† ~t!cj s~0!&Gqs~t!

1eiq•Rj^Ttwjcqs~t!cj s
† ~0!&Gqs~2t!#dqq8dss8 , ~29!
e
-

e

where we have taken the appropriate contractions~note the
velocity operators guarantee that we need not worry ab
any vertex corrections!. The correlation functions in Eq.~29!
can be evaluated by taking the derivative with respect to
components of an infinitesimal field2( jhjwj . These corre-
lation functions have a factor of exp@2bH# in the numerator
and a factor ofZ in the denominator. In addition, thet de-
pendence of the operators arises from factors of exp@6tH#.
Since the operatorwj commutes with all fermionic operators
it is easy to verify that the expression in Eq.~29! becomes

2
1

N (
j

FGqs~t!S T
]

]hj
1^wj& DGqs~2t!1Gqs~2t!

3S T
]

]hj
1^wj& DGqs~t!Gdqq8dss8 , ~30!

which follows by first removing thewj operator through the
derivative, then expressing the fermionic operator at sitj
through a Fourier transform, and finally evaluating the f
mionic averages. Substituting this result into Eq.~28! then
yields

L̄12
P ~ in l !52

pT2U

2N (
n

(
qs

(
j

vqavqb

3S H FT
]

]hj
1^wj&GGqs~ ivn!J Gqs~ ivn1 l !

1Gqs~ ivn!FT
]

]hj
1^wj&GGqs~ ivn1 l ! D .

~31!
8-4
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The derivatives need to be computed. Writing t
momentum-dependent Green’s function as a Fourier tra
form,

Gqs~ ivn!5
1

N (
i 2 j

eiq•(Ri2Rj )Gi j s~ ivn!, ~32!

and using the identity

Gi j s~ ivn!5(
kl

Giks~ ivn!Gkls
21~ ivn!Gl j s~ ivn! ~33!

~with G21 the matrix inverse ofG), allows us to compute
the derivative as

]

]hj
Gqs~ ivn!5

1

N (
i 2 j

eiq•(Ri2Rj )

3Gi j s~ ivn!
]S j j s~ ivn!

]hj
Gj j s~ ivn!.

~34!

But in a homogeneous phase, the derivative of the local s
energy with respect to the local field and the local Gree
function are both independent of the sitej, so we finally
arrive at

]Gqs~ ivn!

]h
5Gns

]Sns

]h
Gqs~ ivn!. ~35!

Since the self-energy depends only onGn and w1, the de-
rivative can be computed by taking partial derivatives a
using the chain rule

]Sns

]h
5

]Sns

]w1

]w1

]h

12Gns
2 ]Sns

]Gns

. ~36!

Each of the derivatives in Eq.~36! can be found directly:6,7

]Sns

]w1
5

U

11Gns~2Sns2U !
, ~37!

]w1

]h
5

w1~12w1!

T
, ~38!

and

12Gns
2 ]Sns

]Gns
5

~11GnsSns!~11Gns@Sns2U# !

11Gns~2Sns2U !
.

~39!

Substituting these derivatives into Eq.~36!, and performing
some straightforward simplifications that involve the qu
dratic equation that the self-energy satisfies,6 finally yields

FT
]

]h
1^w&GGqs~ ivn!5

Sns

U
Gqs~ ivn!. ~40!
24511
s-

lf-
’s

d

-

Now we are ready to perform the analytical continuatio
First we substitute Eq.~40!, into Eq. ~31! and we note that
the sum overj cancels the factor of 1/N:

L̄12
P ~ in l !52

pT2

2 (
n

(
qs

vqavqb@Ss~ ivn!

1Ss~ ivn1 l !#Gqs~ ivn!Gqs~ ivn1 l !. ~41!

Next, we rewrite the sum over Matsubara frequencies a
contour integral and perform the analytical continuation
the exact same way as before. If we then evaluateL12

P , we
find

L12
P 5 lim

n→0
2

Ts0

2e2n
E

2`

`

dvE
2`

`

der~e!Re„f ~v!

3$@S~v!1S~v1n!#Gq~v!Gq~v1n!

2@S* ~v!1S~v1n!#Gq* ~v!Gq~v1n!%

1 f ~v1n!$@S* ~v!1S~v1n!#Gq* ~v!Gq~v1n!

2@S* ~v!1S* ~v1n!#Gq* ~v!Gq* ~v1n!%…. ~42!

Now the integral overe can be performed, and the limitn
→0 can be taken. It becomes

L12
P 5

Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D „ReS~v!t~v!

12 ImS~v!Im@$v1m2S~v!%G~v!#…. ~43!

Adding together Eqs.~27! and~43! yields the Jonson-Mahan
result of

L125
Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D t~v!v. ~44!

Our final derivation is for the thermal conductivity coe
ficient L22. Like before, we separate this into pieces cor
sponding to the kinetic energy and the potential energy:L22

5L22
KK1L22

KP1L22
PK1L22

PP . Due to the symmetry of the
terms, we haveL22

KP5L22
PK . The kinetic-energy piece is

simple to calculate. Like in our derivation forL12
K , the steps

are identical to the derivation forL11 except we have an extr
factor of (e2m)2 in Eq. ~20!. Performing the integration
over e and collecting terms finally yields

L22
KK5

Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D „$@v2ReS~v!#2t~v!

1Im G~v!Im S~v!22@ Im S~v!#212@ Im S~v!#2

3Re$@v1m2S~v!#G~v!%24@v2ReS~v!#

3Im S~v!Im$@v1m2S~v!#G~v!%…. ~45!

The derivation forL22
KP5L22

PK is identical to that ofL12
P ex-

cept we have an extra factor of (e2m) in Eq. ~42!. Perform-
ing the integration overe then produces
8-5
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L22
KP5

Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D „@v2ReS~v!#ReS~v!t~v!

2ImG~v!Im S~v!12@ Im S~v!#222@ Im S~v!#2

3Re$@v1m2S~v!#G~v!%12@v22ReS~v!#

3Im S~v!Im$@v1m2S~v!#G~v!%…. ~46!

The final term we must evaluate isL22
PP . This is the most

complicated term to evaluate, and we are unable to do
following the same strategy as employed in theL12

P deriva-
tion. Instead, we proceed by an alternate method base
the equation of motion~EOM! technique. The EOM’s for the
fermionic creation and annihilation operators~in the momen-
tum basis! are

]

]t
cqs

† ~t!5@e~q!2m#cqs
† ~t!1U(

k
W~k!cq1ks

† ~t!

~47!

and

]

]t
cqs~t!52@e~q!2m#cqs~t!2U(

k
W~k!cq2ks~t!.

~48!

These EOM’s can be employed to express the correla
function of the heat-current operators in terms of derivati
with respect to imaginary time as shown below:

L̄22
PP~ in l !5

pTU2

4 E
0

b

dtein lt (
qq8q9q-ss8

~vqa1vq-a!

3~vq8b1vq9b!^TtW~q2q-!W~q82q9!

3cqs
† ~t!cq-s~t!cq8s8

†
~0!cq9s8~0!&

5pTE
0

b

dtein lt (
qq8ss8

vqavq8b lim
t8→t2

lim
t-→t92→01

3 K TtF H 1

2
~]t2]t8!2~eq82m!J

3cq8s
†

~t!cq8s~t8!GF H 1

2
~]t92]t-!2~eq2m!J

3cqs8
†

~t9!cqs8~t-!G L . ~49!

Now each of the operator averages can be expressed in t
of Green’s functions, since the velocity factors guaran
there will be no vertex corrections. Noting further that t
integrals will only contribute ifa5b finally yields
24511
so

on

n
s

ms
e

L̄22
PP~ in l !5pTE

0

b

dtein lt(
qs

vqa
2 F1

2
]tGqs~t!]tGqs~2t!

2
1

4
]t

2Gqs~t!Gqs~2t!2
1

4
Gqs~t!]t

2Gqs~2t!

1~eq2m!$Gqs~t!]tGqs~2t!2]tGqs~t!Gqs

3~2t!%2~eq2m!2Gqs~t!Gqs~2t!G . ~50!

We need to be able to produce expressions for the derivat
of the Green’s functions. We do so by first writing th
Green’s function as a Fourier series over the Matsubara
quencies, and then taking the derivative into the Matsub
summation. This may appear to be mathematically unsou
but we do so by adding and subtracting the knownd(t)
behavior of the derivative, to regularize the summatio
Since we are interested only in 0,t,b, this procedure has
no convergence issues. Likewise, one is also able to take
second derivative in this fashion. For 0,t,b we find

]tGqs~t!52~eq2m!Gqs~t!

2T(
m

e2 ivmt
Sms

ivm1m2Sms2eq
, ~51!

]t
2Gqs~t!51~eq2m!2Gqs~t!1~eq2m!T

3(
m

e2 ivmt
Sms

ivm1m2Sms2eq

1T(
m

e2 ivmt
ivmSms

ivm1m2Sms2eq
,

with similar formulas forGqs(2t). Substituting the deriva-
tives from Eq.~51! into Eq. ~50!, and then simplifying the
result, finally produces

L̄22
PP~ in l !52

pT2

4 (
n

(
qs

vqa
2
„$Ss~ ivn!

1Ss~ ivn1 l !%
2Gqs~ ivn!Gqs~ ivn1 l !

1Ss~ ivn1 l !Gqs~ ivn!1Ss~ ivn!Gqs~ ivn1 l !….

~52!

It is easy to understand the first terms in this expression
they are what one would naively recover when following t
same Wick analysis that was done previously forL12

P . We
have not been able to discover a direct operator-based
vation of the second terms, but they are critical for providi
the right answer forL22

PP . Performing an analytical continu
ation and simplifying yields our final result
8-6
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L22
PP5

Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D „@ReS~v!#2t~v!

22@ Im S~v!#21Im S~v!ImG~v!

12@ Im S~v!#2Re$@v1m2S~v!#G~v!%

14 ReS~v!Im S~v!Im$@v1m2S~v!#G~v!%….

~53!

Summing together Eq.~45!, twice Eq. ~46!, and Eq.~53!
gives the Mott form

L225
Ts0

e2 E
2`

`

dvS 2
d f~v!

dv D t~v!v2. ~54!

We can also generalize the original Jonson-Mahan a
ment to prove relations betweenL21 andL11 and betweenL22
andL12. Our method is different from their proof, and relie
on the infinite-dimensional limit, but one could proceed
their fashion if desired. We begin with the generalized tw
particle correlation function

Fab~t,t8,t9,t-!5 (
qq8ss8

vqavq8b^Ttcqs
† ~t!

3cqs~t8!cq8s8
†

~t9!cq8s8~t-!&.

~55!

In the infinite-dimensional limit, the two-particle correlatio
function is expressed by just its bare bubble because
irreducible charge vertex has a different symmetry thanvq .
Hence we immediately learn that

Fab~t,t8,t9,t-!52(
qs

vqa
2 dabGqs~t-2t!Gqs~t82t9!.

~56!

But

Gqs~t!5E dvA~q,v!e2vt@12 f ~v!# ~57!

for t.0, and

Gqs~t!5E dvA~q,v!e2vt@2 f ~v!# ~58!

for t,0. Substituting into Eq.~56! then yields

Fab~t,t8,t9,t-!

5
dab

2d E der~e!E dvE dv8A~e,v!A~e,v8!

3ev(t2t-)2v8(t82t9) f ~v!@12 f ~v8!#. ~59!

Using this function we can construct the relevant ‘‘polariz
tion operators.’’ Recalling the EOM in Eqs.~47! and ~48!
shows that
24511
u-

-

he

-

lim
t8→t2

1

2 S ]

]t
2

]

]t8
D(

qs
vqcqs

† ~t!cqs~t8!5 jQ~t!. ~60!

The Jonson-Mahan theorem will hold for any Hamiltoni
that satisfies Eq.~60! ~which follows from the relevant com
mutators and equations of motion!. This identity holds true
for the Falicov-Kimball model, the Holstein model, the pe
odic Anderson model with on-site hybridization, and t
Hubbard model. The ‘‘polarization operators’’ then becom

L̄115pTE
0

b

ein ltF~t,t2,0,0! ~61!

for the conductivity,

L̄125pTE
0

b

ein lt
1

2 S ]

]t
2

]

]t8
D F~t,t8,0,0! ~62!

~in the limit wheret8→t2) for the thermopower, and

L̄225pTE
0

b

ein lt
1

4 S ]

]t
2

]

]t8
D S ]

]t9
2

]

]t-
D F~t,t8,t9,t-!

~63!

~in the limit wheret8→t2, t-→t92, andt9→01) for the
thermal conductivity. Because of Eq.~59!, the analytical con-
tinuation is trivial~one first converts from imaginary time t
Matsubara frequencies and then performs the Wick rota
to the real frequency axis!, and if we note the identity

f ~v!2 f ~v1n!52 f ~v!@12 f ~v1n!#@e2bn21#,
~64!

then we can easily compute that

L115
Ts0

e2 E der~e!E dvS 2
d f~v!

dv DA2~e,v! ~65!

for the conductivity,

L125
Ts0

e2 E der~e!E dvS 2
d f~v!

dv DA2~e,v!v ~66!

for the thermopower, and

L225
Ts0

e2 E der~e!E dvS 2
d f~v!

dv DA2~e,v!v2 ~67!

for the thermal conductivity. This proves Mott’s form for th
thermal transport@since*der(e)A2(e,v)5t(v)].

III. NUMERICAL RESULTS

We first present results for a case where the filling of
localized electrons is a constant. We choose the symme
case of̂ w&51/2 and half-fillingre51 for the electrons. We
perform calculations for two cases:~i!U51 which is a mod-
erately correlated metal~see Figs. 2 and 3!, and ~ii ! U52
which is a strongly correlated insulator~see Figs. 4 and 5!.

The thermopower in Fig. 2 behaves as expected—it v
8-7
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ishes for large and small temperature, it has an electron
peak at lower temperatures, and it has a sign change
temperature on the order of half the bandwidth. What is s
prising is that there is such a large compensation between
kinetic- and potential-energy pieces of the thermopower
produce the net thermopower~note the three order of mag
nitude difference in the scales for the main figure and
inset!. The thermal conductivity also appears as expec
We can see that while the contributions from the poten
energy are critical in determining the right thermopow
they have a relatively mild effect in the thermal conductiv

FIG. 2. Thermopower for the caseU51, w150.5, andrd51.
The main panel shows the two different contributions from
kinetic- and potential-energy pieces of the heat current, and
inset shows the net thermopower. Note how the two pieces are
and nearly cancel to produceS, and how there is a sign change ne
T'1.4.

FIG. 3. Thermal conductivity for the caseU51, w150.5, and
rd51. The plot shows the different contributions from the kinet
and potential-energy pieces of the heat current. Note how the
mal conductivity is essentially described by the kinetic-energy-o
piece for moderate correlation strength.
24511
e
t a
r-
he
o

e
d.
l
,

for a moderately correlated metal~note how close the tota
thermal conductivity is to the kinetic-energy-only contrib
tion! ~see Fig. 3!.

As we increase the correlation strength, so that the in
acting density of states has a gap and the system is a c
lated insulator, the behavior of the thermal transport chan
The thermopower in Fig. 4 has the characteristic insulat
behavior here, with what appears to be a divergence aT
→0. The divergence arises from the presence of a gap in
single-particle spectrum—bothL11 and L12 approach zero
exponentially inT ~with the same exponent!, but the ratio is

e
ge

r-
y

FIG. 4. Thermopower for the caseU52, w150.5, andrd51.
The main panel shows the two different contributions from t
kinetic- and potential-energy pieces of the heat current, and
inset shows the net thermopower. Note how the two pieces are l
and nearly cancel to produceS, and how the thermopower appea
to diverge asT becomes small~calculations run into numerica
problems asT→0).

FIG. 5. Thermal conductivity for the caseU52, w150.5, and
rd51. The plot shows the different contributions from the kinet
and potential-energy pieces of the heat current. Note how
potential-energy terms become increasingly important.
8-8
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proportional to the size of the gap, soS→C/T1B asT→0
~similar results have been found when applying scal
theory to the Anderson transition13!. Here this is ‘‘allowed’’
thermodynamically, because the ‘‘ground state’’ of the ins
lating phase has a nonzero entropy, since we forced the
tem into the paramagnetic insulating phase. In a real sys
however, there must be a transition to a ground state wh
the entropy is quenched. In such a case, one would expe
see a large peak in the thermopower at low energies, with
thermopower ultimately going to zero asT→0. We know of
no real correlated insulator that has a diverging thermopo
asT→0.

The computation at very small values ofT is difficult
because the electrical conductivity~or equivalentlyL11) ap-
proaches zero, and there are numerical difficulties associ
with properly calculating the conductivity in this regime du
to the cancellation of two large and nearly equal numbe
Since the thermopower requires the electrical conductivity
that cannot be calculated accurately then spurious beha
will be seen in the thermopower. The thermal conductivity
Fig. 5 looks similar to the weaker correlated case, except
it appears to go to zero at a nonzero temperature which is
expected behavior for a correlated insulator with a gap
the potential-energy pieces become increasingly more im
tant ~particularly at low temperature!.

In both of these half-filled cases, that of a correlated me
and a correlated insulator, the low-temperature thermopo
is determined by a slightly larger contribution from th
kinetic-energy piece of the heat current than from
potential-energy piece of the heat current. The thermal c
ductivity, on the other hand, has an evolution of going fro
a result nearly completely determined by the kinetic-ener
only piece of the heat current correlation functions to o
where the potential-energy pieces of the heat current con
ute progressively more and more to the total thermal cond
tivity.

Next we present results for the case where the total fill
re1^w&51.5 is a constant but the electrons can change fr
localized to itinerant~i.e., we fix the total electron concen
tration not the individual electron concentrations!. We
choose values of the parameters14 where the system has
sharp transition from a state at high temperature that
large f occupancy (̂w&'0.36 for 0.2,T,0.8), to a state a
low temperature with nof electrons~the crossover occur
near T50.04). We find that the results do not depend t
strongly on the parameters in this regime, and chooseEf5
20.7 and U54 as a canonical system that is similar
YbInCu4. The main difference from the symmetric ca
studied above is that the localized electron filling goes
zero asT→0. Hence both the kinetic and potential contrib
tions to the thermopower become small in this limit, a
there is no large cancellation between two nearly equal n
bers to determine the thermopower~see Fig. 6!. We see that
in the thermal conductivity in Fig. 7, the contributions fro
the mixed kinetic- and potential-energy pieces are the m
important, which is an indication of the strengthening of t
correlations in the system. This feature is hard to see fr
the shape of the thermal conductivity itself.

The thermopower has an interesting exchange of imp
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tance of the different pieces of the heat current as temp
ture is varied. For high temperatures, the thermopowe
determined by both parts of the heat current and a comp
sation effect is important. In the moderate-temperature
gime, the thermopower is dominated by kinetic-ener
pieces, which then give way to the potential-energy domi
tion at low temperature, that eventually shrinks asT→0 and
the thermopower vanishes.

Note that one would need to reverse the sign of the th
mopower to describe YbInCu4, since its charge carriers ar
holes rather than electrons. We should also remark that
thermopower of the Falicov-Kimball model does not have
low-energy peak associated with the ‘‘valence-chang
transition—such a sharp peak occurs in YbInCu4-like sys-
tems because of hybridization effects not included in t

FIG. 6. Thermopower for the caseU54, w11rd51.5, and
EF520.7. The main panel shows the two different contributio
from the kinetic- and potential-energy pieces of the heat curr
and the inset shows the net thermopower. Note the absolute s
for the thermopower is much larger here.

FIG. 7. Thermal conductivity for the caseU54, w11rd51.5,
andEF520.7. The plot shows the different contributions from th
kinetic- and potential-energy pieces of the heat current.
8-9
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model. Consequently, the thermopower also does not ha
low-temperature sign changes as seen in the experime
data15 ~a sign change occurs atT'2), but we see that if one
could reduce the potential-energy piece of the thermal c
rent then the kinetic-energy contributions to the th
mopower could cause a sign change to occur. This can
happen in a pure Falicov-Kimball model, however, beca
of the Jonson-Mahan theorem. The sign change for the p
Falicov-Kimball model generically occurs at much larg
values of temperature, on the order of the bandwidth.
regards the thermal conductivity, we findk is dominated by
the potential-energy piece asT→0 and the mixed piece
yields a negative contribution over a wide temperature ran

IV. CONCLUSIONS

We have examined thermal transport in the spin1
2

Falicov-Kimball model. We chose this model because
transport properties can be solved exactly, and they pro
an alternate proof of the Jonson-Mahan theorem for the t
mopower. We provide the proof in two different ways. T
first is a brute-force application of the dynamical mean fi
theory to calculate all relevant correlation functions, a
combine all terms to yield final expressions for the therm
transport coefficients. The second is based largely on
techniques of Jonson and Mahan, but one can determine
important ‘‘generalized polarization’’ functions exactly in th
large dimensional limit. Here we extend the Jonson-Mah
.

.
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arguments to show analogous results hold for the ther
conductivity as well.

Our formulation also allows us to decompose the con
butions to the thermopower and the thermal conductivity i
the respective contributions from the kinetic-energy pie
and the potential energy piece of the thermal current. We
that, generically, these pieces are large and opposite in
for the thermopower, so that thermal transport carried by
kinetic heat current is almost completely compensated for
the potential heat current, producing a small net th
mopower. For the thermal conductivity, we see an evolut
of the transport being dominated first by kinetic-energy ter
and then potential-energy terms as the strength of the co
lations increase. We note that, because the kinetic-en
contribution to the thermopower can be straightforwardly d
termined for a number of models, any Hamiltonian that s
isfies the Jonson-Mahan theorem can be separated int
kinetic and potential pieces for the thermopower by sim
subtracting the kinetic-energy piece from the Jonson-Ma
result.
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