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Thermal transport in the Falicov-Kimball model

J. K. Freerick§ and V. Zlati¢
!Department of Physics, Georgetown University, Washington, DC 20057-0995
2Institute of Physics, Zagreb, Croatia
(Received 29 August 2001; published 10 December 2001

We prove the Jonson-Mahan theorem for the thermopower of the Falicov-Kimball model by solving explic-
itly for correlation functions in the large dimensional limit. We prove a similar result for the thermal conduc-
tivity. We separate the results for thermal transport into the pieces of the heat current that arise from the kinetic
energy and those that arise from the potential energy. Our method of proof is specific to the Falicov-Kimball
model, but illustrates the near cancellations between the kinetic- and potential-energy pieces of the heat current
implied by the Jonson-Mahan theorem.
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[. INTRODUCTION of the localized electronsy; is a variable that is equal to
zero or one and corresponds to the localized electron num-
The Jonson-Maharf theorem shows that there is a simple ber, andU is the interaction strength. The hopping integral is
relation between the transport coefficient for the electricakcaled with the spatial dimensiahso as to have a finite
conductivity and that needed for the thermopower. The relaresult in the limit d—; we measure all energies in units of
tion is that the integral for th&,, coefficient has one more t*=1. We work on a hypercubic lattice where the noninter-
power of frequency in the integrand than thg coefficient.  acting density of states is a Gaussja(e) = exp(— )/
This result has been known for many yédisr a noninter- The Falicov-Kimball model can be solved exactly by em-
acting system—the Jonson-Mahan theorem generalizes thigoying dynamical mean-field thed¥y. Because the self-
result for a wide class of many-body systefirluding the  energy2 (z) is local, the local Green’s function satisfies
Falicov-Kimball model, the Holstein model, the periodic
Anderson model with on-site hybridization, and the Hubbard
mode). +u—2(z)—€’

We use the exact solution of the Falicov-Kimball model in ith here in th | | h _
the large-dimensional limit to provide an alternate derivationV'!! # @NYWNETe in the complex p arf@e/e suppress the spin

of the Jonson-Mahan theorem by explicitly evaluating a"mdex here. The self-energy, the local Green’s function, and

relevant correlation functions needed for the thermal transt—he effective mediunG, are related by

port. Our exact analysis also allows us to separate the con- G Y2 =G Y2)=3(z 3
tributions to thermal transport that arise from the kinetic- and 0 (2) 2=, ©
potential-energy pieces of the heat current. These results prand the Green’s function also satisfies
vide an interesting interpretation of thermal transport in cor-
related systems.
In Sec. Il we develop a formalism for deriving the dc G(2)=(1-w1)Go(2) + W, Gy lz)—-U’ )
conductivity, the thermopower, and the thermal conductivity. 0
We derive exact results for the relevant correlation functionsHerew, is the average concentration of localized electrons,
and use them to prove the Jonson-Mahan theorem and its _
generalization to the thermal conductivity. In Sec. Ill we pro- wy=2exg — B(Ei—w)]Z1(u—U)Z|(n—U)/Z, (5
vide numerical results for the thermal transport illustratingyyith Z=Z,(w)Z (1) +2 exg — B(E;— m)1Z:(u—U)Z (1
the different contributions to the thermal coefficients for a_y and
number of illustrative cases. Conclusions are presented in
Sec. IV. i, u—A(Iwp)
Z,(p)=2e7[] =2-E &3
n

G(Z)Zf dep(e)Z (2

- (6)
)
Il. FORMALISM FOR THE THERMAL TRANSPORT "
The factor of 2 in Eq(5) arises from the spin degeneracy of
The Hamiltonian for our system is the spjnFalicov-  the f electrons, and the constraint that no more than one
Kimball modef electron is allowed on any site. The symhbgl(z) is defined
from ) the effective medium via A (iw,)=Tw,+ux
t* N -G, (iwy). w,=7T(2n+1) is the fermionic Matsubara
H=- 2d <%U CiTtTCiUJr Efzi Wi+U% WiCioCia frequency, and3=1/T. The algorithm for determining the
(1) Green’s function begins with the self energy set equal to
zero. Then Eq(2) is used to find the local Green’s function.
Wherecfg (ci,) is the electron creatiofannihilation) opera-  The effective medium is found from E¢3), and the local-
tor for an electron at sitewith spina, E; is the energy level ized electron filling from Eq.5). The new local Green’s
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function is then found from Eg4), and the new self-energy 5
from Eq. (3). This algorithm is repeated until it converges. k=Kg
Transport properties are calculated within a Kubo-

Greenwood formalisrfi. This relates the transport coeffi- The transport coefficients are found from the analytical con-

cients to correlation functions of the corresponding transporinyation of the relevant “polarization operators” at zero fre-
current operators. We will deal with two current operatorsqyency,

here—the particle curreht

Loo— (11

|—12L21}
L |

i
Ly1=lim Re;l-ll( v),

quz VoCliaCar 7 -0
. L . — B
(where the velocity operator @.—qu(q) and the Fpunsr Lyy(ivy)= WTI dre! " (T,j 2(7)13(0)% (12)
transform  of  the  creation  operator s c, 0

=3,exdig-R;]c//N) and the heat curreht _ _
wherev;=2#TI is the bosonic Matsubara frequency, the

U dependence of the operator is with respect to the full Hamil-

jo= > (€q— ,u)vchacq,ﬁr 5 tonian in Eq.(1), and we must analytically continue (i v)

a7 to the real axid.1(v) before taking the limitv— 0. Similar

) . definitions hold for the other transport coefficients:

X > W(G—a")[Vg+ Vg lch,Cqro (8)
qq'c :

| —
Lip=lim Re;'—lz( v),

v—0

[where W(q) =X ;exp(—iq-R;)w;/N]. The heat current can
be broken into two piecedi) a kinetic-energy pieceé,
which is the first term in Eq(8); and(ii) a potential-energy s
piecejg, which is the second term in E¢B). Lo V|)=77Tf dre (T ,jl( Mi0s(0)), (13)
The particle current is defined by the commutator of the 0
Hamiltonian with the polarization operatb¥hen evaluated
on a lattice with nearest-neighbor hopping, one finds factorénd
that involve the weighted summation of the nearest-neighbor
translation vectorss weighted by phase factors eigpf),
which yield the velocity operator terms above. The definition
of the heat-current operator is more involved, and requires
the Hamiltonian to be separated into operatgrhat involve - s
the S|_te| (in _decomposmg the klnetlc-ener_gy operator into Lzz(iV|)=7TTf dre' (T, ga(T)jQ,B(O»' (14)
“localized” pieces, one symmetrically assigns half of the 0
ClyCj,+C/,Ci, term to sitei and half to sitg). These opera-
tors can be combined with the position operator to constru
an “energy” polarization operato®;R;h;, which is com- SR L .
muted with the Hamiltonian to determine the energy current. We. begin with a derlv_at_lon that §hoyvs the anallyt[c con-
operator; the heat current operator is just this energy curreffnuation for the conductivity. Substituting the defmr@n of
operator shifted by the chemical potential multiplied by thethe particle current operator of E(7) into Eq.(12) for Ly,
number current operator. Important operator relations beyields
tween the heat-current operator and the particle-current op-

i
Loo=lim Re;'—zz( v),

v—0

dn all of these equations, the subscriptsand 8 denote the
respective spatial indexes of the current vectors.

Erator are described fully belojsee the discussion around Ly v,)zrrTdere‘ S vy
g. (60)]. o 2 VgaVo'p
The dc conductivityo, thermopowerS, and electronic aaoe

thermal conductivityx can all be determined from relevant X(TTCEU( 7)Cqol T)C;,U,(O)quo.r(o». (15

correlation functions of the current operators. We define

three transport coefficients;;, L1,=L,;, andL,,. Then The correlation function can be determined from Dyson’s

equation, which relates the dressed correlation function to
e2 the bare correlation function via the irreducible charge ver-
g= ?Ln, 9 tex. Since the charge vertex is local in the infinite-

dimensional limit, it is an even function of momentum, and
any sum over momentum that is weighted by just one factor
S— ﬁ L1 (10) of v4 will vanish. Hence the dressed correlation function is
le|T Ly’ equal to just the bare correlation functir{note that the
contractions of the operators at equal times also vanish when
and summed over momentumThis produces
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FIG. 1. Contours used in the analytical continuati@:contour
needed for the Matsubara frequency summation @adleformed
contour to lines parallel to the real axis.

_ B )
Ly(iv)=— wa dre' TZ VgaVqsCao(7) Ggol — 7).
0 qo
(16)

Now we introduce the Fourier transform of the Green'’s func-

tion G(7r)=TZexp(-iw,7G, with G,
= [Bdrexp(w,nG(7). Substituting into Eq(16) allows us
to perform the integral over. This finally produces

Lyy(in)=— szg qE VgaVqpGaoli @n) Ggoliwns ).
(17)
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parallel to the real axis, with the Green'’s functions evaluated
with either retardedR) or advancedA) functions. The result
is

_ T .
L11(|V|)=—EJ’def(w)% VgaVgsCao( @) Ggo(w+iv))
T (=
:_szdwf(w)% VgaVs
R A R - T
X[Ggo(@) = Ggo(@)1Gg (0 +im) = o

xJ dof(0—iv) 2 VaaVasGas(@—in)
. <

X[Gf, (@)~ Ggy(@)]. (18

The analytical continuation is performed by first rewriting
f(o—iv)=f(w), then takingiv,—v+iéd and shifting the
integration variablew— w+ v in the second integral. Then,
using the definition folL 11, we finally arrive at

: T(
Lyg= "mo_z_v wdw% VgaVasRe F(©) Gyl @)

XGyo(w+tv)—f(o+ v)G;U(w)Ga‘U(w-i- V)
—[f(0)—f(0+1)]Gg,(0)Gg(w+r)}. (19

SinceGy,(w) =1 o+ un—=%(w)—€(q)], we can perform a
summation oveq directly. Because(q) is an even function
of g and v, is odd, we must haver=g. Converting the
fraction into the integral of an exponential then allows the
summation oveq to be performed directl}} The summation
over q can be written as an integral over energy with a
weighting factor ofp(e)t*?/d. This yields

Tt+? = =
L= lim— mﬁaﬁ‘[ﬂcdw; Jiwdep(e)

v—0

X Re{f(w)an(w)GqU(w-f— v)

—f(w+ )G (0)Gy(w+v)

—[f(0) = f(0+1)]G5,(0)Ggo(w+v)}.  (20)

If we define oo=e€%t*?/(2d), and we perform the integral
over €, we arrive at

 Tog o f(w)—f(w+v)
Lll_ ]I}[no_z 5“'8J1wdwf

The next step is to perform an analytical continuation
from the imaginary axis to the real axis. The procedure is e{ G(w)—G(w+)
XRg —

standard’. We first write the summation over Matsubara fre-

guencies as an integral over the cont@ishown in Fig.

1(a), which has contributions at the poles of the Fermi func-
tion f(w)=1[1+exp(Bw)] which lie at the fermionic Mat-
subara frequencies. The contour is then deformed to lines v+2*%(w)—2(w+v)

v+ (w)—2(w+v)

G*(w)—G(w+7) 21
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The final step is to take the limit of—0. Using the facts G(w)
that T(w)= S(w )+2—2 R[w+u—2(0)]G(w)}.
) —f(oty)  df(w) (25)
lim =— (22
v—0 v do This result appears different from that originally derived for
and the hypercubic latticé? but Egs.(24) and (25) do yield the
same result; the form presented here has the integral over the
G(w)—G(w+v) noninteracting density of states performed exactly.
lim =—2+2lw+u—2(w)]G(w) The derivation for the transport coefficiebt,, needed

ot ()~ (0t ) for the thermopower, proceeds in a similar fashion. We can

(23 divide the heat current into two pieces; one corresponding to

produces our final result fdr,,, the kinetic energy, and one corresponding to the potential
energy. This allows us to write;,=L%,+L%,. The deriva-
Tog (= df(w) tion for the kinetic-energy piece follows exactly like the deri-
Lu=—% - f do| —— == 7(w) (24 vation for L,; except there is an extra factor ef- x that
appears in Eq(20). The integral overe can then be per-
with the relaxation timer(w) defined by formed straightforwardly, producing
|
< i j do f(w)—f(aH—V) [0—2(0)]G(w)—[o+r—2(w+v)]G(w+v)
V'L“o Oap v 1+ (0)—S(w+v)

) [0—3*(0)]G* (w)—[w+r—3(w+1)]G(w+ v)]

(26)
v+3*(w)—2(w+v)
|
Evaluating the limitv— 0 is simple. The final result is where we have taken the appropriate contractiomde the

velocity operators guarantee that we need not worry about
TUo any vertex correctionsThe correlation functions in E429)
Li=— J dw( - d—>{[w—ReE(w)]T(w) can be evaluated by taking the derivative with respect to the
e — w e - .
components of an infinitesimal field >;h;w; . These corre-
_ _ lation functions have a factor of expBH] in the numerator
2 Im2(@)im(w+p=2(0)C(w)]}, @7 and a factor ofZ in the denominator. In addition, the de-
with 7(w) defined in Eq(25). pendence of the operators arises from factors of £xpl].
The derivation of the potential-energy piece is much moreSince the operatar; commutes with all fermionic operators,
involved. The first step is to replace the momentum-it is easy to verify that the expression in E@9) becomes
dependent operatW/(gq—q’) by its Fourier transform. Sim-

plifying the expression fot.}, yields N > [ Gyol T)( +<w]>> Gyol = 7)+Ggol —7)
I
H |V T &
E?2(' V|)_ f dre'” qqzo-o— Z VQqu B X T(?_m'f‘(WJ))qu-(T) 5qq!50-o"1 (30)

X[e—|q Ri(T w, ¢t (ne (T)C , (0)Ci,:(0)) which follows by first removing thev; operator through the
ki a7 ae 17 derivative, then expressing the fermionic operator at jsite

+ed" RT we c ¢t (0. (0. through a Fourier transform, and finally evaluating the fer-
(W, q"( ™)Caol7) lo (0)¢q o (0)] mionic averages. Substituting this result into E28) then
(28 yields

Noting that thew; operator commutes with the fermionic — . 7T?U
operators allows us to use Wick's theorem to rewrite the Lizi?)=— 55~ zn‘« 2 2 VaaVas
terms in the square bracket as

X

1%
. T——+{(W;) |Gyy(i n)}Ggi ntt)
%2[—e"“‘R1<waj030(r)cjg(0)>qu(T> oh; <J>} qoli@n) | Ggoli@n.
]

J
+<W>

+ €19 RIT Wi Cqy(7)¢],(0)) Gao — 1] 8aq O, (29) *Gaollwn)| T qv““’n“))'

(31)
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The derivatives need to be computed. Writing the

PHYSICAL REVIEW B 64 245118

Now we are ready to perform the analytical continuation.

momentum-dependent Green’s function as a Fourier trand=irst we substitute Eq40), into Eq. (31) and we note that

form,

(32

1 .
Gyoliwg) =15 2 €9 G (i wp),
=]

and using the identity

Gijoli wp) EG.m(nwn)leg(lwn)eugown) (33)

(with G~ the matrix inverse ofG), allows us to compute
the derivative as

Ggoliwn)=

1 _
=3 it (Ri-R)
N

52]ja(iwn)
oh,

J
,
><G‘ij(r(i wn) n)

(39

jj(r(

But in a homogeneous phase, the derivative of the local self-

the sum ovej cancels the factor of IV:

L) =

wT?
- T ; % anvqﬁ[z(r(iwn)

+20(iwn+l)]an(iwn)an(i wny1). (41

Next, we rewrite the sum over Matsubara frequencies as a
contour integral and perform the analytical continuation in
the exact same way as before. If we then evallgte we

find

1% f:dwf:dep(e)Re(f(w)

LD,= lim —
2e‘y

v—0
X{[2(0) +2(0+)]Gy(0)Gy(w+v)
—[2*(w)+2(w+ )]G (0)Gy(w+v)}
+f(o+){[2* (0)+2(w+ v)]Ga‘(w)Gq(w-l- V)

—[2*(0)+2* (w+ V)]G*(a))G*(aH- v)}). (42

energy with respect to the local field and the local Green’s

function are both independent of the sjteso we finally
arrive at

Gy, (iwp)
dh

2ng

=Gpy Jh

qo(i@n). (39

Since the self-energy depends only Gy and w,, the de-

rivative can be computed by taking partial derivatives and

using the chain rule

20 OW,
Pny W oh (39
dh 12 )
"G,

Each of the derivatives in E¢36) can be found directl{:’

e U
ow;  14+Gp(23,,—U)’ 37
awy  wy(1—wy)
ho T 38
and
1— Gg azno (1+Gna'2na')(l+Gn0'[2na'_U])
"7 9G g 1+ Gy (23 he— V) :
(39

Substituting these derivatives into E@6), and performing
some straightforward simplifications that involve the qua-
dratic equation that the self-energy satisfidmally yields

no

d , 2
Tﬁ_h+<w> qu(lwn):T

Gyoliwn). (40)

Now the integral overe can be performed, and the limit
—0 can be taken. It becomes

[ oo

+2ImE(w)Im{o+up—3(0)}G(w)]). (43

Adding together Eq927) and(43) yields the Jonson-Mahan
result of
dw( -

Our final derivation is for the thermal conductivity coef-
ficient L,,. Like before, we separate this into pieces corre-
sponding to the kinetic energy and the potential enekgy:

L +L +L +L Due to the symmetry of the
terms we haveL2 LEZK. The kinetic-energy piece is
simple to calculate. Like in our derivation f(ln’l< , the steps
are identical to the derivation fdr;; except we have an extra
factor of (e—u)? in Eq. (20). Performing the integration
over € and collecting terms finally yields

df(w)

dow

TO'O

L5’2= BvE
e?

) (ReX(w)m(w)

df(w)
do

eZ

L= (44)

)T(w)w.

TO'O
eZ

KK _
22

% df
f_xdw( (e )({[w ReS(w)]?7(w)

+Im G(w)IM3(w)—2[IM3S(w)]?+2[Im3(w)]?
XRe[o+u—2(0)]G(w)}—4o—ReZ(w)]
XM (o) IM{[o+u—2(0)]G(w)}).

The derivation forL5y =L5X is identical to that ofL?, ex-
cept we have an extra factor of{ u) in Eq. (42). Perform-
ing the integration ovee then produces

(49)
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© B )
Lg:E dw(—M)([w—ReE((u)]ReE(w)T(w) f'éz"(iv|)=ﬂfodrew”§ Vg

1
e2 do E(}lqua'( T)aTGqU(_ T)

—IMG(w)IM3(w)+2[Im3(w)]?—2[Im3(w)]?
XRe[o+u—32(0)]G(w)}+2[w—2ReX(w)]
XIm3 (o) Im{[w+u—3(w)]G(w)}). (46)

1 2 1 2
- Z(?Tqu-( T)qu( - T) - Zqu( T) (?TGqO'( - T)
+(€q— u){Ggo(7)3,Ggo( = 7) = 9,G (1) Gy,

X(_T)}_(EQ_M)ZGQU(T)GQO'(_T) . (50)

The final term we must evaluate lis; . This is the most
complicated term to evaluate, and we are unable to do so
following the same strategy as employed in tHfg deriva- We need to be able to produce expressions for the derivatives
tion. Instead, we proceed by an alternate method based @i the Green’s functions. We do so by first writing the
the equation of motioGEOM) technique. The EOM's for the Green'’s function as a Fourier series over the Matsubara fre-
fermionic creation and annihilation operat¢irsthe momen-  quencies, and then taking the derivative into the Matsubara
tum basis are summation. This may appear to be mathematically unsound,

but we do so by adding and subtracting the know(r)
behavior of the derivative, to regularize the summation.
Since we are interested only inkOr<<, this procedure has
a—TCg(,( 7)=[e(@) ~p]Cq,(7) + UE,:’ W(K)Cg i 7) no convergence issues. Likgwise, or’?e is aIsF,)o able to take the
(47 second derivative in this fashion. FoxkG-<g we find

and 9,Ggo(7)= — (€q— 1) Ggo(7)
: Zmo
p) ~TY, e ion. 0, (5D
37 Car )=~ [€(0) = ]Cqy(7) = U 25 W(K)Cqio(7)- m lomt i Xme €q
(48)
93Gqo( )=+ (€q— 1) *Cqo( )+ (6q— )T
These EOM’s can be employed to express the correlation s
function of the heat-current operators in terms of derivatives X 2 e iomT_ mo
with respect to imaginary time as shown below: m fomtpn—2m,~ €
_i 02 me
+TQ, e '®mT- ,
— aTU% (B Em: lom+pu—2m,— €
L22(|V|): J dTelvlT 2 (an+vq/rra)
4 0 qqrqrrqma_o,r
X (Ver b Ver UT-W(d—a"YW(a —a” with similar formulas forG,,(— 7). Substituting the deriva-
(Var gV} (TW(A—q")W(G" =) tives from Eq.(51) into Eq. (50), and then simplifying the
xcag( 7)Cqrl T)C;,U,(o)cq,,a,(o» result, finally produces
=77Tf5dre‘”'f D VgaVgrp lim lim T2
a . au .
0 qq’ oo’ = =0T EZPZP(|V|): - T ; % véa({zg(lwn)
1
><<TTH§(r77—rLr)—(eqf—u)] +3 ,(iwn)}Ggeli 0y) Ggoli@n)
. 1 +2 p(iwn11)Ggoli ) + 24 (10n) Ggoliwn+1)).
ch’g'(T)Cq’(T(T,) [E(afr”_&f”)_(eq_“’)] (52)
xc;(r,(f’)cq”/(r”’) > (49 It is easy to understand the first terms in this expression, as

they are what one would naively recover when following the
same Wick analysis that was done previously igs. We

Now each of the operator averages can be expressed in terihgve not been able to discover a direct operator-based deri-
of Green’s functions, since the velocity factors guaranteevation of the second terms, but they are critical for providing
there will be no vertex corrections. Noting further that thethe right answer foLSZP. Performing an analytical continu-
integrals will only contribute ifa= g finally yields ation and simplifying yields our final result
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Tog (= df(w) 1/ 9
pp__"0 _ -\ 2 e _
Ly, = = ) dw( do (ReX(w)]°7(w) T/Im:_z(m_ o )20 vch(,(r)cq(,(r) jo(7). (60)
—2[Im3 (@) 2+ Im3(w)ImG(w) The Jonson-Mahan theorem will hold for any Hamiltonian
) that satisfies Eq60) (which follows from the relevant com-
+2[Im (o) Ref[o+pu—2(0)]G(w)} mutators and equations of motjoThis identity holds true
+4ReS ()M (o) Im{[o+u—3(0)]G(w)}). for the Falicov-Kimball model, the Holstein model, the peri-

odic Anderson model with on-site hybridization, and the
(53 Hubbard model. The “polarization operators” then become

Summing together Eq(45), twice Eq. (46), and Eq.(53)

. — B .
gives the Mott form L= ’7TTf e'""F(r,7,0,0) (61
0
Tog [ df(w i
Lo 2o B d( ))T(w)wz_ (54 for the conductivity,
e —o0 w

— B ivrl J Jd
We can also generalize the original Jonson-Mahan argu- L12= WTJ’O ) b ar F(r.7,000 (62
ment to prove relations betweén; andL 1, and betweet ,,

andL,. Our method is different from their proof, and relies (in the limit where7’— 77) for the thermopower, and
on the infinite-dimensional limit, but one could proceed in

— B. 1[4 J J J
their fashion if desired. We begin with the generalized two L= WTJ o WZ( )(__ _) F(r,7 77"

particle correlation function ar PR
(63)
oy ) . L.
Fap(r, 7', 7", 7")= E , VgaVar (T +Cqo(7) (in the limit wherer’ —7~, 7"—7 -, and 7’—07) for the
aq e thermal conductivity. Because of E(c$9) the analytical con-
X Cqu(7')C q,g,( 7')Cqr o (7). tinuation is trivial (one first converts from imaginary time to

Matsubara frequencies and then performs the Wick rotation
(59 o the real frequency axisand if we note the identity

In the infinite-dimensional limit, the two-particle correlation flw)—f(w+1)=—f(0)[1—f(w+v)][e F—1]

function is expressed by just its bare bubble because the ’(6 4

irreducible charge vertex has a different symmetry tiign _

Hence we immediately learn that then we can easily compute that

Fop(r, 7', 7", 7") 2 an5alqu0( —7)Gq(7' = 7). Lll— J dep(e)J’ do| — )Az(e w) (65
(56)

for the conductivity,
But

L12= d d A2 66
un<r>=fde(q,w>e*wT[1—f<w>] (57) e je”(e)f “’( ) (e.w)o (66

for the thermopower, and
for >0, and

df(w)) )
Goo(7)= | doA@oe“T-fw)] (59 LZZ__f dép“)fd“’( )A (o™ (67
for the thermal conductivity. This proves Mott’s form for the

<0. ituting i i .
for 7<<0. Substituting into Eq(56) then yields thermal transporfsince [ dep( &) A2(e.w) = r(w)].

Fop(r, 7", 7", 7")
IIl. NUMERICAL RESULTS
2
= Z—dﬂf dep(e)f dwf do'A(e,w)A(e,0") We first present results for a case where the filling of the
localized electrons is a constant. We choose the symmetric
X go(r=")—w' (7' =7 )f(cu N1—f(w)]. (59) case ofw)=1/2 and half-fillingp.=1 for the electrons. We

perform calculations for two case§)U =1 which is a mod-
Using this function we can construct the relevant “polariza-erately correlated metdbee Figs. 2 and)3and (i) U=2
tion operators.” Recalling the EOM in Eq$47) and (48)  which is a strongly correlated insulat@ee Figs. 4 and)5
shows that The thermopower in Fig. 2 behaves as expected—it van-
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= X =
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Temperature T [t*] Temperature T [t*]
FIG. 2. Thermopower for the cad¢=1, w,;=0.5, andpy=1. FIG. 4. Thermopower for the casdé=2, w,;=0.5, andpy=1.

The main panel shows the two different contributions from theThe main panel shows the two different contributions from the

kinetic- and potential-energy pieces of the heat current, and th&inetic- and potential-energy pieces of the heat current, and the

inset shows the net thermopower. Note how the two pieces are largaset shows the net thermopower. Note how the two pieces are large

and nearly cancel to produ& and how there is a sign change near and nearly cancel to produ& and how the thermopower appears

T=~1.4. to diverge asT becomes smallcalculations run into numerical
problems asr—0).

ishes for large and small temperature, it has an electronlike
peak at lower temperatures, and it has a sign change atfar a moderately correlated metaiote how close the total
temperature on the order of half the bandwidth. What is surthermal conductivity is to the kinetic-energy-only contribu-
prising is that there is such a large compensation between thi®n) (see Fig. 3
kinetic- and potential-energy pieces of the thermopower to As we increase the correlation strength, so that the inter-
produce the net thermopowémote the three order of mag- acting density of states has a gap and the system is a corre-
nitude difference in the scales for the main figure and thdated insulator, the behavior of the thermal transport changes.
inse). The thermal conductivity also appears as expectedlhe thermopower in Fig. 4 has the characteristic insulating
We can see that while the contributions from the potentiabehavior here, with what appears to be a divergencé& as
energy are critical in determining the right thermopower,— 0. The divergence arises from the presence of a gap in the
they have a relatively mild effect in the thermal conductivity single-particle spectrum—both;; and L, approach zero
exponentially inT (with the same exponentbut the ratio is

6 T T T
— 2.5 . : :
N
m ~
~ 5F iy
[ m
X 2 |
— [
= 4L
hred N
% —
‘ <
_8 3L ) 1.5
S o
° &
6 2 F (@) 1 F
£ 5
. 2
0 =
0 0.5 1 1.5 2 o L :
Temperature T [t*] 0 0.5 1 1.5 2

Temperature T [t]
FIG. 3. Thermal conductivity for the casé=1, w,;=0.5, and

pqa=1. The plot shows the different contributions from the kinetic-  FIG. 5. Thermal conductivity for the cas¢=2, w,;=0.5, and

and potential-energy pieces of the heat current. Note how the thepy=1. The plot shows the different contributions from the kinetic-
mal conductivity is essentially described by the kinetic-energy-onlyand potential-energy pieces of the heat current. Note how the
piece for moderate correlation strength. potential-energy terms become increasingly important.
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proportional to the size of the gap, $~C/T+B asT—0 5

(similar results have been found when applying scaling %‘

theory to the Anderson transitibh. Here this is “allowed” N 4r 7

thermodynamically, because the “ground state” of the insu- N 3| |

lating phase has a nonzero entropy, since we forced the sys- :

tem into the paramagnetic insulating phase. In a real system, = 5 L % temperature 24

however, there must be a transition to a ground state where : T~

the entropy is quenched. In such a case, one would expectto g 1 F

see a large peak in the thermopower at low energies, with the g :

thermopower ultimately going to zero &s-0. We know of a 9 | f-teoT oo

no real correlated insulator that has a diverging thermopower g , Li S&*)

asT—0. S A T
The computation at very small values ®fis difficult 2 Lo S:(T)

because the electrical conductivityr equivalentlyL;;) ap- e (T). | ! ]

proaches zero, and there are numerical difficulties associated 0 0.5 1 1.5 2 2.5

with properly calculating the conductivity in this regime due Temperature T [t*]

to the cancellation of two large and nearly equal numbers.
Since the thermopower requires the electrical conductivity, if FIG. 6. Thermopower for the cadd=4, w;+pys=1.5, and
that cannot be calculated accurately then spurious behavi&g:= —0.7. The main panel shows the two different contributions
will be seen in the thermopower. The thermal conductivity infrom the kinetic- and potential-energy pieces of the heat current,
Fig. 5 looks similar to the weaker correlated case, except thand the inset shows the net thermopower. Note the absolute scale
it appears to go to zero at a nonzero temperature which is thfer the thermopower is much larger here.
expected behavior for a correlated insulator with a gap and
the potential-energy pieces become increasingly more impotance of the different pieces of the heat current as tempera-
tant (particularly at low temperatuye ture is varied. For high temperatures, the thermopower is
In both of these half-filled cases, that of a correlated metatletermined by both parts of the heat current and a compen-
and a correlated insulator, the low-temperature thermopowegation effect is important. In the moderate-temperature re-
is determined by a slightly larger contribution from the gime, the thermopower is dominated by kinetic-energy
kinetic-energy piece of the heat current than from thepieces, which then give way to the potential-energy domina-
potential-energy piece of the heat current. The thermal contion at low temperature, that eventually shrinksTas 0 and
ductivity, on the other hand, has an evolution of going fromthe thermopower vanishes.
a result nearly completely determined by the kinetic-energy- Note that one would need to reverse the sign of the ther-
only piece of the heat current correlation functions to onemopower to describe YbInGusince its charge carriers are
where the potential-energy pieces of the heat current contritholes rather than electrons. We should also remark that the
ute progressively more and more to the total thermal condudghermopower of the Falicov-Kimball model does not have a
tivity. low-energy peak associated with the “valence-change”
Next we present results for the case where the total fillingransition—such a sharp peak occurs in Yblpdike sys-
pet{w)=1.5is a constant but the electrons can change frontems because of hybridization effects not included in this
localized to itineranfii.e., we fix the total electron concen-
tration not the individual electron concentratipnsNe 2.5 T T T T
choose values of the parametérahere the system has a
sharp transition from a state at high temperature that has
largef occupancy (w)~0.36 for 0.2<T7<0.8), to a state at
low temperature with nd electrons(the crossover occurs
near T=0.04). We find that the results do not depend too
strongly on the parameters in this regime, and chdgse
—0.7 andU=4 as a canonical system that is similar to
YbInCu,. The main difference from the symmetric case
studied above is that the localized electron filling goes to
zero asT—0. Hence both the kinetic and potential contribu-
tions to the thermopower become small in this limit, and
there is no large cancellation between two nearly equal num-
bers to determine the thermopoweee Fig. 6. We see that
in the thermal conductivity in Fig. 7, the contributions from ~o 0.5 1 1.5 2 2.5
Fhe mixed kin.etic_— and.po_tent.ial—energy pieces are the most Temperature T [t*]
important, which is an indication of the strengthening of the
correlations in the system. This feature is hard to see from FIG. 7. Thermal conductivity for the cadé=4, w,+py=1.5,
the shape of the thermal conductivity itself. andEg=—0.7. The plot shows the different contributions from the
The thermopower has an interesting exchange of imporkinetic- and potential-energy pieces of the heat current.

Thermal cond. «(T) [sz]
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model. Consequently, the thermopower also does not haveaaguments to show analogous results hold for the thermal
low-temperature sign changes as seen in the experimentabnductivity as well.
datd® (a sign change occurs @t=2), but we see that if one Our formulation also allows us to decompose the contri-
could reduce the potential-energy piece of the thermal curbutions to the thermopower and the thermal conductivity into
rent then the kinetic-energy contributions to the ther-the respective contributions from the kinetic-energy piece
mopower could cause a sign change to occur. This cann@nd the potential energy piece of the thermal current. We find
happen in a pure Falicov-Kimball model, however, becaus¢hat, generically, these pieces are large and opposite in sign
of the Jonson-Mahan theorem. The sign change for the purer the thermopower, so that thermal transport carried by the
Falicov-Kimball model generically occurs at much larger kinetic heat current is almost completely compensated for by
values of temperature, on the order of the bandwidth. Ashe potential heat current, producing a small net ther-
regards the thermal conductivity, we fimdis dominated by mopower. For the thermal conductivity, we see an evolution
the potential-energy piece a6—0 and the mixed piece of the transport being dominated first by kinetic-energy terms
yields a negative contribution over a wide temperature rangeand then potential-energy terms as the strength of the corre-
lations increase. We note that, because the kinetic-energy
IV. CONCLUSIONS contribution to the thermopower can be straightforwardly de-
termined for a number of models, any Hamiltonian that sat-
We have examined thermal transport in the spin- isfies the Jonson-Mahan theorem can be separated into its
Falicov-Kimball model. We chose this model because tthneUC and potentia| pieces for the thermopower by S|mp|y

transport properties can be solved exactly, and they providgyptracting the kinetic-energy piece from the Jonson-Mahan
an alternate proof of the Jonson-Mahan theorem for the thefegylt.

mopower. We provide the proof in two different ways. The
first is a brute-force application of the dynamical mean field
theory to calculate all relevant correlation functions, and
combine all terms to yield final expressions for the thermal We would like to acknowledge stimulating discussions
transport coefficients. The second is based largely on thaith G. Czycholl, B. Letfulov, G. Mahan, R. Reer, G.
techniques of Jonson and Mahan, but one can determine th&tliar, and C. Villagonzalo. This work was supported by the
important “generalized polarization” functions exactly in the National Science Foundation under Grant No. DMR-
large dimensional limit. Here we extend the Jonson-Mahar®973225.
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