PHYSICAL REVIEW B, VOLUME 64, 245108

Variational method for the generation of localized Wannier functions
on the basis of Bloch functions
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A simple and universal variational method for constructing localized Wannier functions from Bloch func-
tions is proposed. The variational procedure is preceded by a symmetry analysis based on the induced repre-
sentation theory and succeeded by a suitable orthogonalization procedure. The reliability of the method is
demonstrated by computations of localized displacements in a one-dimensional diatomic lattice and a germa-
nium lattice, of localized electronic states in a one-dimensional Kronig-Penney model, for the upper valence
bands of Si and MgO crystals.
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[. INTRODUCTION of Wannier functions for coppéf. The Wannier functions
have turned out to be poorly localized. Apparently, the main
Since their introduction in 1937Wannier functions have reason for this is the nonanalytical behavior of the Bloch
been often used in many theoretical considerations of eledunctions. Teichler succeeded in generating the best localized
tronic properties of crystals. The use of localized functionssymmetry-adapted Wannier functions for a three-dimensional
significantly facilitates the study of local propertiéstom diamond-type latticé? where the technique of Ref. 8 has
charges, active valences, bond orders, and $drosolids. ~ Peen applied. A different approach was used by Satpathy and
These quantities calculated in the localized Wannier basi§aviovska who constructed the Wannier functions of sili-

instead of the traditional atomic basis scheme seem to bf%on’s \_/alenﬁe band witr:j_the ab(;]ve-_melntion_e(;j uni%ir};]trans-
more physically valid The Wannier function approach is formation chosen according to physical consideratforiie

isoessenln e modern theoryof polerizaon, LTS Mot SpPeses o ne e, bt e e
The analytical behavior of Bloch functions of energy pp . y imited.
bands ink space determines the degree of localization Ofdlfﬂculty at points of degeneracy of composite baqu, _the use
. . : . g of the eigenvectors of a Slater-Koster model Hamiltonian has
corresponding Wannier functions irspace’~8 A useful con-

; ) , been proposetf:?3 The results for fcc transition metals and
cept of band(induced representations has been introducedy, sj and GaAs can be regarded as satisfactory and, besides

in the theory of crystals, according to which the.posmon Ofthis approach is interesting for the problem of local proper-
symmetry localization and the symmetry properties of Wanyjes determination. A different method was developed by
nier functions for a given energy band define unambiguouslyyarzary and Vanderbift.To determine the maximally local-
the symmetry properties of corresponding Blochized Wannier functions a functional representing the sum of
functions?~** The concept of localized states has also beenthe second moments of the corresponding Wannier functions
applied to vibrational problems in perfect crystdls. is minimized. This procedure has been carried out as a
Practical methods for the calculation of Wannier functionssteepest-descent algorithm leading to a particular set of uni-
for nondegenerate and degenerate bands in perfect crystatgy matrices among the occupied Bloch orbitals at every
have been elaborated and applied. Forahenitio construc-  wave vector. The examples of crystalline Si, GaAs, and mo-
tion of Wannier functions a method based on the variationalecular GH, and LiCl have illustrated this approach.
principle was proposed by KoHfl.This technique has been The method of the localized Wannier functions construc-
applied to a simple band in hydrodérand to thed bands tion on the basis of Bloch functions we describe in the
and thed-s composite bands of copper and nick&t’It has  present paper can be called variational as well. It consists of
proved to be productive, but very complicated in realizationthree steps(i) a symmetry analysis based on the band rep-
Another approach applies the Fourier transformation ofesentation theoryji) a variational procedure of nonorthogo-
Bloch functions in the Wannier functions’ construction. In nal localized functions generation, ariii) a suitable or-
general, the set of Wannier functions for a given band is nothogonalization procedure.
unique. The actual behavior of Wannier functions depends

upon the choice of Bloch functions’ phase factors in the case Il SYMMETRY ANALYSIS
of nondegenerate bands or upon a unitary transformation of '
Bloch functions at every wave vect@r otherwise. Particu- The background of Wannier functions symmetry analysis

larly, a variational method for construction of Wannier func- is the theory of representatiorieep9 of a space groups
tions for one-periodical structures and nondegenerate energyduced from the irreducible representatiamseps of its
bands has been describ€dlhe results have coincided with site subgroupM ,C G called, for brevity, induced representa-
the ones obtained according to Kohn's procedu@ne of tions (indreps. We describe the main principles of this
the first attempts at dealing with three-periodical systemsheory related to the examined problem. One can get ac-
was a construction of orthogonal and nonorthogonal systemguainted with it in detail in Refs. 9, 10 and 12.
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The Wannier function®V®)(r)=W)(r —q,) are the ba- sis consists of a procedure of identifying localized functions
sis functions of the irrep8 of the site symmetry group Symmetry from the symmetry of the canonical orbitals of the
S,C G corresponding to their centering poiy: considered energy band, or of establishing the fact that the

construction of localized functions is impossible for the rea-
o sons of symmetry.
(TvWP (=2 dP W), (1)
I!

. . . I1l. VARIATIONAL PROCEDURE
where (|v)) e Sy, d)(1) is the matrix mapping the element

(Ilv) in the irrep 8. Applying symmetry operationsg(|v; When calculating the electronic structure of crystals one
+a,) from the decomposition of the groupinto left cosets uses usually the cyclic model of a crystal. It consists_of
with respect to the site grouy , primitive unit cells and is defined by translation vecttr&®
3
G:; (gjlvj+an)- Sy, 2 Aj=i21 lija, ljj areintegers, |detl|=L, j=1,23.
where a, are the lattice translations, on the functions @)
Wi(f)(f), The transformation(4) is supposed to conserve the point
R symmetry of the system. The symmetry group of the cyclic
WP (r—an)=(g;v;+a)WP(r), (3)  model containd. primitive translationsa,, and the number

. _ , of wave vectork in the BZ also equal&. The integration
one can obtain the complete basis of the reducible rep of thgyer the BZ in the model of the infinite crystal is replaced in
group G md(%)ced from th(%)lrrepB of the groupS;. The  he cyclic model by the summation overwave vectorsk.
functions Wi (r —a,) =W;”(r—q;,,—a,) are centered at The direct lattice summation is supposed to be limited_by
the pomtsqj,nz(gjlvj+an)q1=gjq1+vj+an. Such a basis primitive vectors.
consisting of the localized function/{)(r —a,) =W (r Actually, we exploit a well-known algorithm when inte-
—a,)=W{?(r) (the indexr replaces, andj and the index  gration over the BZ is substituted by a summation over a set
replacesr andn) is calledq basis. It is perfectly determined of special points of the B2’ This method allows one to
by any of its single representativéfor example,W(f{)(r) carry out approximate but reliable and well-defined integra-
EW(()B)(r)]. All the others can be obtained from it by the tion of real or complex functions of wave vectorA number
symmetry operationél) and(3). An indrep is characterized of procedures for construction of different optimal sets of the
in q basis by the site [the center of symmetry localization special points have been elaboratéd’*® Any set of the
of Wi(f)(f)] and the irreps of the site grougs,; (q,8) is a special points corresponds to a certain cyclic model, i.e.,
symbol of an indrep ing basis. Resolving this indrep into When the integration is carried out as a summation over a set
irreps of the space group, one gets the indices of the indrep ©Of the special points it means that a cyclic model of a certain
in k basis(Bloch basig. The short symbol of an indrep size is introduced for the crystal. The relations between the
basis contains only the indices of the small irreps for theSymmetry groups of the model of an infinite crystal and the
most symmetrical points of the Brillouin zotiBZ), because Symmetry groups(") of the corresponding cyclic model and
the indices for all other irreps contained in the indrep aretheir irreps and indreps have been studied in detail in Ref.
determined with the help of compatibility relations. There 26. Wannier functions of the model of an infinite crystal are
exist simple and composite indreps. An indrep is simple, if itwell reproduced in the region of their localization by Wan-
does not consist of two or more indreps of a smaller dimennhier functions of those cyclic models completely covering
sion. All simple indreps for a given space group are generthis region’
ated by site symmetry groups of just a few points in the We assume that the canonical orbitals{)(k,r)
Wigner-Seitz cell. The tables of indreps for all space groups=¢,(k,r)=e¢s(r) (the indexm numbers the basis vectors of
can be found in Ref. 24 and in Ref. 12 are those of somérep y with wave vectok, andu discriminates between the
most important space groups. independent bases of equivalent irreps; the indeeplaces

From the theory of indreps of space groups it follows thaty, m, and x ands replaceso,k) of the energy band under
the construction of localized functions corresponding to aconsideration form a basis in the sp&2g, ;) of some indrep
given energy band is possible, only if canonical orbitals ofof the groupG") of a crystal. The localized functions are
this band form the basis of some simple or composite indrepdefined by a unitary transformation in the space of the in-
This analysis permits us not only to establish the principledrep,
possibility to construct localized orbitals but also to define
the possible positions of their symmetry localization ceqter _ .
and their symmetry with respect to site symmetry gr&yp WP (r—ag) =L 1/22;4 exp —ikay)

The latter is not always unambiguous due to the fact that

there are the indreps which have different symbolg basis, ~

but the same index ik basis?® or there are the composite x%ﬂ U i () eia(kr), (59
indreps which can be decomposed into simple ones by a few

ways (see the details in Ref. 12Thus, the symmetry analy- or
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WA =L Y2 UL () with p(n)=(r—q)? (Refs. 6, 22, 23, and 4  (8b)
t - st” ¥s

)_[1, ifreA, @9
Um0 (K)-expl — ikay), (5b) P o, itrea, °

whereA is some region surrounding the pombf symmetry

whereU ., i;(K)=U, (k) is a unitary matrix, which in the R?alization of the functiongB)(r), or

case of a nondegenerate band, reduces to a phase fac
exdia(k)]. Thek summation in Eq(5) substitutes integra- 2
tion over the BZ and is carried out over a set of the special — (r2)—302 _ (e’ 8
. p(r)=(mry)~ex > | (8d)
points. In the present work we have used standard sets of the rg
special points containing the poikt=0.12
As the functionsp(?) (k,r) satisfy the conditions of ortho-
normality

which accentuates the contribution of the values of the func-
tion |WE,'B)(r) |2 inside the sphere of radiug and centered on
the pointq into the functional(8). As a special case of Eq.
(8d) for ro—0 one hap(r)=8(r—q).

(7) ') (e _
(@K, @ (K1) = O 80y Byt Scr - (6) One searches for the set of nonorthogonal localized func-

the functionsW{)(r —a,) form an orthonormal system: tions V{f)(r —a,) in the form
By _ (B) (v _ .
:5“/5”/5””! or (Wt(r),Wtr(r)):éttr. (7)
The integrations in Eqg6) and (7) are over the volume of X 2 Comuij(K)-eM(k,r), (92
My

the cyclic model.
Let Q(qp be the space of a simple indrep,3) (for or
simplicity). The spaceQq 5 is spanned by both the set of
orthonormal functiond\y/ )(r—a,)=W®¥)(r) and the set of
Bloch functions ¢{)(k,r)=e4(r). The orthonormal func-
tionsW{B)(r) can be chosen to be re@irrep B is rea) and

transform according to the irrep of the site groupst;qj . of

the pointsq; ,. Their localization depends on the choice of
the matrixUg; in Eq. (5). The existence of Wannier functions
decreasing exponentially at infinitjor the model of an in-
finite crysta) has been established in many special c&s@s.
The uniqueness of these functions has been proved for non-

VEB’<r)=L—1’2§ Cer @6(T)- (9b)

The system of function&/{?(r)=V{#)(r—a,) can be ob-
tained from the function/{%)(r)=V{)(r) in the same way
as the functionsV{”)(r —a,) from the functionW{)(r) (see
above. Therefore, it is sufficient to find only one function,
for example,

degenerate bands in crystals with centers of inversfoim VP(r)=L~Y2>, Cq- eq(r). (10)
this case the Wannier functions correspond to a special s
choice of phase factold,, (k) =exgia(k)] of Bloch orbit- The coefficientsCy, can be found from the following

als ¢,(k,r) in Eq. (5). Any other choice of phase factors arjational problem: to find the coefficien&, in Eq. (10),
destroys either symmetry properties of the Wannier funCyyhich maximize(or minimize the functional(8) and satisfy
tions, or their reality, or botA®>! Obviously these functions e supplementary condition

are as well localized as possible. If the choice of phase fac-

tors is not correct the Wannier functions lose the exponential

character of their decreasing and, therefore, cannot be maxi- f IV (r)|2dr=1. (11
mally localized according to any reasonable criterion of lo-

calization. Unfortunately the uniqueness of Wannier func- This variational problem is equivalent to the eigenvalues
tions is not yet proved for the more general case of theand eigenvectors problem for the matrix:

degenerate bands in crystals with centers of inversion where

it apparently existgsee Sec. IV. _1 *

As a criterion of localization for a localized function Ass =T p(r) ez (r)eg(r)dr. (12
W(r) one uses the value of the integral over the whole space _ . .
of the crystaft® The eigenvalues of the matrix are stationary values of the

localization criterionl (8), and the eigenvectors correspond-
ing to these values are the required coefficients of the expan-
|:J p(r)|W(r)|?dr, (8@  sion(10). In our case, it is necessary to search for the eigen-
vector corresponding to the highest eigenvalue for the
with the weight functiono(r)=0, which is supposed to be choices(8c) and(8d) of the weight functiono(r) and to the
invariant under the operations from the site symmetry grougowest one for the cas@b). Let us note that it is sufficient to
Sy - Particular choices of the weight function are use the variational procedure in the subspace of the first basis
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vectors of the irrep3 of the site groupS; instead of the correlation corrections in the Kohn-Sham Hamiltonian. The

whole space of the canonical orbitals of the energy bandgorrelated Bloch functions lead to correlated Wannier func-
under consideration. tions, which allow one to determine the correlation correc-

Though the set of the functiong(r) is not orthogonal, tions to the corresponding local properties of the electronic
these functions are close to the accurate localized Wanni&tructure. This possibility is essential for future studies of the
funCtionsMB)(r)EijB)(r—an). They can be chosen to be correlz_ation effects in solids, the _problem being much more
real (for the real irrepB of the site groups,) and satisfy all complicated than for moleculegn the latter case post-
the symmetry requirements for the functiowé?(r). The ~ Hartree-Fock approaches are widely used

orthonormal systerﬁvﬁﬁ)(r) is generated from the functions
Vﬁﬁ)(r) by2a suitab!e—for-periodic—systems orthogonalization |, CALCULATIONS OF THE LOCALIZED FUNCTIONS
procedure’? According to Ref. 32,
To demonstrate the reliability of the proposed variational
F/B) () — Y B) method let us consider five examples of its applications.
W) tE (S eV (1), (13 Three of them deal with those types of lattices for which the
) ) L (B)yen. precise form of localized states is known. These examples
whereSis the overlap matrix of the functiong;”(r): are less practically valuable but reveal directly the accuracy
_ B (8) of the proposed variational procedure. The fourth example is
Sw= (V7 (N), Ve (). (14) more practically interesting as it regards the classical case of
a covalent bond formed by electrons of the upper valence
band of an Si crystal. And the last one is devoted to Wannier
_ functions for valence bands of an MgO crystal. As far as we
WA(r)=L"Y23 Cop (S Yy os(r). (15  know, the Wannier functions for MgO haven’t been gener-
t's ated before.

Combining Eqgs(9b) and(13) we get

As the symmetrical orthogonalization procedtireaves
unchanged the reality and symmetry properties of the func-
tions, the set of orthonormalized functioﬁéﬂ)(r) satisfy all
the requirements, to the localized Wannier functi(neslity,

A. Localized displacements in a one-dimensional lattice
with two atoms per unit cell

symmetry requirements and orthonormaliand (in the case Locallized displacementg are intrqduced in the same way
when this set of the functions is uniqueas to coincide with ~ aS localized electron functions, but instead of canonical or-
the latter: bitals one has to consider vectors of normal displacements.
At first we study the localized displacements in a one-
WA (1) =WP(r). (169  dimensional lattice with two atoms per unit c&li2° Such a

lattice is characterized by masses of the atomsand m,,

The weight functionp(r) in the functionall (8) can be force constants of the springs andg,, and the lattice con-
varied. In particular, one can choose for the regloin Eq.  stanta=1. Centers of symmetry appear when=m,=m
(8¢) a muffin-tin sphere, some part of a Wigner-Seitz cellor g;=g,=g. The symmetry analysis of such a structure
(even very small etc. The functions/,(r) depend on the shows that the center of the localized displacements is on the
choice ofp(r), but, according to our calculations, in the casemiddle of the bonds with the largey, if m;=m,. The sym-
of lattices with centers of inversion after the procedure ofmetries of the displacements for the acoustic and optical
symmetric orthogonalization we always have the same resuliranches are, anda,, respectively. Whemy, =gy, the lo-
even for degenerate bands in crystals with centers of invecalized displacements have tlag symmetry and are cen-
sion. Apparently the proposed method gives in these casdsred on the heavier and the lighter atoms for the acoustic
the orthonormal set of maximally localized Wannier func-and optical branches, respectively.
tions. This is demonstrated in the next section. The calculation shows that the localized displacements

Thus the numerical calculations imply constructing matrixconstructed by the variational method coincide within the
Ay (12), diagonalization of this matrix, then obtaining the computational error with the correct ones for all values of the
overlap matrixS, (14), taking its matrix square root, and, in parametersrf;,m,,g andm,g;,g,) and forA in Eq. (8c)
addition, some elementary operations of linear algebra. Forarying in the range from some part of the unit cell up to
the integration over the BZ we use the method of summatioseveral unit cells. The correct, i.e., the most localized Wan-
over the special pointés), which is equivalent to the intro- nier displacements have been found according to the proce-
duction of a cyclic model of the crystal. dure described in Ref. 13. As an example, the localized dis-

The suggested procedure of Wannier functions calculatioplacements fom;=m,=1, g;=2, andg,=1 are given in
can be easily extended to an inclusion of the influence of th@able I: n is an atom numbetW{">(n) and W{"(n) are
correlation effects on the chemical bonding in crystalline sol-nonorthogonal displacements far=1 and A=2, respec-
ids. For example, in the linear combination of atomic orbitalstively, andW,(n) =W,(n) are corresponding orthogonal dis-
(LCAO)-density functional theory approath the self- placements, coinciding with the correct oné4n). In cal-
consistent Bloch functions and the corresponding densitgulations we have used the cyclic model of a one-
matrix are calculated with an inclusion of the exchange-dimensional crystal consisting of 10 unit ce(B0 atoms.
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TABLE |. Localized displacements for a one-dimensional di- TABLE Il. Localized Wannier functions for a one-dimensional

atomic crystal. Kronig-Penney model.
no W) W) Wi(n)=Wy(n)  W(n) X WO (x)  WEI(x) Wy (X) = Wo(X) =W(X)
0 0.6954 0.6958 0.6954 0.6954 0.0 1.6521 1.6487 1.6488
1 0.0929 0.1717 0.0906 0.0906 0.2 0.9834 0.9847 0.9847
2 -0.0810 0.0030 -0.0847 -0.0847 0.4 0.5431 0.5536 0.5534
3 -0.0118 -0.0106 -0.0171 -0.0171 0.6 0.2401 0.2646 0.2641
4 0.03000 0.0092 0.0262 0.0262 0.8 0.0208 0.0655 0.0644
5 0.0025 0.0025 0.0047 0.0047 1.0 -0.1421 -0.0676 -0.0699
6 -0.0124 -0.0046 -0.0097 -0.0097 1.2 -0.1184 -0.0757 -0.0778
7 0.0001 -0.0004 -0.0010 -0.0010 1.4 -0.0728 -0.0527 -0.0555
8 0.0053 0.0021 0.0037 0.0037 1.6 -0.0211 -0.0185 -0.0229
9 -0.0021 -0.0007 -0.0010 -0.0010 1.8 0.0282 0.0160 0.0088
2.0 0.0690 0.0435 0.0316

The displacements of other atoms for the acoustic and optical

branches may be obtained by symmetry operatiorapsa,, nalization procedures we give in Table 1l Wannier functions
andag, respectively. in some pointsx for the lowest-energy band whe@=

—2.5. Ninety nine percent of the normalization integral for
this function is contained in the “volume” of 1.4 unit ceffs.
Functions W{"?(x) and W{"%(x) are nonorthogonalized
ones corresponding to the choice of weight functg(x)

To construct localized electron functions we used the= §(x) and Eq.(8c) with A=1, respectively. The last col-
model of a one-dimensional lattice with a Kronig-Penneyumn represents these functions after the procedure of sym-
potential®*®2%33This case is particularly interesting. First, metric orthogonalization coinciding with one another and
the band structure has nontrivial symmetry properties ofvith the correct one (W, (x) = Wa(x) = W(X)).

Wannier functions corresponding to a different choice of
Bloch functions’ phase factors and to different bafitfs.
Second, the parameters of the model can be chosen in such aWe have also constructed the localized displacements in
way that Wannier functions corresponding to certain bandshe germanium crystal by the proposed variational method.
would have, although exponential, quite a slow det@jat  This crystal has a diamond-type lattice with two atoms per
allows us to examine the method in the cases of slow deunit cell, atoms occupying the Wyckoff positianwith the
crease of Wannier functions. And besides, it is very helpfulsite groupTy. The symmetry analysis of normal displace-
that the most localized Wannier functions in this case can b&ents for six vibrational branches shows that all normal dis-
generated explicitly because the procedure for choosing thelacements form a basis of the simple indreptf): six
correct phase factors for Bloch functions in one-dimensionalocalized displacements per unit cell, centering at Ge atoms,
crystals is known. with three at each. These displacements transform according

The Bloch one-electron orbitaks;(k,x), wherei is the  to the vector ref, of the site grouply. In the calculations,
number of an energy band, are determined from the ‘Schrove have used a cyclic model consisting of 3X 3=27 unit
dinger equation cells and defined by vectoss =3a; (4) (i=1,2,3). The vol-

ume A (8c) of the region in the variational functional has

been chosen to be half of the unit cell, i.e., one Ge atsmn
@i(k,x)=Epj(k,x) (17 long as displacements in a vibrational problem are defined

only at atom positions
with the periodic and symmetrical at the lattice sites poten- As it was expected, the localized displacements turned out
tial, to be the unit displacements of atoms along Cartesian axes.
This result can be explained by the fact that the six vibra-
tional branches in the germanium crystal represent one “de-
generate band.” The normal displacements are linear combi-
nations of the unit displacements, which form the basis in the

There are two inversion centers in the unit celix  space of the full vibrational rep and, obviously, are the most
=0),b(x=13). The symmetry analysis of band states showdocalized functions and fulfill the necessary symmetry con-
that if C<0 the lowest-energy band corresponds to the inditions.
drepa(agy). All the other bands have the symmebrfa,) or
b(a,), alternatively. In the case whe2r>0 all the bands are
of the b(ay) or b(a,) symmetry, alternativel§?

We've considered different bands at different value€of At last we have applied the proposed variational proce-
As an example of functioning of the variational and orthogo-dure to find electron Wannier functions for three-dimensional

B. Electron localized states for the one-dimensional
Kronig-Penney model

C. Localized displacements for a germanium crystal

2

1d v
2ge

V(X)=C2, 8(x—n). (18)

D. Wannier functions for the upper valence band
of an Si crystal
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TABLE Ill. Localized states for the upper valence band of an Sia)
crystal along th¢111] direction(the origin is taken in the middle of 089
the Si-Si bondxis in a\/§/96 units, and is the conventional lattice
constant
0.4
x W (x) Wy (x) Wel(X)  WE(x) _
0 -0.2300 -0.2036 -0.1982 -0.1988 4 S si L
3 -0.2190 -0.1975 -0.1926 -0.1930 0.0 4 L o
6 -0.1566 -0.1465 -0.1436 -0.1437
9 0.1204 0.1216 0.1199 0.1196
11 0.4116 0.3840 0.3725 0.3747 04
12 -0.5831 -0.7333 -0.7579 -0.7406
15 -0.0596 -0.0401 -0.0354 -0.0373 [111]axis
18 0.0497 0.0336 0.0288 0.0307
22 0.0620 0.0501 0.0453 0.0471
27 0.0250 0.0327 0.0317 0.0321 7
33 -0.0099 0.0097 0.0127 0.0121
39 -0.0098 -0.0002 0.0040 0.0030
45 0.0045 -0.0017 0.0011 0.0004
51 0.0045 -0.0002 0.0006 0.0003 1
57 -0.0098 0.0005 0.0003 0.0003 ;'3
63 -0.0099 0.0000 0.0000 -0.0001
69 0.0250 -0.0006 -0.0002 -0.0002 Si si
75 0.0649 -0.0015 -0.0002 -0.0001 004
81 -0.0596 0.0008 0.0000 -0.0001
84 -0.5831 -0.0082 -0.0005 0.0000 [T oxis
87 0.1204 -0.0001 0.0000 0.0000
90 -0.1566 -0.0002 -0.0001 -0.0002 FIG. 1. Wannier functions of the upper valence band of Si in the
93 -0.2190 -0.0006 -0.0002 -0.0004 [111] direction for the 4<4X 4 cyclic model.(a) Wannier function
96 -0.2300 -0.0008 -0.0003 -0.0006  Wea(X); (b) “pseudo-wave” Wannier functioWV?(x).

The bigger the cyclic model of a crystal, the closer its
Wannier functions to the ones of the model of an infinite
crystals, particularly, for the upper valence band of the percrystal?® To study the convergence of the Wannier functions
fect Si crystal(space groum)h, a diamond-type lattice with  W(r) in cyclic models of different sizes we have calculated
two atoms per unit cell As is well known and in accordance Wannier functiondV,(x), Wg(x), andWg4(x) from 4 (point
with the theory of inducedband representations the corre- I'; the supercell coincides with a primitive cglB2 (points
sponding Wannier functiondour per unit cell are centered I', X, L; 2X2x2=8 primitive cells in the superceglland
at the middle of the bonds between the nearest Si atomd56 (4X4x4=64 primitive cells in the supercglBloch
(Wyckoff positionc with site groupL,=D34) and transform ~ states, correspondinglfor the setS,). Table Il gives the
according to the irrepy of the site groupD . values of the Wannier functiond/;(x), Wg(x), Wg4(x), and

For our variational procedure we have used two sets ofV&;”(x) (the latter is nonorthogonalizedn some points
electron Bloch functions of an Si crystal obtained with thealong the[111] direction. As is seen from the table, the
help of the prograntRYSTAL 953435 The first set §,) cor-  function Wi (x) is very close toWe,(X). So the orthogo-
responds to the full electron restricted Hartree-FORKF) nalization procedure changes the Wannier function insignifi-
LCAO calculations, and the second or®) to the pseudo- cantly. When comparing the functiot®,;(x), Wg(x), and
potential RHF LCAO method. The first basis consists 0613 Wg4(X) it is necessary to take into account that these func-
and p atomiclike functions per atom; the “pseudopotential” tions are normalized differently, in the volume of 1, 8, and 64
basis consists of twe, six p, and fived functions per atom. primitive cells, respectively. The fact that their values are
We have taken the weight functigrfr)= 8(r —q) in Eq.(8).  relatively close to each other from=0 to x=48 (in units

A cyclic model of the crystal consisting of>Xd4x 4=64 a\/3/96, the translational period in the11] direction is
primitive cells has been adopted. The band structure calculaqual toay3) shows a good localization of the Wannier
tions show that this cyclic model ensures the convergence dfinction and, on the other hand, the convergence of the sum-
the resultgfor further enlarging ot the changes appeared to mation (5) over the sets of special points to the correspond-
be small.? It means that the corresponding Wannier func-ing integral over the BZ.

tions are localized inside the volume consisting of 4< 4 Figure 1 gives th&Vg,(x) and “pseudopotential” Wannier
=64 primitive cells and defined by vectofs=4a; (4) (i funct|onW(pp)(x) in the[111] direction. The functions differ
=1,2,3)? significantly at the atoms’ cores. Outside the cores the behav-
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o8 ] FIG. 3. Wannier functions of the valence bands of MgO in the
. = L o= : [111] direction for the 4<4 X 4 cyclic model: the solid curve relates
to the a; Wannier function of the lower band, and the dashed one
FIG. 2. Contour plot of the “pseudowave” Wannier function for presents one of the thrég, Wannier functions of the upper valence
the 4x4x 4 cyclic model of Si in the (10) plane. The origin is Pand.
taken at one of the Si atoms, and axes are scaled in unésTdfe
dashed lines correspond to negative values. The lower level of posi- Unfortunately we cannot compare our Wannier functions
tive values is at 0.005, the upper level of negative values is atwith those in Ref. 20, because there the decreasing of Wan-
—0.005, and the step is 0.Gall values are in units o~ 3?). nier functions is demonstrated indirectly, by means of the
coefficients in the Fourier expansion of the Hamiltonian. The
fact that the main features of Wannier functions’ behavior
(Fig. 1 and Fig. 2are reproduced in our calculations and we

ior of the functions is alike. This is quite natural, since the

“pseudopotential” Wannier functions are constructed from direct . f the f f Wannier f
smooth pseudowave Bloch functions—nonorthogonal to th 1ave a direct comparison of e form of our vvannier func-
ions with those in Refs. 4, 21, and 36 allow us to conclude

core states. Orthogonalization of these smooth Wannier fumf'hat the proposed method is effective in constructing the
Flons to thg chahzed core func,tlons would lead t.o an Upr's'maximally localized Wannier functions.
ing of oscillations at the atoms’ cores observed in the Wan-

nier functions Wg4(x). And the differences between the

Wannier functions in the interatomic space are due to the  E. Wannier functions for the upper valence bands
normalization. The contour plot of the “pseudopotential” of the MgO crystal
Wannier function in the (@1) plane is presented in Fig. 2. Finally we have constructed the Wannier functions for the

In this case, just as in the previous examples, the methodpper valence bands of the perfect MgO cryésalace group
reveals a very good stability with respect to the choice of théd}, with a face-centered lattice with one formula unit per
weight functionp(r) form. The computations give the same unit cell). As in the above case of silicon we have applied a
resulting orthogonalized Wannier functions whereas the inset of MgO Bloch functions obtained with the help of the
termediate nonorthogonalized functiovigr) turn out to be  program CRYSTAL 95 (Refs. 34 and 3B corresponding to
different. We have found an amazing thing. Even if one usepseudopotential RHF LCAO calculations. For the same rea-
the weight functiong(r) centered at any point in the local- sons as in the case of silicon thex4 x4 cyclic model has
ization region of the Wannier function and therefore thebeen used in the calculations. The valence band of MgO
functionsV,(r) do not have the symmetry compatible with represents two separated bands, and thus it is possible to
the site groupS,, the same orthogonalized Wannier func- construct two independent sets of Wannier functicfes
tions of the needed symmetry arise after the orthogonalizaeach of the bandsThe method of induced representations
tion procedure. The latter not only conserves the symmetrgives all the Wannier functions being centered on O atoms
of the localized orbitals, but reconstructs it up to an appro{Wyckoff positionb with site groupL .=0O},) and transform-
priate level. The reason for such flexibility is apparently theing, according to the irreq of the site groupO,, for the
fact that the most localized Wannier functions of the siliconlower band(one Wannier function per unit cg¢land accord-
valence band are unique and just these functions arise withiRg to the irrept,, for the upper bandthree Wannier func-
out fail as the result of the proposed variational procedurdions per unit ce). We have taken the weight function
[see Sec. Il and Refs. 5 and Jucceeded by the symmetri- p(r)=5(r—q) in Eq. (8) located some distance away from
cal orthogonalization. This property of uniquenésswithin  the centering point of the corresponding Wannier function,
the linear transformation in the space of r@pf site group  because the Wannier functions of the upper band are anti-
Sy), is seemingly a common feature of the most localizedsymmetric and thus equal zero in their centering points while
Wannier functions corresponding to degenerate or nondegems stated above the symmetrical centering ofgfg func-
erate energy bands separated from other bands by band gapm is not necessarily needed in this case.
in crystals with centers of inversioisee Refs. 5 and)7 Figure 3 shows the Wannier functions for both bands in
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the[111] direction. We should mention that the function cor- variational approach to assure the best localization of Wan-
responding to the upper baridashed curveis determined nier functions. The accuracy of the Wannier functions ob-
up to a linear combination of the three functions transform-tained by the proposed method is determined solely by the
ing via thet,,, irrep. One can see that both Wannier functionsaccuracy of the Bloch functions and the size of the supercell
are almost completely localized around one of the oxygemused. As the calculations have shown, the proposed method
atoms, which confirms the ionic character of the MgO com-is reliable and useful in the problem of generation of the
pound. localized Wannier functions.

V. CONCLUSION
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