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Variational method for the generation of localized Wannier functions
on the basis of Bloch functions
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A simple and universal variational method for constructing localized Wannier functions from Bloch func-
tions is proposed. The variational procedure is preceded by a symmetry analysis based on the induced repre-
sentation theory and succeeded by a suitable orthogonalization procedure. The reliability of the method is
demonstrated by computations of localized displacements in a one-dimensional diatomic lattice and a germa-
nium lattice, of localized electronic states in a one-dimensional Kronig-Penney model, for the upper valence
bands of Si and MgO crystals.
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I. INTRODUCTION

Since their introduction in 1937,1 Wannier functions have
been often used in many theoretical considerations of e
tronic properties of crystals. The use of localized functio
significantly facilitates the study of local properties~atom
charges, active valences, bond orders, and so on! in solids.
These quantities calculated in the localized Wannier b
instead of the traditional atomic basis scheme seem to
more physically valid.2 The Wannier function approach i
also essential in the modern theory of polarization.3,4

The analytical behavior of Bloch functions of energ
bands ink space determines the degree of localization
corresponding Wannier functions inr space.5–8A useful con-
cept of band~induced! representations has been introduc
in the theory of crystals, according to which the position
symmetry localization and the symmetry properties of W
nier functions for a given energy band define unambiguou
the symmetry properties of corresponding Blo
functions.9–12 The concept of localized states has also be
applied to vibrational problems in perfect crystals.13

Practical methods for the calculation of Wannier functio
for nondegenerate and degenerate bands in perfect cry
have been elaborated and applied. For theab initio construc-
tion of Wannier functions a method based on the variatio
principle was proposed by Kohn.14 This technique has bee
applied to a simple band in hydrogen15 and to thed bands
and thed-s composite bands of copper and nickel.16,17 It has
proved to be productive, but very complicated in realizati
Another approach applies the Fourier transformation
Bloch functions in the Wannier functions’ construction.
general, the set of Wannier functions for a given band is
unique. The actual behavior of Wannier functions depe
upon the choice of Bloch functions’ phase factors in the c
of nondegenerate bands or upon a unitary transformatio
Bloch functions at every wave vectork otherwise. Particu-
larly, a variational method for construction of Wannier fun
tions for one-periodical structures and nondegenerate en
bands has been described.18 The results have coincided wit
the ones obtained according to Kohn’s procedure.5 One of
the first attempts at dealing with three-periodical syste
was a construction of orthogonal and nonorthogonal syst
0163-1829/2001/64~24!/245108~8!/$20.00 64 2451
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of Wannier functions for copper.19 The Wannier functions
have turned out to be poorly localized. Apparently, the m
reason for this is the nonanalytical behavior of the Blo
functions. Teichler succeeded in generating the best local
symmetry-adapted Wannier functions for a three-dimensio
diamond-type lattice,20 where the technique of Ref. 8 ha
been applied. A different approach was used by Satpathy
Pavlovska who constructed the Wannier functions of s
con’s valence band with the above-mentioned unitary tra
formation chosen according to physical considerations.21 The
functions have appeared to be localized, but the range
application of this method is essentially limited. To avoid t
difficulty at points of degeneracy of composite bands, the
of the eigenvectors of a Slater-Koster model Hamiltonian
been proposed.22,23 The results for fcc transition metals an
for Si and GaAs can be regarded as satisfactory and, bes
this approach is interesting for the problem of local prop
ties determination. A different method was developed
Marzary and Vanderbilt.4 To determine the maximally local
ized Wannier functions a functional representing the sum
the second moments of the corresponding Wannier funct
is minimized. This procedure has been carried out a
steepest-descent algorithm leading to a particular set of
tary matrices among the occupied Bloch orbitals at ev
wave vector. The examples of crystalline Si, GaAs, and m
lecular C2H4 and LiCl have illustrated this approach.

The method of the localized Wannier functions constru
tion on the basis of Bloch functions we describe in t
present paper can be called variational as well. It consist
three steps:~i! a symmetry analysis based on the band r
resentation theory,~ii ! a variational procedure of nonorthogo
nal localized functions generation, and~iii ! a suitable or-
thogonalization procedure.

II. SYMMETRY ANALYSIS

The background of Wannier functions symmetry analy
is the theory of representations~reps! of a space groupG
induced from the irreducible representations~irreps! of its
site subgroupMq,G called, for brevity, induced representa
tions ~indreps!. We describe the main principles of th
theory related to the examined problem. One can get
quainted with it in detail in Refs. 9, 10 and 12.
©2001 The American Physical Society08-1
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The Wannier functionsWi1
(b)(r )[Wi

(b)(r2q1) are the ba-
sis functions of the irrepb of the site symmetry group
Sq,G corresponding to their centering pointq1:

~ l ûvl !Wi1
(b)~r !5(

i 8
di 8 i

(b)
~ l !Wi 81

(b)
~r !, ~1!

where (l uvl)PSq , d(b)( l ) is the matrix mapping the elemen
( l uvl) in the irrepb. Applying symmetry operations (gj uvj
1an) from the decomposition of the groupG into left cosets
with respect to the site groupSq ,

G5(
j

~gj uvj1an!•Sq , ~2!

where an are the lattice translations, on the functio
Wi1

(b)(r ),

Wi j
(b)~r2an![~gj ûvj1an!Wi1

(b)~r !, ~3!

one can obtain the complete basis of the reducible rep of
group G induced from the irrepb of the groupSq . The
functions Wi j

(b)(r2an)[Wi
(b)(r2qj ,n2an) are centered a

the pointsqj ,n[(gj uvj1an)q15gjq11vj1an . Such a basis
consisting of the localized functionsWi j

(b)(r2an)[Wt
(b)(r

2an)[Wt
(b)(r ) ~the indext replacesi , andj and the indext

replacest andn! is calledq basis. It is perfectly determine
by any of its single representatives@for example,W11

(b)(r )
[W0

(b)(r )]. All the others can be obtained from it by th
symmetry operations~1! and ~3!. An indrep is characterized
in q basis by the siteq @the center of symmetry localizatio
of Wi1

(b)(r )] and the irrepb of the site groupSq ; (q,b) is a
symbol of an indrep inq basis. Resolving this indrep int
irreps of the space groupG, one gets the indices of the indre
in k basis~Bloch basis!. The short symbol of an indrep ink
basis contains only the indices of the small irreps for
most symmetrical points of the Brillouin zone~BZ!, because
the indices for all other irreps contained in the indrep
determined with the help of compatibility relations. The
exist simple and composite indreps. An indrep is simple,
does not consist of two or more indreps of a smaller dim
sion. All simple indreps for a given space group are gen
ated by site symmetry groups of just a few points in t
Wigner-Seitz cell. The tables of indreps for all space grou
can be found in Ref. 24 and in Ref. 12 are those of so
most important space groups.

From the theory of indreps of space groups it follows th
the construction of localized functions corresponding to
given energy band is possible, only if canonical orbitals
this band form the basis of some simple or composite ind
This analysis permits us not only to establish the princi
possibility to construct localized orbitals but also to defi
the possible positions of their symmetry localization centeq
and their symmetry with respect to site symmetry groupSq .
The latter is not always unambiguous due to the fact t
there are the indreps which have different symbols inq basis,
but the same index ink basis,25 or there are the composit
indreps which can be decomposed into simple ones by a
ways~see the details in Ref. 12!. Thus, the symmetry analy
24510
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sis consists of a procedure of identifying localized functio
symmetry from the symmetry of the canonical orbitals of t
considered energy band, or of establishing the fact that
construction of localized functions is impossible for the re
sons of symmetry.

III. VARIATIONAL PROCEDURE

When calculating the electronic structure of crystals o
uses usually the cyclic model of a crystal. It consists oL
primitive unit cells and is defined by translation vectors,12,26

A j5(
i 51

3

l i j ai , l i j are integers, udetl u5L, j 51,2,3.

~4!

The transformation~4! is supposed to conserve the poi
symmetry of the system. The symmetry group of the cyc
model containsL primitive translationsan , and the number
of wave vectorsk in the BZ also equalsL. The integration
over the BZ in the model of the infinite crystal is replaced
the cyclic model by the summation overL wave vectorsk.
The direct lattice summation is supposed to be limited bL
primitive vectors.

Actually, we exploit a well-known algorithm when inte
gration over the BZ is substituted by a summation over a
of special points of the BZ.27 This method allows one to
carry out approximate but reliable and well-defined integ
tion of real or complex functions of wave vectork. A number
of procedures for construction of different optimal sets of t
special points have been elaborated.12,27,28 Any set of the
special points corresponds to a certain cyclic model, i
when the integration is carried out as a summation over a
of the special points it means that a cyclic model of a cert
size is introduced for the crystal. The relations between
symmetry groupG of the model of an infinite crystal and th
symmetry groupG(L) of the corresponding cyclic model an
their irreps and indreps have been studied in detail in R
26. Wannier functions of the model of an infinite crystal a
well reproduced in the region of their localization by Wa
nier functions of those cyclic models completely coveri
this region.29

We assume that the canonical orbitalswmm
(g) (k,r )

[ws(k,r )[ws(r ) ~the indexm numbers the basis vectors o
irrep g with wave vectork, andm discriminates between th
independent bases of equivalent irreps; the indexs replaces
g, m, andm and s replacess,k) of the energy band unde
consideration form a basis in the spaceQ(q,b) of some indrep
of the groupG(L) of a crystal. The localized functions ar
defined by a unitary transformation in the space of the
drep,

Wi j
(b)~r2an!5L21/2(

k
exp~2 ikan!

3 (
gmm

Ũgmm,i j ~k!•wmm
(g) ~k,r !, ~5a!

or
8-2
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Wt~r !5L21/2(
s

Ust•ws~r ! with

Ust5Ũgmm,i j ~k!•exp~2 ikan!, ~5b!

whereŨgmm,i j (k)[Ũs,t(k) is a unitary matrix, which in the
case of a nondegenerate band, reduces to a phase f
exp@ia(k)#. The k summation in Eq.~5! substitutes integra
tion over the BZ and is carried out over a set of the spe
points. In the present work we have used standard sets o
special points containing the pointk50.12

As the functionswmm
(g) (k,r ) satisfy the conditions of ortho

normality

„wmm
(g) ~k,r !,wm8m8

(g8)
~k8,r !…5dmm8dmm8dgg8dkk8 , ~6!

the functionsWi j
(b)(r2an) form an orthonormal system:

„Wi j
(b)~r2an!,Wi 8 j 8

(b)
~r2an8!…

5d i i 8d j j 8dnn8 or „Wt~r !,Wt8~r !…5d tt8 . ~7!

The integrations in Eqs.~6! and ~7! are over the volume o
the cyclic model.

Let Q(q,b) be the space of a simple indrep (q,b) ~for
simplicity!. The spaceQ(q,b) is spanned by both the set o
orthonormal functionsWi j

(b)(r2an)[Wt
(b)(r ) and the set of

Bloch functionswmm
(g) (k,r )[ws(r ). The orthonormal func-

tionsWt
(b)(r ) can be chosen to be real~if irrep b is real! and

transform according to the irrepb of the site groupsLqj ,n
of

the pointsqj ,n . Their localization depends on the choice
the matrixUst in Eq. ~5!. The existence of Wannier function
decreasing exponentially at infinity~for the model of an in-
finite crystal! has been established in many special cases8,30

The uniqueness of these functions has been proved for
degenerate bands in crystals with centers of inversion.5,8 In
this case the Wannier functions correspond to a spe
choice of phase factorsŨs,t(k)5exp@ia(k)# of Bloch orbit-
als ws(k,r ) in Eq. ~5!. Any other choice of phase factor
destroys either symmetry properties of the Wannier fu
tions, or their reality, or both.5,8,31Obviously these functions
are as well localized as possible. If the choice of phase
tors is not correct the Wannier functions lose the exponen
character of their decreasing and, therefore, cannot be m
mally localized according to any reasonable criterion of
calization. Unfortunately the uniqueness of Wannier fun
tions is not yet proved for the more general case of
degenerate bands in crystals with centers of inversion wh
it apparently exists~see Sec. IV!.

As a criterion of localization for a localized functio
W(r ) one uses the value of the integral over the whole sp
of the crystal,18

I5E r~r !uW~r !u2dr , ~8a!

with the weight functionr(r )>0, which is supposed to b
invariant under the operations from the site symmetry gro
Sq . Particular choices of the weight function are
24510
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r~r !5~r2q!2 ~Refs. 6, 22, 23, and 4!, ~8b!

r~r !5H 1, if rPD,

0, if r¹D,
~8c!

whereD is some region surrounding the pointq of symmetry
localization of the functionW0

(b)(r ), or

r~r !5~pr 0
2!23/2expS 2

~r2q!2

r 0
2 D , ~8d!

which accentuates the contribution of the values of the fu
tion uW0

(b)(r )u2 inside the sphere of radiusr 0 and centered on
the pointq into the functional~8!. As a special case of Eq
~8d! for r 0→0 one hasr(r )5d(r2q).

One searches for the set of nonorthogonal localized fu
tions Vi j

(b)(r2an) in the form

Vi j
(b)~r2an!5L21/2(

k
exp~2 ikan!

3 (
gmm

Cgmm,i j ~k!•wmm
(g) ~k,r !, ~9a!

or

Vt
(b)~r !5L21/2(

s
Cst•ws~r !. ~9b!

The system of functionsVt
(b)(r )[Vi j

(b)(r2an) can be ob-
tained from the functionV11

(b)(r )[V0
(b)(r ) in the same way

as the functionsWi j
(b)(r2an) from the functionW11

(b)(r ) ~see
above!. Therefore, it is sufficient to find only one function
for example,

V0
(b)~r !5L21/2(

s
Cs0•ws~r !. ~10!

The coefficientsCs0 can be found from the following
variational problem: to find the coefficientsCs0 in Eq. ~10!,
which maximize~or minimize! the functional~8! and satisfy
the supplementary condition

E uV0
(b)~r !u2dr51. ~11!

This variational problem is equivalent to the eigenvalu
and eigenvectors problem for the matrix:

Ass85
1

LE r~r !ws* ~r !ws8~r !dr . ~12!

The eigenvalues of the matrixA are stationary values of th
localization criterionI ~8!, and the eigenvectors correspon
ing to these values are the required coefficients of the exp
sion ~10!. In our case, it is necessary to search for the eig
vector corresponding to the highest eigenvalue for
choices~8c! and~8d! of the weight functionr(r ) and to the
lowest one for the case~8b!. Let us note that it is sufficient to
use the variational procedure in the subspace of the first b
8-3
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vectors of the irrepb of the site groupSq instead of the
whole space of the canonical orbitals of the energy b
under consideration.

Though the set of the functionsVt(r ) is not orthogonal,
these functions are close to the accurate localized Wan
functionsWt

(b)(r )[Wi j
(b)(r2an). They can be chosen to b

real ~for the real irrepb of the site groupSq) and satisfy all
the symmetry requirements for the functionsWt

(b)(r ). The

orthonormal systemW̃t
(b)(r ) is generated from the function

Vt
(b)(r ) by a suitable-for-periodic-systems orthogonalizati

procedure.32 According to Ref. 32,

W̃t
(b)~r !5(

t8
~S21/2! t8tVt8

(b)
~r !, ~13!

whereS is the overlap matrix of the functionsVt
(b)(r ):

Stt8[„Vt
(b)~r !,Vt8

(b)
~r !…. ~14!

Combining Eqs.~9b! and ~13! we get

W̃t
(b)~r !5L21/2(

t8s

Cst8•~S21/2! t8t•ws~r !. ~15!

As the symmetrical orthogonalization procedure32 leaves
unchanged the reality and symmetry properties of the fu
tions, the set of orthonormalized functionsW̃t

(b)(r ) satisfy all
the requirements, to the localized Wannier functions~reality,
symmetry requirements and orthonormality! and~in the case
when this set of the functions is unique! has to coincide with
the latter:

W̃t
(b)~r !5Wt

(b)~r !. ~16!

The weight functionr(r ) in the functionalI ~8! can be
varied. In particular, one can choose for the regionD in Eq.
~8c! a muffin-tin sphere, some part of a Wigner-Seitz c
~even very small!, etc. The functionsVt(r ) depend on the
choice ofr(r ), but, according to our calculations, in the ca
of lattices with centers of inversion after the procedure
symmetric orthogonalization we always have the same re
even for degenerate bands in crystals with centers of in
sion. Apparently the proposed method gives in these ca
the orthonormal set of maximally localized Wannier fun
tions. This is demonstrated in the next section.

Thus the numerical calculations imply constructing mat
Ass8 ~12!, diagonalization of this matrix, then obtaining th
overlap matrixStt8 ~14!, taking its matrix square root, and, i
addition, some elementary operations of linear algebra.
the integration over the BZ we use the method of summa
over the special points~5!, which is equivalent to the intro
duction of a cyclic model of the crystal.

The suggested procedure of Wannier functions calcula
can be easily extended to an inclusion of the influence of
correlation effects on the chemical bonding in crystalline s
ids. For example, in the linear combination of atomic orbit
~LCAO!-density functional theory approach37 the self-
consistent Bloch functions and the corresponding den
matrix are calculated with an inclusion of the exchang
24510
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correlation corrections in the Kohn-Sham Hamiltonian. T
correlated Bloch functions lead to correlated Wannier fu
tions, which allow one to determine the correlation corre
tions to the corresponding local properties of the electro
structure. This possibility is essential for future studies of
correlation effects in solids, the problem being much mo
complicated than for molecules~in the latter case post
Hartree-Fock approaches are widely used!.

IV. CALCULATIONS OF THE LOCALIZED FUNCTIONS

To demonstrate the reliability of the proposed variation
method let us consider five examples of its applicatio
Three of them deal with those types of lattices for which t
precise form of localized states is known. These examp
are less practically valuable but reveal directly the accur
of the proposed variational procedure. The fourth exampl
more practically interesting as it regards the classical cas
a covalent bond formed by electrons of the upper vale
band of an Si crystal. And the last one is devoted to Wann
functions for valence bands of an MgO crystal. As far as
know, the Wannier functions for MgO haven’t been gen
ated before.

A. Localized displacements in a one-dimensional lattice
with two atoms per unit cell

Localized displacements are introduced in the same w
as localized electron functions, but instead of canonical
bitals one has to consider vectors of normal displaceme
At first we study the localized displacements in a on
dimensional lattice with two atoms per unit cell.13,29 Such a
lattice is characterized by masses of the atomsm1 and m2,
force constants of the springsg1 andg2, and the lattice con-
stanta51. Centers of symmetry appear whenm15m25m
or g15g25g. The symmetry analysis of such a structu
shows that the center of the localized displacements is on
middle of the bonds with the largerg, if m15m2. The sym-
metries of the displacements for the acoustic and opt
branches areau andag , respectively. Wheng15g2, the lo-
calized displacements have theau symmetry and are cen
tered on the heavier and the lighter atoms for the acou
and optical branches, respectively.

The calculation shows that the localized displaceme
constructed by the variational method coincide within t
computational error with the correct ones for all values of
parameters (m1 ,m2 ,g and m,g1 ,g2) and for D in Eq. ~8c!
varying in the range from some part of the unit cell up
several unit cells. The correct, i.e., the most localized W
nier displacements have been found according to the pr
dure described in Ref. 13. As an example, the localized
placements form15m251, g152, andg251 are given in
Table I: n is an atom number,W1

(no)(n) and W2
(no)(n) are

nonorthogonal displacements forD51 and D52, respec-
tively, andW1(n)5W2(n) are corresponding orthogonal dis
placements, coinciding with the correct onesW(n). In cal-
culations we have used the cyclic model of a on
dimensional crystal consisting of 10 unit cells~20 atoms!.
8-4
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The displacements of other atoms for the acoustic and op
branches may be obtained by symmetry operations~irrepsau
andag , respectively!.

B. Electron localized states for the one-dimensional
Kronig-Penney model

To construct localized electron functions we used
model of a one-dimensional lattice with a Kronig-Penn
potential.5,18,29,33This case is particularly interesting. Firs
the band structure has nontrivial symmetry properties
Wannier functions corresponding to a different choice
Bloch functions’ phase factors and to different bands.29,31

Second, the parameters of the model can be chosen in su
way that Wannier functions corresponding to certain ba
would have, although exponential, quite a slow decay.5 That
allows us to examine the method in the cases of slow
crease of Wannier functions. And besides, it is very help
that the most localized Wannier functions in this case can
generated explicitly because the procedure for choosing
correct phase factors for Bloch functions in one-dimensio
crystals is known.5

The Bloch one-electron orbitalsw i(k,x), where i is the
number of an energy band, are determined from the Sc¨-
dinger equation

F2
1

2

d2

dx2
1V~x!Gw i~k,x!5Ew i~k,x! ~17!

with the periodic and symmetrical at the lattice sites pot
tial,

V~x!5C(
n

d~x2n!. ~18!

There are two inversion centers in the unit cell:a(x
50),b(x5 1

2 ). The symmetry analysis of band states sho
that if C,0 the lowest-energy band corresponds to the
drepa(ag). All the other bands have the symmetryb(ag) or
b(au), alternatively. In the case whenC.0 all the bands are
of the b(ag) or b(au) symmetry, alternatively.29

We’ve considered different bands at different values ofC.
As an example of functioning of the variational and orthog

TABLE I. Localized displacements for a one-dimensional
atomic crystal.

n W1
(no)(n) W2

(no)(n) W1(n)5W2(n) W(n)

0 0.6954 0.6958 0.6954 0.6954
1 0.0929 0.1717 0.0906 0.0906
2 -0.0810 0.0030 -0.0847 -0.0847
3 -0.0118 -0.0106 -0.0171 -0.0171
4 0.03000 0.0092 0.0262 0.0262
5 0.0025 0.0025 0.0047 0.0047
6 -0.0124 -0.0046 -0.0097 -0.0097
7 0.0001 -0.0004 -0.0010 -0.0010
8 0.0053 0.0021 0.0037 0.0037
9 -0.0021 -0.0007 -0.0010 -0.0010
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nalization procedures we give in Table II Wannier functio
in some pointsx for the lowest-energy band whenC5
22.5. Ninety nine percent of the normalization integral f
this function is contained in the ‘‘volume’’ of 1.4 unit cells.29

Functions W1
(no)(x) and W2

(no)(x) are nonorthogonalized
ones corresponding to the choice of weight functionr(x)
5d(x) and Eq.~8c! with D51, respectively. The last col
umn represents these functions after the procedure of s
metric orthogonalization coinciding with one another a
with the correct one5 „W1(x)5W2(x)5W(x)….

C. Localized displacements for a germanium crystal

We have also constructed the localized displacement
the germanium crystal by the proposed variational meth
This crystal has a diamond-type lattice with two atoms p
unit cell, atoms occupying the Wyckoff positiona with the
site groupTd . The symmetry analysis of normal displac
ments for six vibrational branches shows that all normal d
placements form a basis of the simple indrep (a,t2): six
localized displacements per unit cell, centering at Ge ato
with three at each. These displacements transform accor
to the vector rept2 of the site groupTd . In the calculations,
we have used a cyclic model consisting of 33333527 unit
cells and defined by vectorsA i53ai ~4! ( i 51,2,3). The vol-
ume D ~8c! of the region in the variational functional ha
been chosen to be half of the unit cell, i.e., one Ge atom~so
long as displacements in a vibrational problem are defi
only at atom positions!.

As it was expected, the localized displacements turned
to be the unit displacements of atoms along Cartesian a
This result can be explained by the fact that the six vib
tional branches in the germanium crystal represent one ‘
generate band.’’ The normal displacements are linear com
nations of the unit displacements, which form the basis in
space of the full vibrational rep and, obviously, are the m
localized functions and fulfill the necessary symmetry co
ditions.

D. Wannier functions for the upper valence band
of an Si crystal

At last we have applied the proposed variational pro
dure to find electron Wannier functions for three-dimensio

TABLE II. Localized Wannier functions for a one-dimension
Kronig-Penney model.

x W1
(no)(x) W2

(no)(x) W1(x)5W2(x)5W(x)

0.0 1.6521 1.6487 1.6488
0.2 0.9834 0.9847 0.9847
0.4 0.5431 0.5536 0.5534
0.6 0.2401 0.2646 0.2641
0.8 0.0208 0.0655 0.0644
1.0 -0.1421 -0.0676 -0.0699
1.2 -0.1184 -0.0757 -0.0778
1.4 -0.0728 -0.0527 -0.0555
1.6 -0.0211 -0.0185 -0.0229
1.8 0.0282 0.0160 0.0088
2.0 0.0690 0.0435 0.0316
8-5
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crystals, particularly, for the upper valence band of the p
fect Si crystal~space groupOh

7 , a diamond-type lattice with
two atoms per unit cell!. As is well known and in accordanc
with the theory of induced~band! representations the corre
sponding Wannier functions~four per unit cell! are centered
at the middle of the bonds between the nearest Si at
~Wyckoff positionc with site groupLc5D3d) and transform
according to the irrepag of the site groupD3d .

For our variational procedure we have used two sets
electron Bloch functions of an Si crystal obtained with t
help of the programCRYSTAL 95.34,35 The first set (S1) cor-
responds to the full electron restricted Hartree-Fock~RHF!
LCAO calculations, and the second one (S2) to the pseudo-
potential RHF LCAO method. The first basis consists of 1s
andp atomiclike functions per atom; the ‘‘pseudopotentia
basis consists of twos, six p, and fived functions per atom.
We have taken the weight functionr(r )5d(r2q) in Eq. ~8!.

A cyclic model of the crystal consisting of 43434564
primitive cells has been adopted. The band structure calc
tions show that this cyclic model ensures the convergenc
the results~for further enlarging ofL the changes appeared
be small!.2 It means that the corresponding Wannier fun
tions are localized inside the volume consisting of 43434
564 primitive cells and defined by vectorsA i54ai ~4! ( i
51,2,3).2

TABLE III. Localized states for the upper valence band of an
crystal along the@111# direction~the origin is taken in the middle o
the Si-Si bond,x is in aA3/96 units, anda is the conventional lattice
constant!.

x W1(x) W8(x) W64(x) W64
(no)(x)

0 -0.2300 -0.2036 -0.1982 -0.1988
3 -0.2190 -0.1975 -0.1926 -0.1930
6 -0.1566 -0.1465 -0.1436 -0.1437
9 0.1204 0.1216 0.1199 0.1196

11 0.4116 0.3840 0.3725 0.3747
12 -0.5831 -0.7333 -0.7579 -0.7406
15 -0.0596 -0.0401 -0.0354 -0.0373
18 0.0497 0.0336 0.0288 0.0307
22 0.0620 0.0501 0.0453 0.0471
27 0.0250 0.0327 0.0317 0.0321
33 -0.0099 0.0097 0.0127 0.0121
39 -0.0098 -0.0002 0.0040 0.0030
45 0.0045 -0.0017 0.0011 0.0004
51 0.0045 -0.0002 0.0006 0.0003
57 -0.0098 0.0005 0.0003 0.0003
63 -0.0099 0.0000 0.0000 -0.0001
69 0.0250 -0.0006 -0.0002 -0.0002
75 0.0649 -0.0015 -0.0002 -0.0001
81 -0.0596 0.0008 0.0000 -0.0001
84 -0.5831 -0.0082 -0.0005 0.0000
87 0.1204 -0.0001 0.0000 0.0000
90 -0.1566 -0.0002 -0.0001 -0.0002
93 -0.2190 -0.0006 -0.0002 -0.0004
96 -0.2300 -0.0008 -0.0003 -0.0006
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The bigger the cyclic model of a crystal, the closer
Wannier functions to the ones of the model of an infin
crystal.29 To study the convergence of the Wannier functio
W(r ) in cyclic models of different sizes we have calculat
Wannier functionsW1(x), W8(x), andW64(x) from 4 ~point
G; the supercell coincides with a primitive cell!, 32 ~points
G, X, L; 2323258 primitive cells in the supercell!, and
256 (43434564 primitive cells in the supercell! Bloch
states, correspondingly~for the setS1). Table III gives the
values of the Wannier functionsW1(x), W8(x), W64(x), and
W64

(no)(x) ~the latter is nonorthogonalized! in some points
along the@111# direction. As is seen from the table, th
function W(64)

(no)(x) is very close toW64(x). So the orthogo-
nalization procedure changes the Wannier function insign
cantly. When comparing the functionsW1(x), W8(x), and
W64(x) it is necessary to take into account that these fu
tions are normalized differently, in the volume of 1, 8, and
primitive cells, respectively. The fact that their values a
relatively close to each other fromx50 to x548 ~in units
aA3/96, the translational period in the@111# direction is
equal to aA3) shows a good localization of the Wanni
function and, on the other hand, the convergence of the s
mation ~5! over the sets of special points to the correspo
ing integral over the BZ.

Figure 1 gives theW64(x) and ‘‘pseudopotential’’ Wannier
functionW64

(pp)(x) in the @111# direction. The functions differ
significantly at the atoms’ cores. Outside the cores the beh

i

FIG. 1. Wannier functions of the upper valence band of Si in
@111# direction for the 43434 cyclic model.~a! Wannier function
W64(x); ~b! ‘‘pseudo-wave’’ Wannier functionW64

(pp)(x).
8-6
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ior of the functions is alike. This is quite natural, since t
‘‘pseudopotential’’ Wannier functions are constructed fro
smooth pseudowave Bloch functions—nonorthogonal to
core states. Orthogonalization of these smooth Wannier fu
tions to the localized core functions would lead to an up
ing of oscillations at the atoms’ cores observed in the W
nier functions W64(x). And the differences between th
Wannier functions in the interatomic space are due to
normalization. The contour plot of the ‘‘pseudopotentia
Wannier function in the (1̄01) plane is presented in Fig. 2

In this case, just as in the previous examples, the met
reveals a very good stability with respect to the choice of
weight functionr(r ) form. The computations give the sam
resulting orthogonalized Wannier functions whereas the
termediate nonorthogonalized functionsVt(r ) turn out to be
different. We have found an amazing thing. Even if one u
the weight functionsr(r ) centered at any point in the loca
ization region of the Wannier function and therefore t
functionsVt(r ) do not have the symmetry compatible wi
the site groupSq , the same orthogonalized Wannier fun
tions of the needed symmetry arise after the orthogonal
tion procedure. The latter not only conserves the symm
of the localized orbitals, but reconstructs it up to an app
priate level. The reason for such flexibility is apparently t
fact that the most localized Wannier functions of the silic
valence band are unique and just these functions arise w
out fail as the result of the proposed variational proced
@see Sec. III and Refs. 5 and 7# succeeded by the symmetr
cal orthogonalization. This property of uniqueness~to within
the linear transformation in the space of repb of site group
Sq), is seemingly a common feature of the most localiz
Wannier functions corresponding to degenerate or nonde
erate energy bands separated from other bands by band
in crystals with centers of inversion~see Refs. 5 and 7!.

FIG. 2. Contour plot of the ‘‘pseudowave’’ Wannier function fo

the 43434 cyclic model of Si in the (1̄10) plane. The origin is
taken at one of the Si atoms, and axes are scaled in units ofa. The
dashed lines correspond to negative values. The lower level of p
tive values is at 0.005, the upper level of negative values is
20.005, and the step is 0.02~all values are in units ofa23/2).
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Unfortunately we cannot compare our Wannier functio
with those in Ref. 20, because there the decreasing of W
nier functions is demonstrated indirectly, by means of
coefficients in the Fourier expansion of the Hamiltonian. T
fact that the main features of Wannier functions’ behav
~Fig. 1 and Fig. 2! are reproduced in our calculations and w
have a direct comparison of the form of our Wannier fun
tions with those in Refs. 4, 21, and 36 allow us to conclu
that the proposed method is effective in constructing
maximally localized Wannier functions.

E. Wannier functions for the upper valence bands
of the MgO crystal

Finally we have constructed the Wannier functions for t
upper valence bands of the perfect MgO crystal~space group
Oh

5 , with a face-centered lattice with one formula unit p
unit cell!. As in the above case of silicon we have applied
set of MgO Bloch functions obtained with the help of th
program CRYSTAL 95 ~Refs. 34 and 35! corresponding to
pseudopotential RHF LCAO calculations. For the same r
sons as in the case of silicon the 43434 cyclic model has
been used in the calculations. The valence band of M
represents two separated bands, and thus it is possib
construct two independent sets of Wannier functions~for
each of the bands!. The method of induced representatio
gives all the Wannier functions being centered on O ato
~Wyckoff positionb with site groupLc5Oh) and transform-
ing, according to the irrepag of the site groupOh for the
lower band~one Wannier function per unit cell! and accord-
ing to the irrept1u for the upper band~three Wannier func-
tions per unit cell!. We have taken the weight functio
r(r )5d(r2q) in Eq. ~8! located some distance away fro
the centering point of the corresponding Wannier functio
because the Wannier functions of the upper band are a
symmetric and thus equal zero in their centering points wh
as stated above the symmetrical centering of ther(r ) func-
tion is not necessarily needed in this case.

Figure 3 shows the Wannier functions for both bands

si-
t

FIG. 3. Wannier functions of the valence bands of MgO in t
@111# direction for the 43434 cyclic model: the solid curve relate
to theag Wannier function of the lower band, and the dashed o
presents one of the threet1u Wannier functions of the upper valenc
band.
8-7
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the @111# direction. We should mention that the function co
responding to the upper band~dashed curve! is determined
up to a linear combination of the three functions transfor
ing via thet1u irrep. One can see that both Wannier functio
are almost completely localized around one of the oxyg
atoms, which confirms the ionic character of the MgO co
pound.

V. CONCLUSION

The character of the localization of Wannier functions d
pends on the analytical properties of Bloch states~as a func-
tion of the wave vector! which are essentially determined b
the nature of the system under consideration. One can a
trary change only the form of a unitary transformation
Bloch functions. It is just this arbitrariness that is used in o
,

.

:
te
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variational approach to assure the best localization of W
nier functions. The accuracy of the Wannier functions o
tained by the proposed method is determined solely by
accuracy of the Bloch functions and the size of the super
used. As the calculations have shown, the proposed me
is reliable and useful in the problem of generation of t
localized Wannier functions.
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