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From the local Fermi liquid to the heavy Fermi liquid

Tetsuya Mutou
RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan

~Received 20 June 2001; published 28 November 2001!

Magnetic-ion concentration dependence of some physical quantities in heavy-fermion systems are investi-
gated on the basis of the periodic Anderson model with randomly distributed sites withoutf electrons. A
scheme consisting of the dynamical mean-field theory and the coherent-potential approximation is applied to
calculate the density of states, the resistivity, and the specific heat. By the present scheme, both the heavy
Fermi liquid in heavy-fermion systems and the local Fermi liquid in dilute Kondo impurity systems can be
studied on the same footing.
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I. INTRODUCTION

Several types of the ground state in heavy-fermion co
pounds have been studied so far. Some of compounds do
have any magnetic ordering down to extremely low tempe
ture. In these typical heavy-fermion compounds which ha
no magnetic ordering, spin degrees of freedom of localizef
electrons disappear at low temperature and thosef electrons
construct the heavy Fermi-liquid state by the mixing w
conduction electrons. The heavy Fermi liquid which beca
realized in heavy-fermion compounds originates from
strong many-body effect betweenf electrons. When the con
centration of magnetic ions is low in those compounds,
Kondo effect is also expected to occur by the many-bo
effect. The relation between heavy-fermion systems
single Kondo impurity systems has been investigated
some experimental studies in which nonmagnetic ions
substituted for magnetic ions.1 In Ref. 1, nonmagnetic La31

ions were substituted for Ce31 ions in (Ce,La)Cu6, and the
magnetic-ion concentration dependence of the resistivity
mainly studied. In magnetic-ion-dense compounds, the re
tivity decreases with decreasing temperature and it hasT2

dependence which is the Fermi-liquid behavior at lower te
peratures. In compounds with dilute magnetic ions, the re
tivity increases monotonically as temperature decreases,
at the lowest temperature it reaches the residual resist
corresponding to the unitarity limit in the single Kond
impurity system.

The theoretical study of the magnetic-ion concentrat
dependence of the resistivity was first carried out by Yos
mori and Kasai~YK !.2 They proposed a theoretical model o
the basis of the periodic Anderson model for the system w
randomly distributed magnetic ions, and applied t
coherent-potential approximation~CPA! to treat the random-
ness effect in the system. In their study, they considered
energy ranges divided into the higher-energy part and
lower-energy one, and applied different treatments to e
energy range. Using the slave-boson mean-field approxi
tion ~SBMFA!, another group later improved the insufficie
point whereby the electronic state in the whole energy ra
was not treated by the single theoretical scheme in the s
by YK.3 However, the SBMFA cannot treat the many-bo
correlation effect sufficiently; it is insufficient to describe th
0163-1829/2001/64~24!/245102~5!/$20.00 64 2451
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high-energy excitation due to the strong correlation betw
f electrons.

In order to take account of the many-body effect beyo
the Hartree-Fock approximation and to treat the electro
state in the whole energy range by the single scheme,
propose a scheme consisting of the dynamical mean-fi
theory~DMFT! and the CPA. Since a lattice problem can
reduced to an impurity problem embedded in an effect
medium within the DMFT framework, one can treat th
many-body correlation effect more correctly by solving t
effective impurity problem appropriately.4 The physical idea
of the effective medium~the dynamical mean field! is the
same as that of the coherent potential in the CPA.5 Although
the spatial correlation is not taken into account beyond
mean-field treatment in both the DMFT and the CPA, o
can expect that the present scheme is effective to treat
system with randomly distributed magnetic ions sincef or-
bitals in magnetic ions are rather localized. The purpose
the present study is to clarify magnetic-ion concentration
pendencies of some physical quantities such as the resist
and to study the change from the local Fermi-liquid state
the heavy Fermi-liquid state by the above scheme.

This paper is organized as follows. In Sec. II, we intr
duce the model we use and propose the framework con
ing of the DMFT and the CPA. We show numerical results
the resistivity, the density of states, and the specific hea
Sec. III. At last, in Sec. IV, we summarize results and gi
some discussions.

II. MODEL AND FORMULATION

In the present study, we use the periodic Anderson mo
~PAM! with randomly distributed sites which have nof elec-
trons as a theoretical model for the magnetic-ion-dilu
heavy-fermion system. The model is the same as that use
Ref. 2,

H5H01Hf ,

H0[(
k,s

~«kcks
† cks1«k

f f ks
† f ks!1V(

i ,s
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We refer sites with and withoutf electrons as a host sit
~denoted by H! and an impurity site~denoted by I!, respec-
tively. Host and impurity sites correspond to magnetic a
nonmagnetic ions in real systems. In the expression ofHf ,
j i denotes a random variable defined asj i51 (i PI ) and
j i50 (i PH). The impurity concentrationx is expressed as
x5( ij i /N; N denotes the number of lattice sites. The e
ergy level off electrons on impurity sites is denoted byEI in
the expression ofHf . In the practical calculation, we tak
the limit EI→` to excludef electrons on impurity sites.2,3,6,7

The density of electrons is asnf1nc522x. In the present
model, it is assumed thatf electrons have a small energ
dispersion and it is defined as«k

f[a«k for simplicity.2 The
value of a should be determined so that the hybridizati
gap does not open;8 the condition that the gap does not op
is as a.(V/D).2 The density of statesr0(n)5(kd(n
2«k)/N is assumed as the half-elliptic form ofr0(n);9

r0(n)52A12(n/D)2/(pD) for unu<D and r0(n)50 for
unu.D. Hereafter we takeD as the unit of energy;D51.
The present system has the particle-hole symmetry.

We use the infinite-dimensional approach5 in the present
study; namely, we assume that the wave-number depend
of the self-energy can be neglected~the local approxima-
tion!. Under the assumption, we apply both the DMFT a
the CPA to the present problem. First, the usual CPA pro
dure is applied to the present model according to YK.
start with the effective one-body Hamiltonian,

H eff5H01(
i ,s

$~12j i !Ss~ ivn!1j iEI% f is
† f is ,

whereSs( ivn) denotes the self-energy~from which the Har-
tree term is subtracted! due to the electronic correlation be
tweenf electrons. The CPA Hamiltonian is defined as

H CPA5H01(
i ,s

Ss~ ivn! f is
† f is ,

whereSs( ivn) denotes the coherent potential. We define
site-dependent potentialv i as

(
i

v i[H eff2H CPA.

Using the site-dependent potentialv i , we introduce the site-
dependent Green’s function~operator! Gi( ivn) defined as

Gi~ ivn![$ ivn2~H CPA1v i !%
21.

On the other hand, the CPA Green’s functionGCPA( ivn) is
introduced as follows:

GCPA~ ivn![~ ivn2H CPA!21.

The site-dependent Green’s functionGi( ivn) is expressed in
terms of GCPA( ivn) and the T matrix: Ti( ivn)[v i@1
2GCPA( ivn)v i #

21 as follows:

Gi~ ivn!5GCPA~ ivn!1GCPA~ ivn!Ti~ ivn!GCPA~ ivn!.

By equating the random average of the site-depend
Green’s functionGi( ivn) with the CPA Green’s function
24510
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GCPA( ivn), we obtain the CPA condition. The condition th
the random average ofGi( ivn) is equal toGCPA( ivn) is
nothing but the condition that the random average of thT
matrix is equal to zero,

~12x!Ti PH1xTi PI50.

Taking the limitEI→`, the above CPA condition leads to
simple form expressed by the following equation:2

$S~ ivn!2S~ ivn!%Gf f~ ivn!5x ~xÞ1!, ~1!

where we have omitted the spin index because we deal
only the paramagnetic state. Thef component of the CPA~or
averaged! Green’s functionGf f( ivn) is expressed as

Gf f~ ivn!5E dnr0~n!Gf f~ ivn ;n!

5E dn
r0~n!

ivn2an2S~ ivn!2
V2

ivn2n

. ~2!

The next step of the procedure is to determine the s
energyS( ivn). In the present study, we calculateS( ivn) by
the iterated perturbation theory~IPT! in the DMFT frame-
work. We introduce what is called the Weiss functionG( ivn)
~Ref. 4! as follows:

G~ ivn![
1

@Gf f~ ivn!#211S~ ivn!
. ~3!

Using this Weiss function, the site-dependent Green’s fu
tion Gi PH

f f ( ivn) on the host site is expressed asGi PH
f f ( ivn)

5$@G( ivn)#212S( ivn)%21. Following the IPT procedure
we calculateS( ivn) in terms ofG( ivn) by the second-orde
perturbation. We symbolically expressS( ivn) as the func-
tional of G( ivn),

S~ ivn!5S@G~ ivn!#. ~4!

Now we have four equations, Eqs.~1!–~4!, for four functions
Gf f( ivn), G( ivn), S( ivn), andS( ivn). We determine these
four functions self-consistently from the above equations

From the averaged Green’s function one can obtain
one-particle density of states~DOS! as

r f (c)~v!52
1

p
ImGf f (cc)~v1 id!,

whereGcc( ivn) is defined similarly toGf f( ivn):

Gcc~ ivn!5E dnr0~n!Gcc~ ivn ;n!

5E dn
r0~n!

ivn2n2
V2

ivn2an2S~ ivn!

.

We can also calculate the total energy of the system by u
the averaged Green’s function. According to the appro
2-2
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FROM THE LOCAL FERMI LIQUID TO THE HEAVY . . . PHYSICAL REVIEW B64 245102
from the infinite-dimensional limit, we can calculate the co
ductivity in terms of the averaged Green’s function witho
vertex parts, since the contribution to the conductivity due
vertex corrections vanishes in the limit.10 We obtain the fol-
lowing expression of the conductivity by assuming that
expression of the conductivity formulated on the hypercu
lattice in d5` can be also applied to the system on t
general lattice. By omitting some constant factors, we de
the reduced conductivity,11,12

s̃~T![E dnr0~n!E de$@rcc~e;n!#2

12a@rc f~e;n!#21a2@r f f~e;n!#2%S 2
] f ~e!

]e D ,

wherercc(c f , f f )(e;n)52ImGcc(cc, f f )(e1 id;n)/p and f (e)
denotes the Fermi distribution function. The resistivityr̃(T)
is defined asr̃(T)51/s̃(T).

III. RESULTS

Figure 1 shows the temperature dependence of the r
tivity for several values of impurity concentrations (x). Note
that data in the lower panel@Fig. 1~b!# show the resistivity
divided by the concentration of host sites 12x, which cor-
responds to the magnetic-ion concentration. In Fig. 1,
can see that the resistivity forx50 increases as temperatu
decreases down toT.0.1, below which it decreases rapid
and goes to zero at the lowest temperature. The resistivi
lower temperatures has aT2 dependence as expected in t
Fermi liquid. For finite but low impurity concentrations, th

FIG. 1. ~a! Temperature dependence of the resistivity for seve
values ofx: x50.0, 0.1, 0.2, 0.4, 0.6, and 0.8 (U53, V50.5, and
a50.5). ~b! Data divided by 12x for same parameters.
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resistivity has a residual resistivity at the lowest temperatu
With increasing impurity concentration, the residual resist
ity increases. The temperature dependence of the resist
changes for higher impurity concentrations abovex.0.5.
For higher impurity concentrations, the resistivity curve do
not have any peak, it increases monotonically with decre
ing temperature, and it reaches the residual resistivity wh
is the maximum value of the resistivity at the lowest te
perature. This behavior of the resistivity for higher conce
trations is similar to that for the single Kondo impurity sy
tem. In the impurity-concentration dependence of t
residual resistivity shown in Fig. 2, one can see that
residual resistivity at the limit ofx→1 has a finite value.
This finite value should correspond to the unitarity limit
the single Kondo impurity system.

At higher temperature, on the contrary, resistivity curv
for all impurity concentrations have a common temperat
dependence; the resistivity increases with decreasing t
perature in the region 0.1&T&0.3. This temperature depen
dence in the result is expected to correspond to the loga
mic increase observed in the Kondo effect. Since the s
degree of freedom of eachf electron is active at higher tem
perature and it becomes a center of the Kondo resona
scattering, the resistivity increases with decreasing temp

l

FIG. 2. Impurity-concentration dependence of the residual re
tivity divided by 12x. Inset shows the dependence of the resid
resistivity itself.

FIG. 3. Temperature dependence of the resistivity for differ
values of the Coulomb interactionU: U51, 2, and 3 (V50.5, a
50.5, andx50.1). Inset shows thef componentr f(v) of the den-
sity of states~divided by 12x) for corresponding parameters.
2-3
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TETSUYA MUTOU PHYSICAL REVIEW B 64 245102
ture as observed in the Kondo impurity system. In fact,
can see in Fig. 3 that the logarithmic increase of the resis
ity with decreasing temperature is clearer for larger value
U.13 As the strength of the Coulomb repulsion betweef
electrons increases, the spin fluctuation is enhanced and
charge fluctuation is suppressed. In the DOS spectrum,
can also see the example of the influence by the many-b
effect; the satellite peak, which is not obtained by t
SBMFA, grows and the width of the center peak is narrow
with increasing value ofU as shown in the inset of Fig. 3.

In order to see that the present system in the limit ox
→1 corresponds to the single Kondo impurity system
scribed by the single-impurity Anderson model~SIAM!, we
show the impurity-concentration dependence of the lineaT
specific-heat coefficient in Fig. 4. Thef componentg f of the
linear T specific-heat coefficient is defined as

g f[
2p

3

zf
21r f~0!

12x
,

wherezf denotes the renormalization factor for thef part; it
is defined as

zf[S 12
]ReS~v1 id!

]v Uv50D 21

,

and r f(0)[2ImGf f(1 id)/p. For the usual homogeneou
PAM (x50), S( ivn) is equal toS( ivn) and the linearT
specific-heat coefficient is as (2p/3)$zf

21r f(0)1rc(0)%.14

As shown in Fig. 4, with increasing impurity concentratio
g f decreases monotonically, and finally reaches a finite va
in the limit of x→1. The value in the limitx→1 is consistent
with the rigorous value of the~symmetric! SIAM with cor-
responding parameters. SettingD5pr0(0)V2, the linearT
specific-heat coefficientg imp for the SIAM is expressed as

g imp5
2p

3D (
n50

`

C2nS U

pD D 2n

,

FIG. 4. Impurity-concentration dependence ofg f . The short
thick line at the end ofx51 indicates the value ofg imp ~see text!.
Inset shows the impurity concentration of the density of sta
r f(0) ~divided by 12x) at the Fermi level. Short thick lines at bot
ends ofx51 andx50 indicate the value for the SIAM with cor
responding parameters and the analytical value ofr f(0) for x50,
respectively.
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whereCn5(2n21)Cn212(p/2)2Cn22 with C05C151.15

For present parameters (U53 andV50.5), the value ofg imp
is equal to 16.04 . . . , and one canexpect that the presen
scheme is applicable to describe the strong-coupling reg
such as U/(pD)@1. We also show the impurity-
concentration dependence of thef componentr f(0) of the
density of states at the Fermi level in the inset of Fig. 4. F
the homogeneous model (x50), we can express the value o
r f(0) analytically as

r f~0!5
2

apD
A12

V2

aD2
.

At the other end (x51), one can see thatr f(0)/(12x) ap-
proaches 1/(pD) which is the density of states of the ma
netic impurity in the SIAM at the Fermi level, as expecte

Here it is necessary to comment on the impuri
concentration dependence ofg f shown in Fig. 4. In the sys-
tem with the parameter set~referred to as set A!, U53, V
50.5, anda50.5, the value ofg f for x51 is smaller than
that for x50. However, this impurity-concentration depe
dence ofg f shown in Fig. 4 is not general. In the system wi
another parameter set~referred as B!, U53, V50.3, anda
50.6, for example, the value ofg f for x51 is larger than
that for x50 ~Fig. 5!. Comparing with the parameter set A
one can see in Fig. 6 that the width of the center peak of

s

FIG. 5. Impurity-concentration dependence of same quanti
as shown in Fig. 4 for the different parameter set referred as se
U53, V50.3, anda50.6 ~see text!.

FIG. 6. Comparison ofr f(v) for the parameter set A (U53,
V50.5, anda50.5) and that for B (U53, V50.3, anda50.6).
2-4
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FROM THE LOCAL FERMI LIQUID TO THE HEAVY . . . PHYSICAL REVIEW B64 245102
DOS spectrum is narrower and two satellite peaks
clearer. Namely, the quasiparticle band is strongly renorm
ized and the correlation effect in the system with the para
eter set B is relatively stronger than that in the system w
set A, since the mixing betweenf electrons and conductio
electrons is smaller while the energy dispersion off electrons
themselves is slightly larger. The value ofg f for x51 which
corresponds to the single-impurity limit tends to be larg
than that forx50 when the correlation effect is strong.

We can also see the impurity-concentration dependenc
the total specific-heat coefficient itself in the temperature
pendence of the specific heat shown in Fig. 7. These data
obtained by the numerical differential of the total ener
From the viewpoint of the Fermi-liquid theory, one can s
that the effective mass of the quasiparticle decreases a
impurity concentration increases. It can be simply interpre
that the correlation effect itself becomes weak since the d
sity of host sites on which the Coulomb repulsion exi
decreases. The specific-heat curve for the highest conce
tion of impurity sites has a single peak. This temperat
dependence is similar to that observed in the single Ko
impurity system, in which the specific-heat curve has
single peak around the Kondo temperature.

FIG. 7. Temperature dependence of the specific heat for sev
values ofx: x50.1, 0.2, 0.4, 0.6, 0.8, and 0.9. Inset shows
enlargement for lower temperature.
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IV. SUMMARY

In the present study, we have treated the inhomogene
PAM with randomly distributed sites withoutf electrons by
the scheme consisting of the DMFT and the CPA, and inv
tigated impurity-concentration dependence of the resistiv
the density of states, and the specific heat. Impurity site
the present system have nof electrons and they correspond
nonmagnetic ions in real systems. For lower concentrati
of impurities, the resistivity at lower temperature has aT2

dependence and it decreases as temperature decreases
temperature dependence corresponds to that observe
typical heavey-fermion compounds which have no magn
ordering. The residual resistivity increases with increas
impurity concentration. When the impurity concentration i
creases much more, the temperature dependence of the
tivity changes; the resistivity increases monotonically w
decreasing temperature. At the lowest temperature the re
tivity reaches the residual resistivity. This residual resistiv
in systems for dense-impurity sites corresponds to the un
ity limit of the single Kondo impurity system. In fact, by th
calculation of the linearT specific-heat coefficient and th
density of states at the Fermi level, we have obtained c
tinuous impurity-concentration dependencies of the ab
quantities, and have found that the dense-impurity limit
the system approaches the single Kondo impurity system
scribed by the SIAM in the strong-coupling regime. By usi
the scheme proposed in the present study, we can des
the electronic state in the whole region from the local Fer
liquid to the heavy Fermi liquid on the same theoretic
footing.
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