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From the local Fermi liquid to the heavy Fermi liquid
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Magnetic-ion concentration dependence of some physical quantities in heavy-fermion systems are investi-
gated on the basis of the periodic Anderson model with randomly distributed sites witlebettrons. A
scheme consisting of the dynamical mean-field theory and the coherent-potential approximation is applied to
calculate the density of states, the resistivity, and the specific heat. By the present scheme, both the heavy
Fermi liquid in heavy-fermion systems and the local Fermi liquid in dilute Kondo impurity systems can be
studied on the same footing.
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I. INTRODUCTION high-energy excitation due to the strong correlation between
f electrons.

Several types of the ground state in heavy-fermion com- In order to take account of the many-body effect beyond
pounds have been studied so far. Some of compounds do néte Hartree-Fock approximation and to treat the electronic
have any magnetic ordering down to extremely low temperastate in the whole energy range by the single scheme, we
ture. In these typical heavy-fermion compounds which havé’ropose a scheme consisting of the dynamical mean-field
no magnetic ordering, spin degrees of freedom of localized theory (DMFT) and the CPA. Since a lattice problem can be
electrons disappear at low temperature and ttiedectrons réduced to an impurity problem embedded in an effective
construct the heavy Fermi-liquid state by the mixing with Medium within the DMFT framework, one can treat the

conduction electrons. The heavy Fermi liquid which becamdn@ny-body correlation effect more correctly by solving the

realized in heavy-fermion compounds originates from theeffective impurity problem appropriatefyThe physical idea

strong many-body effect betweémlectrons. When the con- of the effective mediurrithe dynaml_cal_ mean fields the
) o : . same as that of the coherent potential in the GRdthough
centration of magnetic ions is low in those compounds, th

. Ghe spatial correlation is not taken into account beyond the
Kondo effect is also expected to occur by the many_bc’dymean—field treatment in both the DMFT and the CPA, one

effect. The relation between heavy-fermion systems and, eynect that the present scheme is effective to treat the
single Kondo impurity systems has been investigated inyysiem with randomly distributed magnetic ions sifice-
some experimental studies in which nonmagnetic ions argjta|s in magnetic ions are rather localized. The purpose of
substituted for magnetic iorfsin Ref. 1, nonmagnetic ¥4 the present study is to clarify magnetic-ion concentration de-
ions were substituted for €& ions in (Ce,La)Cy, and the  pendencies of some physical quantities such as the resistivity
magnetic-ion concentration dependence of the resistivity wagnd to study the change from the local Fermi-liquid state to
mainly studied. In magnetic-ion-dense compounds, the resishe heavy Fermi-liquid state by the above scheme.
tivity decreases with decreasing temperature and it HES a This paper is organized as follows. In Sec. Il, we intro-
dependence which is the Fermi-liquid behavior at lower tem-duce the model we use and propose the framework consist-
peratures. In compounds with dilute magnetic ions, the resigng of the DMFT and the CPA. We show numerical results of
tivity increases monotonically as temperature decreases, aride resistivity, the density of states, and the specific heat in
at the lowest temperature it reaches the residual resistivitpec. lll. At last, in Sec. IV, we summarize results and give
corresponding to the unitarity limit in the single Kondo Some discussions.
impurity system.

The theoretical study of the magnetic-ion concentration Il. MODEL AND FORMULATION
dependence of the resistivity was first carried out by Yoshi-
mori and KasaiYK).2 They proposed a theoretical model on
the basis of the periodic Anderson model for the system wit

In the present study, we use the periodic Anderson model
PAM) with randomly distributed sites which have helec-
rons as a theoretical model for the magnetic-ion-diluted

randomly distributed magnetic ions, and applied the . . .
coherent-potential approximati¢@PA) to treat the random- gee?wzl—fermlon system. The model is the same as that used in

ness effect in the system. In their study, they considered the
energy ranges divided into the higher-energy part and the H=Ho+H;,

lower-energy one, and applied different treatments to each

energy range. Using the slave-boson mean-field approxima-

tion (SBMFA), another group later improved the insufficient Ho=>, (&ChyCrot €1 F lgfkg)+v_2 (¢l fi,+H.c),
point whereby the electronic state in the whole energy range 7 he

was no?'f treated by the single theoretical scheme in the study U

by YK. _ However, thg _SBM!:A _cannot _tr_eat the man_y—body HfEZ (1_§i)_fifgfia[fif—gfi—o_ 1]+§iElfiJrgfia
correlation effect sufficiently; it is insufficient to describe the o 2
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We refer sites with and without electrons as a host site G°™(jw,), we obtain the CPA condition. The condition that
(denoted by hiand an impurity sitddenoted by ), respec-  the random average d&;(iw,) is equal oG iw,) is
tively. Host and impurity sites correspond to magnetic anchothing but the condition that the random average ofthe
nonmagnetic ions in real systems. In the expressiohlof  matrix is equal to zero,

¢, denotes a random variable defined&s 1 (iel) and

&=0 (i eH). The impurity concentration is expressed as (1-X)TicntXxTic=0.
x=2,&IN; N denotes the number of lattice sites. The en-
ergy level off electrons on impurity sites is denoted Byin

the expression of{;. In the practical calculation, we take
the limit E,— to excludef electrons on impurity sites6’ [S(iw)—Sio)G (i) =x (x£1), 1)

The density of electrons is a8 +n°=2—x. In the present . o .

dispersion and it is defined ag=ae, for simplicity? The ~ only the paramagnetic state. Theomponent of the CPor

) i i i

value of @ should be determined so that the hybridization@veragedi Green's functionG™ (i w,) is expressed as
gap does not opehthe condition that the gap does not open

is as a>.(V/D).2 The density of s_taj[eSpo(v)=Ek5(1(‘/9 G”(iwn):J' dVPO(V)G”(iwn;V)

—¢g)/N is assumed as the half-elliptic form gfy(v);

po(v)=21—(v/D)?/(#D) for |v|<D and po(»)=0 for J,
= [ dv
i

Taking the limitE,— o0, the above CPA condition leads to a
simple form expressed by the following equatfon:

po(v)

|v|>D. Hereafter we také®d as the unit of energyD=1. —. (2
The present system has the particle-hole symmetry. w,— av—Sio,)—: v

We use the infinite-dimensional approach the present " "oy
study; namely, we assume that the wave-number dependence , i
of the self-energy can be neglectétthe local approxima- The ngxt step of the procedure is to determl_ne the self-
tion). Under the assumption, we apply both the DMFT and€nergy (iwy). In the present study, we calculaigi w,) by
the CPA to the present problem. First, the usual CPA procethe iterated perturbation theoyPT) in the DMFT frame-
dure is applied to the present model according to YK. wework. We introduce what is called the Weiss functi@fw,)
start with the effective one-body Hamiltonian, (Ref. 4 as follows:

1
[GM(iwy)] T+ S(iwy)

whereX. (i w,) denotes the self-energfrom which the Har-  Using this Weiss function, the site-dependent Green’s func-
tree term is subtractediue to the electronic correlation be- tjgn Gi” w(iwy,) on the host site is expressed @{:fEH(iwn)

€

HEﬁ:Ho+;r {(1-&)3 (iwp) + EEM] i, Giwy) = ®3)

tweenf electrons. The CPA Hamiltonian is defined as ={[G(iw,)] *—=(iw,)} . Following the IPT procedure,
we calculate’ (i wp,) in terms ofG(i w,) by the second-order
H CPA= HO+Z S, (i a,n)fi‘rgfim perturbation. We symbolically expredyiw,) as the func-

i,o

tional of G(i wp,),
whereS,(iw,) denotes the coherent potential. We define the

site-dependent potentia} as 2(iwg)=2[G(iwp)]. 4
Now we have four equations, Eq4)—(4), for four functions
Sy =H e HCPA G(iwy), Giwy), S(iwy), andS (i w,). We determine these
i

four functions self-consistently from the above equations.
From the averaged Green’s function one can obtain the

Using the site-dependent potential, we introduce the site- one-particle density of stat@®OS) as

dependent Green'’s functidoperatoy G;(i w,) defined as

. . _ 1
Gi(iwy)={iwy— (HP+0vj)} 1 pi(o(@) == MG (w+i5),
On the other hand, the CPA Green’s functiG™(iw,) is o _ o _
introduced as follows: whereG®“(i w,,) is defined similarly toG (i w,):

G ™Niw,)=(w,—HH L

The site-dependent Green'’s functiGi(i w,) is expressed in
terms of G*iw,) and the T matrix: T(iw,)=v;[1
=f dv
lw,—

(i ) = f dvpo(1)G (i 0 v)

po(v)
V2

a iw,—av—S(iw,)

—Giwy)v;] ! as follows:

Gi(iwy) =G iw,)+ G Niw,)T(iw,) G iw,).

By equating the random average of the site-dependenide can also calculate the total energy of the system by using
Green’s functionG;(iw,) with the CPA Green’s function the averaged Green’s function. According to the approach
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FIG. 2. Impurity-concentration dependence of the residual resis-
tivity divided by 1—x. Inset shows the dependence of the residual
resistivity itself.

BDI(1-%)

resistivity has a residual resistivity at the lowest temperature.
With increasing impurity concentration, the residual resistiv-
ity increases. The temperature dependence of the resistivity
] changes for higher impurity concentrations abowe0.5.
0.001 0.01 0:1 For higher impurity concentrations, the resistivity curve does
T not have any peak, it increases monotonically with decreas-
o ing temperature, and it reaches the residual resistivity which
FIG. 1. (a) Temperature dependence of the resistivity for severalis the maximum value of the resistivity at the lowest tem-
values ofx: x=0.0, 0.1, 0.2, 0.4, 0.6, and 0.8 3, V=0.5, and . . s .
L perature. This behavior of the resistivity for higher concen-
a=0.5). (b) Data divided by I-x for same parameters. trations is similar to that for the single K : . i
gle Kondo impurity sys

from the infinite-dimensional limit, we can calculate the con-tem.' In th? _|mpur|ty-con_cent_rat|on dependence of the
residual resistivity shown in Fig. 2, one can see that the

ductivity in terms of the averaged Green'’s function Withoutresidual resistivity at the limit ok—s1 has a finite value
vertex parts, since the_contnbunon FO the conduptwny due tQThis finite value Zhould correspond to the unitarity limit in
vertex corrections vanishes in the lilhtWe obtain the fol- . . . P y

the single Kondo impurity system.

lowing expression of th n ivi ming that th >
owing expression of the conductivity by assuming that the At higher temperature, on the contrary, resistivity curves

expression of the conductivity formulated on the hypercubicfor all impurity concentrations have a common temperature
lattice in d=<« can be also applied to the system on the purity P

general lattice. By omitting some constant factors, we deﬂngepender_lce; the r_eS|st|V|ty INCreases with decreasing tem-
the reduced conductivity; 2 perature in the region 02T=0.3. This temperature depen-

dence in the result is expected to correspond to the logarith-

IPUIPGRPPRT ¥ 7 ’

_ mic increase observed in the Kondo effect. Since the spin
U(T)Ef dvpo( V)f de{[p®(e;v)]? degree of freedom of eadtelectron is active at higher tem-
perature and it becomes a center of the Kondo resonating
of(e scattering, the resistivity increases with decreasing tempera-
+2a[pCf(6;V)]2+a2[pff(e;y):|2}(— &(E)), g y g p
f, ff ff i 3 - j
wherep®®ch (e p)= — IMGeACe I (e+i8:v)/ 7 and f () osl o | Ul
denotes the Fermi distribution function. The resistiiT) 25} 0'6 ! B
is defined ag(T)=1/o(T). 51 04
o o2} A b\ A
Il. RESULTS S5t ~ R\ A
< 0-4-3-2-101234/ haatt
Figure 1 shows the temperature dependence of the resis- 1} veos  ©®
tivity for several values of impurity concentrations)( Note 0=0.5
that data in the lower panéFig. 1(b)] show the resistivity 05p =0l
divided by the concentration of host sites-%, which cor- 0 . ,
responds to the magnetic-ion concentration. In Fig. 1, one 0.001 0.01 0.1

can see that the resistivity far=0 increases as temperature T

decreases down f6=0.1, below which it decreases rapidly  F|G. 3. Temperature dependence of the resistivity for different
and goes to zero at the lowest temperature. The resistivity &falues of the Coulomb interactidd: U=1, 2, and 3 {¥=0.5,
lower temperatures hasT dependence as expected in the =0.5, andx=0.1). Inset shows thkcomponenp;(w) of the den-
Fermi liquid. For finite but low impurity concentrations, the sity of statesdivided by 1—x) for corresponding parameters.
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FIG. 4. Impurity-concentration dependence uf. The short FIG. 5. Impurity-concentration dependence of same quantities

thick line at the end ok=1 indicates the value ofy, (see text as shown in Fig. 4 for the different parameter set referred as set B:
Inset shows the impurity concentration of the density of statedJ=3, V=0.3, anda=0.6 (see text

p¢(0) (divided by 1-x) at the Fermi level. Short thick lines at both

ends ofx=1 andx=0 indicate the value for the SIAM with cor- \whereC,,=(2n—1)C,_;— (7/2)?C,_, with Cy=C,=1.1°

responding parameters and the analytical valup;00) for x=0, For present parametertl € 3 andV=0.5), the value Ofyy,
respectively. is equal to 16.8. .., and one caexpect that the present

. . . scheme is applicable to describe the strong-coupling regime
ture as observed in the Kondo impurity system. In fact, wegch as U/(mA)>1. We also show the impurity-
can see in Fig. 3 that the logarithmic increase of the resistivegncentration dependence of theomponenip;(0) of the
ity with decreasing temperature is clearer for larger values Ofiensity of states at the Fermi level in the inset of Fig. 4. For

13 H
U.”" As the strength of the Coulomb repulsion between e homogeneous model£0), we can express the value of
electrons increases, the spin fluctuation is enhanced and t £(0) analytically as

charge fluctuation is suppressed. In the DOS spectrum, one
can also see the example of the influence by the many-body >

effect; the satellite peak, which is not obtained by the pi(0)= i1 [4_ V_

SBMFA, grows and the width of the center peak is narrower amD aD?

with increasing value ot as shown in the inset of Fig. 3.

In order to see that the present system in the limikof At the other endX=1), one can see that(0)/(1—x) ap-
—1 corresponds to the single Kondo impurity system defroaches 14A) which is the density of states of the mag-
scribed by the single-impurity Anderson mod8&IAM), we  netic impurity in the SIAM at the Fermi level, as expected.
show the impurity-concentration dependence of the liflear ~ Here it is necessary to comment on the impurity-
specific-heat coefficient in Fig. 4. THeomponenty; of the  concentration dependence gf shown in Fig. 4. In the sys-

linear T specific-heat coefficient is defined as tem with the parameter séteferred to as set AU=3, V
=0.5, anda=0.5, the value ofy; for x=1 is smaller than
27 z{lpf(O) that for x=0. However, this impurity-concentration depen-
V=3 T ox dence ofy; shown in Fig. 4 is not general. In the system with
another parameter séeferred as B U=3, V=0.3, anda
wherez; denotes the renormalization factor for thpart; it  =0.6, for example, the value of; for x=1 is larger than
is defined as that forx=0 (Fig. 5. Comparing with the parameter set A,
one can see in Fig. 6 that the width of the center peak of the
IRE (w+1i6) -1
zi=|1- T de wO) , 1.8
L6t o
and p;(0)=—ImG'f(+i8)/. For the usual homogeneous 141 B—
PAM (x=0), S(iw,) is equal to3(iw,) and the linearT = 12}
specific-heat coefficient is as €23){z; *p;(0)+ pc(0)}.* S 1l x=09
As shown in Fig. 4, with increasing impurity concentration, \8/\08 | T=0
v; decreases monotonically, and finally reaches a finite value e
in the limit of x— 1. The value in the limik— 1 is consistent 06
with the rigorous value of thésymmetrid SIAM with cor- 0.4+
responding parameters. Settidg= 7po(0)V?, the linearT 02}
specific-heat coefficieng;n, for the SIAM is expressed as e E H B N m—
®
27 u |2 . B
Yimo= o E Zn(_) , FIG. 6. Comparison op;(w) for the parameter set AU=3,
P 3A =0 mA V=0.5, anda=0.5) and that for B =3, V=0.3, anda=0.6).
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0.7 T . T T T IV. SUMMARY
0.6} )
In the present study, we have treated the inhomogeneous
05 PAM with randomly distributed sites withottelectrons by
04} the scheme consisting of the DMFT and the CPA, and inves-
503 I tigated impurity-concentration dependence of the resistivity,

the density of states, and the specific heat. Impurity sites in
the present system have helectrons and they correspond to
nonmagnetic ions in real systems. For lower concentrations
of impurities, the resistivity at lower temperature ha3?a
dependence and it decreases as temperature decreases. This
T temperature dependence corresponds to that observed in
FIG. 7. Temperature dependence of the specific heat for severg{plca}l heavey-fermlon comppgnd§ which havg no magngtlc
values ofx x=0.1, 0.2, 0.4, 0.6, 0.8, and 0.9. Inset shows anordering. The residual resistivity increases with increasing
enlargement for lower temperature. impurity concentration. When the impurity concentration in-

creases much more, the temperature dependence of the resis-

DOS spectrum is narrower and two satellite peaks aréivity ch{anges; the resistivity increases monotonically with.
clearer. Namely, the quasiparticle band is strongly renormald€creasing temperature. At the lowest temperature the resis-
ized and the correlation effect in the system with the paramtVity reaches the residual resistivity. This residual resistivity
eter set B is relatively stronger than that in the system wit" Systems for dense-impurity sites corresponds to the unitar-
set A, since the mixing betwednelectrons and conduction ity limit of the single Kondo impurity system. In fact, by the

electrons is smaller while the energy dispersiof @ctrons calcu_lation of the lineai spe(_:ific-heat coefficient a_md the

themselves is slightly larger. The value pffor x=1 which ~ density of states at the Fermi level, we have obtained con-

corresponds to the single-impurity limit tends to be largerfinuous impurity-concentration dependencies of the above

than that forx=0 when the correlation effect is strong. quantities, and have found that the dens_e-lmpurlty limit of
We can also see the impurity-concentration dependence e system approaches the single Kondo impurity system de-

the total specific-heat coefficient itself in the temperature described by the SIAM in the strong-coupling regime. By using

pendence of the specific heat shown in Fig. 7. These data af® Scheme proposed in the present study, we can describe

obtained by the numerical differential of the total energy.tn€ €lectronic state in the whole region from the local Fermi

From the viewpoint of the Fermi-liquid theory, one can SeeIlqu[d to the heavy Fermi liquid on the same theoretical

that the effective mass of the quasiparticle decreases as tfPting.

impurity concentration increases. It can be simply interpreted

that the correlation effect itself becomes weak since the den-
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