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Complex structural phase transition in a defect-populated two-dimensional system
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A complex phase transition in Sn/Ge~111! and similar systems can be decomposed into two intertwined
phase transitions: a structural symmetry lowering (A33A3)⇔(333) transition and a disorder-order transition
in the defect distribution. We present two phenomenological models that describe these transitions and their
interrelation. These models allow us to understand the formation of domains and domain walls at low tem-
peratures, defect-induced density waves above the structural transition temperature, and ordering of the defects
caused by lattice-mediated defect-defect interactions. The models predict a destruction of the pure structural
transition when impurities are introduced into the system, a shift in the structural crossover temperature with
impurity density, and a dependence of the (333) lattice structure on the specific defect alignment.

DOI: 10.1103/PhysRevB.64.235424 PACS number~s!: 68.35.Rh, 68.35.Bs, 71.45.Lr, 72.10.Fk
n
th
le
ia
e-
e-
-
th
-
as

i
o

in
o

s
-
o

in

-

f

r-
e

ti-
s

ce-

nt
een
f the
ob-
(3

ere
p-
les
to

truc-
ed
ple,
re-

t
om
I. INTRODUCTION

The study of microscopic properties of phase transitio
in low-dimensional systems provides an understanding of
fundamental aspects of systems of interacting partic
Phase transitions are strongly affected by defects, espec
in systems with lower dimensionality. In quasi-on
dimensional ~1D! or -2D systems that exhibit a charg
density wave~CDW! transition, a small proportion of micro
scopic disorder can control the global properties due to
collective nature of the phenomena.1 Defects cause pretran
sitional effects, inducing the formation of the CDW. It h
been speculated that the interaction of mobile defects w
the CDW leads to alignment of defects with the CDW,
formation of defect density waves.2 In this dynamic picture
the distribution of defects is neither random nor static;
stead defects align their positions to optimize the energy
the pinned CDW.3

The symmetry lowering phase transition (A33A3)⇔(3
33) in Pb/Ge~111!, Sn/Ge~111!, and similar systems ha
been a subject of extensive studies.5–29 These are quasi-two
dimensional systems composed of an ultrathin metal film
the surface of a semiconductor. At room temperature~RT!,
one-third of a monolayer of Sn is arranged in a (A3
3A3)R 30° structure on Ge~111! @referred to as a (A3
3A3) structure throughout this paper#, with Sn atoms occu-
pying the T4 sites of the Ge~111! substrate,30 as shown in
Fig. 1. When the temperature is lowered, new (333) dif-
fraction spots gradually appear in addition to the exist
(A33A3) spots in a low-energy electron-diffraction~LEED!
pattern.7 Low-temperature~LT! scanning tunneling micro
scope~STM! images show (333) hexagonal~filled states!
and honeycomb~empty states! complimentary patterns o
bright atoms at biases of opposite sign. The (333) and
(A33A3) unit cells are indicated in Fig. 1. The STM obse
vations also display the presence of point defects in th
surfaces, the majority of which are substitutional atoms~in-
dicated in Fig. 1! from the substrate with vacancies cons
tuting the rest.19 In Sn/Ge~111!, the density of the defects i
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in the range from 2% to 4% due to the preparation pro
dure, while in Sn/Si~111! and Pb/Ge~111! their density can
be varied in a very wide range.22,31

In order to explain experimental observations, differe
models of the low- and high-temperature phases have b
proposed. These models are based on the calculations o
ground state of these systems. First, based on the STM
servations it was suggested that the low-temperature
33) phase ina phases of Pb/Ge~111! and Sn/Ge~111! was
due to the stabilization of a surface CDW.7,8 Later other
models, such as the dynamical fluctuation model, w
proposed.5 First-principles calculations were invoked to su
port one or the other model. Even though the first-princip
calculations are very insightful, they have been unable
describe the essential features of the local atomic scale s
ture observed by STM, due to the complexity and reduc
symmetry created by the presence of defects. For exam
plane-wave density-functional method calculations have p
dicted that for a defect-free system the (333) structure is
the most stable by 5 meV per Sn atom.5 It is reasonable to

FIG. 1. Ball model of the (A33A3) Sn/Ge~111! structure. The
light balls represent Sn atoms at theT4 sites of the Ge~111! sub-
strate~dark balls represent the first double layer!. The unit cells of
the RT (A33A3) and LT (333) structures are shown in the righ
top and left top corners, respectively. The arrow at the bott
shows a substitutional point defect~Ge atom!.
©2001 The American Physical Society24-1
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conclude that when the energy difference is so small
perturbation caused by the introduction of a defect c
change the configuration of the ground state. Unfortunat
the real system with defects present is inhomogeneous
aperiodic. This makes it essentially untractable by fir
principles methods due to high computational complex
Therefore, phenomenological theories can fill an import
gap between first-principles calculations and experime
observations. At this stage phenomenological models
essential for understanding the properties of the ph
transition.

The two phenomenological models that are presente
this paper provide us with insight into the atomic evoluti
of these systems across the phase transition. The first m
describes the disorder-order phase transition in the sp
defect distribution. It is based on the assumptions that~1!
every defect induces local periodic lattice perturbat
@called density wave~DW! hereafter#, the decay length of
which depends on the temperature and~2! DW-mediated
defect-defect interactions force defects to move into po
tions to minimize the energy of the system.

The second model, referred to as the charge-compens
model ~CCM!, describes a structural (A33A3)⇔(333)
phase transition in a defect-populated system. By assum
based upon experimental observation, that~1! the DW forms
when temperature is lowered and that~2! the system re-
sponds to a charge impurity by inducing charge on its nea
neighbors, we can calculate the charge-density~CD! maps,
which are compared directly to the STM images. The gen
approach developed in these models is not limited to a
ticular system or to a specific geometry~triangular 2D lattice
in this work! and can be applied to other symmetry loweri
displacive phase transitions in systems where defects are
portant. The models presented here are specifically applie
the case of the phase transition in the Sn/Ge~111! system,
where comparison with STM data obtained earlier19 will be
used as justification for each model. The CD maps are in
preted as the STM images. Since STM images correspon
the 2D maps of the time-averaged local density of sta
~LDOS! that include both charge redistribution and acco
panying lattice distortion, CD maps can be used to study
changes in the lattice structure as well.

It will be shown that defects control the structure a
dynamics of these surfaces at all temperatures, inducing
sity waves at temperatures above the transition, pinning
waves, and controlling the domain structure below the tr
sition temperature. Introduction of defects into the syst
destroys the pure structural phase transition. For the situa
where the high- and low-temperature phases can still be
tinguished such a gradual change is referred to as a cr
over. It will be demonstrated that defects shift the crosso
temperature. The nature of the accompanying def
ordering controls the size of the domains at low tempera
and the average arrangement of the atoms in the (333) unit
cell ~e.g., one up and two down or otherwise!. The calcula-
tions based on the models presented here are consistent
the experimental results obtained from the spatial image
the surface~STM!, and offer a clue to understanding th
findings reported in the literature using momentum sp
23542
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probes such as x-ray and electron diffraction and ang
resolved photoemission.4–6,11,25,26,29,32,33

In the phenomenological treatment presented in this pa
each atomic site is characterized by a parameter~called
charge in the rest of the paper! that corresponds to an exper
mental observable such as the brightness of an atom in
STM image. The difference in brightness is due to a cha
in the LDOS that is a result of a time-averaged electro
redistribution, resulting from charge transfer, lattice dist
tions, or atomic fluctuations. Alternatively, this parame
could be presented in terms of time-averaged vertical
placement of each adatom. That is, we are not discussing
origin of the driving forces for the complex transition ob
served in these systems, but instead explain how defects
trol the nature of the transition. In contrast to previous
ports we show here that the phase transition in Sn/Ge~111! is
a complex phenomenon composed of two intertwined tra
tions: a second-order symmetry lowering structural (A3
3A3)⇔(333) transition and a first-order defect-orderin
transition. The structural phase transition is driven by sho
range interactions intimately involved with the symmetry
the surface. The charge-compensation model is very sim
to models used in description of magnetism~such as Ising!.
Compared to the Ising model, where it is assumed that
spin on a node can only have discrete values~e.g.,11/2 and
21/2), any value of charge is allowed in the CCM, bou
only by the nature of the interaction and charge neutrality.
that, for example, we end up with configurations of char
on the three atoms in the unit cell in which two atoms ha
1/2q and one2q, or one has1q, one 0, and one2q, or two
have21/2q and one1q, but in all casesq can be any real
number dictated by the equations of the model.

This paper is organized as follows. Section II describ
the model of DW-mediated defect-ordering transition and
sults of Monte Carlo simulations. Section III presents a CC
and its interpretation in the framework of Ginzburg-Land
theory of phase transitions, as well as computer simulati
of the STM images based on the CCM. Finally, our conc
sions are presented in Sec. IV.

II. DEFECT-ORDERING TRANSITION: LINEAR
SUPERPOSITION OF DEFECT-INDUCED WAVES AND

INTERACTION OF DEFECTS

A. Observation of defect-ordering phase transition
in SnÕGe„111…

Before we proceed to the description of the defe
ordering transition model, the notation for different lattic
must be introduced. The (A33A3) lattice can be completely
covered by three (333) sublattices, because there are thr
Sn atoms in the (333) unit cell~Fig. 1!. This is illustrated in
Fig. 2. In this figure the brighter atoms indicate more ne
tive charge and the darker atoms indicate more posi
charge. The creation of a (333) sublattice from the origina
(A33A3) lattice with one bright and two dark atoms in th
(333) unit cell is not unique, because three different
33) domains exist. It is easy to see how this happens fr
the structural model shown in Fig. 1. There are three
4-2
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COMPLEX STRUCTURAL PHASE TRANSITION IN A . . . PHYSICAL REVIEW B64 235424
atoms in the (333) unit cell, which have been labeled as
B, and C. If atom A is negatively charged then B and C
positively charged, so that atom A forms a (333) hexagonal
sublattice as seen in the STM filled state images. But i
equally probable that atom B~C! is negatively charged an
atoms A and C~A and B! are positively charged, again form
ing a (333) hexagonal sublattice of B~C! atoms. Figure
2~a! illustrates the three different hexagonal sublattic
@black grid ~a!, dashed grid~b!, and white grid~c!#, which
cover the (A33A3) lattice ~gray balls! completely.

It was experimentally determined that defects random
distributed at RT become ordered at LT.18 The STM measure-
ments showed that inside one (333) domain at LT (T
<105 K) defects are distributed on two sublattices out
three ~e.g., only on B and C if the A’s are charge-dens
maxima! while at temperaturesT>165 K defects are dis
tributed randomly on all three (333) sublattices. The corre
lation probabilityPc is defined as the probability of observ
ing on a small sampling area~randomly chosen! that all
defects are aligned on two sublattices out of three.Pc was
defined as 1 if all of the defects were aligned on two sub
tices and 0 if they were random.Pc is an appropriate orde
parameter for the defect disorder-order transition~see Ref.
19 for details of the procedure!.

B. Description of the model for defect-ordering phase
transition

~1! Defects induce DW’s in their vicinity. We make thre
basic assumptions with regard to the defect-induced wa

FIG. 2. Drawing of the three possible lattices associated with
(333) structure referenced to the original (A33A3) structure.~a!
Three different options to lay (333) grids over a (A33A3) lattice
that is represented by grey circles. Grids a, b, and c are illustr
by black, dashed, and white lines, respectively.~b! Hexagonal sub-
lattice of corner atoms of the (333) structure coinciding with grid
a in ~a!, called sublattice ‘‘A.’’~c! Honeycomb sublattice formed b
the combination of sublattices b and c.~d! Combination of~b! and
~c! results in a lattice that resembles the observed filled state
temperature STM images.
23542
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that were inferred from experimental observations. The fi
is that the DW’s induced by defects have a form of the e
ponentially decaying cosine functions.19 The STM images34

of Sn/Ge~111! at temperatures between 300 K and 105 K c
be represented as a linear superposition of the deca
defect-induced waves.18 These waves have the symmetry
the (333) state. Based on experimental observation, an
satz for the DW’s was proposed,

I ~r !5 f A33A3~r !1 (
n

Nde f

Ane2ur2rnu/ l (T)(
i 51

3

cos@k i~r2rn!

1Fn#. ~1!

I an(r ) is the brightness of an atom in the filled state image
a positionr ; f A33A3 models the (A33A3) periodicity of the
STM images with no defects present. The second term on
right side of Eq.~1! consists of a sum over all attenuate
waves induced byNde f defects with coordinatesrn and
phasesFn . The phaseFn of the waves from a vacancy i
chosen to be 0, andp for a Ge defect, based on experimen
observations.19 The amplitudeAn is constant for all defects
Figure 3~a! presents the direction of the (333) vectorsk i
used in Eq.~1!. Damping is taken into account by introduc
ing the exponential factor with a decay lengthl (T).

The second assumption is that the decay length of
defect-induced waves has a strong temperature depend
The temperature dependence of the decay lengthl (T) for
Sn/Ge~111! was determined experimentally.18 The behavior
of its reciprocal value can be represented as

1

l ~T!
5a•T1b, ~2!

where a53.8531024 Å 21K21 and b522.35
31022 Å 21. The honeycomb pattern induced by one su
stitutional defect, simulated using Eq.~1!, is shown in Fig.
3~b! for l (T)53dA3 , wheredA3 is a lattice spacing betwee
adatoms in the (A33A3) structure @dA357 Å for Sn/
Ge~111!#. If there is more than one defect in the surface th
the defect-induced waves produce a very complex patter
a result of a linear superposition of waves. For example,
defects@Fig. 3~c!# induce a honeycomb pattern in their im
mediate vicinity that gradually becomes hexagonal in
area between them@intersection of two circles that indicate
decay lengthl (T)514dA3#.

The third basic assumption about the properties of
defect-induced waves is that the absolute value of the ch
modulation does not exceed a saturation limit. This assu
tion is made to overcome an unphysical artifact of using
simple linear superposition of waves from every defect in
ansatz,I an(r ), @Eq. ~1!# when the decay length is very large
In this case the amplitude could be proportional to the to
number of defects. For example, if we hadNde f defects on a
surface aligned on one sublattice with the decay length c
to infinity, the charge on one lattice site would beNde f times
the intensity of the DW induced by one defect. This is n
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MELECHKO, SIMKIN, SAMATOVA, BRAUN, AND PLUMMER PHYSICAL REVIEW B 64 235424
physically reasonable and can be avoided by introduc
saturation effects as follows. The amplitudeI an(r ) is recal-
culated as

I ~r !5S~ I an~r !! ~3!

where S(I ) is some nonlinear monotonous function th
doesn’t letI an(r ) exceed a saturation valueI sat on each site.
We chooseS(I ) to be a linear function that has a slope equ
to 1 for small values of the argument and that approach
constantI sat when the argument is large.

~2! Defects interact with DW’s induced by other defec
According to STM and surface core-level shifts data,
defects avoid more negatively charged lattice sites~bright
sites in the filled state STM images!. Ge defects energeticall
favor being positively charged. This observation sets
stage for an interaction between DW’s~defect-induced or
intrinsic! and defects, and is the basis of our model fo
defect-ordering phase transition. If a defect is located o
negatively charged site, that is energetically unfavora

FIG. 3. Simulation of defect-induced waves using ansatz.~a! k
vectors for the waves from the defects in Eq.~1!. The surface Bril-
louin zones of both structures are shown.~b! Simulation of Ge
defect-induced waves calculated using Eq.~1! for one defect
@ l (T)53dA3 ,TSn/Ge(111)'170 K#. ~c! Interference pattern o
waves induced by two defects located on two different (333) sub-
lattices@ l (T)514dA3 ,TSn/Ge(111)'100 K#.
23542
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there is a lateral force exerted on it toward a more positiv
charged site. This can be modeled by the assumption tha
difference in energy for a defect to be on one site versus
nearest-neighboring site is proportional to the difference
the value ofI an(r )~i.e., charge density! on these sites:

DE'I ~rde f!2I ~rNN!. ~4!

If this difference exceeds an activation barrierEa , the Ge
defect exchanges its position with a neighboring Sn atom

~3! There is a random thermal motion of defects. Since
experimental measurements showed that this is a rever
transition we must include a randomizing force of therm
motion of defects. This is accomplished by using Mon
Carlo calculations.

Let us summarize all the premises of the model:
~i! Defects induce DW’s that can be simulated using E

~1! and ~4!.
~ii ! Defects exchange positions with nearest-neigh

~NN! Sn atoms if the difference of energies@Eq. ~3!# exceeds
the activation barrierEa . There is also a random therma
hopping included.

~iii ! The range of the defect-defect interaction must hav
strong temperature dependence,l (T).

We investigated the parameter space of this model by
forming Monte Carlo computer simulations. The followin
algorithm was used to perform the computations. Initia
Nde f defects~defect density is a free parameter! are posi-
tioned randomly on the (A33A3) lattice. ThenI an(r ) is
calculated using ansatz Eqs.~1! and ~4!. For each defect
I an(r ) is compared at the defect site withI an(r ) at nearest-
neighbor Sn sites and if this difference@Eq. ~3!# is larger than
a value of the activation barrier then this defect is moved
a new position. The minimum out of six NN’s is chosen, a
it is checked that this NN is not a defect. If the difference
smaller than a threshold value a Monte Carlo procedure
used to decide whether to move the defect or not, that
a random number between 0 and 1 is generated, then
number is compared to the exponential factorBMC
5afexp(2E/kT), where E5Ea2@ I (rde f)2I (rNN)#, and
k5 f mkB is a product of the Boltzman constant and a para
eter f m , which is a function of the mobility of defects.af is
the attempt frequency. If this random number is smaller th
the BMC then this defect is moved to the nearest-neigh
position. The decay length is varied emulating a chang
temperature, and the distribution of defects is measured
calculating the correlation probabilityPc . The number of
repeats at each temperature step controls the simulatio
the cooling/warming speed. In the simulations this num
was varied from 1 to 1000 for each temperature step~usually
1 K!. More repeats are used to approach equilibrium at e
temperature. To determine the cooling speed that co
sponds to a particular simulation such parameters as the
tempt frequency and the activation barrier must be asse
by experimental measurements or by a more fundame
calculation. This model requires the following input param
eters: an attempt frequency~mobility of defects! f m , density
of defectsr, activation barrierEa , and temperature depen
dence of the decay lengthl (T).
4-4
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C. Results of the simulations based on the defect-ordering
transition model

~1! The model describes a first-order disorder-order ph
transition. Figure 4~a! displays a result of a simulation fo
Sn/Ge~111! with r52%, l (T) that was calculated using Eq
~2! with a andb determined from experiment, one repeat
each temperature step (DT51 K), and Ea50.953I sat .
This simulation, with such a set of values of the free para

FIG. 4. Defect-ordering phase transition.~a! Temperature de-
pendence of the order parameterPc of the defect-ordering transition
for a 2% defect density.~b! Temperature dependence of the ord
parameterPc of the defect-ordering transition for a 5% defect de
sity. ~c! Dependence of the transition temperature on the densit
defects.
23542
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eters, reproduces our experimental results:~1! a transition
temperature for defect orderingTDO'100 K and~2! at low
temperature the defects are completely ordered on two of
three sublattices. This calculation shows that this is a fi
order phase transition since its order parameter appears
continuously. Another signature of the first-order phase tr
sitions, nucleation, can also be observed above the trans
temperature in this model system. For small values of
decay length only defects that are in areas with sligh
higher local defect density move into ordered positions. T
local ordering is reflected in a nonzero slope of the curve
Fig. 4~a! at temperatures aboveTDO . When the decay length
reaches an average distance between defects something
lar to the ‘‘domino effect’’ happens. Waves from defects th
are already ordered are in phase. This leads to a strong
fluence on the defects that are not ordered, shifting them
the new positions so that the waves induced by these de
become in phase. Thus when the interaction length exce
a critical value the ordering of defects propagates acr
the whole surface. This is the feature of a first-order ph
transition.

~2! The transition temperature depends linearly on the
fect density. Figure 4~b! contains a result of the calculatio
for 5% of defects with all other parameters kept the same
for 2% @Fig. 4~a!#. Clearly the transition occurs at a highe
temperature. Figure 4~c! shows the dependence of the tra
sition temperature on defect density, where the density
defects is varied in the range 2% –5%.

~3! Defects can order on one sublattice. It is interesting
note that for smaller values of the activation barrierEa ~rela-
tive to I sat) defects order on one sublattice out of thre
instead of two out of three. Also, if a much larger number
repeats~slower cooling! is used then the defects order on o
(333) sublattice out of three, indicating that the orderi
observed experimentally is a metastable~nonequilibrium!
state of a defect distribution. Apparently, the ground state
the defect-ordered system is one where all of the defe
within one domain are positioned on only one of the thr
possible lattices~Fig. 2!.

III. STRUCTURAL PHASE TRANSITION IN A DEFECT-
POPULATED SYSTEM

A. Charge-compensation model

The previous model for defect-induced waves descri
all characteristics of the STM images of this system for te
peratures above'100 K. The distinctive features that can
not be reproduced at lower temperatures are the very na
boundaries between different (333) domains~Fig. 4 of Ref.
19!. The phenomenological model introduced here allows
to calculate the charge redistribution as observed in S
images at all temperatures, including the temperatures w
such sharp domain walls are observed. This model assum
defect configuration and then calculates the charge distr
tion on all of the Sn atoms at any temperature, reproduc
all STM observations.

The charge-compensation model is based on four assu
tions. The first is that the charge on a lattice site is prop
tional to the sum of charges on its nearest neighbors. L

r
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4-5
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consider a two-dimensional triangular lattice as shown
Fig. 5. The unit vectors displayed in this figure define t
(A33A3) periodicity~to be consistent with the experiment
observations where the notations for superstructures are
sen with respect to bulk!. Let’s suppose that nearest-neighb
~NN! interaction is such that the charge on site (i , j ), indi-
cated in Fig. 5, is determined by the following equation:

qi , j52R~T!• (
k,l 5NN’ s

6

qk,l , ~5!

Here R(T) is the charge-compensation factor~CCF!, a free
parameter that we assume is a monotonous function of t
perature. The summation goes over the six nearest neigh
shown in Fig. 5. In other words, when a charge is placed
one of the atoms, its nearest neighbors will try to screen
‘‘compensate’’ for its charge.

The second premise is that the absolute value of charg
any lattice site has a saturation value. Coulomb repuls
should make it increasingly more difficult to add charge
one atom. This can be accounted for by adding a satura
term to Eq.~5!:

qi , j52R~T!• (
k,l 5NN’ s

6

qk,l2s~qi , j !, ~6!

wheres(q) must be an odd function. The first nonlinear ter
in the polynomial that can be used for this purpose is cu

s~q!5a3q3. ~7!

Herea3 is a parameter that is assumed to be small and p
tive (0,a3!1).

The third assumption is that the charge on the lattice
corresponding to a defect~Ge substitutional atoms or vacan
cies! is fixed, the same for all defects of one type~positive
for Ge defects and negative for vacancies!, and independen
of its position in the lattice, the temperature, and the de
density.

FIG. 5. The diagram of the charge-compensation model, wh
qi , j is the charge on the (i , j )th site. The lattice vectors of the un
cell are also shown asai .
23542
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Finally, the fourth and last assumption is that the to
charge of the system is always zero. The results presente
this paper are obtained with calculations where charge n
trality was required locally. This was accomplished by t
following algorithm. When a new value for a charge on
atom is calculated in each iteration, the difference of char
between the new and the old value is drawn from the N
atoms. Even though in most of the calculations the condit
of charge neutrality of the system was imposed, it is int
esting to note that when charge neutrality was not impo
on the system, it still remained neutral in cases where
initial ~before the iterations! total charge was zero, i.e.,N
defects andN Sn atoms with opposite charge. Moreove
even if the initial conditions were such that the total char
was not zero, i.e.,N negatively charged defects only, after
few iterations~without imposing charge neutrality! the sys-
tem relaxed to a neutral state with the total charge oscilla
in the vicinity of zero.

To calculate a charge-density map for a given distribut
of defects and certain values ofR(T) anda3, the charge on
every atom is calculated self-consistently using Eqs.~6! and
~7!. First, some initial distribution of charge~usually random
with total charge equal to zero! is generated for all atoms
The charge on the first atom is calculated using Eqs.~6! and
~7!. Then the same calculation is performed for its ne
nearest neighbor and so on for all atoms in a surface. T
procedure is repeated until a self-consistent solution
reached. If the lattice site corresponds to a defect, the ch
is set to a fixed value. Essentially, defects are treated as a
of the boundary conditions in this problem. The same pro
dure is repeated for all atoms many times. To reduce
influence of the boundaries, calculations were made fo
large number of atoms with the area under consideration
cated in the middle of a larger area. The charges of ato
outside the calculated area were chosen to be zero. The
plication of periodic boundary conditions does not chan
the results of the calculation from the zero charge bound
conditions. The solution is less sensitive to the bounda
for a larger number of defects.35 The results were obtaine
by computer simulations based on the CCM. The free par
eters of this model are

~i! charge on a defect,qde f ; we always usedqde f511
for Ge defects andqde f521 for vacancies. The variation o
this parameter doesn’t change the results qualitatively;

~ii ! charge-compensation factor,R;
~iii ! saturation parametera3 (a350.1 for all simulations

presented here!; and
~iv! number of defectsNde f and their positions.

B. Results of the calculations based on the CCM

Simulations with the CCM indicate that the critical valu
of R is 1/3 ~see the following!. For R,1/3 the high-
temperature STM images could be reproduced and the C
could be mapped onto the previous DW model. ForR.1/3
all of the features such as domains and sharp domain bo
aries in the low-temperature STM images could be rep
duced. The critical temperatureTST of the structural transi-
tion ~ST! can be defined by the equationR(TST)51/3,
assuming that the relationship betweenR andT is known.

re
4-6
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~1! For R.1/3 the CCM reproduces domains and dom
boundaries. Domains and domain walls in the STM ima
@Fig. 6~a!# and the calculated ones@Fig. 6~c!# coincide. To
facilitate a comparison, domains~grids of thin white lines!,
domain walls~wide lines!, and defects~asterisks! are indi-
cated in Fig. 6~b!. Knowing only the positions of defects w
can reproduce the domain structure of these surfaces,
defect positions determine domain size and shape. It is
of the indications of how strong the influence of defects is
these surfaces and a reminder that defects cannot be d
garded in the structure measurements.

~2! For R,1/3 the calculated STM images are the res
of the superposition of exponentially decaying waves fr

FIG. 6. Comparison of the LT STM and the CCM calculat
images. ~a! Experimental filled state constant current ima
(21 V, 0.1 nA, 1863161 Å2) obtained atT555 K. ~b! Label-
ing of ~a! with (333) domains indicated by grids and the doma
walls indicated by thick white lines, and Ge defects indicated
asterisks(*). ~c! Image calculated by the CCM with Ge defec
positioned as in the STM image~the CCFR50.34, a350.1).
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defects~Sec. II!. Figure 7 displays a RT STM image~a! and
the calculation~b!. In this case the best match was obtain
when R50.32. Each Ge defect~black circles in Fig. 7! in-
duces a local honeycomb (333) superstructure@as in Fig.
2~b!# and each vacancy@indicated by arrows in Fig. 7~b!#
induces a hexagonal (333) superstructure that decays wi
the distance from a defect. We found that the best fit for
envelope function of this decay is an exponent

f ~x!5A3exp~2x/ l !, ~8!

wherex is a distance from a defect andl is a decay length
that in a CCM calculation depends only on the value of
charge-compensation factorR. Calculating the best fit for
each value ofR we can obtain the dependencel (R) mea-
sured in units of interatomic spacing. This result is shown
Fig. 8~a! for the case of Sn/Ge~111!, in which the distance
between NN atoms is 7 Å.

~3! The decay length increases withR and diverges atR
51/3. Such behavior describes very well the behavior of
Sn/Ge~111! system@Eq. ~2!# that was determined experimen
tally by STM. This is another confirmation of the validity o
the CCM. From the numerically calculated values ofl (R)
@squares in Fig. 8~a!# it is reasonable to assume thatl (R) can
be written as

l 5AR1
BR

~Rc2R!p
; ~9!

the best fit was obtained with an exponentp51/2 @solid
curve in Fig. 8~a!#.

~4! We can inferR(T) from the l (R) and l (T), deter-
mined theoretically and experimentally, respectively. T
value of the decay length that we measured from RT S
images isl (T5295 K)511 Å.18 At the same time this de
cay length can be calculated forR50.32 @ l (R50.32)
511 Å#. From Eqs.~2! and ~9! we can obtainR(T) using
the definition thatR(TST51/3):

l 5AR1
BR

~Rc2R!1/2
5AT1

BT

~T2TST!
, ~10!

y

FIG. 7. Comparison of the RT STM and the CCM calculat
images.~a! Filled state constant current STM image taken at
(21 V, 0.1 nA, 1653185 Å2). ~b! CCM calculated (R50.32,
a350.1) with defects positioned as in~a!. The arrows show two
vacancies.
4-7
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whereTST52a/b, Rc51/3, AT50, andBT51/b. For tem-
peratures lower thanTST we can extrapolateR(T) assuming
that it is a smooth monotonous function of temperature. T
is shown in Fig. 8~b!.

~5! The dependence of the solution on initial conditio
can be considered as an indication of an instability in
system. A very important characteristic of the response of
system for different charge-compensation factors can be
served in the evolution of CD maps with the increase
number of iterations with no defects present. Figure 9 ill
trates such an evolution for two values ofR: R50.32 ~left
side! that is less than the critical value, andR50.35 ~right
side! that is higher than the critical value. Before the iter
tions the charge on one atom was set to11 and the NN
atoms to21/6. Here the charge11 in the initial condition is
considered a variable of the calculation. In the case oR
,1/3 (R50.32 in Fig. 9! the perturbation propagates for
very short distance and simultaneously its amplitude dies
and becomes zero in a few iterations. In the case ofR.1/3
such a perturbation propagates indefinitely. In this particu
case ofR50.35 at 100 iterations the honeycomb patte
forms for as far as ten (333) unit cells from the origin. The

FIG. 8. Relation between the decay length, temperature,
CCF. ~a! Plot of the relationship between the CCFR and the decay
length l (T). The fitted curve is a power-law function with the p
rameters shown in the box.~b! The dependence of the CCFR on
temperature with an extrapolation belowTST.
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further iterating~500 iterations! leads to a solution with six
domains with sharp domain walls. Inside each domain
solution is a configuration with one atom positive, one ze
and one negative in each (333) unit cell. As shown in the
next section, such a charge arrangement in one (333) unit
cell is the lowest-energy solution for this system. The sy
metry of the initial perturbation and strong nonlinear r
sponse of the system leads to the formation of six doma
for this value ofR. Further increase of the number of iter
tions propagates this solution further until the boundaries
the computed area are encountered. It is important to n
that in a case of the system with even just a few defects
solution is determined by their position and is independen
the initial conditions.

~6! A calculated structure has a (333) periodicity and it
is a product of the geometry~triangular lattice! and the type
of nearest-neighbor interaction. The (333) periodicity is not
imposed on this system but is a result of a self-consis
solution of Eqs.~6! and~7! for a triangular lattice. It is simi-
lar to the problem of a frustrated antiferromagnetic on a
angular lattice.23,36 The system prefers to have oppos

d FIG. 9. Propagation of the solution with iterations with no d
fects. The images present charge maps for~a! initial conditions
(11 on a dark atom and21/6 on its nearest neighbors!, ~b! after 10
iterations forR50.32,~c! after 100 iterations forR50.32,~d! after
10 iterations forR50.34, ~e! after 100 iterations forR50.34, and
~f! 500 iterations forR50.34. a3 was 0.1 for bothR50.32 andR
50.34 calculations.
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charges on the nearest neighbors, which is not possible
triangular lattice. Thus we can conclude that the symmetr
this solution is dictated by the geometry of the proble
Apparently, as shown here, a localized~nearest neighbors
only! temperature-dependent response of the system cou
with the inherent geometry of the system~i.e., triangular lat-
tice! dictates the (333) symmetry of the low-temperatur
phase.

~7! The (333) lattice structure is dictated by the speci
defect alignment. It is commonly believed that the struct
of the Sn/Ge~111! surface holds the key to understanding t
origin of this phase transition.6 Currently there is little agree
ment on the structure, determined by different groups. M
of the measurements show that at LT one atom is displa
outward from the surface~‘‘up’’ ! and two are displaced in
ward ~‘‘down’’ ! in a (333) unit cell,6,29 while one report
shows that the structure is two ‘‘up’’ and one ‘‘down.’’4 In
the following we will show that the calculations suggest th
the structure, determined by any area averaging techni
depends on the distribution of defects or, to be more ex
on their order. If we assume that the lattice distortion at
atomic site is proportional to the charge on this site we
calculate the height~vertical displacement! distribution of
atoms for different arrangements of defects at LT using
CCM. Figure 10 shows the results of such calculations. T
calculations are performed for a random defect distributi
for defects ordered on two sublattices out of three, and
fects ordered on one sublattice out of three. For the rand
distribution of defects, atoms with almost any height/cha
are present in equal quantity~dotted line!. When the defects
are ordered on two sublattices~as was observed by STM!
there are three distinct peaks that correspond to 1/3 of at
displaced up and 2/3 down~solid line!. This supports the
measurements of research groups that came to the concl

FIG. 10. Histograms of the distribution of out-of-plane displac
ment z for different states of the defect order calculated using
CCM with R50.34, a350.1, and a 4% density of defects. Th
dotted, solid, and dashed lines represent calculated distribution
randomly distributed defects, ordered on two (333) sublattices,
and ordered on one (333) sublattice, correspondingly. The vertic
displacement is assumed to be proportional to the charge calcu
using the CCM. The sign of thez values are opposite to the signs
the charge and thez axis is directed outward from the surface.
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that there is one up and two down Sn atoms in a unit c
When defects are ordered on one sublattice the structu
two up and one down~dashed curve! supporting the recen
x-ray-diffraction results.4 In the absence of defects, accor
ing to the CCM we should expect one up, one down, and
in an undistorted position. Proper STM measurements h
to be done to confirm this observation. Nevertheless this
sult indicates that the key to understanding this transition
in the understanding of the influence of defects.

It is worthwhile to compare the CCM with the model th
describes the surface as a linear superposition of def
induced waves@Eq. ~1!#. In this linear superposition mode
the defects are the only sources of waves, while in the C
all the atoms induce waves in their vicinity proportional
their charges. In this respect all the lattice sites are trea
equally. The distinction is only that the charges are allow
to vary on Sn atoms but are fixed on defect sites. In so
sense the CCM is similar to the Hyugens principle in opti

C. Equivalent formulation of the CCM in the framework of
Ginzburg-Landau theory

We can approach the structural phase transition from
point of view of the Ginzburg-Landau~G-L! theory of phase
transitions.37 McMillan had applied G-L theory to the CDW
phase transitions in transition-metal dichalcogenides.38 His
results have been used for calculations of STM images
layered compounds and comparison with experimen
results.39 In the following we will present similar consider
ations but restricted to a lattice.40

In order to describe the CCM in the framework of G-
theory let’s consider a system that has the following fre
energy dependence on order parameter$qi , j%, the charge on
each lattice site (i , j ):

F5(
n

S qi , j
2 1R~T!qi , j (

k,l 5NNi , j

qi , j1a4qi , j
4 D . ~11!

The first summation goes over all atoms in the lattice. T
internal sum runs over the next-nearest neighbors of
( i , j )th site~six in case of a triangular lattice!. We proceed by
solving for the order parametersqi , j , which minimize the
free energy. This can be done by solving a system of eq
tions:

]F

]qi , j
52qi , j12R~T! (

k,l 5NNi , j

qi , j14a4qi , j
3 . ~12!

Essentially, the expressions~12! mean that the CCM de
scribed in Sec. III A is just a minimization procedure for
free-energy Eq.~11!. For a pure system, the free-energy E
~11! for a triangular lattice has a minimum when the syste
has (333) periodicity and the charges of the atoms insi
one (333) unit cell arec, 0, and2c, correspondingly with
the value ofc that can be obtained from substituting th
form of solution into Eq.~12!. As a result we obtain

-
e

for

ted
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Fmin5 (
All (333)

~2c226Rc212a4c4!

52 (
All (333)

@~123R!c21a4c4#. ~13!

We make the usual assumption in Landau theory that
parameters in front of the powers of the order parameter
continuous functions of temperature and can be expande
powers of (T2T0) near the onset temperature. Since t
factor in front of c2 must change sign nearT0, we assume
that

a25~123R!5a8~T2T0!. ~14!

Here a8 is some constant. The expression~13! does not
contain a cubic term. This means that Eq.~13! describes a
second-order phase transition. Differentiation of free-ene
per one (333) unit cell gives

]F (333)

]c
54a2c18a4c350 ~15!

that has two solutions of this minimization problem. Assu
ing thata4 is small and positive, they are

c50 for a2.0, ~16!

or

c252
a2

2a4
52

~123R!

2a4
for a2,0. ~17!

D. Influence of defects on the nature of the structural
„A3ÃA3…Ù„3Ã3… transition

Computer simulations based on the CCM enable the
vestigation of the influence of defects on the structural ph
transition. Figure 11~a! displays the dependence of the ord
parameter squaredqi , j

2 averaged over all atoms in a lattic
Q(R), on the charge-compensation factorR across the phas
transition in Sn/Ge~111! for different defect densities,r. The
value ofQ(R) is calculated by

Q~R!5
1

N (
i , j

N

qi , j
2 . ~18!

This calculation was performed for different densities of d
fects that are randomly distributed on a lattice. Figure 11~b!
shows the same curves in terms of temperature. The tr
formation was made using Eq.~10!. The following conclu-
sions are deduced from Fig. 11:

~1! (r50%) The structural phase transition in a syste
with zero defects exists and is a second-order transition.
dashed black line is the solution for zero defects~density of
defectsr50%),which can also be calculated from Eqs.~16!
and ~17!. It is equal to zero for the values ofR up to Rc
51/3 and then increases linearly. This indicates the existe
of a structural phase transition atRc51/3 and at the corre
sponding temperature.
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~2! (r,5%) There is no structural phase transition b
we can distinguish two pseudophases. The calculations s
that any number of defects destroys the structural phase
sition since the order parameter in not zero at any temp
ture. Since the two different phases are still distinguisha
by the change in the slope of the free energy and the or
parameter dependence on temperature, one can talk ab
crossover for the system with fixed defects. The critical va
of Rc(r) and the corresponding crossover temperatureTc(r)
can be determined as the intersection of the linear fit to
two portions of theQ(R) curve, forR.1/3 andR,1/3. A
small number of defects@0.001% ~blue line!# increases the
slope of the linear dependence forR.1/3 compared to zero
defects. TheTc(r) stays the same asTST in this case. Further
increase in the defect density (0.1% –5%) increases
slope and shifts the crossover region to higher temperat
From these results we can conclude that for defect den
above 1% the crossover temperature is above 200 K, w
for zero defect density, it is around 70 K. It was original
reported that the transition temperature measured by LE
was 210 K. The STM measurements based on the temp
ture dependence of the decay length showed that the s
tural transition in the absence of defects would be at 70
This large difference inTC is due to the influence of defects

FIG. 11. ~Color! The order parameter squared and averaged o
all atoms in a lattice versus~a! the CCFR and~b! temperatureT for
different densities of defects calculated using the CCM witha3

50.1. The defects are randomly distributed on all the three
33) sublattices shown in Fig. 2.
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~3! (r.5%) The high- and low-temperature phases
indistinguishable. When the density of defects is very h
~e.g., 10%) two phases become almost indistinguishable
is impossible to determine the crossover temperature f
the curves for 5% and 10% in Fig. 11~b!. In this case the
range of the defect-induced DW’s is comparable with t
average distance between defects.

~4! Calculations ofQ(R) for defects distributed randomly
on two of the three sublattices give qualitatively similar r
sults as presented in Fig. 11. Even though in the system
fixed defects there is no structural phase transition, ther
still a phase transition in Sn/Ge~111!, since the defects are
mobile and interacting. The accompanying disorder-or
phase transition in the defect distribution creates a lo
range order in this system by coupling phases of waves
ated by defects via alignment of defect positions in a latti
Calculations with the charge-compensation model and
model that accounts for defect ordering should give a m
precise picture for this complex transition. Such a calculat
was beyond our current computational resources. Also
such a complex transition a different order parameter can
chosen, e.g., phase of the waves. The nucleation and pos
hysteresis associated with an activation barrier for the de
motions lets us conclude that this phase transition is the fi
order transition.

IV. CONCLUSIONS

Two phenomenological models presented in this paper
scribe the role of defects in phase transitions that constitu
complex symmetry lowering phase transition observed
perimentally in such systems as Sn/Ge~111!. The defect-
ordering transition model is based on the observations
-
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defects induce DW’s, the range of these waves increases
decreasing temperature, and defects interact with th
waves resulting in defect alignment with the DW’s. Th
charge-compensation model describes the structural tra
tion in the presence of defects, based on the assumption
the charge on an atomic site is a function of the total cha
on its nearest neighbors. Treating defects as atoms wi
fixed nonzero charge, the CCM allows calculation of t
defect-induced waves, the domains, the domain walls,
the lattice structure of (333) unit cells just based on th
spatial defect distribution. These results show how dram
an effect the presence of deflects can have on a 2D p
transition. In fact, without the defect-ordering transition the
would be no phase transition since the order parameter n
becomes zero. This situation is similar to ferromagneti
where one can speak about long-range order only inside
domain. Due to the alignment of defects inside each dom
and the formation of the domains the long-range orde
created inside each domain and a phase transition in
Ge~111! exists.
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