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Complex structural phase transition in a defect-populated two-dimensional system
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A complex phase transition in Sn/@41) and similar systems can be decomposed into two intertwined
phase transitions: a structural symmetry lowering ¥ v/3)«< (3% 3) transition and a disorder-order transition
in the defect distribution. We present two phenomenological models that describe these transitions and their
interrelation. These models allow us to understand the formation of domains and domain walls at low tem-
peratures, defect-induced density waves above the structural transition temperature, and ordering of the defects
caused by lattice-mediated defect-defect interactions. The models predict a destruction of the pure structural
transition when impurities are introduced into the system, a shift in the structural crossover temperature with
impurity density, and a dependence of thex(3) lattice structure on the specific defect alignment.
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I. INTRODUCTION in the range from 2% to 4% due to the preparation proce-
dure, while in Sn/SiL11) and Pb/GEL1]) their density can
The study of microscopic properties of phase transitionde varied in a very wide rangé?
in low-dimensional systems provides an understanding of the In order to explain experimental observations, different
fundamental aspects of systems of interacting particlegnodels of the low- and high-temperature phases have been
Phase transitions are strongly affected by defects, especialjfoposed. These models are based on the calculations of the
in systems with lower dimensionality. In quasi-one- 9round state of these systems. First, based on the STM ob-
dimensional (1D) or -2D systems that exhibit a charge- servations |F was suggested that the low-temperature (3
density waveeCDW) transition, a small proportion of micro- <3) phase ina phases of Pb/G&1l) and Sn/G€L1]) was

scopic disorder can control the global properties due to thdu€ 0 the stabilization of a surface CDW.Later other

collective nature of the phenomeh®efects cause pretran- models, suph as the dynamma] fluctuathn model, were
sitional effects, inducing the formation of the CDW. It has proposed. First-principles calculations were invoked to sup-

been speculated that the interaction of mobile defects Witl'%Jort one or the other model. Even though the first-principles

. . calculations are very insightful, they have been unable to
the CDW leads to ahgnr_nent of defec_ts with th_e QDW’ O describe the essential features of the local atomic scale struc-
formation of defect density wavésn this dynamic picture

he distributi f def . ith d _~. ture observed by STM, due to the complexity and reduced
the distribution of defects Is neither random nor static; IN-gu ety created by the presence of defects. For example,
stead defects align their positions to optimize the energy ofjane-wave density-functional method calculations have pre-
the pinned CDW. dicted that for a defect-free system theX(3) structure is

The symmetry lowering phase transitiof3x y3)&(3  the most stable by 5 meV per Sn atBrit.is reasonable to
X 3) in Pb/G¢11l), Sn/Ge&111), and similar systems has

been a subject of extensive studieé’ These are quasi-two-
dimensional systems composed of an ultrathin metal film on
the surface of a semiconductor. At room tempera{(l®®),
one-third of a monolayer of Sn is arranged in &3(

X 3)R 30° structure on G&1l) [referred to as a (3

x \/3) structure throughout this pagewith Sn atoms occu-
pying the T, sites of the GeélL11) substraté® as shown in
Fig. 1. When the temperature is lowered, newx@®) dif-
fraction spots gradually appear in addition to the existing
(/3% \/3) spots in a low-energy electron-diffractihEED)
pattern’ Low-temperature(LT) scanning tunneling micro-
scope(STM) images show (& 3) hexagonalfilled state$
and honeycomblempty statels complimentary patterns of

bright atoms at biases of opposite sign. Thex@ and FIG. 1. Ball model of the (/3% \/3) Sn/G¢111) structure. The
(1/3x/3) unit cells are indicated in Fig. 1. The STM obser- light balls represent Sn atoms at tfid sites of the G@11) sub-
vations also display the presence of point defects in thesgirate(dark balls represent the first double layéfhe unit cells of
surfaces, the majority of which are substitutional atdins  the RT (V3% y3) and LT (3x 3) structures are shown in the right
dicated in Fig. 1 from the substrate with vacancies consti- top and left top corners, respectively. The arrow at the bottom
tuting the rest® In Sn/Ge&111), the density of the defects is shows a substitutional point defe@e atom.
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conclude that when the energy difference is so small anyprobes such as x-ray and electron diffraction and angle-
perturbation caused by the introduction of a defect camesolved photoemissigh.®11:25:26:29.32.33

change the configuration of the ground state. Unfortunately, In the phenomenological treatment presented in this paper
the real system with defects present is inhomogeneous arfBch atomic site is characterized by a paramétatled
aperiodic. This makes it essentially untractable by first:charge in the rest of the papéhat corresponds to an experi-
principles methods due to high computational complexity.mental observable such as the brightness of an atom in an
Therefore, phenomenological theories can fill an importanTM image. The difference in brightness is due to a change
gap between first-principles calculations and experimenta the LDOS that is a result of a time-averaged electronic
observations. At this stage phenomenological models arkdistribution, resulting from charge transfer, lattice distor-

essential for understanding the properties of the phas#ons, or atomic fluctuations. Alternatively, this parameter
transition. could be presented in terms of time-averaged vertical dis-

The two phenomenological models that are presented iRlacement of each adatom. That is, we are not discussing the
this paper provide us with insight into the atomic evolution©rigin of the driving forces for the complex transition ob-
of these systems across the phase transition. The first mod#rved in these systems, but instead explain how defects con-
describes the disorder-order phase transition in the spati#iol the nature of the transition. In contrast to previous re-
defect distribution. It is based on the assumptions tfiat POrts we show here that the phase transition in SAGis
every defect induces local periodic lattice perturbation® COmplex phenomenon composed of two intertwined transi-
[called density wavéDW) hereafte}, the decay length of tions: a second-order symmetry lowering structuraf3 (
which depends on the temperature a@® DW-mediated X J3)=(3x%3) transition and a first-order defect-ordering
defect-defect interactions force defects to move into positransition. The structural phase transition is driven by short-
tions to minimize the energy of the system. range interactions intimately involved with the symmetry of

The second model, referred to as the charge-compensatidhe surface. The charge-compensation model is very similar
model (CCM), describes a structuralyBx y3)<(3x3)  to models used in description of magneti¢such as Ising
phase transition in a defect-populated system. By assumin§ompared to the Ising model, where it is assumed that the
based upon experimental observation, {iathe DW forms ~ Spin on a node can only have discrete val(eeg., +1/2 and
when temperature is lowered and th&) the system re- —1/2), any value of charge is allowed in the CCM, bound
sponds to a charge impurity by inducing charge on its nearegtnly by the nature of the interaction and charge neutrality. So
neighbors, we can calculate the charge-den&itp) maps, that, for example, we end up with configurations of charge
which are compared directly to the STM images. The genera®n the three atoms in the unit cell in which two atoms have
approach developed in these models is not limited to a parl/2q and one—q, or one hastq, one 0, and one-g, or two
ticular system or to a specific geomettyiangular 2D lattice have—1/2q and one+q, but in all cases) can be any real
in this work) and can be applied to other symmetry lowering number dictated by the equations of the model.
displacive phase transitions in systems where defects are im- This paper is organized as follows. Section Il describes
portant. The models presented here are specifically applied tbe model of DW-mediated defect-ordering transition and re-
the case of the phase transition in the SriAG# system, sults of Monte Carlo simulations. Section Il presents a CCM
where comparison with STM data obtained eatfievill be ~ and its interpretation in the framework of Ginzburg-Landau
used as justification for each model. The CD maps are inteitheory of phase transitions, as well as computer simulations
preted as the STM images. Since STM images correspond & the STM images based on the CCM. Finally, our conclu-
the 2D maps of the time-averaged local density of state§ions are presented in Sec. IV.

(LDOS) that include both charge redistribution and accom-
panying lattice distortion, CD maps can be used to study the

changes in the lattice structure as well. Il. DEFECT-ORDERING TRANSITION: LINEAR

It will be shown that defects control the structure and SUPERPOSITION OF DEFECT-INDUCED WAVES AND
dynamics of these surfaces at all temperatures, inducing den- INTERACTION OF DEFECTS
sity waves at temperatures above the transition, pinning the A. Observation of defect-ordering phase transition

waves, and controlling the d(_)main structure below the tran- in SWGe(111)

sition temperature. Introduction of defects into the system o

destroys the pure structural phase transition. For the situation Before we proceed to the description of the defect-
where the high- and low-temperature phases can still be digrdering transition model, the notation for different lattices
tinguished such a gradual change is referred to as a crosgwst be introduced. The/8x /3) lattice can be completely
over. It will be demonstrated that defects shift the crossovegovered by three (8 3) sublattices, because there are three
temperature. The nature of the accompanying defectSnatoms inthe (&3) unit cell(Fig. 1). This is illustrated in
ordering controls the size of the domains at low temperatur&ig. 2. In this figure the brighter atoms indicate more nega-
and the average arrangement of the atoms in the3Bunit  tive charge and the darker atoms indicate more positive
cell (e.g., one up and two down or otherwjis&he calcula- charge. The creation of a ¢33) sublattice from the original
tions based on the models presented here are consistent w(tkﬁx J/3) lattice with one bright and two dark atoms in the
the experimental results obtained from the spatial images df3xX3) unit cell is not unique, because three different (3
the surface(STM), and offer a clue to understanding the X 3) domains exist. It is easy to see how this happens from
findings reported in the literature using momentum spacé¢he structural model shown in Fig. 1. There are three Sn
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that were inferred from experimental observations. The first
is that the DW's induced by defects have a form of the ex-
ponentially decaying cosine functioi$The STM image¥

of Sn/G4111) at temperatures between 300 K and 105 K can
be represented as a linear superposition of the decaying
defect-induced wave'$. These waves have the symmetry of
the (3X 3) state. Based on experimental observation, an an-
satz for the DW’s was proposed,

Ngef 3
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I an(r) is the brightness of an atom in the filled state image at
a positionr;f 5. 5 models the (/3x y/3) periodicity of the
STM images with no defects present. The second term on the
right side of Eqg.(1) consists of a sum over all attenuated
waves induced byN,.; defects with coordinates, and
é:)hasesﬁbn. The phaseb, of the waves from a vacancy is
chosen to be 0, and for a Ge defect, based on experimental

Three different options to lay (83) grids over a (3x \3) lattice observatlon§. The amphtudeAn_ is constant for all defects.
that is represented by grey circles. Grids a, b, and ¢ are iIIustrateE'gure 3a) presents the direction of the (33) vectorsk;

by black, dashed, and white lines, respectivéty.Hexagonal sub- US€d in Eq(1). Damping is taken into account by introduc-
lattice of corner atoms of the (83) structure coinciding with grid N the exponential factor with a decay lend{fT).

ain(a), called sublattice “A.”(c) Honeycomb sublattice formed by ~ The second assumption is that the decay length of the
the combination of sublattices b and(d) Combination of(b) and ~ defect-induced waves has a strong temperature dependence.
(c) results in a lattice that resembles the observed filled state lowThe temperature dependence of the decay leh@ih for
temperature STM images. Sn/Gé111) was determined experimentaly.The behavior

. ) ) of its reciprocal value can be represented as
atoms in the (X 3) unit cell, which have been labeled as A,

B, and C. If atom A is negatively charged then B and C are
positively charged, so that atom A forms aX3) hexagonal 1
sublattice as seen in the STM filled state images. But it is m:a'T“L'B' @
equally probable that atom EC) is negatively charged and
atoms A and GA and B) are positively charged, again form- _ 1,
ing a (3x3) hexagonal sublattice of BC) atoms. Figure whe[ez 9‘1:3'85X 10¢ A7K™  and  p=-2.35
2(a) illustrates the three different hexagonal sublattices 10 A~% The honeycomb pattern induced by one sub-
[black grid (a), dashed gridb), and white grid(c)], which stitutional defect, simulated using Eq.), is shqwn in Fig.
cover the /3% y3) lattice (gray balls completely. 3(b) for I(T)=3d 3, whered ;3 is a lattice spacing between
It was experimentally determined that defects randomiyadatoms in the (3x/3) structure[d z=7 A for Sn/
distributed at RT become ordered at{¥The STM measure- Ge(111)]. If there is more than one defect in the surface then
ments showed that inside one X3) domain at LT T  the defect-induced waves produce a very complex pattern as
<105 K) defects are distributed on two sublattices out ofa result of a linear superposition of waves. For example, two
three (e.g., only on B and C if the A's are charge-density defects[Fig. 3(c)] induce a honeycomb pattern in their im-
maxima while at temperature3 =165 K defects are dis- mediate vicinity that gradually becomes hexagonal in the
tributed randomly on all three (83) sublattices. The corre- area between thefintersection of two circles that indicated
lation probabilityP. is defined as the probability of observ- decay lengtH (T)=14d ;3].
ing on a small sampling are@andomly chosenthat all The third basic assumption about the properties of the
defects are aligned on two sublattices out of thiegwas  defect-induced waves is that the absolute value of the charge
defined as 1 if all of the defects were aligned on two sublatmodulation does not exceed a saturation limit. This assump-
tices and O if they were randorR, is an appropriate order tjon is made to overcome an unphysical artifact of using a
parameter for the defect disorder-order transitisee Ref.  simple linear superposition of waves from every defect in the
19 for details of the procedure ansatz) ,,(r), [Eq. (1)] when the decay length is very large.
In this case the amplitude could be proportional to the total
number of defects. For example, if we hislg.; defects on a
surface aligned on one sublattice with the decay length close
(1) Defects induce DW's in their vicinity. We make three to infinity, the charge on one lattice site would g times
basic assumptions with regard to the defect-induced wavethe intensity of the DW induced by one defect. This is not

FIG. 2. Drawing of the three possible lattices associated with th
(3% 3) structure referenced to the origina/3x /3) structure(a)

B. Description of the model for defect-ordering phase
transition
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(V3xV3)R30° SBZ k there is a lateral force exerted on it toward a more positively
. w 1 charged site. This can be modeled by the assumption that the
[ * difference in energy for a defect to be on one site versus its

nearest-neighboring site is proportional to the difference of

k3 ’ the value ofl ,,(r)(i.e., charge densilyon these sites:
¥~ N easez AE~1(ge) —1(Fr). @

If this difference exceeds an activation barriey, the Ge
defect exchanges its position with a neighboring Sn atom.

(3) There is a random thermal motion of defects. Since the
experimental measurements showed that this is a reversible
transition we must include a randomizing force of thermal
motion of defects. This is accomplished by using Monte
Carlo calculations.

Let us summarize all the premises of the model:

(i) Defects induce DW's that can be simulated using Egs.
(1) and(4).

(i) Defects exchange positions with nearest-neighbor
(NN) Sn atoms if the difference of energi=qg. (3)] exceeds
the activation barrielE,. There is also a random thermal

XL hopping included.

LA B R N H H
rYES Caeaan (iii ) The range of the defect-defect interaction must have a
A r— strong temperature dependenb@)).

We investigated the parameter space of this model by per-
forming Monte Carlo computer simulations. The following
algorithm was used to perform the computations. Initially,
Nges defects(defect density is a free parametere posi-
tioned randomly on the \(3X 3) lattice. Thenl,(r) is
calculated using ansatz Eqgl) and (4). For each defect
) lan(r) is compared at the defect site with,(r) at nearest-

neighbor Sn sites and if this differendeq. (3)] is larger than

FIG. 3. Simulation of defect-induced waves using ans@izk & value of the activation barrier then this defect is moved to
vectors for the waves from the defects in Et). The surface Bril-  a new position. The minimum out of six NN's is chosen, and
louin zones of both structures are showh) Simulation of Ge it is checked that this NN is not a defect. If the difference is
defect-induced waves calculated using Hd) for one defect smaller than a threshold value a Monte Carlo procedure is
[I(T)=3d 3, Tswee111y~170 K]. (c) Interference pattern of used to decide whether to move the defect or not, that is,
waves induced by two defects located on two different @3 sub-  a random number between 0 and 1 is generated, then this
lattices[1(T) =14d 3, Tsyge111y~ 100 K. number is compared to the exponential fact8h,c

) ) ) ~ =asexp(—E/KT), where E=E,—[I(rgep—1(rnyn)], and
physically reasonable and can be avoided by introducing =t k. is a product of the Boltzman constant and a param-
saturation effects as follows. The amplitudg(r) is recal- eterf,,,, which is a function of the mobility of defects; is
culated as the attempt frequency. If this random number is smaller than

1(r)=S(1,(1)) 3) the B_Mc then this defect is moveq to the ne_arest-neighl?or
an position. The decay length is varied emulating a changing
where S(1) is some nonlinear monotonous function thattemperature, and the distribution of defects is measured by
doesn't letl ,,(r) exceed a saturation vallig,; on each site. calculating the correlation probabilitf?.. The number of
We chooseS(1) to be a linear function that has a slope equalrepeats at each temperature step controls the simulation of
to 1 for small values of the argument and that approaches the cooling/warming speed. In the simulations this number
constantl ,; when the argument is large. was varied from 1 to 1000 for each temperature stespially

(2) Defects interact with DW'’s induced by other defects. 1 K). More repeats are used to approach equilibrium at each
According to STM and surface core-level shifts data, Getemperature. To determine the cooling speed that corre-
defects avoid more negatively charged lattice sit@sght sponds to a particular simulation such parameters as the at-
sites in the filled state STM image$e defects energetically tempt frequency and the activation barrier must be assessed
favor being positively charged. This observation sets thdy experimental measurements or by a more fundamental
stage for an interaction between DWHdefect-induced or calculation. This model requires the following input param-
intrinsic) and defects, and is the basis of our model for aeters: an attempt frequené¢mobility of defects f,,, density
defect-ordering phase transition. If a defect is located on @f defectsp, activation barriefe,, and temperature depen-
negatively charged site, that is energetically unfavorabledence of the decay lengtiiT).
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114 eters, reproduces our experimental resulls: a transition
10{ eee temperature for defect orderink,o~100 K and(2) at low
& ool temperature the defects are completely ordered on two of the
£ sl three sublattices. This calculation shows that this is a first-
a 071 order phase transition since its order parameter appears dis-
o "] continuously. Another signature of the first-order phase tran-
E- 0.6 sitions, nucleation, can also be observed above the transition
2 0.5 temperature in this model system. For small values of the
g 0.4 P decay length only defects that are in areas with slightly
S 03l "””00..... higher local defect density move into ordered positions. The
® 0.2 bd ol local ordering is reflected in a nonzero slope of the curve in
in - win - ooz o Fig. 4(a) at temperatures abovg,n . When the decay Iength o
Temperature [K] reaches an average distance between defects something simi-
a) ) lar to the “domino effect” happens. Waves from defects that
1.1 are already ordered are in phase. This leads to a strong in-
10] eceeee fluence on the defects that are not ordered, shifting them to
& ool .\ the new positions so that the waves induced by these defects
2 1 e become in phase. Thus when the interaction length exceeds
5 081 a critical value the ordering of defects propagates across
8 074 the whole surface. This is the feature of a first-order phase
g, 0.6 transition.
5 05 (2) The transition temperature depends linearly on the de-
& 0.4 fect density. Figure @) contains a result of the calculation
g ; ® for 5% of defects with all other parameters kept the same as
8 031 o.........'.. for 2% [Fig. 4@]. Clearly the transition occurs at a higher
0.2 b temperature. Figure(d) shows the dependence of the tran-
100 150 200 250 300 sition temperature on defect density, where the density of
b) Temperature [K] defects is varied in the range 2%—-5%. o _
.y (3) Defects can order on one sublattice. It is interesting to
X 2004 note that for smaller values of the activation barégr(rela-
= T tive to lg,) defects order on one sublattice out of three,
o 1804 instead of two out of three. Also, if a much larger number of
-.g 1 repeatgslower cooling is used then the defects order on one
o 1601 (3% 3) sublattice out of three, indicating that the ordering
= . observed experimentally is a metastalffeonequilibrium
,,E, 140 - state of a defect distribution. Apparently, the ground state of
': the defect-ordered system is one where all of the defects
.'g 120 within one domain are positioned on only one of the three
@ . possible latticegFig. 2).
o 100
I: x4 2 3 a1 F & Ill. STRUCTURAL PHASE TRANSITION IN A DEFECT-
Concentration of defects (%) POPULATED SYSTEM
C) A. Charge-compensation model
FIG. 4. Defect-ordering phase transitiofa) Temperature de- The previous model for defect-induced waves describes

pendence of the order paramefgrof the defect-ordering transition all characteristics of the STM images of this system for tem-
for a 2% defect densityb) Temperature dependence of the order peratures above-100 K. The distinctive features that can-
parametelP of the defect-ordering transition for a 5% defect den- not be reproduced at lower temperatures are the very narrow
sity. (c) Dependence of the transition temperature on the density oboundaries between different ¥38) domaingFig. 4 of Ref.
defects. 19). The phenomenological model introduced here allows us
to calculate the charge redistribution as observed in STM
images at all temperatures, including the temperatures where
such sharp domain walls are observed. This model assumes a
(1) The model describes a first-order disorder-order phasdefect configuration and then calculates the charge distribu-
transition. Figure @) displays a result of a simulation for tion on all of the Sn atoms at any temperature, reproducing
Sn/Ge111) with p=2%, I(T) that was calculated using Eq. all STM observations.
(2) with o and 8 determined from experiment, one repeat at The charge-compensation model is based on four assump-
each temperature stepAT=1 K), and E,=0.95X14,;. tions. The first is that the charge on a lattice site is propor-
This simulation, with such a set of values of the free paramtional to the sum of charges on its nearest neighbors. Let’s

C. Results of the simulations based on the defect-ordering
transition model
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Finally, the fourth and last assumption is that the total
charge of the system is always zero. The results presented in
this paper are obtained with calculations where charge neu-

q trality was required locally. This was accomplished by the
following algorithm. When a new value for a charge on an
q q q atom is calculated in each iteration, the difference of charges
i-1,j isj i+l between the new and the old value is drawn from the NN
atoms. Even though in most of the calculations the condition
of charge neutrality of the system was imposed, it is inter-
esting to note that when charge neutrality was not imposed
- on the system, it still remained neutral in cases where the
a initial (before the iterationstotal charge was zero, i.elN
defects andN Sn atoms with opposite charge. Moreover,
= even if the initial conditions were such that the total charge
was not zero, i.eN negatively charged defects only, after a
few iterations(without imposing charge neutralitghe sys-
FIG. 5. The diagram of the charge-compensation model, whergem relaxed to a neutral state with the total charge oscillating
di j is the charge on thel (j)th site. The lattice vectors of the unit jn the vicinity of zero.
cell are also shown & . To calculate a charge-density map for a given distribution
) ) ) ) ) ~of defects and certain values B{T) andags, the charge on
consider a two-dimensional triangular lattice as shown inevery atom is calculated self-consistently using E§sand
Fig. 5. The unit vectors displayed in this figure define the(7). First, some initial distribution of chargesually random
(1/3% \/3) periodicity(to be consistent with the experimental with total charge equal to zerds generated for all atoms.
observations where the notations for superstructures are ch¥he charge on the first atom is calculated using Egjsand
sen with respect to bulkLet's suppose that nearest-neighbor (7). Then the same calculation is performed for its next-
(NN) interaction is such that the charge on sitg), indi-  nearest neighbor and so on for all atoms in a surface. This
cated in Fig. 5, is determined by the following equation:  procedure is repeated until a self-consistent solution is
reached. If the lattice site corresponds to a defect, the charge
is set to a fixed value. Essentially, defects are treated as a part
q;,j=—R(T)- . |=ZNN,S Ak, (5 of the boundary conditions in this problem. The same proce-
' dure is repeated for all atoms many times. To reduce the
Here R(T) is the charge-compensation fact@CP), a free influence of the boundaries, calculations were made for a
parameter that we assume is a monotonous function of teniarge number of atoms with the area under consideration lo-
perature. The summation goes over the six nearest neighbo¢gted in the middle of a larger area. The charges of atoms
shown in Fig. 5. In other words, when a charge is placed outside the calculated area were chosen to be zero. The ap-
one of the atoms, its nearest neighbors will try to screen oplication of periodic boundary conditions does not change
“compensate” for its charge. the results of the calculation from the zero charge boundary
The second premise is that the absolute value of charge d¥onditions. The solution is less sensitive to the boundaries
any lattice site has a saturation value. Coulomb repulsiofor a larger number of defectS.The results were obtained
should make it increasingly more difficult to add charge toby computer simulations based on the CCM. The free param-
one atom. This can be accounted for by adding a saturatio@ters of this model are

Wi

6

term to Eq.(5): (i) charge on a defectjyer; we always usedqer= +1
for Ge defects andy.s= — 1 for vacancies. The variation of
6 this parameter doesn’t change the results qualitatively;
gi,;=—R(T)- > Ak, —S(Qij), (6) (i) charge-compensation factd,
kI=NN's (iii ) saturation parametex; (az=0.1 for all simulations

m presented hejeand

wheres(q) must be an odd function. The first nonlinear ter (iv) number of defect®ye; and their positions.

in the polynomial that can be used for this purpose is cubic:
B. Results of the calculations based on the CCM

s(q)=azq>. (7)
Simulations with the CCM indicate that the critical value

Hereas is a parameter that is assumed to be small and posof R is 1/3 (see the following For R<1/3 the high-

tive (0<az<1). temperature STM images could be reproduced and the CCM
The third assumption is that the charge on the lattice siteould be mapped onto the previous DW model. Ror1/3

corresponding to a defe@Ge substitutional atoms or vacan- all of the features such as domains and sharp domain bound-

cies is fixed, the same for all defects of one tyfpositive  aries in the low-temperature STM images could be repro-

for Ge defects and negative for vacangjemd independent duced. The critical temperatui®s of the structural transi-

of its position in the lattice, the temperature, and the defection (ST) can be defined by the equatioR(Tg)=1/3,

density. assuming that the relationship betweRmandT is known.
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S — FIG. 7. Comparison of the RT STM and the CCM calculated
Lb...’.‘.’.’.‘. images.(a) Filled state constant current STM image taken at RT
.:.0¢9.".‘3'.?1Q,0 (—1 V, 0.1 nA, 165¢185 A?). (b) CCM calculated R=0.32,
2/”‘%):0:.:(@0:@, a;=0.1) with defects positioned as i@). The arrows show two

QAP E Ol S S vacancies.

e < K AR X

S S 5

:0:0{:).:0‘. :0‘3 defects(Sec. l). Figure 7 displays a RT STM imade) and

e G % the calculation(b). In this case the best match was obtained

wﬁj...".’... whenR=0.32. Each Ge defecblack circles in Fig. Y in-

[ €< ¢ > .’0’0":‘!”\.. duces a local honeycomb ¥33) superstructur¢as in Fig.

N e eE e O . A

/ @%0.0...‘ %’O 2(b)] and each vacancfindicated by arrows in Fig. (B)]

e&‘{&‘\;\%’.’ﬁ"”‘ ‘»’.‘\\% induces a hexagonal ¢83) superstructure that decays with

b) s LIRS ol S the distance from a defect. We found that the best fit for the

envelope function of this decay is an exponent

f(x)=AxXexp —x/l), (8

X3

wherex is a distance from a defect amds a decay length
that in a CCM calculation depends only on the value of the
charge-compensation facté®t. Calculating the best fit for
each value ofR we can obtain the dependenbdr) mea-
sured in units of interatomic spacing. This result is shown in
Fig. 8@) for the case of Sn/G&11), in which the distance
between NN atoms is 7 A.

(3) The decay length increases withand diverges aR
=1/3. Such behavior describes very well the behavior of the
Sn/Ge111) systemEq. (2)] that was determined experimen-

FIG. 6. Comparison of the LT STM and the CCM calculated tally by STM. This is another confirmation of the validity of
images. (@) Experimental filled state constant current imagethe CCM. From the numerically calculated valuesl (R)
(=1 V, 0.1 nA, 186<161 A% obtained aff=55 K. (b) Label-  [squares in Fig. @] it is reasonable to assume thé&R) can
ing of (a) with (3%x3) domains indicated by grids and the domain pe written as
walls indicated by thick white lines, and Ge defects indicated by
asterisks(*). (c) Image calculated by the CCM with Ge defects B
positioned as in the STM imagéhe CCFR=0.34,a;=0.1). | = R

L N N N
-
..

'

.
e 0 00000

e e e 9'!‘-‘ 4
oeeew

e eee

(€)

Agt ———;
(RC_R)p

(1) ForR>1/3 the CCM reproduces domains and domainy,o pet fit was obtained with an expongut 1/2 [solid
boundaries. Domains and domain walls in the STM image,rve in Fig. 8a)].
[Fig._ 6(a)] and the_calculated _one{fig. 6(c)'] coir_mcidg. To (4) We can inferR(T) from the I(R) and I(T), deter-
facilitate a comparison, domairigrids of thin white lines  ineq theoretically and experimentally, respectively. The

domai!‘ W?‘”S(Wide Iine_s, and defects(q;terisk}a are indi- - a1ue of the decay length that we measured from RT STM
cated in Fig. @). Knowing only the positions of defects we images id (T=295 K)=11 A !®At the same time this de-

can reproduce the domain structure of these surfaces, i'%ay length can be calculated fdR=0.32 [I(R=0.32)

defect positions determine domain size and shape. Itis ong 11 A7 E Eqs.(2 IR(T) usi
of the indications of how strong the influence of defects is ONpe defi:rlw.itit.')rr? %allg(silgsijq??,()?) we can obtairR(T) using

these surfaces and a reminder that defects cannot be disre-
garded in the structure measurements. B B
(2) For R<1/3 the calculated STM images are the result l=Ant — R A 4T 10
e . . R+ 1/2 T+ ’ ( )
of the superposition of exponentially decaying waves from (R:—R) (T—Ts7)
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FIG. 8. Relation between the decay length, temperature, and FIG. 9. Propagation of the solution with iterations with no de-
CCF. (a) Plot of the relationship between the C&and the decay €CtS: The images present charge maps (@rinitial conditions
length|(T). The fitted curve is a power-law function with the pa- (+1 onadark atom anet 1/6 on its nearest neighboysb) after 10

rameters shown in the botb) The dependence of the CGFon iterations forR=0.32,(c) after 100 iterations foR=0.32,(d) after
temperature with an extrapolation beldi. 10 iterations forR=0.34, (e) after 100 iterations foR=0.34, and

(f) 500 iterations folR=0.34. a5 was 0.1 for bothR=0.32 andR

=0.34 calculations.
whereTgt= — /B, R.=1/3, A;=0, andB1= 1/8. For tem-

peratures lower thafist we can extrapolat®(T) assuming  further iterating(500 iteration$ leads to a solution with six
that it is a smooth monotonous function of temperature. Thiglomains with sharp domain walls. Inside each domain the
is shown in Fig. &). solution is a configuration with one atom positive, one zero,
(5) The dependence of the solution on initial conditionsand one negative in each ¥3) unit cell. As shown in the
can be considered as an indication of an instability in thenext section, such a charge arrangement in one3Bunit
system. A very important characteristic of the response of theell is the lowest-energy solution for this system. The sym-
system for different charge-compensation factors can be olimetry of the initial perturbation and strong nonlinear re-
served in the evolution of CD maps with the increase ofsponse of the system leads to the formation of six domains
number of iterations with no defects present. Figure 9 illusfor this value ofR. Further increase of the number of itera-
trates such an evolution for two values Rf R=0.32 (left  tions propagates this solution further until the boundaries of
side that is less than the critical value, afd=0.35(right  the computed area are encountered. It is important to note
side that is higher than the critical value. Before the itera-that in a case of the system with even just a few defects the
tions the charge on one atom was set#d and the NN  solution is determined by their position and is independent of
atoms to— 1/6. Here the charge 1 in the initial condition is  the initial conditions.
considered a variable of the calculation. In the caseRof (6) A calculated structure has a X3) periodicity and it
<1/3 (R=0.32 in Fig. 9 the perturbation propagates for a is a product of the geometigriangular latticg and the type
very short distance and simultaneously its amplitude dies ousf nearest-neighbor interaction. Thex3) periodicity is not
and becomes zero in a few iterations. In the casB®fl/3  imposed on this system but is a result of a self-consistent
such a perturbation propagates indefinitely. In this particulasolution of Eqs(6) and(7) for a triangular lattice. It is simi-
case ofR=0.35 at 100 iterations the honeycomb patterniar to the problem of a frustrated antiferromagnetic on a tri-
forms for as far as ten (83) unit cells from the origin. The angular latticé>*® The system prefers to have opposite
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P o that there is one up and two down Sn atoms in a unit cell.
two sublattices j When defects are ordered on one sublattice the structure is

[y M one suplaee two up and one dowiidashed curvyesupporting the recent
60200 4 4 % defects x-ray-diffraction result$. In the absence of defects, accord-
50000 500x500 atoms ing to the CCM we should expect one up, one down, and one
10500 a=0.1 in an undistorted position. Proper STM measurements have
R=0.34 to be done to confirm this observation. Nevertheless this re-

sult indicates that the key to understanding this transition lies
in the understanding of the influence of defects.

It is worthwhile to compare the CCM with the model that
describes the surface as a linear superposition of defect-
induced wave$Eqg. (1)]. In this linear superposition model
2 ; 2 1 2 the defects are the only sources of waves, while in the CCM
all the atoms induce waves in their vicinity proportional to
their charges. In this respect all the lattice sites are treated

FIG. 10. Histograms of the distribution of out-of-plane displace- €qually. The distinction is only that the charges are allowed
mentz for different states of the defect order calculated using theto vary on Sn atoms but are fixed on defect sites. In some
CCM with R=0.34, a;=0.1, and a 4% density of defects. The sense the CCM is similar to the Hyugens principle in optics.
dotted, solid, and dashed lines represent calculated distributions for
randomly distributed defects, ordered on twox(3) sublattices,
and ordered on one (33) sublattice, correspondingly. The vertical ~ C- Equivalent formulation of the CCM in the framework of
displacement is assumed to be proportional to the charge calculated Ginzburg-Landau theory
using the CCM. The sign of thevalues are opposite to the signs of  \ye can approach the structural phase transition from the
the charge and theaxis is directed outward from the surface. point of view of the Ginzburg-Landa{G-L) theory of phase

transitions>’ McMillan had applied G-L theory to the CDW
charges on the nearest neighbors, which is not possible onghase transitions in transition-metal dichalcogen?tﬁeHis
triangular lattice. Thus we can conclude that the symmetry ofesults have been used for calculations of STM images in
this solution is dictated by the geometry of the problem.layered compounds and comparison with experimental
Apparenﬂy' as shown here, a localizétearest neighbors results®® In the following we will present similar consider-
only) temperature-dependent response of the system coupl@dions but restricted to a latti¢8.

Number of atoms

Relative vertical displacement z (a.u.) = ( - charge)

with the inherent geometry of the systéhe., triangular lat- In order to describe the CCM in the framework of G-L
tice) dictates the (X3) symmetry of the low-temperature theory let's consider a system that has the following free-
phase. energy dependence on order paramétgs}, the charge on

(7) The (3% 3) lattice structure is dictated by the specific €ach lattice sitei(j):
defect alignment. It is commonly believed that the structure
of the Sn/Gél1)) surface holds the key to understanding the
origin of this phase transitiohCurrently there is little agree- F=> inj+ R(T)q; | > g j+a4qi4j . (1)
ment on the structure, determined by different groups. Most n ’ Tk ’ ’
of the measurements show that at LT one atom is displaced

outward from the surfac€‘up” ) and two are displaced in- ¢ first summation goes over all atoms in the lattice. The
ward (“down”) in a (3x3) unit cell,”™ while one rﬁport internal sum runs over the next-nearest neighbors of the
shows that the structure is two “up” and one “dowfl.In  (j iyih site(six in case of a triangular lattizeWe proceed by
the following we will show that the calculations suggest thatsolving for the order parameters ;, which minimize the

)

the structure, determined by any area averaging techniqugge energy. This can be done by solving a system of equa-
depends on the distribution of defects or, to be more exact;, s

on their order. If we assume that the lattice distortion at an

atomic site is proportional to the charge on this site we can

calculate the heightvertical displacementdistribution of 3

atoms for different arrangements of defects at LT using the szqi’j+2R(T)k|—NN. Gijtaagg’ . (12)
CCM. Figure 10 shows the results of such calculations. The b B

calculations are performed for a random defect distribution,

for defects ordered on two sublattices out of three, and deEssentially, the expressiond2) mean that the CCM de-
fects ordered on one sublattice out of three. For the randorscribed in Sec. lll A is just a minimization procedure for a
distribution of defects, atoms with almost any height/chargdree-energy Eq(11). For a pure system, the free-energy Eq.
are present in equal quantitgiotted ling. When the defects (11) for a triangular lattice has a minimum when the system
are ordered on two sublatticéas was observed by STM has (3x3) periodicity and the charges of the atoms inside
there are three distinct peaks that correspond to 1/3 of atonme (3x3) unit cell arec, 0, and—c, correspondingly with
displaced up and 2/3 dow(solid ling). This supports the the value ofc that can be obtained from substituting this
measurements of research groups that came to the conclusitarm of solution into Eq(12). As a result we obtain

1)
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RS

All(3x3)
Fmin= > (2c2—6Rc+2a,c%) o3
=
el T
All(3x3) g Sy
=2 > [(1-3R)c2+a,c]. (13) E
e
We make the usual assumption in Landau theory that the E 0.15 -
parameters in front of the powers of the order parameter are g -
continuous functions of temperature and can be expanded in @
powers of T—T,) near the onset temperature. Since the & “*
factor in front of c, must change sign nedr,, we assume 0.8 . - . - -
that 5320 8,333 8330 0,333 B340
a} CI‘ISIEE Eumpensm.lnn Factor R
a,=(1-3R)=a’(T—Ty). (14
Herea’' is some constant. The expressid8) does not w40 —
contain a cubic term. This means that Ef§j3) describes a s f——o R,
second-order phase transition. Differentiation of free-energy =z \ -
per one (3 3) unit cell gives g \ 1 10%
£ s q = = (O defects
JF 5 o]
= 3) _4a,c+8a,c3=0 (15) g
Jc § b5
that has two solutions of this minimization problem. Assum- i W
ing thata, is small and positive, they are T
c=0 for a,>0, (16) =
Temperature T [K]
or b)
) a, (1-3R) FIG. 11. (Color) The order parameter squared and averaged over
co=— 2_a4 =— —2a4 for a,<0. (17 all atoms in a lattice versug) the CCFR and(b) temperaturd for

different densities of defects calculated using the CCM veth

=0.1. The defects are randomly distributed on all the three (3
D. Influence of defects on the nature of the structural % 3) sublattices shown in Fig. 2.

(y3X%+/3)<(3%3) transition

Computer simulations based on the CCM enable the in- (2) (p<5%) There is no structural phase transition but
vestigation of the influence of defects on the structural phaswe can distinguish two pseudophases. The calculations show
transition. Figure 1(B) displays the dependence of the orderthat any number of defects destroys the structural phase tran-
parameter squareqfj averaged over all atoms in a lattice, sition since the order parameter in not zero at any tempera-
Q(R), on the charge-compensation facBacross the phase ture. Since the two different phases are still distinguishable

transition in Sn/GeL11) for different defect densities. The by the change in the slope of the free energy and the order-
value of Q(R) is calculated by parameter dependence on temperature, one can talk about a

crossover for the system with fixed defects. The critical value
1 N of R.(p) and the corresponding crossover temperaliy(e)
QRI=y PN (18)  can be determined as the intersection of the linear fit to the
H two portions of theQ(R) curve, forR>1/3 andR<1/3. A
This calculation was performed for different densities of de-small number of defects0.001% (blue ling] increases the
fects that are randomly distributed on a lattice. Figurébjl1 slope of the linear dependence fer1/3 compared to zero
shows the same curves in terms of temperature. The trandefects. Thel.(p) stays the same &%+ in this case. Further
formation was made using E¢L0). The following conclu- increase in the defect density (0.1%-5%) increases the
sions are deduced from Fig. 11: slope and shifts the crossover region to higher temperature.
(1) (p=0%) The structural phase transition in a systemFrom these results we can conclude that for defect density
with zero defects exists and is a second-order transition. Thabove 1% the crossover temperature is above 200 K, while
dashed black line is the solution for zero defecisnsity of  for zero defect density, it is around 70 K. It was originally
defectsp=0%), which can also be calculated from E¢&6) reported that the transition temperature measured by LEED
and (17). It is equal to zero for the values & up to R,  was 210 K. The STM measurements based on the tempera-
=1/3 and then increases linearly. This indicates the existencire dependence of the decay length showed that the struc-
of a structural phase transition BRt=1/3 and at the corre- tural transition in the absence of defects would be at 70 K.
sponding temperature. This large difference i is due to the influence of defects.
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(3) (p>5%) The high- and low-temperature phases aredefects induce DW's, the range of these waves increases with
indistinguishable. When the density of defects is very highdecreasing temperature, and defects interact with these
(e.g., 10%) two phases become almost indistinguishable. Wwaves resulting in defect alignment with the DW's. The
is impossible to determine the crossover temperature fromharge-compensation model describes the structural transi-
the curves for 5% and 10% in Fig. (. In this case the tion in the presence of defects, based on the assumption that
range of the defect-induced DW's is comparable with thethe charge on an atomic site is a function of the total charge
average distance between defects. on its nearest neighbors. Treating defects as atoms with a

(4) Calculations ofQ(R) for defects distributed randomly fixed nonzero charge, the CCM allows calculation of the
on two of the three sublattices give qualitatively similar re-defect-induced waves, the domains, the domain walls, and
sults as presented in Fig. 11. Even though in the system witthe lattice structure of (8 3) unit cells just based on the
fixed defects there is no structural phase transition, there ispatial defect distribution. These results show how dramatic
still a phase transition in Sn/@GEL1), since the defects are an effect the presence of deflects can have on a 2D phase
mobile and interacting. The accompanying disorder-ordetransition. In fact, without the defect-ordering transition there
phase transition in the defect distribution creates a longwould be no phase transition since the order parameter never
range order in this system by coupling phases of waves crddecomes zero. This situation is similar to ferromagnetism
ated by defects via alignment of defect positions in a latticewhere one can speak about long-range order only inside one
Calculations with the charge-compensation model and thdomain. Due to the alignment of defects inside each domain
model that accounts for defect ordering should give a mor@nd the formation of the domains the long-range order is
precise picture for this complex transition. Such a calculatiorcreated inside each domain and a phase transition in Sn/
was beyond our current computational resources. Also fo5e(111) exists.
such a complex transition a different order parameter can be
chosen, e.g., phase of the waves. The nucleation and possible
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