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General analytical treatment of optics in layered structures: Application to magneto-optics
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We have derived compact and interpretable analytical expressions to describe the magneto-optics in layered
structures for all orientations of magnetization and incident angle. In our approach, the multilayer system is
considered as nonmagnetic and the magneto-optical effect is described by an induced electrical polarization.
The electromagnetic waves radiated by this polarization are calculated via a propagative treatment and are also
shown to directly derive from the Lorentz reciprocity theorem. The expressions of the magneto-optical com-
ponents of the fields transmitted and reflected in the external media are easily interpretable. Only three relevant
quantities are involved: the exciting field, the magnetization, and an extraction vector. The practical calculation
is very simple in the framework of the first Born approximation as the 434 matrix formalism is replaced by a
232 matrix resolution. The whole approach is not restricted to magneto-optics and the case of a variety of
other systems exhibiting weak induced polarizations originating from anisotropy, bianisotropy, nonlinearity, or
inhomogeneity is treated. Higher-order approximations are also discussed and an analytical approximation for
large induced polarizations in thin layers is derived.
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I. INTRODUCTION

The recent progress in growth techniques enables
elaboration of layered magnetic structures with magn
characteristics very different from the ones of bulk materia
This opens a wide field of new experimental situations a
technological applications. In particular magneto-opti
~MO! properties may be tuned but often to the expense
complexity of the film structure. In order to get a physic
insight into the optics of these materials an analytic
simple, and interpretable description is mandatory.

Up to now, the usual theoretical studies on light propa
tion in anisotropic layered structures have been develope
the framework of a 434 matrix formalism as a generaliza
tion of the isotropic case described in the pioneering 232
matrix analysis of Abele`s.1 Among these approaches the ca
of magneto-optics in multilayer structures was treated
Smith.2 Then, a very similar calculation, originally devote
to optics in linear birefringent media,3 was extended to arbi
trary anisotropic materials.4 Most of the papers, devoted t
the particular case of the first-order MO effects
multilayers,4–6 extensively use such a 434 matrix formal-
ism. Unfortunately, it is commonly admitted that these p
cedures lead to an ‘‘algebraic morass’’5 and provide
‘‘complicated’’ 5 or ‘‘cumbersome’’4 expressions of the mea
surable MO quantities. Their practical utilization is, even
simple cases, mainly restricted to computer calculation.

One of the main disadvantages of the usual 434 matrix
method is the calculation of the propagation eigenmode
the magnetic layers. Only in very particular geometries~the
polar MO effects in normal incidence! this calculation is sig-
nificantly simplified as it reduces to a 232 matrix analysis.7

However, alternative approaches~not specifically dedicated
to magneto-optics!, valid for any geometrical and magnet
0163-1829/2001/64~23!/235421~12!/$20.00 64 2354
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configuration, avoid the calculation of the eigenmodes
perturbative treatments of the propagation in the anisotro
layers.8,9 However, these methods do not exempt from t
tedious 434 matrix calculation and the final expression
the solution remains complicated.

In scattering problems,10–13the optical response of matte
is often described in terms of induced electrical or magne
polarizations as sources of electromagnetic radiation.10,11

This approach gives an insight into the physics and separ
the problem into two parts: first the determination of t
sources induced by the exciting fields, then the calculation
the radiated fields. No related method was developed
layered structures except in nonlinear optics.14–16 However,
it has been recently evidenced in the case of a simple m
netic layered structure that the linear magneto-optical
sponse only depends on three interpretable quantities:
exciting field, the magnetization, and an extraction factor17

In the present paper we develop, in the framework of
macroscopic Maxwell’s equations,18 a general treatment o
weak optical effects in multilayers with a special focus
magneto-optics. Our final expressions of the reflected, tra
mitted, or scattered fields~i.e., of the measurable quantities!
are compact and easily interpretable. In Sec. II, we recall
main stages of the usual 434 matrix methods and give defi
nitions used in the subsequent calculations. In Sec. III,
derive the fields generated by a distribution of electrical p
larization located inside a multilayer. In Sec. IV, the fir
Born approximation is used to obtain a simple expression
the electrical polarization originating from a weak anisotro
in a homogeneous layer. The expressions of linear magn
optical effects in multilayers are deduced for any magneti
tion direction, incident angle, incident light polarization, an
number of magnetic layers. In Sec. V, this approach is
©2001 The American Physical Society21-1
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tended to weak induced polarizations originating from inh
mogeneity~such as magnetic domains! and nonlinearity. In
Sec. VI, the iterative procedure for higher-order expans
~beyond the first Born approximation! is indicated and a
simple approximation of the full solution is obtained whic
applies to large induced polarization in thin layers. In S
VII, we show that our compact expressions directly der
from the Lorentz reciprocity principle. It is then straightfo
ward to treat the chirality or bianisotropy as induced elec
cal and magnetic polarizations. Concluding remarks
given in Sec. VIII.

II. STANDARD 4Ã4 MATRIX FORMALISM

A. Equation of propagation

Let us consider an anisotropic multilayer structure like
Fig. 1 sandwiched between two semi-infinite isotropic me
1 andf of dielectric constant«15n1

2 and« f5nf
2. Each layer

j is homogeneous and characterized by its thicknessl j and its
dielectric tensor«I j5« j II1D« j , whereII is the 333 unit ma-
trix and D« j the anisotropic part of the tensor. In mediumj,
a plane wave of frequencyv and wave vectork j is repre-
sented by$Ej ,Bj%exp@i(k j•r2vt)#. The electric and mag
netic complex vectors$Ej ,Bj% define its amplitude and po
larization. In the external medium 1, a plane wave associa
with k1

15qxx1k1z propagates in thexOzplane and is inci-
dent at the angleu1 from the normalOz to the surface~k1
.0 andqx5k1 sinu1!. The illumination of the structure in
duces reflected and transmitted waves in media 1 andf, re-
spectively, associated withk1

2 andk f
1 .

From Snell-Descartes law, the components of the w
vectors parallel to the interfaces are conserved through
multilayer. The isotropy of the external media impliesk1,f

2

FIG. 1. Multilayer system illuminated from medium 1 bys- or
p-polarized waves of complex amplitudesE1

s,p1 at an incident angle
u1 . The in-plane wave-vector componentqx5n1 sinu1 is con-
served through the multilayer. The media 1 andf are isotropic of
dielectric constant«1,f and any layerj of thicknessl j is character-
ized by its dielectric tensor«I j . The complex amplitudes of thes-
and p-polarized reflected and transmitted waves areE1

s,p2 and
Ef

s,p1 .
23542
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5k0
2«1,f5qx

21k1,f
2 and k1,f•E1,f50. Consequently, k1

2

5qxx2k1z, k f
15qxx1k fz, and the fields of the wave

transverse to the directions of propagation can be line
decomposed on thes- andp-polarization directions, respec
tively, perpendicular and parallel to the plane of inciden
For an incident wave defined by the complex amplitudesE1

s1

and E1
p1 , the reflected and transmitted waves are then

spectively given byE1
s2 , E1

p2 and Ef
s1 , Ef

p1 . These four
unknown quantities are generally written as the solutions
the following set of four linear equations:

V f5H Ef
s1

0
Ef

p1

0
J 5Mf 1H E1

s1

E1
s2

E1
p1

E1
p2

J 5Mf 1V1 . ~2.1!

The four-component vectorsV1 andV f describe the fields in
media 1 andf at the interface with the structure and the 434
matrix Mf 1 expresses the propagation throughout the wh
system. In the 434 matrix methods2–5,7,9Mf 1 is first derived
and then Eq.~2.1! is solved.

In some cases, it may be useful to decompose Eq.~2.1!
into two sets of two linear equations which define the ma
ces of transmissionTI 1 f and reflectionRI 1 f as

S Ef
s1

Ef
p1D 5FT1 f

ss T1 f
sp

T1 f
ps T1 f

ppG S E1
s1

E1
p1D , ~2.2a!

S E1
s2

E1
p2D 5FR1 f

ss R1 f
sp

R1 f
ps R1 f

ppG S E1
s1

E1
p1D . ~2.2b!

B. Derivation of the 4Ã4 propagation matrix

In the standard 434 matrix formalism,2–5,7 the electro-
magnetic field in a layerj is represented by a combination o
the plane-wave solutions of the wave equation which, fr
the Maxwell’s equations, takes the form

~k0
2«I j2kj

2!Ej1~k j•Ej !k j50, ~2.3!

wherek05v/c is the wave number in vacuum. Since fro
Snell-Descartes lawk j5qxx1k jz, the unknown quantities
arek j andEj while Bj is derived fromcBj5k j∧Ej /k0 . The
resolution of Eq.~2.3! gives in the more general situation
quartic equation fork j which yields four complex eigenval
uesk j

s for s51, 2, 3, or 4, associated to four complex p
larization eigenvectorsuj

s that we define of unit amplitude
The electromagnetic field can be decomposed as a lin
combination of these waves. If we define theEj

s as their
complex amplitudes and write the fields a
$Ej (z),Bj (z)%exp@i(qx x2vt)#, where the altitudez is defined
as respectively equal to zero andl j at the upper and lowe
faces of the layer, we obtain

Ej~z!5 (
s51

4

Ej
s~z!uj

s5 (
s51

4

Ej
seik j

szuj
s , ~2.4!
1-2
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cBj~z!5 (
s51

4

Ej
s~z!k j

s∧uj
s/k0 . ~2.5!

Consequently, the electric-field distribution within ea
homogeneous anisotropic layer can be expressed by the
complex amplitudesEj

s(z) which constitute the componen
of the vectorV j (z) defined by

V j~z!5S Ej
1~z!

Ej
2~z!

Ej
3~z!

Ej
4~z!

D 5Dj~z2z8!V j~z8!. ~2.6!

The 434 propagation matrixDj (z2z8) only contains diag-
onal terms exp@ikj

sz# @see Eq.~2.4!#.
At the interface between mediaj and j 11, the continuity

of the in-plane components of the electromagnetic field
be written asFj 11(0)5Fj ( l j ) with the following definition:

Fj~z!5S Ej
y~z!

cBj
x~z!

cBj
y~z!

Ej
x~z!

D 5AjV j~z!. ~2.7!

Aj is a 434 matrix deduced from Eqs.~2.4! and ~2.5! and
the x and y components ofuj

s . From Eqs.~2.6! and ~2.7!,
considering the propagations through every layer and
continuity relations at every interface, we finally obtain t
propagation matrix of the whole structure as

Mf 15Af
21 )

j 5 f 21

2

~AjDjAj
21!A1 , ~2.8!

whereDj5Dj ( l j ). From this relation one deduces the set
four linear equations~2.1! required to obtain the four un
known complex amplitudesE1

s2 , E1
p2 , Ef

s1 , andEf
p1 of the

reflected and transmitted waves.

C. Perturbative approach of the propagation
in anisotropic media

The standard 434 matrix treatment ofweak anisotropyin
multilayers usually begins by approximating the propagat
in the anisotropic layer. This is tediously performed by c
culating approximations of the eigenvaluesk j

s ~which are
solutions of a quartic equation! and of the eigenvectorsuj

s in
order to deriveDj andAj . These successive calculations a
in fact not needed. Indeed, as shown by Eq.~2.8!, the propa-
gation in the anisotropic layerj is fully described by the
particular product of matricesNj5AjDjAj

21 which can be
directly obtained by a perturbation treatment in the fram
work of the Berreman formalism.9,19 However, whatever the
method used for calculating the propagation in the an
tropic layer, the 434 matrix methods always lead to a com
plicated expression ofMf 1 . Then, the resolution of Eq.~2.1!
generally requires computer calculation to provide the o
cal response of the structure.2–5,7,9,19
23542
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In comparison, the case of anisotropic layered structure,
solved by a232 matrix resolution,1 is much more simple. In
the following, we show that the calculation is largely reduc
and the result particularly transparent when the weak ani
ropy ~such as magneto-optics! is considered as a perturbatio
added to the isotropic case~where the anisotropy is suppose
equal to zero!.

III. RADIATED FIELDS FROM AN EMBEDDED
POLARIZATION

A. ‘‘Internal’’ polarization and radiated fields

The macroscopic Maxwell’s equations are written in t
layer m as

rot Em~r ,t !52
]Bm~r ,t !

]t
, ~3.1a!

rot Bm~r ,t !5m0

]Dm~r ,t !

]t
, ~3.1b!

and the material equation as

Dm~r ,t !5«0«mEm~r ,t !1DPm~r ,t !. ~3.1c!

In this formulation, a specific optical property~anisotropy,
inhomogeneity or nonlinearity! is described by an interna
distribution of polarizationDPm(r ,t) induced by the interac-
tion of the electromagnetic field with matter. This evidenc
and separates the considered physical effect from the~isotro-
pic, homogeneous, and linear! response defined by the d
electric constant«m .

If the optical properties of all the layers are written as
Eq. ~3.1c!, the structure is described as a set of isotrop
homogeneous, and linear layers, that we call the unpertu
system, in which several induced distributions of polariz
tion DPm(r ,t) radiate. The unperturbed system being line
the fields in any layerj can be written

HEj~r ,t !
Bj~r ,t !J 5H Ej

0~r ,t !
Bj

0~r ,t !J 1 HDEj~r ,t !
DBj~r ,t !J . ~3.2!

The unperturbed fields$Ej
0(r ,t),Bj

0(r ,t)% are obtained by
taking all the polarization distributions equal to zero. T
fieldsDEj (r ,t) andDBj (r ,t), radiated by all the polarization
distributions in the unperturbed system, are equal to the
ear sum of the fields radiated independently by ea
DPm(r ,t) ~the others being taken equal to zero!.

B. Unperturbed fields and dimensionless quantities

In any layerj of the unperturbed system, the wave equ
tion ~2.3! reduces tok j•Ej

050 and tok j
25k0

2« j2qx
2 which

yields two opposite solutions. We definek j5k j
152k j

2 the
solution with positive real and imaginary parts, so that t
superscripts2 and 1 indicate the upwards and downward
directions of propagation of the waves. We choosek j

1,35

2k j
2,45k j and decompose the transverse fields in Eqs.~2.4!

and ~2.5! on the polarization eigenvectorsuj
1,25uj

s1,25y
and uj

3,45uj
p1,25y∧k j

1,2/kj , where the superscriptss
1-3
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andp refer to the usual definition of thes andp polarizations
of the waves. All the matricesDj (z), Aj , Tj , and Mf 1
defined in Sec. II become 232 block diagonal, each block
being writtenDj

a(z), Aj
a , Nj

a , andMf 1
a ~see Appendix A!,

where a stands fors or p. Equation~2.1! reduces to two
independent sets of two linear equations with the two
known quantitiesE1

0a2 andEf
0a1 :

V f
0a5S Ef

0a1

0 D5Mf 1
a S E1

0a1

E1
0a2D 5Mf 1

a V1
0a . ~3.3!

The 434 matrix treatment reduces to a 232 matrix formu-
lation where the propagation of thes- andp-polarized waves
are uncoupled. This property remains in theF representation
when defining in any layerj:

Fm
0s~z!5S Em

0y~z!

cBm
0x~z! D , Fm

0p~z!5S cBm
0y~z!

Em
0x~z! D . ~3.4!

The fields at the altitudez inside the layerj are related to the
a-polarized fields in media 1 andf by

Fj
0a~z!5Nj

a~z!Nj 1
a A1

aV1
0a5@Nf j

a Nj
a~ l j2z!#21Af

aV f
0a ,
~3.5!

where for i , j Nj i
a 5Nj 21

a
¯Ni 11

a and Nj
a(z)5

Aj
aDj

a(z)@Aj
a#21.

To describe the effect of the distribution of polarizatio
DPm(r ,t), it is useful to define specific characteristic qua
tities of the unperturbed system. For a given value ofqx , we
consider two ~virtual! illumination conditions where the
a-polarized incident wave comes either~downwards! from
medium 1 @Fig. 2~a!# or ~upwards! from medium f @Fig.
2~b!#. In each case, the unperturbed fields inside the layj
are written$Em1,f

0a (z),Bm1,f
0a (z)%exp@i(qxx2vt)# and are asso

ciated toFm1,f
0a (z). By normalization to the amplitude of th

incident wave,Em1,f
0a (z), Bm1,f

0a (z), andFm1,f
0a (z) turn into the

dimensionless quantitiesem1,f
0a (z), bm1,f

0a (z), and fm1,f
0a (z).

This defines, for the incidence from medium 1~respectively
f !, R1 f

0a andT1 f
0a ~respectivelyRf 1

0a andTf 1
0a! as the amplitudes

of the unperturbed reflected and transmitted waves. Us

FIG. 2. Illuminations, from media 1~a! or f ~b! by unit
a-polarized plane waves associated to the sameqx , induce the nor-
malized unperturbed fieldsem1,f

0a (z)exp@iqxx# in the layerm of the
isotropic unperturbed multilayer structure.
23542
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Eq. ~3.5!, the two-component dimensionless vectorsfm1,f
0a (z)

are related to the unperturbed reflection and transmission
efficients, as, for instance,

fm1
0a ~0!5Nm1

a A1
aS 0

Tf 1
0aD , ~3.6a!

fm f
0a~ l m!5@Nf m

a #21Af
aS T1 f

0a

0 D . ~3.6b!

It is also useful to consider the dimensionless quanti
ēm1,f

0a (z) and b̄m1,f
0a (z) associated with the~downwards and

upwards! incidences defined by2qx . From Fig. 3, we see
that ēm1,f

0a (z) andem1,f
0a (z) are symmetrical with respect to th

yOzplane~oppositex components and identicaly andz com-
ponents!, while b̄m1,f

0a (z) and bm1,f
0a (z) are symmetrical with

respect to theOx axis ~oppositey and z components and
identical x components!.20 Note that consequentlyf̄m1,f

0s (z)

5fm1,f
0s (z) and f̄m1,f

0p (z)52fm1,f
0p (z).

C. Equation of propagation in a polarized layer

Let us now assume that the internal polarization in la
m takes the form

DPm~r ,t !5DPm~z!exp@ i ~qxx2vt !#. ~3.7!

The fields radiated byDPm(r ,t) in layer m can be written
$DEm(z),DBm(z)%exp@i(qx x2vt)#. By substitution of Eq.
~3.7! into thez components of Eqs.~3.1!, we find

qxDEm
y ~z!/k05cDBm

z ~z!, ~3.8a!

qxcDBm
y ~z!/k052«mDEm

z ~z!2DPm
z ~z!/«0 . ~3.8b!

Eliminating cDBm
z (z) andDEm

z (z) into thex andy compo-
nents of Eqs.~3.1! and keeping thez-derivative equation,21

the propagation in layerm is described by two independen
sets of two-component linear differential equations fors and
p components:

]

]z S DEm
y ~z!

cDBm
x ~z! D 52 ikmS cDBm

x ~z!/am
s

am
s DEm

y ~z! D 2 ik0S 0
DPm

y ~z!/«0
D ,

~3.9a!

FIG. 3. Origin of the symmetrical relations betwee

$em1
0a (z),bm1

0a (z)%exp@iqxx# and$ēm1
0a (z),b̄m1

0a (z)%exp@2iqxx#.
1-4
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]

]z S cDBm
y ~z!

DEm
x ~z! D 52 ikmS DEm

x ~z!/am
p

am
p cDBm

y ~z! D
2 ik0S 2DPm

x ~z!/«0

qxDPm
z ~z!/~k0«0«m! D , ~3.9b!

where am
s 5km /k0 , am

p 52km /(k0«m).21 From the expres-
sion of the isotropic propagation matrixNm

a (z) given in Ap-
pendix A, each Eq.~3.9a! and ~3.9b! can be written as

]DFm
a

]z
~z!5

]Nm
a

]z
~0!DFm

a ~z!2 ik0DPm
a ~z!/«0 ~3.10!

which defines the two-component vectorsDFm
a (z) and

DPm
a (z). The integration of Eq.~3.10! through the layer

thickness yields

DFm
a ~ l m!2Nm

a ~ l m!DFm
a ~0!

52 ik0E
0

l mNm
a ~ l m2z!

DPm
a ~z!

«0
dz. ~3.11!

Except for the right-hand polarization term, this equati
takes the form of the propagation equation of thes- and
p-polarized waves in the unperturbed layer.

The fieldsDFm
a (0) andDFm

a ( l m), radiated in layerm by
the distribution of polarizationDPm(z), propagate through
the isotropic multilayer. Related outgoing waves of comp
amplitudeDE1

a2 andDEf
a1 are emitted in the external me

dia ~Fig. 4!. Using Eqs.~3.6!, the propagation from medium
m to 1 andm to f is given by

DFm
a ~0!5Nm1

a A1
aS 0

DE1
a2D5

fm f
0a~0!

Tf 1
0a DE1

a2 , ~3.12a!

DFm
a ~ l m!5@Nf m

a #21Af
aS DEf

a1

0 D5
fm1
0a ~ l m!

T1 f
0a DEf

a1 .

~3.12b!

From Eqs.~3.11! and ~3.12! we deduce

FIG. 4. The electric polarizationDPm(z)exp@iqxx# in the layerm
radiates in the unperturbed structure and induces outgoing wav
media 1 andf with the same space modulation and the comp
amplitudesDE1

a2 andDEf
a1 .
23542
x

fm1
0a ~ l m!

T1 f
0a DEf

a12
fm f
0a~ l m!

Tf 1
0a DE1

a2

52 ik0E
0

l mNm
a ~ l m2z!

DPm
a ~z!

«0
dz. ~3.13!

This equation of propagation links the still unknown com
plex amplitudes of the waves radiated into the external me
to the polarization distribution in layerm, through quantities
characteristic of the unperturbed system. This obviously
duces the calculations of the propagation through the wh
system to a 232 matrix treatment.

D. Waves radiated into the external media

The solution of the equation of propagation~3.13! is eas-
ily obtained and takes the form~Appendix B!

DE1
a25

ik0
2

2k1
E

0

l m
ēm1

0a ~z!•
DPm~z!

«0
dz, ~3.14a!

DEf
a15

ik0
2

2k f
E

0

l m
ēm f

0a~z!•
DPm~z!

«0
dz. ~3.14b!

Equations~3.14! express the extraction into the external m
dia of the fields radiated by the distribution of polarizatio
defined in Eq.~3.7!. These exact expressions are particula
compact and transparent. They only require the 232 matrix
calculation of the unperturbed vectorsēm1,f

0a (z) defined in
Sec. III B and identified now as extraction vectors.22

Equations~3.14! also show that a plane wave can alwa
be considered as the radiation of a slice of dipoles. In p
ticular, the amplitudes and polarization of the waves t
would be radiated towards the multilayer by the polarizat
distributions P1

a(r ,t)5(2«0k1 / ik0
2)u1

a1 exp@i(qx x2vt)#d1

and Pf
a(r ,t)5(2«0k f / ik0

2)uf
a2 exp@i(qx x2vt)#df , located at

the interfaces of the structure with media 1 andf ~as indi-
cated by the Dirac delta functionsd1,f!, could be obtained
with Eqs. ~3.14a!, using ū1

a25u1
a1 and ūf

a15uf
a2 as the

extracting vectors. These waves area polarized and have a
unit amplitude. As a consequence, these polarizations wo
induce respectively the unperturbed fieldsem1

0a (z) andem f
0a(z)

in the unperturbed structure. Conversely, the polarizati
with the same amplitude, associated to2qx and respectively
oriented alongu1

a2 anduf
a1 , would radiate the fieldsēm1

0a (z)
and ēm f

0a(z) in the unperturbed system.
Finally, as already mentioned in Sec. III A, if there a

several polarized layers in the unperturbed structure,
fields radiated in the external media are the linear sum of
fields radiated independently by each distribution of pol
ization as given by Eqs.~3.14!.

IV. WEAK ANISOTROPY IN A HOMOGENEOUS LAYER:
LINEAR MAGNETO-OPTICS

A. Fields generated by a homogeneous layer
with weak anisotropy

Let us now consider a multilayer containing an anis
tropic layer m with a dielectric tensor of anisotropic pa

in
x

1-5
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D«m ~Fig. 1!. For ab-polarized wave incident from medium
1 and associated to a givenqx defining the incidence angle
the anisotropy induces a polarizationDPm(z) exp@i(qxx
2vt)#. If the anisotropy is weak (D«m!«mII) and the layer
thin enough so that the exciting field inside the anisotro
layer does not differ significantly from the unperturbed fie
the induced polarization can be approximated by

DPm~z!'D1Pm~z!5«0D«mEm1
0b ~z!. ~4.1!

This expression, known as the first Born approximation,
be used in Eqs.~3.14! to give the fields radiated into th
external media. For a unit excitation@which turnsEm1

0b (z)
into em1

0b (z) in Eq. ~4.1!#, the corresponding complex ampl
tudes of the reflected and transmitted waves are

D1R1 f
ab5

ik0
2

2k1
E

0

l m
ēm1

0a ~z!•„D«m•em
0b~z!…dz, ~4.2a!

D1T1 f
ab5

ik0
2

2k f
E

0

l m
ēm f

0a~z!•„D«m•em
0b~z!…dz. ~4.2b!

D1R1 f
ab andD1T1 f

ab are approximations of the coefficients
the perturbed reflection and transmission matricesDR1 f and
DT1 f defined byRI 1 f5RI 1 f

0 1DR1 f andTI 1 f5TI 1 f
0 1DT1 f , RI 1 f

0

and TI 1 f
0 being the 232 diagonal unperturbed reflection an

transmission matrices. In the framework of the first Bo
approximation, the procedure reduces to the 232 matrix cal-
culation of ēm1,f

0a (z) and em1
0b (z). Their variation withz are

determined by propagation factors like exp@6ikmz# so that
the integrals over the thickness of the layer, both analytic
and numerically, are easily performed.

Three quantities arise: the dimensionless exciting fi
em1

0b (z), the extraction vectorēm1,f
0a (z) and the anisotropic ten

sor. The interpretation is transparent: the exciting field in
acts with the anisotropy and induces an internal polariza
which in turn radiates and generates plane waves in the
ternal media.

If there are several anisotropic layers and if the total eff
remains small compared to the unperturbed quantities,
first Born approximation can be used in each layer as in
~4.1!. The total effect is obtained like in Sec. III D by sum
mation of the effects of each anisotropic layer calcula
independently as in Eqs.~4.2!.

B. Linear magneto-optics

When the anisotropy is due to a steady magnetizationMm
of arbitrary direction, the tensorD«m is antisymmetric to
first order in the magnetization and Eq.~4.1! can be written
as

D1Pm~z!5«0gmMm∧Em1
0b ~z!. ~4.3!

We see thatgmMm plays the role of a gyration vector23 act-
ing on the b-polarized exciting field Em1

0b (z). The
a-polarized waves induced this way are obtained by sub
tution of D1Pm(z) into Eqs. ~3.14!, and Eqs.~4.2! can be
rewritten as
23542
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D1R1 f
ab5

2 ik0
2

2k1
gmMm•Cm11

ab , ~4.4a!

D1T1 f
ab5

2 ik0
2

2k f
gmMm•Cm f1

ab ~4.4b!

with

Cm~1,f !1
ab 5E

0

l m
ēm1,f

0a ~z!∧em1
0b ~z!dz. ~4.4c!

From these compact expressions one readily deduces
usual MO properties. The magneto-optical effect only ari
when the magnetization, the extraction vector, and the ex
ing field are not in the same plane. For a normal inciden
the magnetization must have az component. WhenMm is in
the incidence plane,DR1 f

ab and DT1 f
ab are nonzero only for

aÞb. Conversely, whenMm5Mmy, i.e., perpendicular to
the incidence plane~transverse geometry! and thus parallel to
the s fields, only DR1 f

pp and DT1 f
pp are different from zero.

Moreover,ēm1
0a (z) being the symmetrical ofem1

0a (z) with re-
spect to theyOz plane, Eq.~4.4a! yields DR1 f

sp5DR1 f
ps if

Mm5Mmz andDR1 f
sp52DR1 f

ps if Mm5Mmx.
For a given magnetic layer, the magneto-optical signa

proportional to the volume limited by the three vectorsMm ,
ēm1,f

0a (z), and em1
0b (z) ~Fig. 5!. The optimal multilayer con-

figuration is obtained by the optimization of this volume.24

V. INHOMOGENEOUS AND NONLINEAR LAYERS

A. Fields radiated from DPm„r, t… outside the multilayer

The treatment of Sec. III C can be generalized to any d
tribution of polarization by considering the three
dimensional Fourier transform ofDPm(r ,t) written as

DPm~r ,t !5E DPq8v8m~z!exp@ i ~q8•r xy2v8t !#dq8dv8.

~5.1!

FIG. 5. ForMm5Mmz and ap-polarized incident wave, the MO
effect is described by the electric polarizationDPm(z) which radi-
atess-polarized waves in media 1 andf. Their complex amplitudes
are proportional to the volumeV1,f built from the magnetization
Mm , the unperturbed normalized exciting vectorem1

0p (z), and the
extraction vectorsēm1,f

0s (z).
1-6
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Here,q8 andr xy are the components in the interface plane
the wave vector and ofr . From the linearity of the unper
turbed system, the field radiated byDPm(r ,t) is the sum of
the fields radiated independently by each Fourier compon
For each componentDPq8v8m(z), the result of Sec. III C
holds whenqxx is replaced byq8•r xy . This component of
the polarization distribution generatess8-and p8-polarized
plane waves with respect toq8 propagating in the~q8,z!
plane. Omitting now the superscripts2 and 1, the
a-polarized emerging waves in media 1 andf are

DEq8v81,f
a

~r ,t !5DEq8v81,f
a uq81,f

a exp@ i ~k1,f8 •r2v8t !#. ~5.2a!

DEq8v81,f
a are the complex amplitude of the waves; the wa

vectors k185q82k18z and k f85q81k f8z are deduced from
q821k1,f825k08

2«1,f(v8) with k085v8/c; the polarization
eigenvectorsuq81,f

s anduq81,f
p are transverse to the direction

of propagation and respectively perpendicular and paralle
the propagation plane~q8,z!. The generalization of Eqs
~3.14! gives

DEq8,v81,f
a

5
ik08

2

2k1,f8
E

0

l m
ēq8v8m1,f

0a
~z!•

DPq8v8m~z!

«0
dz. ~5.2b!

The extraction vectorsēq8v8m1,f
0a (z) are the symmetricals with

respect to the plane perpendicular toq8 of the unperturbed
fieldseq8v8m1, f

0b (z) calculated in the unperturbed system ill
minated by a wave defined byq8 andv8.

The superposition of the outgoing waves provides
fields radiated in the external media by the polarizat
DPm(r ,t) as

DE1,f~r ,t !5 (
a5s,p

E DEq8v81,f
a

~r ,t !dq8dv8. ~5.3!

This expression accounts for both homogeneous and eva
cent waves ~when respectively q82,k08

2«1,f and q82

.k08
2«1,f! and therefore exactly gives the fields radiated

any point of the external media in far field and near field

B. Scattered fields by an inhomogeneous layer

Let us now consider a structure with a linear layerm of
weak inhomogeneity described by a small deviationD«m(r )
to the dielectric tensor«mII. The illumination from medium 1
by a b-polarized plane wave of frequencyv and in-plane
wave-vector componentq ~in Sec. III C q5qxx! induces a
polarization oscillating at the frequencyv ~as the optical
effects in layerm are linear! ~see Fig. 6!. In the first Born
approximation the Fourier components ofDPm(r ,t) are

D1Pq8m~z!5«0D«m~q82q!~z!Eqm1
0b ~z!, ~5.4a!

whereD«m(q82q)(z) is the two-dimensional Fourier compo
nent ofD«m(r ) associated to the modulationq82q. By sub-
stitution into Eq.~5.2!, we find the complex amplitudes o
the waves scattered in media 1 andf for each Fourier com-
ponentq8 of the polarization:
23542
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D1Eq81,f
a

5
ik0

2

2k1,f8
E ēq8m1,f

0a
~z!•„D«m~q82q!~z!Eqm1

0b ~z!…dz,

~5.4b!

whereq821n1,f825k0
2«1,f . At this stage, Eqs.~5.3! yield the

fields scattered by the inhomogeneity as the superpositio
plane waves, known as the angular spectr
representation.11 This expression can be, for instance, appli
to the magneto-optical imaging of magnetic domains w
D1Pq8m(z)5«0gmMm(q82q)(z)∧Eqm1

0b (z). Note that inhomo-
geneity on a scale far below the wavelength induces highq8
components of the polarization which generate evanes
waves outside the system, detectable only by near-field te
niques. It can be shown that the amplitude of theseq8 com-
ponents generally tends to vanish with increasingq8,25 i.e.,
when the characteristic length scale of the inhomogen
~magnetic domain size! decreases.

C. Nonlinear optics: Second-harmonic generation

In the case of a nonlinear layerm, the first Born approxi-
mation is equivalent to the usual approximation neglect
the depletion of energy from the pump wave.14–16,26For in-
stance, the second-harmonic generation is described by
induced polarization

D1Pm~r ,t !5«0xm :Eqvm1
0b ~z!Eqvm1

0b ~z!exp@2i ~q•r xy2vt !#.
~5.5a!

The b-polarized exciting field associated tov andq induces
a polarization modulated at 2v and 2q. With 4q21k1,f82

54k0
2«1,f(2v), Eq. ~5.2! yields the amplitude of the

a-polarized second harmonic wave radiated in the exte
media:

D1Eq8v81,f
a

5
2ik0

2

k1,f8
E ēq8v8m1,f

0a
~z!•„xm :Eqvm1

0b ~z!Eqvm1
0b ~z!…dz.

~5.5b!

FIG. 6. Waves scattered by an inhomogeneous layerm embed-
ded in a multilayer.
1-7
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This relation holds for any multilayer as well as for bu
or surface nonlinear effects and generalizes the usually
ported expressions~see Fig. 7!.14–16 Nonlinear effects are
generally small and Eq.~5.5b! reveals the pertinent quant
ties, eq8v8m1,f

20a (z) and @Eqvm1
0b (z)#2, for the optimization of

this effect.

VI. PERTURBATION EXPANSION: EFFECT INDUCED
BY A THIN LAYER

In Sec. IV, the polarization induced in the layerm was
expressed within the first Born approximation, although
exact expression takes the form

DPm~z!5«0D«m„Em1
0b ~z!1DEm~z!…. ~6.1a!

In Sec. 2 of Appendix C, it is shown that this can be rew
ten as

DPm~z!

«0
5D«m~12dI m

zz!H Em1
0b ~z!1 (

g5s,p

em1
0g ~z!

T1 f
0g DEf

g

1
i

km
E

z

l m
Fm

E~z2z8!
DPm~z8!

«0
dz8J , ~6.1b!

where@z•(«I m•z)#dI m
zz5@z•zt#•D«m andFm

E(z2z8) is a 333
matrix. Starting fromDPm(z)'«0D«m(12dI m

zz)Em1
0b (z) @or

from the first Born approximationDPm(z)'«0D«mEm1
0b (z)#

and from the related approximation of the radiated fie
DEf

g1 calculated with Eqs.~4.2b!, Eq.~6.1b! gives a second-
order approximation ofDPm(z) and ofDEf

g1 . Subsequently,
DPm(z) can be derived from an iteration procedure. Th
iteration ~equivalent to the so-called Born series10–12 when
starting from the first Born approximation! gives directly the
results of the perturbative approach of the propagation i
gral equation proposed in Ref. 19.

When the layerm is thin (ukm
s l mu!1), whatever the mag

nitude of theD«m components with respect to«m , the last
integral term of Eq.~6.1b! can be neglected. A compact a

FIG. 7. Reflected and transmitted waves induced by illuminat
of a multilayer where a nonlinear layerm induces second-harmoni
generation.
23542
e-

s

-

s

e-

proximation of the perturbed reflection and transmission m
trices is thus obtained~Appendix C!:

DR1 f;D1dR1 f~12@TI 1 f
0 #21D1dT1 f !

21, ~6.2a!

DT1 f5D1dT1 f~12@TI 1 f
0 #21D1dT1 f !

21, ~6.2b!

where the components ofD1dR1 f andD1dT1 f are calculated
from Eqs.~4.2! whereD«m(12dI m

zz) is substituted toD«m .
This thin layer approximation, which neglects the las

term in Eq.~6.1b!, results from an approximation of the in
duced polarization or equivalently of the exciting fieldEm1
which can be considered as uniform. From Eqs.~6.2! and
the definition ofD1dR1 f andD1dT1 f , which gives the fields
radiated in media 1 andf whenEm1 is approximated by the
normalized unperturbed fieldem1

0b , we see that the thin laye
approximation decomposesEm1 as

Em15Em
s em1

0s 1Em
p ~12dI m

zz!em1
0p , ~6.3a!

with

S Em
s

Em
p D'~12@TI 1 f

0 #21D1dT1 f !
21S E1

s1

E1
p1D , ~6.3b!

whereE1
s,p1 are by definition thes and p complex ampli-

tudes of the incident waves in medium 1.

VII. RECIPROCITY PRINCIPLE IN MULTILAYERS

The transparency of the analytical descriptions of a va
ety of optical effects in multilayers proposed in this paper
mainly due to the notion of extraction vectors. These qu
tities describe the fields radiated into the external media
polarization distributions induced in the matter. In linear a
symmetric structures, the Lorentz reciprocity theorem27,28 is
a powerful tool to link polarizations and radiated field
modulated at the same pulsationv. Omitting the time modu-
lation exp@2ivt#, we consider in Fig. 8~a! the electromag-
netic fields@DE~r !,DH~r !# in the volumeV generated by the
electric and magnetic polarizations@DP~r 8!,DM ~r 8!# en-
closed in a volume V8; in Fig. 8~b! the fields
@DE~r 8!,DH~r 8!# in V8 are created by the polarization
@P~r !,M ~r !# enclosed inV. The Lorentz reciprocity theorem
states

n

FIG. 8. When fields and polarization have the same freque
v, ~a! the fields generated in a volumeV by a distribution of polar-
izations included in the volumeV8 are related by the Lorentz reci
procity theorem to~b! the fields generated inV8 by polarizations
included in the volumeV.
1-8
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E @DE~r !•P~r !2DH~r !•m0M ~r !#dV

5E @E~r 8!•DP~r 8!2H~r 8!•m0DM ~r 8!#dV8. ~7.1!

Let us now consider, as in Fig. 9~a!, a layerm character-
ized by the constitutive equations:

Dm~r !5«0«mEm~r !1DPm~z!exp~ iqxx!, ~7.2a!

Bm~r !5m0@mmHm~r !1DMm~z!exp~ iqxx!#. ~7.2b!

The fieldsDE1,f(r ), radiated in media 1 andf, are written
DE1,f(x)5DE1,f exp(iqxx) at the interfaces with the struc
ture. By definition their decomposition on thea-polarized
outgoing waves gives the amplitudes

DE1,f
a 5DE1,f~x!•u1,f

a exp~2 iqxx!. ~7.3a!

Therefore, referring to Sec. III D, if we choose in the extern
media the electric polarization distributions

P1,f
a ~r !5

2«0k1,f

ik0
2 u1,f

a exp~2 iqxx!d1,f ~7.3b!

and the magnetic polarizationM1,f
a (r ) equal to zero, we di-

rectly find by substitution into Eq.~7.1!

DE1,f
a 5

ik0
2

2k1,f

3E
0

l mF ēm1,f
0a ~z!•

DPm~z!

«0
2h̄m1,f

0a ~z!•m0DMm~z!Gdz,

~7.4!

whereh̄m1,f
0a (z)5b̄m1,f

0a (z)/(m0mm). This exact expression di
rectly gives the result of Eqs.~3.14! if the magnetic polar-
ization DMm is equal to zero. As already mentioned, t
radiation of several distributions of polarization in differe

FIG. 9. ~a! The field radiated in medium 1 by a polarized lay
m embedded in a multilayer is derived from the reciprocity theor
when considering ~b! the polarization distributions P1

a(r )
5P1

au1
a exp@2iqxx#d1 with ik0

2P1
a52«0k1 radiating in the unper-

turbed system, which induce in the layerm the fields

$ēm1
0a (z),h̄m1

0a (z)%exp@2iqxx#.
23542
l

layers is the linear summation of the fields given by Eq.~7.4!
radiated independently by each polarized layer.

Equation ~7.4! holds for all the optical properties dis
cussed in the previous sections. In particular, although
is derived from the reciprocity principle, this calculatio
is valid in the case of antisymmetrical media~like, for in-
stance, magneto-optical or inhomogeneous layers!, as long
as all the antisymmetry is taken into account in the pol
ization distributionsDP and DM .29 Finally, Eq. ~7.4! also
describes the optical properties of bianisotropic media
which the first Born approximation is D1Pm(z)
5D«mEm1

0b (z)1DjmHm1
0b (z) and D1Mm(z)5DzmEm1

0b (z)
1DmmHm1

0b (z) whereDjm , Dzm , Dmm are 333 tensors.

VIII. CONCLUSION

In this paper, we describe specific optical properties
materials embedded in a layered structure in terms of
duced distributions of polarization. The expressions of ths
and p components of the outgoing waves radiated by th
polarizations are compact, transparent and evidence three
evant quantities: the exciting field, a susceptibility tensor a
an extraction vector.

The extraction vectors are easy to calculate exactly
they are characteristic of the structure free of polarizat
distributions, that we call unperturbed system. The susce
bility tensor describes the considered optical property of
material. The exciting field can be derived by iterative p
turbation calculation. For weak optical effects, the first Bo
approximation can be applied and the exciting field is a
calculated in the unperturbed structure. In the thin la
limit, an analytical approximation of the whole iteration
given.

The treatment applies to a large variety of systems an
particularly well suited to magneto-optics. The description
first-order Kerr and Faraday effects is straightforward a
only requires the 232 matrix calculation of the fields in the
unperturbed system~i.e., when the magnetization is consid
ered as equal to zero!. Nonlinear properties, as second ha
monic generation of particular interest in magnetic multila
ers, and scattering by optical inhomogeneities, for instan
originating from magnetic domains~even at subwavelength
scale!, are described in the framework of the same form
ism.

Finally, we underline that the quantities involved in o
formulas, characteristic of the structure and of the geome
~incidence angle, reflection, and transmission, near-field
far-field! are very easy to handle and calculate. This allo
the development of simple procedures for designing o
mized structures and measurement configurations.
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APPENDIX A: 2Ã2 MATRIX FORMALISM IN THE
UNPERTURBED STRUCTURE

According to Sec. III B, the eigenvalues and the polariz
tion eigenvectors in an isotropic layerj of dielectric constant
« j are
1-9
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k j5~k0
2« j2qx

2!1/25k j
1,352k j

2,4, ~A1a!

uj
1,25y, uj

3,45~k j
3,4x2qxz!/kj . ~A1b!

The diagonal propagation matrixDj (z), deduced from Eqs
~2.4! and ~2.6!, takes the form

Dj~z!5FDj
s~z! 0

0 Dj
p~z!

G ~A2a!

with

Dj
s~z!5Dj

p~z!5Feik j z 0

0 e2 ik j zG . ~A2b!

Using Eqs.~2.4! and~2.5!, the resolution of Eq.~2.7! shows
that theAj matrix is also 232 block diagonal:

Aj5FAj
s 0

0 Aj
pG , with Aj

a5cj
aF 1 1

2aj
a aj

aG , ~A3!

whereaj
s5k j /k0 , aj

p52k j /(k0« j ), cj
s51, cj

p5nj .
The matrix Nj (z)5AjDj (z)@Aj #

21 is therefore a 232
block diagonal. Each block writes

Nj
a~z!5cos~k j z!J22 i sin~k j z!F 0 1/aj

a

aj
a 0 G . ~A4!

Mf 1 , defined in Eq.~2.8!, is also a 232 block diagonal
matrix. Each block operates in Eq.~2.1! separately on thes
andp eigenmodes:

S Ef
a1

0 D5Mf 1
a S E1

a1

E1
a2D 5@Af

a#21 )
j 5 f 21

2

Nj
aA1

aS E1
a1

E1
a2D .

~A5!

The resolution of Eq.~A5! yields the reflected and transmi
ted fields.

APPENDIX B: FIELDS RADIATED BY A POLARIZED
LAYER

1. Inner product

To derive useful properties of the unperturbed fields,
define the ‘‘inner product’’ of two vectorsw1 andw2 by

w1∧w25S w1

w18
D∧S w2

w28
D5w1w282w18w25det@w1 ,w2#. ~B1!

We note that for any 232 matrix M, det@Mw1 ,Mw2#
5det@M#det@w1 ,w2#, and if det@M#51, det@w1 ,Mw2#
5det@M21 w1 ,w2#. The first relation can be applied to th
unperturbed fields if we calculate det@A1,f

a # and use
det@Nj

a(z)#51 to derive

f̄m1
0a ~z!∧fm f

0a~z!5 f̄11,f 1
0a ∧f1 f , f f

0a 522
k f

k0
T1 f

0a522
k1

k0
Tf 1

0a ,

~B2!
23542
e

wheref1 f , f f
0a and f̄11,f 1

0a are the fields inF representation nor-
malized to the incident waves amplitude at the interfa
with the external media. With the second relation we deri
for example,

f̄m1,m f
0a ~ l m!∧@Nm

a ~ l m2z!DPm
a ~z!#5 f̄m1,m f

0a ~z!∧DPm
a ~z!.

~B3!

2. Radiated fields by a polarized layer towards the outside of
the layered structure

To obtain the electromagnetic fields radiated in the ex
nal media by the polarization distribution of Eq.~3.7!, we
use Eq.~3.13! ~where we omit the superscripts2 and 1
to simplify the notations!:

fm1
0a ~ l m!

T1 f
0a DEf

a2
fm f
0a~ l m!

Tf 1
0a DE1

a

52 ik0E
0

l mNm
a ~ l m2z!

DPm
a ~z!

«0
dz. ~B4!

Performing successively the inner product withf̄m1
0a ( l m) and

f̄m f
0a( l m) in Eq. ~B4!, we derive from Eq.~B2!

DE1,f
a 5

ik0
2

2k1,f
E

0

l m
f̄m1,f
0a ~ l m!∧Nm

a ~ l m2z!
DPm

a ~z!

«0
dz

~B5a!

which turns with Eq.~B3! into

DE1,f
a 5

ik0
2

2k1,f
E

0

l m
f̄m1,f
0a ~z!∧

DPm
a ~z!

«0
dz. ~B5b!

From the expression ofDPm
a (z) defined by Eqs.~3.9! and

~3.10! and from the substitution ofqxcbm1,f
0y (z)/k0 by

2«mem1,f
0z (z) in fm1,f

0p (z) @as obtained by Eq.~3.8b! in the
unperturbed structure# we derive as in Eqs.~3.14!

DE1,f
a 5

ik0
2

2k1,f
E

0

l m
ēm1,f

0a ~z!•
DPm~z!

«0
dz. ~B6!

When the polarized layerm is embedded in an infinite
medium of dielectric constant«m , let us remark that the field
radiated above the layer~respectively under the layer! is ob-
tained by action of the extracting vectorūm

a1 exp@ikmz#
5um

a2 exp@ikmz# ~respectively ūm
a2 exp@ikm(lm2z)#

5um
a1 exp@ikm(lm2z)#!. The only components of the pola

ization which radiate are those transverse to the direction
propagation of the outgoing waves.16 This general result al-
lows us, for instance, to interpret the zero reflectivity
Brewster’s angle where the induced dipoles point in the
rection of propagation of the reflected wave.27
1-10
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APPENDIX C: INTEGRAL EQUATIONS
OF THE RADIATED FIELDS

1. Radiated fields inside the polarized layer

To obtain the electromagnetic field radiated inside the
larized layer, it is convenient to integrate Eq.~3.10! between
the altitudesz and l m to deduce

DFm
a ~ l m!2Nm

a ~ l m2z!DFm
a ~z!

52 ik0E
z

l mNm
a ~ l m2z8!

DPm
a ~z8!

«0
dz8. ~C1!

Using Eq.~3.12b! for the expression ofDFm
a ( l m) and after

multiplication of Eq.~C1! by Tm
a (z2 l m) we obtain

DFm
a ~z!5

fm1
0a ~z!

T1 f
0a DEf

a1 ik0E
z

l mNm
a ~z2z8!

DPm
a ~z8!

«0
dz8.

~C2!

DFm
a (z) givesDEm1

x,y(z) andcDBm1
x,y(z), thex andy compo-

nents of the radiated electromagnetic field at the altitudz.
To obtain thez components of these fields, we use Eqs.~3.8!
to derive

DEm1~z!1
DPm

z ~z!z

«0«m
5 (

a5s,p

em1
0a ~z!

T1 f
0a DEf

a1
i

km

3E
z

l m
FI m

E~z2z8!
DPm~z8!

«0«m
dz8,

~C3a!

cDBm1~z!5 (
a5s,p

cbm1
0a ~z!

T1 f
0a DEf

a2
ik0

km

3E
z

l mKm~z2z8!∧
DPm~z8!

«0
dz8, ~C3b!

where we introduce the notations

Km~z!5qx sin~kmz!x1km cos~kmz!z, ~C4a!

FI m
E~z!•P5km

2 sin~kmz!P1km•@Km~z!•P#. ~C4b!

2. Approximation of small thickness for an anisotropic layer

When the multilayer is illuminated by ab-polarized
wave, the polarization DPm(z)5«0D«m@Em1

0b (z)
1DEm1(z)# is induced in the anisotropic layerm. With Eq.
~C4a! we derive
n

23542
-

DPm~z!

«0
5D«m~12dI m

zz!H Em1
0b ~z!1 (

g5s,p

em1
0g ~z!

T1 f
0g DEf

g

1
i

km
E

z

l m
Fm

E~z2z8!
DPm~z8!

«0
dz8J . ~C5a!

DEf
g is given as a function ofDPm(z) by Eq. ~3.14b! and

dI m
zz5

@z•zt#D«m

z•~«I mz!
. ~C5b!

If the radiation of the polarization is weak(DEf
g/T1 f

0g

!E1
b1), the two last terms in Eq.~C5a! can be neglected an

the equation reduces toDPm(z)'«0D«m(12dI m
zz)Em1

0b (z).
By normalization to the amplitude of the incident wave, Eq
~3.14! yields the first-order perturbed reflection and transm
sion coefficients as

D1dR1 f
ab5

ik0
2

2k1
E

0

l m
ēm1

0a ~z!•@D«m~12dI m
zz!•em1

0b ~z!#dz, ~C6a!

D1dT1 f
ab5

ik0
2

2k f
E

0

l m
ēm f

0a~z!•@D«m~12dI m
zz!•em1

0b ~z!#dz. ~C6b!

Note that, ifD«m is small when compared to«m , Eq. ~C5b!
shows thatD«m(12dI m

zz) can be approximated byD«m and
Eqs. ~C6! are identical to Eqs.~4.2! calculated in the first
Born approximation.

Whatever the value ofD«m elements compared to«m , if
we consider now athin layer (ukm

s 6kmu l m!1), we can
approximate the integrals in Eqs.~C6! by the quantities
l mēm1,f

0a
m1,f
0a

•@D«m(12dI m
zz)•em1

0b # and it can be shown that th
last term in the bracket of Eq.~C5a! is negligible. However,
the second term in the bracket has to be conserved.
normalization of Eq.~C5a! to the amplitude of the inciden
wave turnsDEf

g into DT1 f
gb and using Eq.~3.14b! we deduce

in this approximation of the whole iteration:

DT1 f
ab'D1dT1 f

ab1 (
g5s,p

D1dT1 f
ag@T1 f

0g#21DT1 f
gb . ~C7!

Equation~C7! is the ab component of the matrix equatio
DT1 f'D1dT1 f1D1dT1 f@TI 1 f

0 #21DT1 f . The solution yields
an approximation ofDT1 f which can be used into Eq.~C5a!
to derive an approximation ofDR1 f with Eq. ~3.14a!:

DT1 f'D1dT1 f~12@TI 1 f
0 #21D1dT1 f !

21, ~C8a!

DR1 f'D1dR1 f~12@TI 1 f
0 #21D1dT1 f !

21. ~C8b!
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