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General analytical treatment of optics in layered structures: Application to magneto-optics

P. Bertrand, C. Hermann, G. Lampel, and J. Peretti
Laboratoire de Physique de la Mate Condense (CNRS-UMR 7643), Ecole Polytechnique, 91128 Palaiseau Cedex, France

V. |. Safarov
Groupe de Physique des Etats Condsn@NRS-UMR 6631), Faculies Sciences de Luminy, Universike la Maliterranee,
B.P. 901, 13288 Marseille, France
(Received 24 April 2001; published 29 November 2001

We have derived compact and interpretable analytical expressions to describe the magneto-optics in layered
structures for all orientations of magnetization and incident angle. In our approach, the multilayer system is
considered as nonmagnetic and the magneto-optical effect is described by an induced electrical polarization.
The electromagnetic waves radiated by this polarization are calculated via a propagative treatment and are also
shown to directly derive from the Lorentz reciprocity theorem. The expressions of the magneto-optical com-
ponents of the fields transmitted and reflected in the external media are easily interpretable. Only three relevant
guantities are involved: the exciting field, the magnetization, and an extraction vector. The practical calculation
is very simple in the framework of the first Born approximation as tke 4natrix formalism is replaced by a
2X2 matrix resolution. The whole approach is not restricted to magneto-optics and the case of a variety of
other systems exhibiting weak induced polarizations originating from anisotropy, bianisotropy, nonlinearity, or
inhomogeneity is treated. Higher-order approximations are also discussed and an analytical approximation for
large induced polarizations in thin layers is derived.
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[. INTRODUCTION configuration, avoid the calculation of the eigenmodes by
perturbative treatments of the propagation in the anisotropic
The recent progress in growth techniques enables thiayers®® However, these methods do not exempt from the
elaboration of layered magnetic structures with magneticedious 4<4 matrix calculation and the final expression of
characteristics very different from the ones of bulk materialsthe solution remains complicated.
This opens a wide field of new experimental situations and In scattering problem¥3the optical response of matter
technological applications. In particular magneto-opticalis often described in terms of induced electrical or magnetic
(MO) properties may be tuned but often to the expense opolarizations as sources of electromagnetic radidfidh.
complexity of the film structure. In order to get a physical This approach gives an insight into the physics and separates
insight into the optics of these materials an analyticalthe problem into two parts: first the determination of the
simple, and interpretable description is mandatory. sources induced by the exciting fields, then the calculation of
Up to now, the usual theoretical studies on light propagathe radiated fields. No related method was developed for
tion in anisotropic layered structures have been developed if&yered structures except in nonlinear opfit<t® However,
the framework of a &4 matrix formalism as a generaliza- j; has peen recently evidenced in the case of a simple mag-
tion of the isotropic case described in the pioneering?2  otic |ayered structure that the linear magneto-optical re-

- : el
matrix analysis of Abete” Among these approaches the caseg, s only depends on three interpretable quantities: the

of magneto'OPt'CS n mgltﬂayer structures was treated byexciting field, the magnetization, and an extraction fattor.
Smith? Then, a very similar calculation, originally devoted

to optics in linear birefringent mediawas extended to arbi- In the prgsent pap(?r we deyagp, in the framework of the
trary anisotropic materiafsMost of the papers, devoted to macroscopic Maxwel_l N eq”?‘“o . general trgatment of
the particular case of the first-order MO effects in weak optlcall effects in multllayer§ with a special focus on
multilayers®—® extensively use such ax4 matrix formal- magneto-optics. Our_flna! expressions of the reflected_, trans-
ism. Unfortunately, it is commonly admitted that these prc,_mltted, or scattered fl_eld_(s.e., of the measurable quantitjes
cedures lead to an “algebraic morads’and provide &€ compact and easily mterpretz_able. In Sec. I, we recall_ the
“complicated” ® or “cumbersome™ expressions of the mea- Main stages of the usuak4 matrix methods and give defi-
surable MO quantities. Their practical utilization is, even innitions used in the subsequent calculations. In Sec. Ill, we
simple cases, mainly restricted to computer calculation. derive the fields generated by a distribution of electrical po-
One of the main disadvantages of the usuaé4matrix  larization located inside a multilayer. In Sec. IV, the first
method is the calculation of the propagation eigenmodes iBorn approximation is used to obtain a simple expression of
the magnetic layers. Only in very particular geometfibe  the electrical polarization originating from a weak anisotropy
polar MO effects in normal incidengéhis calculation is sig- in a homogeneous layer. The expressions of linear magneto-
nificantly simplified as it reduces to ax2 matrix analysis.  optical effects in multilayers are deduced for any magnetiza-
However, alternative approachésot specifically dedicated tion direction, incident angle, incident light polarization, and
to magneto-optigs valid for any geometrical and magnetic number of magnetic layers. In Sec. V, this approach is ex-
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—koslf qx+ Klf and ky¢-E;¢=0. Consequently, k;
=q,Xx— k12, ki =q,x+«z, and the fields of the waves
transverse to the directions of propagation can be linearly
decomposed on the and p-polarization directions, respec-
tively, perpendicular and parallel to the plane of incidence.
For an incident wave defined by the complex amplitugig’s
andE)", the reflected and transmitted waves are then re-
spectively given byE;™, E}™ andE{", EP". These four
unknown quantities are generally written as the solutions of
the following set of four linear equations:

ES E}"
0 ES

V= EP =Mji P+ =MuV.. (20
0 =

FIG. 1. Multilayer system illuminated from medium 1 8yor — The four-component vectols; andV; describe the fields in
p-polarized waves of complex amplitude§®" at an incidentangle  media 1 and at the interface with the structure and the4:
gé ; ;:?h:2-pg:Ehmt?]ewr;awvletjl\;eit?rTEZmrsggzqizafnr;fén'Zlo tlrso p(?((:mc;f matrix M;, expresses the propagation throughout the whole
v u ultilayer. [ i i ; 57,9 o .
dielectric constant, ; and gny layejj of thicknessl; is character- system. In the 2*4.matr|x methods My is first derived
1f ] and then Eq(2.1) is solved.

ized by its dielectric tensog;. The complex amplitudes of the In some cases, it may be useful to decompose (Ed)
and p-polarized reflected and transmitted waves &g~ and ’ Y P

ESP into two sets of two linear equations which define the matri-
o ces of transmissiofi s and reflectionR;; as
tended to weak induced polarizations originating from inho- s s
R R . . Es+ T p Es+

mogeneity(such as magnetic domajnand nonlinearity. In f if lif 1 (2.29
Sec. VI, the iterative procedure for higher-order expansion E?+ TS E)T ) '
(beyond the first Born approximatipns indicated and a
simple approximation of the full solution is obtained which s— ss o+

. . L . A E R} =
applies to large induced polarization in thin layers. In Sec. o- | =| _os ;Jr ) (2.2b
VI, we show that our compact expressions directly derive El RYF RYPJ\EL

from the Lorentz reciprocity principle. It is then straightfor-
ward to treat the chirality or bianisotropy as induced electri-

cal and magnetic polarizations. Concluding remarks are
given in Sec. VIII. In the standard %4 matrix formalisn?=>" the electro-

magnetic field in a layeyris represented by a combination of
the plane-wave solutions of the wave equation which, from
the Maxwell's equations, takes the form

B. Derivation of the 4X4 propagation matrix

IIl. STANDARD 4 X4 MATRIX FORMALISM
A. Equation of propagation

Let us consider an anisotropic multilayer structure like in (ké§J_kj2)Ej+(ki “Ejk;=0, 2.3
Fig. 1 sandwiched between two sem| |nf|n|te isotropic media
1 andf of dielectric constant = nl andes= nf. Each layer
j is homogeneous and characterized by its thickheasd its
dielectric tensog;=¢;l + Ag;, wherel is the 33 unit ma-

2Cj

trix and Ag; the anisotropic part of the tensor. In medigm

whereky= w/c is the wave number in vacuum. Since from
Snell-Descartes lak;=q,x+ «;z, the unknown quantities
arexj andE; while BJ- is derived fromeB;=k;UE;/ky. The
resolution of Eq.(2.3) gives in the more general situation a

2 plane we wave of frequency and wave vectok. is repre- quartic equation fok; which yields four complex eigenval-
P quency ! P ueskj for o=1, 2, 3, or 4, associated to four complex po-

t E B K:-r—wt)]. The elect - o . . . .
sented bAE; ,Bjjexfi(k;-r o). The electric and mag larization elgenvectoruj’ that we define of unit amplitude.

netic complex vector$Ej ,Bj} define its amplitude and po- he elect ic fleld be d q i
larization. In the external medium 1, a plane wave associate§€ €lectromagnetic field can be decomposed as a linear
combination of these waves. If we define t&¢ as their

with ki =q,x+ «,z propagates in theOzplane and is inci-
1 = GhoCr K1z propag P complex amplitudes and write the fields as

dent at the angl®, from the normalOz to the surfacex, {E/(2).B,(2)}extTi(c x—wt)], where the altitude is defined

>0 andq,=k; sin#;). The illumination of the structure in- ;
duces reflected and transmitted waves in media 1fangt 25 respectively equal to Z€ro ahdat the upper and lower
faces of the layer, we obtain

spectively, associated with, andk; .

From Snell-Descartes law, the components of the wave 2
vectgrs parallel .to the interfaces are conseryeq thrpugh the E(2)= 2 E (2)u 2 e« ](r (2.4)
multilayer. The isotropy of the external media mphle%f o=1
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4 In comparison, the case of @sotropic layered structure,
cBj(2)= > E{(2)kj Oui’ k. (2.5  solved by a&2x2 matrixresolution is much more simple. In
o=1 the following, we show that the calculation is largely reduced
o o . and the result particularly transparent when the weak anisot-
Consequently, the electric-field distribution within each ropy (such as magneto-opticis considered as a perturbation

homogeneous anisotropic layer can be expressed by the foYige 1o the isotropic cagehere the anisotropy is supposed
complex amplitude€;’(z) which constitute the components equal to zern

of the vectorV,(z) defined by
I1l. RADIATED FIELDS FROM AN EMBEDDED

1
Eiz(z) POLARIZATION
Ef(z
Vi(z)= EJ-3EZ; =Dj(z—2")V(Z"). (2.6 A. “Internal” polarization and radiated fields
Ejfl(z) The macroscopic Maxwell’s equations are written in the
! layer m as
The 4x 4 propagation matrisD;(z—z") only contains diag-
onal terms exjpix’Z] [see Eq(2.4)]. __9Ba(D)
, i . , o rot E(r,t) , (3.139
At the interface between medjandj + 1, the continuity at
of the in-plane components of the electromagnetic field can
i : =F.(.) wi i inition: ID(r,t
be written asF;. ;(0)=F;(l;) with the following definition: ot Bo(r )= g n;i ), (3.1b
EY(z
cB]’E(z)) and the material equation as
(7)= i = AV,
F@= cryg) | =A@ 2.7 Do(r 1) =808 nEm(T) L AP(F1).  (3.10
E(2)

In this formulation, a specific optical propertgnisotropy,

; - inhomogeneity or nonlinearilyis described by an internal
;ﬁjeli aan?j y4c?rigg(ngsgsugzg frimrﬁqéss?zagd;ﬁ dszza%d distribution of polarizatiom P, (r,t) induced by the interac-
i (2. ),

o : tion of the electromagnetic field with matter. This evidences
considering the propagations through every layer and the

o . ; i . and separates the considered physical effect fronisioéro-
continuity relations at every interface, we finally obtain the _. : . .
. . pic, homogeneous, and lingaresponse defined by the di-
propagation matrix of the whole structure as lectri
electric constang,,.

2 If the optical properties of all the layers are written as in
_ 41 -1 Eqg. (3.10, the structure is described as a set of isotropic,
= D A , 2.8 .
Miu=A jzl;l_l (A DA DAL 29 homogeneous, and linear layers, that we call the unperturbed

system, in which several induced distributions of polariza-

whereD;=Dj(l;). From this relation one deduces the set oftion AP,,(r,t) radiate. The unperturbed system being linear,
four linear equationg2.1) required to obtain the four un- the fields in any layej can be written

known complex amplitude&; ™, EY ™, E;", andE} ™ of the
reflected and transmitted waves. [Ej(r,t)} _[E?(f,t)) [AEj(r,t)] .
Bj(r,t)] [ BP(r.n)) " [ABy(r,t)]” 32

C. Perturbative approach of the propagation

in anisotropic media The unperturbed field$E;(r,t),B;(r,t)} are obtained by

taking all the polarization distributions equal to zero. The
The standard %4 matrix treatment ofweak anisotropyn  fields AE;(r,t) andAB;(r,t), radiated by all the polarization

multilayers usually begins by approximating the propagationistributions in the unperturbed system, are equal to the lin-

in the anisotropic layer. This is tediously performed by cal-ear sum of the fields radiated independently by each

culating approximations of the eigenvalue§ (which are AP, (r,t) (the others being taken equal to zero

solutions of a quartic equatipand of the eigenvectorg’ in

order to deriveD; and.4; . These successive calculations are B. Unperturbed fields and dimensionless quantities

in fact not needed. Indeed, as shown by £98), the propa- .

gation in the anisotropic layeris fully described by the !N any layerj of the unperturbed system, the wave equa-

particular product of matrices/;=.4;D;A; * which can be tion (2.3) reduces tck;-Ej=0 and toxj :koii_qx which

directly obtained by a perturbation treatment in the frameYi€lds two opposite solutions. We defirg=«; = —«; the

work of the Berreman formalisth'® However, whatever the solution with positive real and imaginary parts, so that the

method used for calculating the propagation in the anisoSUPerscripts- and + indicate the upwards and downwards

tropic layer, the &4 matrix methods always lead to a com- directions of propagation of the waves. We choage'=

plicated expression oft;;. Then, the resolution of Eq2.1) ~ — ;"= «; and decompose the transverse fields in E2s)
generally requires computer calculation to provide the opti-and (2.5 on the polarization eigenvectouﬁ*zz ujs*'*zy
cal response of the structufe>’:919 and uP*=uP™ " =y0Ok"7/k;, where the superscripts
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FIG. 2. llluminations, from media 1a or f (b) by unit
a-polarized plane waves associated to the sgmenduce the nor-
malized unperturbed fieldqﬂ’fivf(z)exqux] in the layerm of the
isotropic unperturbed multilayer structure.

andp refer to the usual definition of theandp polarizations
of the waves. All the matrice®;(z), A;, 7;, and My,
defined in Sec. Il becomeX2 block diagonal, each block
being writtenDj'(z), A", N}', and Mf; (see Appendix A
where «a stands fors or p. Equation(2.1) reduces to two

independent sets of two linear equations with the two un-

known quantitiesE*~ andE{** :

" E?a+ E
ae=(%y |-

Oa+

sl ).
The 4x4 matrix treatment reduces to a2 matrix formu-
lation where the propagation of tlseandp-polarized waves
are uncoupled. This property remains in theepresentation
when defining in any laye.

En(2) ) (

, FOP(2)=
CB%X(Z) m( )
The fields at the altitude inside the layef are related to the
a-polarized fields in media 1 anfdby

cBY(2)

0s —
Fm(®)= E%(2)

). (3.4

FO*(2) = NN (2)NASVI = [NVFANT (1 — 2) ] TAf Ve,

3.9

where for i<]j and N]—“(z):
Afo(z)[Aj"]’l.

To describe the effect of the distribution of polarizatio

Nﬁ:N’jﬁyfl"'Niqul

tities of the unperturbed system. For a given valug,gfwe
consider two (virtual) illumination conditions where the
a-polarized incident wave comes eith@ownward$ from
medium 1[Fig. 2@] or (upward$ from mediumf [Fig.

2(b)]. In each case, the unperturbed fields inside the layer

are Wntten{
ciated toF%%
incident waveEmlf(z) lf(z) andF 1f(z) turn into the
dimensionless quantitleemlf(z) bmlf(z) and fmlf(z)
This defines, for the incidence from mediun{réspectively
f), R%* andT9# (respectivelyR}< andT{%) as the amplitudes

1f(Z)

%% (z)texdi(gx—wt)] and are asso-

of the unperturbed reflected and transmitted waves. Using

PHYSICAL REVIEW B34 235421

op —=0p
emi(2)-X = - ey (2).x

b (2).y = - by (2).y

relations between

m1(2) yexd —igx].

FIG. 3. Origin of the symmetrical
{ehi(2).bRi(2)Yexilia,X] and{efi(2), b}

Eq. (3.5), the two-component dimensionless vectif;(z)
are related to the unperturbed reflection and transmission co-
efficients, as, for instance,

0
f%ﬁ<o>=/\f;:1Ai”(Tgf), (3.6a
0 1 o TAF
fmoi‘(lm):[/\/?m] -A? 0 (3-6b)

It is also useful to consider the dimensionless quantities

_e',;lf(z) and bmlf(z) associated with thédownwards and

upwards incidences defined by-qg,. From Fig. 3, we see
thateds (z) andeds ((z) are symmetrical with respect to the
yOzplane(oppositex components and identicglandz com-

ponents, while by ((z) andb lf(z) are symmetrical with
respect to theOx axis (opposney and z components and

identical x components®® Note that consequent@olf(z)
_folf(z) andf mlf(z) _folf(z)

C. Equation of propagation in a polarized layer
Let us now assume that the internal polarization in layer
m takes the form

AP (r,t)=AP(z)exdi(qx— wt)]. 3.7

The fields radiated byAP,,(r,t) in layer m can be written
{AE(2),AB(2)}exdi(gx—wt)]. By substitution of Eq.

n (3.7) into thez components of Eq<3.1), we find
AP (r,t), it is useful to define specific characteristic quan-

a,AE) (2)/kg=CcAB}(2), (3.8a

OxCABY(2)/ ko= — e AE%(2) —AP%(2)/ey. (3.8b

Eliminating cAB%,(z) and AE}(2) into thex andy compo-
nents of Eqs(3.1) and keeping the-derivative equatioR!
the propagation in layem is described by two independent

f(Z) By normahzatlon to the amplitude of the sets of two-component linear differential equationssand

p components:

AEL(2)

. [cABy(2)/ay,
97\ cABX(z)) = 'Km

anAEL(2)

0
0( AP%(Z)/S()) !
(3.93
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S - (R
Tﬁa £ Tﬁa A E1
1f fl

_ €1 (! APr(2)
— i :—|kof "N (ly—2) — = dz, (3.13
o X 0 €0
M1
L This equation of propagation links the still unknown com-
AP(z) expligxx] plex amplitudes of the waves radiated into the external media
B to the polarization distribution in layem, through quantities
9\4“ characteristic of the unperturbed system. This obviously re-
m . .
qx duces the calculations of the propagation through the whole

'NI &f system to a X2 matrix treatment.
|
ot

D. Waves radiated into the external media

FIG. 4. The electric polarizatioA P,,(z)exdig,x] in the layerm The solution of the equation of propagatit®113 is eas-
radiates in the unperturbed structure and induces outgoing waves ity obtained and takes the forfppendix B
media 1 andf with the same space modulation and the complex

1,2
amplitudesAES™ and AES™ . _ kg (lmg,  APp(2)
AE7 ——2K1 . em(2)- 2 dz, (3.14a
] (cABVm(z) ~ AEX(z)/aP,
az| AEX(2) | =Ml apeaBY(2) L f‘mﬂaa APy (2)
AEf _Z_Kf o emf(z)- e dz (314b

. —APL(2)/eg
—iko aAPZ(2)/ (Kogoem) | (3.9 Equationg(3.14) express the extraction into the external me-
< o 1 dia of the fields radiated by the distribution of polarization
where apn= /Ko, am=—km/(Koem).” From the expres-  defined in Eq(3.7). These exact expressions are particularly
sion of the isotropic propagation mati¥;(z) given in Ap-  compact and transparent. They only require the2anatrix

pendix A, each Eq(3.9a and(3.9b can be written as calculation of the unperturbed vectoe; (z) defined in
SAFE INE Sec. Il B and identified now as extraction vectéts.
mo_y_ %¥m apoy i o Equations(3.14) also show that a plane wave can always
=——(0)AF koA leg (3.1 X S . ;
Jz (2) Jz (0)AFn(2) ~TkoA Pr(2)/20 (3.10 be considered as the radiation of a slice of dipoles. In par-

ticular, the amplitudes and polarization of the waves that
would be radiated towards the multilayer by the polarization
distributions Pf(r,t)=(2(‘30K1/ik5)ui"+ exdi(gx—wt)]5;
and P&(r,t) = (2gok; /ikg)u? ™ exdi(gux—wt)]&, located at

@ _ a the interfaces of the structure with media 1 d@n@s indi-
AFm(lm) = Ni(1m) AFr(0) cated by the Dirac delta function$ ;), could be obtained
Pr(2) with Egs. (3.143, usingu} =uf" anduf " =u{" as the
dz. 311 extracting vectors. These waves argolarized and have a

unit amplitude. As a consequence, these polarizations would

Except for the right-hand polarization term, this equationinduce respectively the unperturbed fieiﬂg(z) andeﬂﬁ(z)
takes the form of the propagation equation of theand in the unperturbed structure. Conversely, the polarizations
p-polarized waves in the unperturbed layer. with the same amplitude, associated-to|, and respectively

The fieldsAF(0) andAFg(1,), radiated in layemby  oriented alongi$ ™ anduf™" , would radiate the fieldg’4 (2)
the distribution of polarizatio\P,,(z), propagate through andégﬁ(z) in the unperturbed system.
the isotropic multilayer. Related outgoing waves of complex  Finally, as already mentioned in Sec. Ill A, if there are
amplitudeAE] ™ andAE{" are emitted in the external me- several polarized layers in the unperturbed structure, the
dia (Fig. 4). Using Egs.(3.6), the propagation from medium fields radiated in the external media are the linear sum of the
mto 1 andm to f is given by fields radiated independently by each distribution of polar-

ization iven Eqg3.14).

0 ) foi(0) ation as given by Eqg3.14)

a— | Oa
E: Te1

which defines the two-component vectofsF;(z) and
AP (2). The integration of Eq(3.10 through the layer
thickness vyields

Im A
=—ik0f NZi(lm—2)
0

€0

AF;(O):J\/glAg( A AES,  (3.123

IV. WEAK ANISOTROPY IN A HOMOGENEOUS LAYER:
LINEAR MAGNETO-OPTICS

Y L AEFT) M) .
AF(I m):[/\/?m] 1Af ( 0 ) = T AES + A. Fields geqerated by q homogeneous layer
Tif with weak anisotropy

(3.12 Let us now consider a multilayer containing an aniso-
From Egs.(3.1) and(3.12 we deduce tropic layer m with a dielectric tensor of anisotropic part

235421-5
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Ae, (Fig. 1). For ag-polarized wave incident from medium
1 and associated to a giveR defining the incidence angle,
the anisotropy induces a polarizatioAP,,(z) exdi(q,x
—wt)]. If the anisotropy is weakXe<epl) and the layer
thin enough so that the exciting field inside the anisotropic
layer does not differ significantly from the unperturbed field,
the induced polarization can be approximated by

Q¢

AP (2)=AP(2)=80AsnEY(2). (4.0)

This expression, known as the first Born approximation, can
be used in Eqgs(3.14 to give the fields radiated into the
external media. For a unit excitatidwhich turnsE2%(z)

into €22(2) in Eq. (4.1)], the corresponding complex ampli-
tudes of the reflected and transmitted waves are

FIG. 5. ForM,= Mz and ap-polarized incident wave, the MO
effect is described by the electric polarizatid®,(z) which radi-
atess-polarized waves in media 1 aridTheir complex amplitudes
are proportional to the volum@,¢ built from the magnetization
M, the unperturbed normalized exciting vec&ﬂﬁ(z), and the
extraction vectorgh;, ((z).

ik3 (Im
AlRffﬁ=2—K°1 fo (2 Aey ef(2))dz,  (4.29

iks (Im
AMTgP=52 f ani(2)- (hem-f(z))dz. (4.2D -
fJo

1pap_ <0 .CcaB
AR and A'TSF are approximations of the coefficients of AR 2K1 OmMen Cnis, (443
the perturbed reflection and transmission matrit&s; and
AT, defined byR;(=RY+ ARy and T =T5+ ATy, RY;
and ]"ff being the %2 diagonal unperturbed reflection and
transmission matrices. In the framework of the first Born,,ith
approximation, the procedure reduces to th&2matrix cal-
culation oféﬁﬁj(z) and €’4(z). Their variation withz are
determined by propagation factors like gxpx,z] so that
the integrals over the thickness of the layer, both analytically
and numerically, are easily performed. From these compact expressions one readily deduces the
. Three quantities arise: the dimensionless exciting fieldisual MO properties. The magneto-optical effect only arises
eX(2), the extraction vectcg)y; ;(z) and the anisotropic ten- when the magnetization, the extraction vector, and the excit-
sor. The interpretation is transparent: the exciting field intering field are not in the same plane. For a normal incidence,
acts with the anisotropy and induces an internal polarizatiomhe magnetization must havezaomponent. WheM , is in
which in turn radiates and generates plane waves in the exhe incidence planed R{¥ and ATi’fB are nonzero only for
ternal media. a# 3. Conversely, wherM,,=My, i.e., perpendicular to
If there are several anisotropic Iayers and if the total effecthe incidence p|anéransverse geomeﬂ'ﬁnd thus para||e| to
fremains small compared to E)he ungerturberc]ilquantities, thihe s fields, only ARPP and ATEP are different from zero.
irst Born approximation can be used in each layer as in E —Pa ; ; O :
(4.1). The total effoct is obtained fie in Sec. 11D by sum- +orco e eni(2) being he T st WS
mation of the effects of each anisotropic layer calculate pei 0 theybz ‘Z;}"fe' qr;s.' yle S ARy=AaRy |
m=Mpnz and AR = —ARY; if M,=Mpx.

independently as in Eq.2). For a given magnetic layer, the magneto-optical signal is
proportional to the volume limited by the three vectbfs,,

€4 (2), ande)i(z) (Fig. 5. The optimal multilayer con-
figuration is obtained by the optimization of this voluffe.

—ik?2

AlTlfﬁ:z_ngmMm' lefgl (4.4b

|m
Coivs = f . &4 (2)0eXi(z)dz. (4.40

B. Linear magneto-optics

When the anisotropy is due to a steady magnetiza#ign
of arbitrary direction, the tensohep, is antisymmetric to
first order in the magnetization and Ed.1) can be written
as

V. INHOMOGENEOUS AND NONLINEAR LAYERS

A. Fields radiated from AP, (r,t) outside the multilayer

AP (2) =809 M mDE,OTﬁ(z). 4.3 The treatment of Sec. Il C can be generalized to any dis-

. tribution of polarization by considering the three-
We see thag, M, plays the role of a gyration vecfdract-  gimensional Fourier transform a&P,(r,t) written as
ing on the p-polarized exciting field Eﬁﬁ(z). The
a-polarized waves induced this way are obtained by substi- B - , P
tution of AP,(z) into Egs.(3.14), and Egs.(4.2) can be APp(r,)=| APy om(Z)exdi(q’ -1y~ w't)]dq'de’.
rewritten as (5.1
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Here,q' andr,, are the components in the interface plane of
the wave vector and of. From the linearity of the unper-
turbed system, the field radiated ByP,,(r,t) is the sum of

the fields radiated independently by each Fourier component.
For each componenm\Py/, ,(2), the result of Sec. IlIC
holds wheng,x is replaced byq’-r,,. This component of
the polarization distribution generatess-and p’-polarized
plane waves with respect tq' propagating in the(q’,z)
plane. Omitting now the superscriptss and +, the
a-polarized emerging waves in media 1 anare

AEgrwrlyf(r,t) = AEg’w’l,fug’l,f eXF[' (ki,f L w't)] (523

AE[‘;,w,lvf are the complex amplitude of the waves; the wave
vectorsk;=q' —k;1z and k;=q' + «;z are deduced from FIG. 6. Waves scattered by an inhomogeneous layembed-
Q"%+ ki7=ki%e15(w’) with ky=w'/c; the polarization ded in a multilayer.

eigenvectorSJf],lvf and ug, 14 are transverse to the directions

of propagation and respectively perpendicular and parallel to ik%

a _ —Da 0
the propagation plandq’,z). The generalization of Egs. AlEq’l,f__zK/f €rm1i(2)- (Emm'fq)(Z)Eqﬁu(Z))dZ,
(3.14) gives L (5.4b
g ~ikg? flmée“ . APy yrm(2) dz  (5.2b whereq'?+ v;5=k3e . At this stage, Eqs(5.3) yield the
9w Lf 2K ¢ Q' ' mlf €0 ’ ' fields scattered by the inhomogeneity as the superposition of

plane waves, known as the angular spectrum
The extraction vector_e‘;f“w,m1 +(2) are the symmetricals with representatioft: This expression can be, for instance, applied
respect to the plane perpendiculargoof the unperturbed to the magneto-optical imaging of magnetic domains with
fieldse’ , . .(2) calculated in the unperturbed system illu- A'Pyim(2) = £09mMm(q' - o (2) DEgha(2). Note that inhomo-

minatecé wt;;lé wave defined ly andw’. geneity on a scale far below the wavelength induces bigh

The superposition of the outgoing waves provides thefomponents of the polarization which generate evanescent
fields radiated in the external media by the polarizationVaves outside the system, detectable only by near-field tech-
AP,(r,t) as niques. It can be shown that the amplitude of thgs5eom-

ponents generally tends to vanish with increagifgf® i.e.,
when the characteristic length scale of the inhomogeneity
AE 4(r,t)= E AEg,w,lf(r,t)dq’dw’. (5.3 (magnetic domain sizedecreases.
a=s,p !

This expression accounts for both homogeneous and evanes-  C. Nonlinear optics: Second-harmonic generation

; 2 12 2
cent waves (when respectively q'“<ko"¢,¢ and @ In the case of a nonlinear layer, the first Born approxi-
>ko“e1¢) and therefore exactly gives the fields radiated atnation is equivalent to the usual approximation neglecting
any point of the external media in far field and near field. the depletion of energy from the pump wals182°For in-
stance, the second-harmonic generation is described by the
B. Scattered fields by an inhomogeneous layer induced polarization

Let us now consider a structure with a linear layeiof
weak inhomogeneity described by a small deviatlon, (r) ~ A™Pm(rt) = goxm: Eqomi(2) Eqomi(2)€XH 2i (g 1y~ o) ].
to the dielectric tensae,,|. The illumination from medium 1 (5.59
by a B-polarized plane wave of frequeney and in-plane . o } }
wave-vector componerg (in Sec. 1llC q=q,x) induces a The ﬁ-pplaqzed exciting field associated &Dgndq mducezs
polarization oscillating at the frequenay (as the optical @ Polarization modulated ate2and 2. With 49+«
effects in layerm are lineay (see Fig. . In the first Bom  =4kje11(20w), Eq. (5.2 yields the amplitude of the

approximation the Fourier components®P,(r,t) are a-polarized second harmonic wave radiated in the external
media:
APy m(2)=eoAemq (2 Em(2),  (5.43
AlEar ’
whereAe g - (2) is the two-dimensional Fourier compo- Ao’ Lf
nent of Ae,(r) associated to the modulatiafi—q. By sub- 2ik§ ou o o
stitution into Eq.(5.2), we find the complex amplitudes of ZK—,f eqrw/ml,f(z)'(Xmiquml(Z)quml(Z))dZ-
the waves scattered in media 1 anfbr each Fourier com- Lf
ponentq’ of the polarization: (5.5b
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AE(r), AH(r) P(r), M(r)
\

v E(r’), H(r’)

®

Y
v QAPG), AMGr)

(@)

FIG. 8. When fields and polarization have the same frequency

qx 2qx w, (a) the fields generated in a volumveby a distribution of polar-
— T T el izations included in the volum¥’ are related by the Lorentz reci-
B+ procity theorem tab) the fields generated i’ by polarizations
Egof o+ included in the voluméy/.
2g:20f

Proximation of the perturbed reflection and transmission ma-

FIG. 7. Reflected and transmitted waves induced by illuminatio . . .
Y trices is thus obtaine@ppendix Q:

of a multilayer where a nonlinear layarinduces second-harmonic
generation. _ _
ARy~ AMRy(1-[T] ATy, (6.2a

This relation holds for any multilayer as well as for bulk 15 P
or surface nonlinear effects and generalizes the usually re- ATy=ATy(1- [Tyl "ATg) 5, (6.2b
ported expressiongsee Fig. 7.147® Nonlinear effects are

. > where the components @f'°R,; and AT, are calculated
generally small and Eq5.5b reveals the pertinent quanti-

from Eqgs.(4.2) whereAe(1— 87 is substituted ta\e,.

ties, eq’(zJa’ml,f(Z) and [Egfn,(2)]% for the optimization of This thin layer approximation which neglects the last
this effect. term in Eq.(6.1b), results from an approximation of the in-
duced polarization or equivalently of the exciting fiedg,,
VI. PERTURBATION EXPANSION: EFFECT INDUCED which can be considered as uniform. From E(&2) and
BY A THIN LAYER the definition ofA°Ry; andA*°Ty;, which gives the fields

h larization i in the | radiated in media 1 anflwhenE,,, is approximated by the
n Secc.i Ivltrt]. etﬁo ?'nztatéon induced in E[ € ayl?gwash it normalized unperturbed fiel , we see that the thin layer
expressed within the first Born approximation, although its, ., o imation decompose,, as
exact expression takes the form

AP(2)=e0Aem(Ep(2) + AEn(2)). (6.1a o= Enni SRR, 0%

In Sec. 2 of Appendix C, it is shown that this can be rewrit-Wlth . ot
ten as } (EE) ~(1—[T2f]_1ﬂ1f)_1( E§+) (6.3b
AZ”;(Z) =Aep(1- _5gnz)| E%A(2)+ y:z;’,p e:_;(l)(fyz)AEf where E3P" are by definition thes and p complex ampli-

tudes of the incident waves in medium 1.
i (/m AP, (Z’

+—f (Dﬁ(z—z’)m—()dz’ , (6.1b
KmJz e

0 VIlI. RECIPROCITY PRINCIPLE IN MULTILAYERS

z E N The transparency of the analytical descriptions of a vari-
wher.e[z~ (§m,' 2)1on=12-2]-Aep, and(I)m(z;z )O}BS a3x<3 ety of optical effects in multilayers proposed in this paper is
matrix. Starting fromAPy(2)~&oAem(1- 87) Eml(g) [or  mainly due to the notion of extraction vectors. These quan-
from the first Born approximatiod Pyy(2) ~s0AemEni(2)]  tities describe the fields radiated into the external media by
and from the related approximation of the radiated fieldsyolarization distributions induced in the matter. In linear and
AE}" calculated with Eqs(4.2b), Eq.(6.1b) gives a second-  symmetric structures, the Lorentz reciprocity thectefis
order approximation oA P,,(z) and ofAE}" . Subsequently, a powerful tool to link polarizations and radiated fields
APn(z) can be derived from an iteration procedure. Thismodulated at the same pulsatien Omitting the time modu-
iteration (equivalent to the so-called Born sefi¥s?when lation exg—iwt], we consider in Fig. @) the electromag-
starting from the first Born approximatipgives directly the netic fields[AE(r),AH(r)] in the volumeV generated by the
results of the perturbative approach of the propagation inteelectric and magnetic polarizationgAP(r'),AM(r’)] en-
gral equation proposed in Ref. 19. closed in a volumeV’; in Fig. 8b) the fields
When the layemiis thin (|«{l | <1), whatever the mag- [AE(r’),AH(r’)] in V' are created by the polarizations
nitude of theAe,, components with respect t,, the last  [P(r),M(r)] enclosed inv. The Lorentz reciprocity theorem
integral term of Eq(6.1b can be neglected. A compact ap- states
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» AET' u?- expligxx] | P<1xu(1x- expl-igxx181 layers is the linear summation of the fields given by &)

o=s,p | radiated independently by each polarized layer.
£ \m v ; £1 Equation (7.4) holds for all the optical properties dis-
L a1V cussed in the previous sections. In particular, although it

is derived from the reciprocity principle, this calculation
—0a ; is valid in the case of antisymmetrical medige, for in-
€1 (2) expl-igex] stance, magneto-optical or inhomogeneous l3yers long
1% (2) expl-iqux] as all the antisymmetry is taken into account in the polar-

Ll ization distributionsAP and AM.?° Finally, Eq. (7.4) also
describes the optical properties of bianisotropic media for
&f | &f which the first Born approximation is A'P.(2)

@ I ® =Ae,Eni(2) +AEHM(2) and AMy(2)=AEN(2)

+ApnHA(2) whereAén,, Alm, Au,, are 3<3 tensors.

FIG. 9. (a) The field radiated in medium 1 by a polarized layer

m embedded_ in a multilayer is deriv_ed f_rom th_e r_ecip_rocity theorem VIIl. CONCLUSION

when considering (b) the polarization distributions P{(r)

=Puf exd —igqx]8;, with ik2P$=2¢.x, radiating in the unper- In this paper, we describe specific optical properties of
turbed system, which induce in the layem the fields materials embedded in a layered structure in terms of in-
{€%2(2),h% (2) exrl —ig,X]. duced distributions of polarization. The expressions ofghe

and p components of the outgoing waves radiated by these
polarizations are compact, transparent and evidence three rel-
j [AE(r)-P(r)—AH(r)- woM(r)]dV evant quantities: the exciting field, a susceptibility tensor and
an extraction vector.
The extraction vectors are easy to calculate exactly as
=f [E(r)-AP(r")—H(r')- uoAM(r’)]dV’'. (7.1)  they are characteristic of the structure free of polarization
distributions, that we call unperturbed system. The suscepti-
bility tensor describes the considered optical property of the
material. The exciting field can be derived by iterative per-
turbation calculation. For weak optical effects, the first Born
approximation can be applied and the exciting field is also
calculated in the unperturbed structure. In the thin layer
) limit, an analytical approximation of the whole iteration is
Bm(r) = ol umHm(r) +AMp(2)expiqx)]. (7.2b given.

The treatment applies to a large variety of systems and is
particularly well suited to magneto-optics. The description of
first-order Kerr and Faraday effects is straightforward and
only requires the X2 matrix calculation of the fields in the
unperturbed systerti.e., when the magnetization is consid-

AE%, =AE (X)-u%, exp —ig,X) (7.33 ered as equal to zeroNonlinear properties, as second har-
1 = 1 e ' monic generation of particular interest in magnetic multilay-
Therefore, referring to Sec. Il D, if we choose in the externalers, and scattering by optical inhomogeneities, for instance,

Let us now consider, as in Fig(&®, a layerm character-
ized by the constitutive equations:

Din(r)=g&oemEm(r)+ AP (z)explig,x), (7.29

The fieldsAE; ¢(r), radiated in media 1 anf are written
AE;¢(x)=AE;;exp(a.X) at the interfaces with the struc-
ture. By definition their decomposition on thepolarized
outgoing waves gives the amplitudes

media the electric polarization distributions originating from magnetic domain@ven at subwavelength
scalg, are described in the framework of the same formal-
. 280K1’f o i ism.
14(1)= ik Ui exp(—igyX) &y ¢ (7.3b Finally, we underline that the quantities involved in our

formulas, characteristic of the structure and of the geometry
and the magnetic polarizatiovi {(r) equal to zero, we di- (incidence angle, reflection, and transmission, near-field and

rectly find by substitution into Eq7.1) far-field) are very easy to handle and calculate. This allows
the development of simple procedures for designing opti-

ikg mized structures and measurement configurations.

AEf;=5—
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(7.4 APPENDIX A: 2 X2 MATRIX FORMALISM IN THE

wherehmi’f(z)=521“1’f(z)/(uoum). This exact expression di- UNPERTURBED STRUCTURE
rectly gives the result of Eq€3.14) if the magnetic polar- According to Sec. Il B, the eigenvalues and the polariza-

ization AM, is equal to zero. As already mentioned, thetion eigenvectors in an isotropic layeof dielectric constant
radiation of several distributions of polarization in different ¢; are
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12 ,.13_
A0 2= xj

— 2,4
— K

= (ke o (Ala)

uj1'2=y, uP= (k7%= qe2)/K; . (Alb)

The diagonal propagation matri®;(z), deduced from Egs.
(2.4) and(2.6), takes the form

B Dj(2) 0
Dj(2)= 0 DJP(Z) (A2a)
with
inZ
Di@=D{@)=| ; i sz} : (A2b)

Using Egs.(2.4) and(2.5), the resolution of Eq(2.7) shows
that the.A; matrix is also 42 block diagonal:

A0 ] 1 a3

A= , with Af=c’| _, .|, (A3
o ' '_aj ai
whereaj= k;/ko, al=—«;/(kog;), C =n,

The matrix/\/j(z) ADi(9)[ Al i
block diagonal. Each block writes

is therefore a X2

0
i sin( k;z) e
]

1/a®

Nj'(z)=cod kjz) o~ OJ (A4)

M;,, defined in Eq.(2.9), is also a X2 block diagonal
matrix. Each block operates in E(.1) separately on the
andp eigenmodes:

Ea+

o8

fl
(45)

ET
The resolution of Eq(A5) yields the reflected and transmit-
ted fields.

a+

%)

0 )—[Af] ' H MA“(

APPENDIX B: FIELDS RADIATED BY A POLARIZED
LAYER

1. Inner product

PHYSICAL REVIEW B54 235421

wheref‘f?‘]ff and??‘f’fl are the fields irF representation nor-
malized to the incident waves amplitude at the interfaces
with the external media. With the second relation we derive,
for example,

mlmf(lm)D[-j\/H(lm 2)APr(2)]= T m(2) DAP(2).
(B3)

2. Radiated fields by a polarized layer towards the outside of
the layered structure

To obtain the electromagnetic fields radiated in the exter-
nal media by the polarization distribution of E.7), we
use EQq.(3.13 (where we omit the superscripts and +
to simplify the notations

fi(lm) | o foiln)
T
_— APR(2)
=—iko | N:(Im—2) ——dz (B4
0 0

Performing successively the inner product \Aﬁﬂf{(lm) and
£22(1,) in Eq. (B4), we derive from Eq(B2)

APr(2)
lf— J mlf(lm)m(lm_z) €0 dz
(B5a
which turns with Eq(B3) into
7’%( )
AEf=3 f (20 (B5b)

From the expression adPy,(z) defined by Eqs(3 9 and

(3 10 and from the substitution oqucbmlf(z)/ko by
memlf(z) in fmlf(z) [as obtained by Eq(3.8b in the

unperturbed structuteve derive as in Eq93.14)

To derive useful properties of the unperturbed fields, we ik (ln Po(2)
define the “inner product” of two vectora/; andw, by AEf = P f _e?}fif . dz. (B6)
C(wy| fwp| L,
Wb, = wj H W, =WaWo—wiwp=defw;, w].  (B1) When the polarized layem is embedded in an infinite

We note that for any 22 matrix M, def Mw;, Mw,]
=def M]defw;,w,], and if defM]=1, defw;, Mw,]
=def M 1w, ,w,]. The first relation can be applied to the
unperturbed fields if we calculate @df¢] and use
defNj(2)]=1 to derive

Kt Oa
o (2) Ofori(2) =13 2k—0T1f——2—

k Tfl*

(B2)

llfl 1f i

medium of dielectric constat,,, let us remark that the field
radiated above the layérespectively under the layjeis ob-
tained by action of the extracting vectar,” exdix.z]
usy, exfdixnz (respectively ur exfiky(lm—2)]
=u%" exdixn(lm—2]). The only components of the polar-
ization which radiate are those transverse to the directions of
propagation of the outgoing wavésThis general result al-
lows us, for instance, to interpret the zero reflectivity at
Brewster's angle where the induced dipoles point in the di-
rection of propagation of the reflected wafe.
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APPENDIX C: INTEGRAL EQUATIONS
OF THE RADIATED FIELDS

1. Radiated fields inside the polarized layer

To obtain the electromagnetic field radiated inside the po-

larized layer, it is convenient to integrate £§.10 between
the altitudesz andl ,, to deduce

AFG(Im) = Ni(Im—=2)AFG(2)

A’Pﬁ(z ) ©

=—ik f Np(lm—2")
Using Eg.(3.12b for the expressmn oAF (I, and after
multiplication of Eq.(C1) by 75 (z—1,,) we obtain

Oa a1
(2 APy

AFn(z )— .

—o AEf+ik f Ny(z—2') ———
(C2

AF?(2) givesAE})(z) andcAB(2), thex andy compo-

nents of the radiated electromagnetic field at the altitude

To obtain thez components of these fields, we use H§sS)
to derive

AP} (2)z ( Z) i
AEml(Z)JF%—Sm—a:ES‘p 707 AEf+ .
Im P..(z'
xf d-(z—2") ml )dz’,
z 0€m
(C3a
bpi(2) iko
AB = = -—
CcABm(2) a:ES,p T .
z
f Km(z—2' m( Daz, (C3b)
where we introduce the notations
ICin(2) =0y SIN( kK nZ) X+ Ky COS K 2) Z, (C4a
DE(2)- P=K2 sin(kmz) P+ k- [IC(2)-P].  (C4b)

2. Approximation of small thickness for an anisotropic layer

When the multilayer is illuminated by :ﬁpolarized
wave, the polarization APm(z)—soAsm[E (z)
+AE1(2)] is induced in the anisotropic layen. With Eqg.
(C4a we derive
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APn(2)

€0

>

Y=S,p

=A_sm<1—_5fn2>[E°ﬁ<z)+

i .
+K—mJZ DE(z-2')

AE? is given as a function oAP,,(z) by Eq.(3.14b and

AP.(Z") ]
——~dz'{. (C5a
€0

[Z'Zt]A_Sm

= e

(C5b
If the radiation of the polarization is weakAE}/T97
EZ™), the two last terms in EqC53 can be neglected and
the equation reduces tAP(2)~goAsn(1— S2)EY%(2).
By normalization to the amplitude of the incident wave, Egs.
(3.14 yields the first-order perturbed reflection and transmis-
sion coefficients as
ik5 (Im
A”Ri“fﬁ=—f &i(2)-[Aep(1-
2k1Jo -

823-€(2)]dz, (C6a

k2 ri
amif= 0 [z [As(1- 53 dioldz (Cob
K
Note that, ifAe, is small when compared to,,, Eq.(C5b)
shows thatAe (1 §%) can be approximated bge,, and
Eqgs. (C6) are identical to Eqs(4.2) calculated in the first
Born approximation.
Whatever the value ohe, elements compared tg,, if
we consider now ahin layer (|km= km|lm<<1), we can
approximate the integrals in EqéC6) by the quantities
| 9 - [Aep(1— 829 - €241 and it can be shown that the
last term in the bracket of EC59 is negligible. However,
the second term in the bracket has to be conserved. The
normalization of Eq(C53 to the amplitude of the incident
wave turnsAE7 into AT}? and using Eq(3.14b we deduce

in this approximation of the whole iteration:

ATI=AYTI + X APTHITYH] ATY
y=s,p
Equation(C7) is the 8 component of the matrix equation
AT ~AYT +AYT ([T9]*AT,;. The solution yields
an approximation oA T,; which can be used into E4C5a
to derive an approximation afR;¢ with Eq. (3.143:

(C7)

AT~ AMT (1-[T]17AYT, )Y, (C8a

ARy~ AR (1~ [T At ) h (C8b

1F. Abeles, Ann. Phys(Parig 5, 596 (1950.

2D. O. Smith, Opt. Actal2, 13 (1965; 12, 193(1965.

3P. Yeh, Surf. Sci96, 41 (1980; P. Yeh,Optical Waves in Layered
Media (Wiley, New York, 1988.

43, Visnovsky, Czech. J. Phys., Sect38, 625(1986.

Mater. 89, 107 (1990; Phys. Rev. B43, 6423(1991.

R. Atkinson, I. W. Salter, and J. Xu, J. Magn. Magn. Maii2,
357(199)); R. Atkinson,ibid. 124, 178(1993; J. B. Monaghan,
R. Atkinson, and I. W. Salter, J. Phys.: Condens. Mate3273
(1994).

5J. Zak, E. R. Moog, C. Liu, and S. D. Bader, J. Magn. Magn. ’S. Visnovsky, M. Nyvlt, V. Prosser, R. Lopusnik, R. Urban, J.

235421-11



BERTRAND, HERMANN, LAMPEL, PERETTI, AND SAFAROV PHYSICAL REVIEW B34 235421

Ferre, G. Paissard, D. Renard, and R. Krishnan, Phys. Rev. B allows us to obtair7;, making use of a perturbation method very

52, 1090(1995. similar to the Dyson seriegtime-dependent perturbatiprin
8In arbitrarily anisotropic thin layers, see V. M. Agranovich, Solid guantum mechanics. See, for example, C. Oldano and M.
State Commun78, 747 (1992); V. M. Agranovich, Surface Po- Ratjeri, Phys. Rev. B4, 10 273(1996. Conversely, the analog
laritons Electromagnetic Waves at Surfaces and Interfaces of a time-independent perturbation treatment would give a per-
(North-Holland, Amsterdam, 1982pp. 191-96. turbation expansion of the eigenvalues and eigenvectors.
°D. W. Berreman, J. Opt. Soc. Ar62, 502 (1972. 20The definitions of the unperturbed fields and the extraction factors
10\, Born and E. Wolf,Principles of OpticgPergamon Press, Ox- can be generalized to an “unperturbed” anisotropic multilayer
ford, 1970. (Sec. VI and the symmetry between the fields are conserved if
M. Nieto-VesperinasScattering and Diffraction in Physical Op- the media of the unperturbed structure are symmetric.
tics (Wiley, New York, 199). 2l .. is supposed different from zero in the whole paper.
123, D. JacksonClassical Electrodynamicg§Wiley, New York,  2?Asimilar expression is obtained in Refs. 15 and 16 for a polarized
1975, pp. 418-22. layer of infinitesimal thickness.
13Ari T. Friberg and E. Wolf, J. Opt. Soc. An73, 26 (1983. 2|, Landau and E. LifchitzElectrodynamics of Continuous Media
H. A. Wierenga, M. W. J. Prins, and Th. Rasing, Physica(g, (Pergamon, New York, 1969
281(1995; B. Koopmans, M. G. Koerkamp, T. Rasing, and H. 24C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. |. Safarov,
van den Berg, Phys. Rev. Left4, 3692(1995. and P. Bertand, Phys. Rev. @, 235422(2002.
153, E. Sipe, J. Opt. Soc. Am. B 481 (1987). 25ph. Bertrand, Ph.D. thesis, Ecole Polytechnique, France, 1999.
16y Mizrahi and J. E. Sipe, J. Opt. Soc. Am.3B 660 (1989. 26y, R. Shen,The Principles of Nonlinear OpticéWiley, New
17y, 1. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Per-  York, 1984.
etti, and C. Marliee, Phys. Rev. Leti73, 3584(1994). 27A. Ishimaru, Electromagnetic Wave Propagation, Radiation and

18Nonlocal treatments are out of the scope of the paper. See, for Scattering(Prentice-Hall, Englewood Cliffs, NJ, 1991
example, for magneto-optics in layered structures, V. A. Koso28A. G. Gurevitch and G. A. MelkovMagnetization Oscillations

bukin, J. Magn. Magn. Matef53 397 (1996. and WavegCRC Press, London, 19986
19The analogy between the equation of propagation of the electr®The unperturbed system can even be composed of anisotropic but
magnetic field and the Schiinger equation made in Ref. 9 symmetric media.

235421-12



