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C2F, BN, and C nanoshell elasticity fromab initio computations
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Two-dimensional lattices of carbon, boron-nitride, and fluorine-carbon compositions are treated withab
initio methods in order to evaluate and compare their mechanical properties in a uniform fashion. The dem-
onstrated robustness of continuum elasticity up to very small length-scale allows one to define and compute the
in-plane stiffness and flexural rigidity moduli of the representative nanoshells of C, BN, and CxF (x<2).
While only small deviations from linear elasticity are observed for C and BN, fluorination causes significant
spontaneous shell folding. We discover that spontaneous curvature in fluorinated nanotubes shifts the energy
minimum from a plane sheet towards the very small diameter tubes of~4,4! and even~3,3! indexes. Moreover,
their equilibrium cross sections are distinctly polygonal, due to curvature self-localization, with an equilibrium
angle of 71° at each fluorine row attachment. Our analysis yields a simple physical model coupling the
mechanical strain with chemical transformation energies.
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I. INTRODUCTION

With the discovery of hollow molecular structures lik
fullerene cages1 and especially single-wall nanotubes,2–5 it
has been demonstrated that their nonlinear mechanical
certain vibration properties can be well described in terms
a continuum model, nanoshell of a monatomic thickness
an array of such layers.6–8 The shell approach essential
ignores the explicit atomic structure and requires no deta
knowledge of interatomic forces.9 But it must be supplied
with the appropriate accurate values of the shell stiffne
that can be obtained fromab initio methods, since no exper
mental measurements are currently feasible.

The hexagonal symmetry of pure C and BN tw
dimensional lattices ensures their isotropic elastic proper
and thus justifies an isotropic shell model,6,8,10 characterized
by only three elastic parameters. This is not the case for2F
and other CxF lattices that permit a variety of decorations
different symmetry. Moreover, this anisotropy manifests
self even in the equilibrium shape of CxF tubules as we will
see below. As soon as a plane or a nanotube-forming m
atomic layer is approximated by a continuum isotropic sh
its deformation energy U can be written down in stand
form, as a function of in-plane straine and the changes o
curvaturesk in two orthogonal directions,x in axial andy in
circumferential10
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HereC, n, andD are the in-plane stiffness, Poisson ratio, a
flexural rigidity for the continuum shell. These are the p
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rameters to be evaluated based onab initio energy calcula-
tions. Clearly, energy as a function of elongation in a sim
tension~that is unconstrained laterally or in any other wa!
should yield the value ofC. Indeed, in this case tensionex
causes the diameter or circumference reductioney52nex ,
so thatU5 1

2 Cex
2 . The value ofn can be evaluated from th

actual reduction of diameter in the same samples. The v
of flexural rigidity D can be defined as a coefficient in ener
of unloaded/free relaxed tubule as a function of its diame
d: U5 1

2 Dkx
252D/d2.

Unlike more common material moduli,C has dimension-
ality of surface tensionN/m and can be defined in terms o
measurable characteristics of a nanotube

C5
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, ~2!

where E is the strain energy computed per atom, anda
5m/rs is the area per atom in a two-dimensional~2D! lat-
tice, related with the 2D mass densityrs and the mass of
atomm. The partial derivative at zero strain in all dimensio
except e yields an analog of the elastic stiffnessC11 in
graphite, while a free boundary~no lateral traction on nano
tube! would correspond to the Young’s modulusY5S11

21

(S11 being the elastic compliance!. In an array of tubes, if
the material is distributed statistically uniformly over a lar
cross sectionA ~perpendicular to the generatrix! with the
bulk densityrb , the Young’s modulus can be recovered a
used,

Y5CE dl

A
5C

rb

rs
5

rb

m

]2E

]e2
. ~3!

These definitions do not apply in case of individual shell o
single nanotube, due to uncertainty of either cross sectioA,
©2001 The American Physical Society06-1
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bulk densityrb , or an arbitrary geometrical thicknessh in a
relationshipY5C/h. However, continuum shell can be a
signed the modulusYs and thicknessh unambiguously, to
formally match then, C, andD, computedab initio:

C5Ysh D5
Ysh

3

12~12n2!
. ~4!

In the following sections, we outline the computation
approach~Sec. II!, including some of the observed aspects
the electronic structure, in order to illustrate consistency
the method. Then we present the mechanical parame
computation, comparing with previously published resu
wherever appropriate. Axial tension produces values for
in-plane stiffnessC and Poisson ration, for all-carbon,
boron-nitride, and fluorinated-carbon shells~Sec. III!. Com-
parisons of the energies of the nanotubes of different di
eters yields the values for flexural rigidityD in Sec. IV,
where we also note the spontaneous curvature of fluorin
shells. This leads to an interesting observation in Sec
about strain localization, when the shell curvature is conc
trated at the F-attachment sites rather than remaining
formly distributed along the circumference. As a result,
equilibrium cross section of nanotubes becomes distin
polygonal, with triangle and square shapes as most fa
able. In the concluding Sec. VI, we apply theab initio values
of C, D, andn ~or alternatively ofh, Ys , andn! to estimate
basic vibration frequencies and buckling stability limits
the nanotubes.

II. COMPUTATIONAL DETAILS

A. Methodology

To carry out the present calculations, we employ
implementation of density functional theory with Gaussi
type orbitals and periodic boundary conditions11 ~PBC! re-
cently incorporated into the development version of
GAUSSIAN suite of programs.12 The PBC code evaluates th
Kohn-Sham matrix contributions entirely in direct space, a
the computational expense for these parts of the calcula
scales linearly@O(N)# with system size. The matrix opera
tions in reciprocal space, such as the diagonalization ok
point dependent Kohn-Sham matrices, requires CPU t
that scales cubically@O(N3)# with the number of basis func
tions N. Their absolute cost is such that for the largest s
tems considered here~160 atoms, 1440 basis functions!,
theseO(N3) operations become similar in cost to theO(N)
Kohn-Sham matrix formation step. For reference, one
geometry optimization step~12 SCF cycles for an energ
calculation and a gradient evaluation without employing a
spatial symmetry! for ~40,40! BN tube takes about 90 h o
one R10000 195 Mhz CPU of SGI Origin 2000, out of whi
about 60 h are spent forO(N3) matrix computations~16
diagonalizations per cycle!. The use of Gaussian basis se
permits sufficient flexibility in the description of both va
lence and core electrons for elements across the first ha
the periodic table and keeps the number of basis funct
per atom small.
23540
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From the multitude of available density functional mo
els, we have chosen the gradient corrected PBE functio
derived by Perdew, Burke, and Ernzerhof.13 Calculations
with the PBE functional have computational cost similar
other gradient corrected functionals, while providing mo
consistent results for a variety of chemical systems.13 Com-
bining the PBE functional with the double zeta quali
3–21 G basis set, we expect to obtain a theoretical mo
capable of providing very good description of the vario
mechanical properties studied in this work.

The Coulomb interactions in the code are evaluated
the fast multipole method14 with an accuracy within 1029

atomic units~a.u.!.11,15–18The numerical integration of the
exchange-correlation energy and potential employs ato
centered grids. In most calculations, the~75,302! integration
grid was used, which corresponds to the default grid in
GAUSSIAN package. In computations where small differenc
in energy and geometry were of great importance, such
in-plane stiffness and Poisson ratios, theultrafine grid was
used~99 radial and 590 angular points!. In order to achieve
good convergence in reciprocal space integration
SWNT’s, we employed 32k points for insulators and 128k
points for metallic systems. In the latter case, to obt
smooth changes in SWNT’s geometries under small stra
and accurate Poisson ratios, we determined the exact loca
of the Fermi level ink space and employed this informatio
to compute correct weights for orbitals located close to
crossing of the energy bands at the Fermi level. In 2D str
tures, a mesh ofk points was employed with 64 points alon
the shorter translational vector and the proportionally sma
number along the longer vector.

Full geometry optimizations were carried out by a r
cently developed redundant internal coordinate metho19

where the lattice vectors are optimized implicitly via a com
bination of intercell bonds, valence angles, and dihedrals
each optimization step, the unit cell symmetry was enforc
in order to suppress small numerical noise in forces due
the imperfect rotational symmetry of the angular grids. A
cordingly, in each case the atomic arrangement in unit c
was chosen such as to maximize the symmetry. The opt
zations were stopped when the r.m.s of forces was be
0.0003 a.u. (0.015 eV/Å), and the r.m.s. of Cartesian dis-
placements was below 0.0012 a.u. (0.0006 Å).

In the calculations of the in-plane stiffness and the Po
son ratio, fully optimized structures of smaller radius tub
were stretched by60.3% and60.6%. For larger diamete
tubes, we applied strains of60.3% only, because in smalle
diameter tubes such strains were sufficiently reliable to
tain the desired precision. During reoptimizations und
strain, the lattice vectors were kept fixed, while all the oth
parameters were relaxed. This was achieved via the fac
to constrain some coordinates in the redundant internal c
dinate algorithm for periodic systems.19 To achieve very high
accuracy, the optimization thresholds were tightened up
r.m.s. of forces of 0.00001 a.u. (0.0005 eV/Å) and r.m.s.
Cartesian displacements of 0.00004 a.u. (0.00002 Å).

In studies of achiral zigzag (n,0) and armchair (n,n)
nanotubes, the unit cell under consideration containedn
atoms regardless of the tube type. For 2D structures, we
6-2
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TABLE I. Predicted elastic constants for carbon nanotubes from periodic PBE/3-21G calculations

Tube d2E/de2 C,J/m2 n 1
6 d3E/de3 R L1 L2

~4,4! 56.4 333 0.144 290 2.7859 2.4772
~7,0! 56.3 333 0.162 2310 2.8157 4.2882
~7,7! 56.5 338 0.146 270 4.8154 2.4783
~12,0! 55.2 330 0.181 2260 4.7678 4.2917
graph (̀ ,`) 57.3 345 0.149 2240 2.4795
graph (̀ ,0) 57.3 345 0.149 2170 4.2945
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ployed rectangular unit cells, which had four atoms in t
unit cell. Fluorinated carbon tubes discussed in this w
also contained 4n carbon atoms in the unit cell plus th
necessary number of fluorines.

B. Electronic structure

In this work, we look at a series of achiral zigzag (n,0)
and armchair (n,n) single-wall nanotubes~SWNT!. The n
values we chose were 3, 4, 5, 6, 8, 10, 12, 14 and also 20
and 40 for armchair BN tubes. We have also considered
structures with effectiven5` –graphite and planar BN. Th
electronic structure of the carbon SWNT’s~CNT’s! was
found to be in agreement with previous calculations at low
levels of theory.20,21 All CNT’s of the (n,n) chirality were
metallic, while larger diameter (n,0) tubes were either mod
erate gap or narrow gap semiconductors, with the latter t
of behavior found for structures wheren was a multiple of
3.20 Small diameter (n,0) tubes were metallic up ton56 due
to the substantial curvature, in agreement with the result
others.21 Recently, we have found that the~5,0! tube distorts
to elliptic shape and becomes semiconducting,11 lowering its
energy and symmetry. Here, we neglect this subtle effect
consider only the cylindrically symmetric~5,0! structure for
consistent comparison with other tubes that are cylindrica
the minimum.

On the other hand, all BN SWNT’s~BNNT’s! had signifi-
cantly larger band gaps. In armchair (n,n) BNNT’s, the
smallest band gap~4.1 eV! was obtained for the~3,3! BNNT,
and this value rapidly increased to the 4.5 eV gap of pla
BN, reaching it in~5,5! BNNT. At the same time, in zigzag
(n,0) structures, the smallest band gap of 1.2 eV found
~3,0! BNNT increased more slowly withn and reached the
planar BN value only at aboutn514. While the trends for
band gaps found in our BNNT calculations agree qual
tively with the previous tight-binding studies,22 we find that
the latter calculations underestimate the band gap for sm
radius BNNT’s compared to our results, while for larg
BNNT’s the values are in good agreement. On the ot
hand, LDA calculations23 predict the band gap for~4,4!
BNNT to be close to the gap of planar BN sheet, similar
what we see in our calculations.

In our recent work, we studied various isomers of fluo
nated CNT’s~F-CNT’s! with C2F stoichiometry.24,25 Calcu-
lations for ~10,10! and ~18,0! tubes with approximately
matching radius have demonstrated that among all~10,10!
and~18,0! F-CNT’s, the energy per C2F unit is the lowest for
all fluorine outside isomers in~10,10! fluorinated nanotube
23540
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with zigzag chains of fluorine atoms located parallel to t
tube axis. Therefore, here we look at the series of (n,n)
F-CNT’s with the same fluorination pattern. We fully opt
mized F-CNT’s of (n,n) with n53,4,5,6,8,10,12, as well a
the corresponding 2D structure (n5`). We have also con-
sidered~12,12! F-CNT’s with fluorine chains inside the tub
that formally corresponds to negative curvature. F-CN
with all outside fluorines are metallic with varying number
crossings at the Fermi level, indicating the presence of
nificant interaction between polyacetylene-likesp2 carbon
chains separated by chains of fluorinatedsp3 carbon. The
alternation of conjugated bonds~Peierls instability! is unable
to open the gap and lower the energy, and therefore
length of these bonds remain identical. The fluorination a
causes significant distortions in the tube framework, w
sp2 carbons located closer to the tube axis thansp3 carbons
~a result of localized curvature, ‘‘pinch’’ effect as discuss
in Sec. IV C!.

III. IN-PLANE STIFFNESS C, AND POISSON RATIO n

By performing an extension of the tubes, we calcula
thed2E/de2 values and the Poisson ratio for pairs of tubes
similar radius but different helicity. The former can b
readily recomputed into the usual Young moduli, followin
equations~2!, ~3!. For both CNT’s and BNNT’s, the pairs
were ~4,4! and ~7,0! and ~7,7! and ~12,0!. For comparison
purposes, the corresponding values for the 2D structu
were also calculated, and these formally correspond to (`,0)
and (̀ ,`) types. The results for CNT’s are shown in Table
and for BNNT’s in Table II. Overall, there is no differenc
found in thed2E/de2 values in neither carbon nor BN struc
tures of varying radius. Slight variations appearing in Tab
I and II are well within the error of the computational pro
cedure. We estimate the error in thed2E/de2 numbers to be
of the order of 2%, while for Poisson ratios the errors are
the order of 0.5%. A similar situation was observed f
CNT’s in Ref. 26, where the differences betweend2E/de2

values for different CNT’s are within the computational e
ror. We also obtained estimates for the third derivat
d3E/de3 responsible for the anharmonicity in the energy v
sus strain curve dependence. For CNT’s thed3E/de3 values
have the same sign, but are significantly different in mag
tude. For BNNT’s, on the other hand, the numbers are
much better agreement with each other. The difference
tween CNT’s and BNNT’s lies in their band gaps. While it
relatively easy to fully converge reciprocal space quantit
6-3
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TABLE II. Predicted elastic constants forBN nanotubes from periodic PBE/3-21G calculations.

Tube d2E/de2 C,J/m2 n 1
6 d3E/de3 R L1 L2 R(N)-R(B)

~4,4! 45.8 258 0.217 2450 2.8455 2.5490 0.0588
~7,0! 45.3 255 0.244 2420 2.8920 4.3906 0.0571
~7,7! 46.9 267 0.213 2370 4.9332 2.5441 0.0318
~12,0! 46.7 266 0.226 2310 4.8909 4.3999 0.0321
planar (̀ ,`) 47.4 271 0.211 2250 2.5420 0
planar (̀ ,0) 47.4 271 0.211 2250 4.4028 0
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for large gap BNNT’s, it is more challenging to do the sam
for CNT’s that either have small gaps or are metallic.

Notably, the addition of a large number of fluorines to
carbon tube does not affect the stiffness of the carbon b
bone, and fluorinated CNTd2E/de2 values are similar to
those found in pristine CNT’s~Table III!. At the same time,
in C2F tubes we observe much larger anharmonic
d3E/de3, most likely due to the very short fluorine-fluorin
distances~shorter than the sum of two van der Waals radii
fluorine!. This indicates that fluorinated and other derivatiz
CNT’s can be as stiff as the pristine nanotubes, and can
used in a variety of composite materials. Much larger anh
monicity, on the other hand, implies that under larger, grea
deformations F-CNT’s will be more compliant than pristin
carbon tubes.

Poisson ratios for CNT’s depend on the tube type a
radius. The results for (n,n) structures seem to converg
quite fast and the~7,7! tube results are already within 2% o
the graphitic value of 0.149. The convergence is slower
(n,0) structures. In fact when going from~7,0! to ~12,0!
CNT, the ratio changes in the other direction, from 0.162
0.181. Again, Poisson ratios computed by us are simila
the numbers from Ref. 26. In BNNT’s, trends similar to ca
bon structures are observed. The Poisson ratios for (n,n)
tubes converge faster to the planar BN value of 0.211 t
for the (n,0) structures. Comparing our data to the results
tight-binding calculations from Ref. 27, we note that the T
results are about 10% larger than theab initio ones. This is a
much smaller difference than for CNT’s, where TB numbe
are about 60% larger thanab initio ones.27

IV. FLEXURAL RIGIDITY D

A. Carbon tubes

An important characteristic of a 2D sheet of material is
flexural rigidity, i.e., the dependence of the strain energy
its curvature along some direction. By bending graphene
planar BN sheet, one obtains SWNT’s of different chirali
Due to the hexagonal symmetry of both graphene and pla
23540
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BN, there should be no difference in values of theD constant
in Eq. ~1! for tubes of varying chirality because these ma
rials are isotropic. And indeed, our results for fully optimize
tubes do confirm that there is no difference in strain ene
for (n,n) and (n,0) carbon and BN tubes except for th
tubes of the smallest radii. Tube energy per atom relative
a flat graphene sheet is the same as the graphene sheet
energy due to flexing, and is computed asU(C)
5@Etotal(C)-mCnC#/nC . To analyze the dependence of th
strain energy on tube radius~curvature! in more detail, we fit
the data to equationU5 1

2 D/Ra. For carbon tubes, we find
a52.0 with high precision. The value of the constantD de-
termined from larger diameter CNTs is 3.9 eV Å2/atom, and
is independent of whether (n,n) or (n,0) structures are con
sidered. This number is in good agreement with the LD
based values of 3.960.1 eV Å2/atom computed both for
armchair and zigzag tubes,28 and 4.00 eV Å2/atom obtained
from the pseudopotential-density-functional theory calcu
tions for (n,n) tubes.26 In the latter case, the authors hav
also obtainedD54.32 eV Å2/atom for the~10,0! structure,
while in our calculations~and Ref. 28! no difference was
found between~10,0! and a (n,n) CNT of matching radius.
The lack of data for other (n,0) CNTs in Ref. 26 does no
allow us to make any statements about the nature of su
discrepancy. Figure 1 displays the strain energy as a func
of the square of the inverse radius. Indeed, the data points
all tubes but the smallest ones, reside on the same line
goes through the point~0,0!. The deviations observed for th
smaller radii tubes on the left side in Fig. 1 disappear on
the tube radius becomes larger than;3 Å @~5,5! and ~8,0!
structures#. This is an indication that for a large range
curvatures, CNT’s do behave as elastic shells.

B. BN tubes

In contrast to CNT’s, both for zigzag and armchairBN
tubes, we have found a slightly subquadratic dependenc
the strain energyU(BN)5@Etotal(BN)-mBnB-mNnN#/(nB
1nN) on the tube curvature.~Chemical potentials are take
TABLE III. Predicted elastic constants for C2F nanotubes from periodic PBE/3-21G calculations.

Tube d2E/de2 C,J/m2 n 1
6 d3E/de3 L ShortestF-F

~4,4! 58.4 345 21650 2.492 2.731
~10,10! 53.8 323 21780 2.501 2.564
planar (̀ ,`) 54.5 328 0.039 21890 2.513 2.393
6-4
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C2F, BN, AND C NANOSHELL ELASTICITY FROM . . . PHYSICAL REVIEW B 64 235406
from flat BN sheet, andnN5nB .) In Fig. 1, the nonlinearity
of the dependence ofU(BN) on 1/R2 is evident. The bes
formal fit of energies to a power law yieldsa51.94,
D̃53.20 for (n,n) BNNT’s with n55240, anda51.95,
D̃53.30 when fitting for n510240. Assuming that the
dependence is approximately quadratic, we comp
D53.62 eV Å2/atom for ~10,10! BNNT (R57 Å). This
coefficientD is directly comparable to the flexural rigidit
values for carbon. The subquadratic dependence of the
ergy on the radius for BNNT’s is likely a consequence of t
BNNT’s buckling, with B atoms displaced toward the tub
axis and N atoms pushed outwards. The plot of the degre
buckling versus the tube radius is shown in Fig. 2. Similar

FIG. 1. Curvature strain energy for carbon and BN tubes a
function of the square of their inverse radius.s and solid lines
represent data for (n,0) carbon tubes;h and solid lines represen
data for (n,n) carbon tubes;s and dashdotted lines represent da
for (n,0) BN tubes;h and dashdotted lines represent data for (n,n)
BN tubes.

FIG. 2. Buckling in the BN tube equilibrium structures vers
the tube radius.s represent data points for (n,0) tubes;h repre-
sent data points for (n,n) tubes.
23540
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the strain energy itself, the buckling does not depend on
BNNT type @(n,0) or (n,n)# and is a function of the tube
radius only. Using log-log fits, we established that for lar
diameter tubes, the degree of buckling is sublinear with
spect to the curvature 1/R, with dRBN'0.2% for one of the
largest (R510 Å), anddRBN'10% for the smallest tube
(R51.5 Å). Comparing the degree of buckling predicted
our DFT calculations with that obtained via a tight-bindin
scheme~TB!,27 it appears that in our case the radius diffe
ence is smaller, by about 20–30 %.

More interestingly, for smaller tubes of matching radiu
the strain energy for CNT’s is larger than for BNNT’s, whi
for very large tubes the opposite is likely to be true.
examine this issue in more detail, we carried out calculati
for large BN tubes@~20,20!, ~28,28!, ~40,40!#. The log-log
plot of UR2 on tube radius for CNT’s and BNNT’s of (n,n)
type is shown in Fig. 3. The slope of the line going throu
BN tube data points is smaller than for carbon tubes, in
cating thata,2.0. It is also evident that the lines for CNT
and BNNT’s cross and the strain energy for BN tubes
comes larger than for carbon ones at aboutn540.

C. C2F „n,n… tubes

Analogously to CNT and BNNT’s, the formation energ
is computed per node of hexagonal network~that is per each
C in the tubule! as E(C2F)5@Etotal(C2F)-mCnC-mFnF#/
nC , wheremF is defined as the fluorine atom energy in a fr
molecularF2, andmC is carbon energy in graphene sheet
previously. We note thatE(C2F) is the same as 1/2E2 found
in Table IV. In contrast to pureC and BN tubes, the strain
energy U(C2F)5E(C2F) –Eflat(C2F) does not fit the
}1/R2 dependence. On the other hand, a formation ene
E(C2F) versus curvature (1/R) dependence is more revea
ing as it shows approximately parabolic dependence wit
minimum distinctly away from zero curvature, Fig. 4.~For
comparison purposes, Fig. 4 includes corresponding plots

a FIG. 3. Log-log plot of@UR2# versus the tube radius. Solid line
represent data points for (n,n) carbon tubes; dashdotted lines re
resent data for (n,n) BN tubes. The dotted line indicates asympto
behavior of the@U•R2# for carbon tubes.
6-5
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KUDIN, SCUSERIA, AND YAKOBSON PHYSICAL REVIEW B64 235406
CNT’s and BNNT’s.! With this shift taken into account, th
strain energy curve looks again as characteristic parab
function U(C2F)5 1

2 DCF(1/R–1/Req)
2. Remarkably, the

energy minimum corresponds to very large spontaneous
vature 1/Req50.46 (Å21), that is to the tubes of~4,4! and
even ~3,3! type with the diameters as small as near 5
Cross sections of~6,6!, ~5,5!, ~4,4!, and ~3,3! tubes are dis-
tinctly polygonal as shown in Figs. 5~a!, 5~b!, 5~c!, 5~d!. The
formally defined value of the flexural rigidity is thenDCF
53.96 eV A2/atom. These 1/Req andDCF values were esti-
mated by fitting energies for three larger diameter F-CNT
~8,8!, ~10,10!, ~12,12!. It is quite interesting to note thatD
coefficients for F-CNT’s and CNT’s are almost the same, a
as a result, the difference between the two parabolas re
senting the CNT fluorination energy is close to a straight l
~same as 1/2E1 in Table IV!.

The significant spontaneous equilibrium curvature cau
by unilateral fluorination is a strong manifestation of asy
metry of the formed C2F layer. Another measure of thi
asymmetry is a nonvanishing first derivative of energy w
respect to curvature in the vicinity of zero, which is a fin
internal bending torque in a flat fluorinated sheet. The dir
tion of this torque and the sign of the resulting equilibriu
curvature correspond to ‘‘fluorine repulsion,’’ making th
fluorination on a convex side much more favorable than o
concave side. Tubes~12,12! with all-outside and all-inside
fluorine are shown in Figs. 5~e! and 5~f!, while the difference
in their energies is evident from Fig. 4. We will see furth
that the main cause of the curvature is a locally induc
angle, a ‘‘pinch’’ in the underlying carbon network, rath
than a repulsion between the neighboring F-zigzag rows

Overall, for the monatomic shells considered in this wo
we observe three types of behavior with respect to flexi

FIG. 4. Strain energy for carbon, BN and C2F tubes as a func-
tion of their curvature~inverse radius!. h and solid line represen
data for (n,n) CNT’s; h and dashdotted line represent data
(n,n) BNNT’s; L and dashed line representE(C2F) @1/2E1# for
F-CNT’s; 1 and dotted line represent 1/2E2 for F-CNT’s; L and
vertical dotted line indicates fluorination energy per carbon
Fy-(10,10) wherey5124.
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The response of the isotropic carbon sheet is symmetric w
respect to positive and negative curvature, and the dep
dence of the strain energy on curvature is quadratic. Fo
asymmetric C2F sheet, the energy dependence is linear
small flexing and attains a minimum for high spontaneo
curvatures. The BN sheet is an intermediate material
tween graphite and fluorinated graphite. While the BN str
energy curve is symmetric with respect to the zero curvat
line, the dependence is between linear and quadratic. Th
an indication of induced asymmetry, likely due to buckling
the BN tubes.

V. LOCALIZATION OF STRAIN IN FLUORINATED „n,n…
TUBES

The energy minimum near the~4,4! F-CNT @Fig. 5~c!#
prompted us to look at larger square~or other polygonal!
structures that have four fluorine chains and rows ofsp2

carbon between them. Adding eight fluorine atoms to the u
cells of ~6,6!, ~8,8!, and~10,10!, we have obtained structure
with the varying stoichiometries C3F, C4F, C5F, respec-
tively. ~10,10! tubes with four and five fluorine chains ar
shown in Figs. 6~a! and 6~b!. For both these examples w
observe a distinctly polygonal cross section with rows ofsp2

carbon forming bands of graphitelike material with very litt
visible deviation from planarity.

The data indicating the stability of the fluorinated tubes
shown in Table IV. EnergyE1 „E15@Etotal(C2F)2ECNTnC
2mFnF#/nF… describes how stable the fluorinated tube
compared to the carbon in the corresponding pristine C
and fluorine in F2. In addition, energy E2 „E2
5@Etotal(C2F)2mCnC2mFnF#/nF… describes the relative
energy of a fluorinated tube with respect to carbon in
graphene and the fluorine inF2. Therefore,E2 is a more
systematic measure of the comparable stability of vari
isomers. Due to the positive strain energy in SWNT’s a
consequently higher energy of the formal reactants,E1 is
always lower thanE2 except for the one side fluorinate
graphene sheet, where these values are the same. In F-C
of C2F stoichiometry the most energetically favorable a
tubes of the smallest radius, where in~3,3! F-CNT theE1
energy per fluorine reaches values as low as22.51 eV, and
E2 reaches21.62 eV. In contrast, the stabilization energi
for the all-inside~12,12! SWNT is extremely small, withE1
being20.14 eV andE2 being20.09 eV. Such high values
are partially due to the substantial repulsion of fluorine ato
located too close to each other inside the tube. We h
already encounteredE1 andE2 in the previous section while
discussing Fig. 4.

For square tubes of varying stoichiometry, the energy w
respect to carbon in graphene (E2) slightly increases with
increasing tube size and converges to21.51 eV per fluo-
rine. The fact that the latter value is very similar for a
square tubes quantifies our statement that thesp2 carbons
between fluorinated corners are pretty much the same as
bons in a graphene sheet. Another interesting observatio
that for all square tubes, theE2 values are lower than fo
F-CNT of C2F composition, for example in the~6,6! tube
(21.56 eV versus21.48 eV). So, if reaction kinetics per
6-6
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FIG. 5. Geometries of the fluorinated (n,n) carbon tubes of C2F stoichiometry.~a! F-~6,6!; ~b! F-~5,5!; ~c! F-~4,4!; ~d! F-~3,3!; ~e!
F-~12,12!; ~f! Fi-(12,12).
ce
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mit, fluorination of pristine carbon tubes might produ
square tubes in cases when the carbon/fluorine ratio is sm
Formation of square tubes might proceed via a conseq
addition of fluorine chains to the pristine tube@Figs. 7~a!,
7~b!, 7~c!#. In order for such a scheme to work in practic
two assumptions should be true, first that fluorine atoms p
23540
ll.
nt

,
e-

fer to add in chains along the tube, and second, that s
fluorine chains prefer to add in the area of the tube with
largest mechanical strain. Using the~10,10! tube as an ex-
ample, we can quantify the energetics of such a mechan
Adding just one chain of fluorines to the~10,10! SWNT, the
energy per fluorineE1 (21.76 eV) is substantially smalle
6-7
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than E1 for the entirely fluorinated F-(10,10) tube
(21.36 eV). The same is true for all intermediates that le
to a square tube. So, from a thermodynamical perspec
fluorine chains would like to attach in areas where there
no other fluorine chains nearby.

The cross sections of all the low-fluorinated structu
~whereF is attached along the axially directed zigzag moti!
permit simple continuum elasticity interpretation. They e
sentially represent elastic sheets constrained by approp
boundary conditions at theF junctions, and belong therefor
to the class of Euler’sELASTICA curves. This again confirm
that uniform domains in nanotubes can be quite well
scribed by macroscopic elasticity theory. Figure 8 sho
such curve for aC20F tube @F1-(10,10)#. It is matched to
form a closed loop with a singleF junction, inserting an
anglef571°. The value off is established in a complet
relaxation of a ‘‘corner’’ structure (HC•••CCF2C•••CH),
hydrogen-terminated in order to eliminate the torque pres
in a closed loop@Fig. 7~d!#. The fact that observed deviation
from 71° in different polygonal shapes are very small de
onstrate its relative stiffness compared to compliant ext
sive carbon sheet. Notably, addition of anF2 group ~linear
motif! to a flat graphite sheet changes its global geome
This presents a peculiar chemomechanical coupling wh

TABLE IV. F-CNT fluorination energies and Fermi level in eV
F-(x,x) are outside fluorinated tubes of C2F stoichiometry,
Fi-(12,12) is the inside fluorinated~12,12! of C2F stoichiometry,
F4-(x,x) are square tubes, and Fn wheren5123 are fluorinated
tubes shown in Fig. 7. For partially fluorinated tubes Fn , the energy
per new fluorine atom relative to the previous structure is show
parentheses.

Tube E1 E2 EFermi

F-~3,3! 22.51 21.62 26.62
F-~4,4! 22.13 21.62 26.80
F-~6,6! 21.71 21.48 26.95
F-~8,8! 21.49 21.36 26.99
F-~10,10! 21.36 21.27 27.00
F-~12,12! 21.27 21.21 27.01
F-(`,`) 20.83 20.83 25.86
Fi-(12,12) 20.14 20.09 24.55

F-~4,4! 22.13 21.62 26.80
F4-(6,6) 21.90 21.56 26.50
F4-(8,8) 21.79 21.53 26.31
F4-(10,10) 21.73 21.52 26.20
F4-(12,12) 21.69 21.52 26.08
F4-(14,14) 21.66 21.51 26.00

F1-(10,10) 21.76 20.94 25.17
F2-(10,10) 21.84(21.92) 21.43 25.61
F3-(10,10) 21.73(21.51) 21.46 25.85
F4-(10,10) 21.73(21.73) 21.52 26.20
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TABLE V. Summary for computed elastic constants for C, B
and C2F lattices.

C BN C2F

2D properties

in-plane stiffnessC, N/m 345 271 328

(Ybulk , Gpa! ~1029! ~810! ~979!

flexural rigidity D, eV 1.46 1.29 1.49

shear modulusG 150 112 158

Poisson ration 0.149 0.211 0.039

3D properties

shell thicknesshs , Å 0.894 0.936 0.933

Young modulusYs , Gpa 3859 2901 3515

shell shear modulusGs 1679 1198 1692

surface densityrs , mg/m2 0.749 0.736 1.342

frequencies for~10,10! tube

f ext , cm21 168 148 121

f axial , cm21 110 93 84

f flex , cm21 17.0 15.3 12.8

FIG. 6. Geometries of the polygonal fluorinated carbon tub
~a! square F4-(10,10);~b! pentagonal F5-(10,10).
6-8
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chemical energy of fluorination can be transformed into m
chanical work of the sheet bending.

VI. CONCLUSIONS

We conclude by emphasizing the applicability of the el
tic shell model to the objects of molecular size. This sign

FIG. 7. Geometries of the fluorinated~10,10! carbon tubes with
low fluorine content and the unconstrained fluorinated angle.~a!
F1-(10,10);~b! F2-(10,10);~c! F3-(10,10);~d! unconstrained fluori-
nated angle.
23540
-

-
-

cant simplification of description can be achieved, provid
that the parameters of the shell are accurately determineab
initio, and allows one to employ the well established re
tionships for macroscopic shells. Table V summarizes so
of the results for C, BN, and C2F lattices, omitting the minor
differences discussed in the text~e.g., for different tube radii
and chiralities!. The first block presents the formal two
dimensional shell in-plane stiffnessC, flexural rigidity D,
and the shear modulusG5C/@2(11n)#. The second line in
parenthesis supplies the bulk Young’s modulusYbulk of a 3D
stack of layers spaced at 3.35 Å apart from each ot
along the plane; we include it here for the sake of conven
comparison with graphite. We also include the values of tw
dimensional mass densityrs for the three materials. In the
second block we define an effective material shell, which
most common in the studies of macroscopic shells elastic
vibrations and nonlinear buckling. The finite thickness a
the effective Young’s modulus is assigned based on Eq.~4!.
We note that a very small thickness combines with a v
high Young’s modulus to provide a consistent representa
~the values here differ of course from those based on
empirical classical potential, Ref. 8!. In the bottom section
we present the frequencies of several basic vibrations ca
lated from the shell parameters~the speed of lightc is in-
cluded to convert to spectroscopic inverse centimeters un!.
Extension-breathing modeA1g ~circular shape preserved, ra
dial oscillation!

f ext5
1

2pcR
A C

~12n2!rs

. ~5!

Axial shear modeE1g ~relative axial displacement of th
opposite sides of the cylinder!

f axial5
1

2pcR
A C

2~11n!rs
. ~6!

The softest flexural-circumferential modeE2g ~flattening of
the cylinder! has frequency

FIG. 8. Overlay of the Euler’sElasticacurve and the F1-(10,10)
tube of C20F stoichiometry.
6-9
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f flex5
hs

4pcR2
A 12C

5rs~12n!
. ~7!

The presented frequencies are for the~10,10! tubes and for
an arbitrary radius that obviously scales asf (d)5 f (10,10)
37 Å/R. The values presented here can be compared
the previously reported measurements and atomic-model
culations~e.g., Ref. 29!. A well-quantified shell model allows
,
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one to go beyond linear analysis in the assessment of st
ity, buckling and strength limits of the shell-based structur
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