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C,F, BN, and C nanoshell elasticity fromab initio computations
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Two-dimensional lattices of carbon, boron-nitride, and fluorine-carbon compositions are treateabwith
initio methods in order to evaluate and compare their mechanical properties in a uniform fashion. The dem-
onstrated robustness of continuum elasticity up to very small length-scale allows one to define and compute the
in-plane stiffness and flexural rigidity moduli of the representative nanoshells of C, BN, gndx&?2).
While only small deviations from linear elasticity are observed for C and BN, fluorination causes significant
spontaneous shell folding. We discover that spontaneous curvature in fluorinated nanotubes shifts the energy
minimum from a plane sheet towards the very small diameter tubes®fand even(3,3) indexes. Moreover,
their equilibrium cross sections are distinctly polygonal, due to curvature self-localization, with an equilibrium
angle of 71° at each fluorine row attachment. Our analysis yields a simple physical model coupling the
mechanical strain with chemical transformation energies.
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I. INTRODUCTION rameters to be evaluated basedaininitio energy calcula-
tions. Clearly, energy as a function of elongation in a simple
With the discovery of hollow molecular structures like tension(that is unconstrained laterally or in any other way
fullerene cagésand especially single-wall nanotub@s,it  should yield the value o€. Indeed, in this case tensiag
has been demonstrated that their nonlinear mechanical amduses the diameter or circumference reductipn — ve,,
certain vibration properties can be well described in terms oo thatU=3Ce2. The value ofv can be evaluated from the
a continuum model, nanoshell of a monatomic thickness, oactual reduction of diameter in the same samples. The value
an array of such layefs® The shell approach essentially of flexural rigidity D can be defined as a coefficient in energy
ignores the explicit atomic structure and requires no detaile@f unloaded/free relaxed tubule as a function of its diameter
knowledge of interatomic forcésBut it must be supplied d: U:%DKf(:ZD/dZ.
with the appropriate accurate values of the shell stiffness, uUnlike more common material modulg has dimension-
that can be obtained fromb initio methods, since no experi- ality of surface tensioN/m and can be defined in terms of

mental measurements are currently feasible. measurable characteristics of a nanotube
The hexagonal symmetry of pure C and BN two-

dimensional lattices ensures their isotropic elastic properties

and thus justifies an isotropic shell mo§&l° characterized c_ldu 1 15E ©)

by only three elastic parameters. This is not the case §6r C L

and other CF lattices that permit a variety of decorations of

different symmetry. Moreover, this anisotropy manifests it-where E is the strain energy computed per atom, and

self even in the equilibrium shape of Etubules as we will =m/pg is the area per atom in a two-dimensiot2D) lat-

see below. As soon as a plane or a nanotube-forming moriice, related with the 2D mass densjty and the mass of

atomic layer is approximated by a continuum isotropic shellatomm. The partial derivative at zero strain in all dimensions

its deformation energy U can be written down in standardexcept e yields an analog of the elastic stiffne€s;; in

form, as a function of in-plane strain and the changes of graphite, while a free boundafyo lateral traction on nano-

curvaturesk in two orthogonal directionsg in axial andy in ~ tube would correspond to the Young's modulié= Sill

circumferential® (Sy1 being the elastic compliangeln an array of tubes, if
the material is distributed statistically uniformly over a large

1 5 ) cross sectionA (perpendicular to the generatrixvith the
U= Ef j DI(rxt ry) = 2(1 =) (rysey = K5y)] bulk densitypy,, the Young’s modulus can be recovered and
used,
+L2[(ex+ey)2_2(1—v)(exey— Eiy)] ds. dl oo py O°E
(1—v?) Y=C| —=C—=—— (©)

= 5
(1) A Ps m Jde

HereC, v, andD are the in-plane stiffness, Poisson ratio, andThese definitions do not apply in case of individual shell or a
flexural rigidity for the continuum shell. These are the pa-single nanotube, due to uncertainty of either cross seétjon
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bulk densitypy,, or an arbitrary geometrical thickneksn a From the multitude of available density functional mod-
relationshipY=C/h. However, continuum shell can be as- els, we have chosen the gradient corrected PBE functional
signed the modulu¥ and thicknessh unambiguously, to  derived by Perdew, Burke, and ErnzerfidfCalculations

formally match thev, C, andD, computedab initio: with the PBE functional have computational cost similar to
other gradient corrected functionals, while providing more

Ych3 consistent results for a variety of chemical systéimSom-
C=Ysh D= (4 bining the PBE functional with the double zeta quality

— 2
11— 3-21 G basis set, we expect to obtain a theoretical model

capable of providing very good description of the various
mechanical properties studied in this work.
The Coulomb interactions in the code are evaluated via

In the following sections, we outline the computational
approachSec. l), including some of the observed aspects of
the electronic structure, in order to illustrate consistency Of[he fast multipole methdd with an accuracy within 10°
the method. Then we present the mechanical parameters  ic units(a.u).**15-8The numerical integration of the

computation, comparing with previously published resuItsexchange-correlation energy and potential employs atomic

yvherever a_ppropriate. Axial _tension p_roduces values for th%entered grids. In most calculations, 7,302 integration
|bn-plane' :.sélffnessé(.“}l and PO(IjSSOﬂb ratlo# for aIIII-carbon, grid was used, which corresponds to the default grid in the
oron-nitride, and fluorinated-carbon s diiec. _D' Com-_ GAUSSIAN package. In computations where small differences
parisons of the energies of the nanotubes of different diamy, gnergy and geometry were of great importance, such as
eters yields the values for flexural ngidi in Sec. IV’ in-plane stiffness and Poisson ratios, th&afine grid was
where we also note the spontaneous curvature of fluorinat ed(99 radial and 590 angular poiftsn order to achieve
shells. This leads to an interesting observation in Sec. \éood convergence in reciprocal space integration for

about strain localization, when the shell curvature is conceng\ynT's we employed 3% points for insulators and 128
trated at the F-attachment sites rather than remaining unboints for metallic systems. In the latter case, to obtain

formly distributed along the circumference. As a result, thesmooth changes in SWNT's geometries under small strains

equilibrium cross section of nanotubes becomes distinctly, 4 4ccyrate Poisson ratios, we determined the exact location

polygonal, with triangle and square shapes as most favols ihe Fermi level ink space and employed this information

able. In the concluding Se_c. VI, we apply thk initio vglues to compute correct weights for orbitals located close to the

of C, D, andv (or alternatively ofh, Y5, andv) to estimate . ,sging of the energy bands at the Fermi level. In 2D struc-

basic vibration frequencies and buckling stability limits of tures, a mesh df points was employed with 64 points along

the nanotubes. the shorter translational vector and the proportionally smaller
number along the longer vector.

Il. COMPUTATIONAL DETAILS Full geometry optimizations were carried out by a re-
cently developed redundant internal coordinate metfiod,
where the lattice vectors are optimized implicitly via a com-

To carry out the present calculations, we employ thebination of intercell bonds, valence angles, and dihedrals. At
implementation of density functional theory with Gaussianeach optimization step, the unit cell symmetry was enforced
type orbitals and periodic boundary conditith6PBC) re-  in order to suppress small numerical noise in forces due to
cently incorporated into the development version of thethe imperfect rotational symmetry of the angular grids. Ac-
GAUSSIAN suite of program&? The PBC code evaluates the cordingly, in each case the atomic arrangement in unit cells
Kohn-Sham matrix contributions entirely in direct space, andvas chosen such as to maximize the symmetry. The optimi-
the computational expense for these parts of the calculationations were stopped when the r.m.s of forces was below
scales linearlyf O(N)] with system size. The matrix opera- 0.0003 a.u. (0.015 eM), and the m.s. of Cartesian dis-
tions in reciprocal space, such as the diagonalizatiok of placements was below 0.0012 a.u. (0.0006 A).
point dependent Kohn-Sham matrices, requires CPU time In the calculations of the in-plane stiffness and the Pois-
that scales cubicallfO(N®)] with the number of basis func- son ratio, fully optimized structures of smaller radius tubes
tions N. Their absolute cost is such that for the largest syswere stretched by-0.3% and*0.6%. For larger diameter
tems considered her€l60 atoms, 1440 basis functions tubes, we applied strains af0.3% only, because in smaller
theseO(N?) operations become similar in cost to tB¢N) diameter tubes such strains were sufficiently reliable to ob-
Kohn-Sham matrix formation step. For reference, one fulltain the desired precision. During reoptimizations under
geometry optimization stefl2 SCF cycles for an energy strain, the lattice vectors were kept fixed, while all the other
calculation and a gradient evaluation without employing anyparameters were relaxed. This was achieved via the facility
spatial symmetryfor (40,40 BN tube takes about 90 h on to constrain some coordinates in the redundant internal coor-
one R10000 195 Mhz CPU of SGI Origin 2000, out of which dinate algorithm for periodic system$To achieve very high
about 60 h are spent faD(N®) matrix computationg16  accuracy, the optimization thresholds were tightened up to
diagonalizations per cycleThe use of Gaussian basis setsr.m.s. of forces of 0.00001 a.u. (0.0005 eV/A) and r.m.s. of
permits sufficient flexibility in the description of both va- Cartesian displacements of 0.00004 a.u. (0.00002 A).
lence and core electrons for elements across the first half of In studies of achiral zigzagn(0) and armchair rf,n)
the periodic table and keeps the number of basis functionsanotubes, the unit cell under consideration contained 4
per atom small. atoms regardless of the tube type. For 2D structures, we em-

A. Methodology
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TABLE |. Predicted elastic constants for carbon nanotubes from periodic PBE/3-21G calculations.

Tube d’Elde®  C,JInt v 1d3E/d e R L, L,
(4,4) 56.4 333 0.144 -90 2.7859 24772
(7,0 56.3 333 0.162 -310 2.8157 4.2882
(7,7 56.5 338 0.146 -70 48154  2.4783
(12,0 55.2 330 0.181 —260 4.7678 4.2917
graph ¢e,) 57.3 345 0.149 —240 2.4795
graph ¢,0) 57.3 345 0.149 —-170 4.2945

ployed rectangular unit cells, which had four atoms in thewith zigzag chains of fluorine atoms located parallel to the
unit cell. Fluorinated carbon tubes discussed in this workube axis. Therefore, here we look at the series o]
also contained d carbon atoms in the unit cell plus the F-CNT’s with the same fluorination pattern. We fully opti-

necessary number of fluorines. mized F-CNT'’s of f,n) with n=3,4,5,6,8,10,12, as well as
the corresponding 2D structur@=). We have also con-
B. Electronic structure sidered(12,12 F-CNT's with fluorine chains inside the tube

that formally corresponds to negative curvature. F-CNT'’s

with all outside fluorines are metallic with varying number of
rossings at the Fermi level, indicating the presence of sig-
ificant interaction between polyacetylene-likg? carbon

Ehains separated by chains of fluorinatf carbon. The

In this work, we look at a series of achiral zigzag,Q)
and armchair 1f,n) single-wall nanotube$SWNT). The n
values we chose were 3, 4, 5, 6, 8, 10, 12, 14 and also 20, 2
and 40 for armchair BN tubes. We have also considered th

structures with effectiv=c—graphite and planar' BN. The alternation of conjugated bondBeierls instability is unable
electronic structure of the_ Cafbor? SWNT(@NTS) was -y open the gap and lower the energy, and therefore the
found to be in a%rzelement W!th previous calcul_anc_)ns at IOWeWength of these bonds remain identical. The fluorination also
levels of theory’*** All CNT's of the (n,n) chirality were . icog significant distortions in the tube framework, with

metallic, while larger diametem(O) tbes were either mod- sp? carbons located closer to the tube axis ts@h carbons
erate gap or narrow gap semiconductors, with the latter typga result of localized curvature, “pinch” effect as discussed
of behavior found for structures wherewas a multiple of in Sec. IVO

3.2 Small diameter1§,0) tubes were metallic up to=6 due
to the substantial curvature, in agreement with the results of
other_sz.% Recently, we have found that ti(§,0 tube distorts lIl. IN-PLANE STIFENESS C, AND POISSON RATIO »
to elliptic shape and becomes semiconductigwering its
energy and symmetry. Here, we neglect this subtle effect and By performing an extension of the tubes, we calculated
consider only the cylindrically symmetri®,0) structure for  thed?E/de? values and the Poisson ratio for pairs of tubes of
consistent comparison with other tubes that are cylindrical asimilar radius but different helicity. The former can be
the minimum. readily recomputed into the usual Young moduli, following
On the other hand, all BN SWNT&®BNNT'’s) had signifi-  equations(2), (3). For both CNT’s and BNNT’s, the pairs
cantly larger band gaps. In armchain,t) BNNT's, the  were (4,4 and (7,00 and (7,7) and (12,0. For comparison
smallest band gaf#.1 eV) was obtained for thé3,3) BNNT, purposes, the corresponding values for the 2D structures
and this value rapidly increased to the 4.5 eV gap of planawere also calculated, and these formally correspondt0)(
BN, reaching it in(5,5 BNNT. At the same time, in zigzag and (¢,%) types. The results for CNT’s are shown in Table |
(n,0) structures, the smallest band gap of 1.2 eV found irand for BNNT's in Table Il. Overall, there is no difference
(3,00 BNNT increased more slowly witim and reached the found in thed?E/de? values in neither carbon nor BN struc-
planar BN value only at about=14. While the trends for tures of varying radius. Slight variations appearing in Tables
band gaps found in our BNNT calculations agree qualitad and Il are well within the error of the computational pro-
tively with the previous tight-binding studié$we find that cedure. We estimate the error in tt€E/de® numbers to be
the latter calculations underestimate the band gap for smallef the order of 2%, while for Poisson ratios the errors are on
radius BNNT's compared to our results, while for largerthe order of 0.5%. A similar situation was observed for
BNNT'’s the values are in good agreement. On the otheCNT's in Ref. 26, where the differences betwestE/de?
hand, LDA calculatiors predict the band gap fof4,4)  values for different CNT’s are within the computational er-
BNNT to be close to the gap of planar BN sheet, similar toror. We also obtained estimates for the third derivative
what we see in our calculations. d3E/de® responsible for the anharmonicity in the energy ver-
In our recent work, we studied various isomers of fluori- sus strain curve dependence. For CNT's diE/de® values
nated CNT's(F-CNT's) with C,F stoichiometry?*?° Calcu-  have the same sign, but are significantly different in magni-
lations for (10,10 and (18,0 tubes with approximately tude. For BNNT’s, on the other hand, the numbers are in
matching radius have demonstrated that amond 14|10 much better agreement with each other. The difference be-
and(18,0 F-CNT's, the energy per & unit is the lowest for tween CNT’s and BNNT's lies in their band gaps. While it is
all fluorine outside isomers (10,10 fluorinated nanotube relatively easy to fully converge reciprocal space quantities
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TABLE Il. Predicted elastic constants f&N nanotubes from periodic PBE/3-21G calculations.

Tube d’E/de?  C,Jn? v LdE/de’ R Ly L, R(N)-R(B)
(4,4) 45.8 258 0217 —450  2.8455 25490 0.0588
(7,0 45.3 255  0.244 —420  2.8920 4.3906 0.0571
7.7 46.9 267 0213 370  4.9332 25441 0.0318
(12,0 46.7 266  0.226 —310  4.8909 4.3999 0.0321
planar o,) 47.4 271 0211 —250 2.5420 0
planar ¢,0) 47.4 271 0211 —250 4.4028 0

for large gap BNNT's, it is more challenging to do the sameBN, there should be no difference in values of Iheonstant
for CNT’s that either have small gaps or are metallic. in Eq. (1) for tubes of varying chirality because these mate-
Notably, the addition of a large number of fluorines to arials are isotropic. And indeed, our results for fully optimized
carbon tube does not affect the stiffness of the carbon backubes do confirm that there is no difference in strain energy
bone, and fluorinated CNT2E/de? values are similar to for (n,n) and (n,0) carbon and BN tubes except for the
those found in pristine CNT'¢Table Ill). At the same time, tubes of the smallest radii. Tube energy per atom relative to
in C,F tubes we observe much larger anharmonicitya flat graphene sheet is the same as the graphene sheet strain
d3E/de®, most likely due to the very short fluorine-fluorine energy due to flexing, and is computed ds$(C)
distancegshorter than the sum of two van der Waals radii of =[ E;415(C)-uchcl/ne. To analyze the dependence of the
fluorine). This indicates that fluorinated and other derivatizedstrain energy on tube radidsurvaturg in more detail, we fit
CNT'’s can be as stiff as the pristine nanotubes, and can bie data to equatiot)=3D/R?. For carbon tubes, we find
used in a variety of composite materials. Much larger anhara=2.0 with high precision. The value of the consténte-
monicity, on the other hand, implies that under larger, greatetermined from larger diameter CNTs is 3.9 eV/Atom, and
deformations F-CNT’s will be more compliant than pristine is independent of whethen(n) or (n,0) structures are con-
carbon tubes. sidered. This number is in good agreement with the LDA-
Poisson ratios for CNT's depend on the tube type andased values of 390.1 eV A?/atom computed both for
radius. The results forn(n) structures seem to converge armchair and zigzag tub&and 4.00 eV &/atom obtained
quite fast and th€7,7) tube results are already within 2% of from the pseudopotential-density-functional theory calcula-
the graphitic value of 0.149. The convergence is slower fotions for (n,n) tubes?® In the latter case, the authors have
(n,0) structures. In fact when going froif7,0) to (12,0  also obtained =4.32 eV A%/atom for the(10,0 structure,
CNT, the ratio changes in the other direction, from 0.162 towhile in our calculationgand Ref. 28 no difference was
0.181. Again, Poisson ratios computed by us are similar tdound betweer(10,0 and a f,n) CNT of matching radius.
the numbers from Ref. 26. In BNNT's, trends similar to car- The lack of data for othern(,0) CNTs in Ref. 26 does not
bon structures are observed. The Poisson ratios rion)(  allow us to make any statements about the nature of such a
tubes converge faster to the planar BN value of 0.211 thadiscrepancy. Figure 1 displays the strain energy as a function
for the (n,0) structures. Comparing our data to the results obf the square of the inverse radius. Indeed, the data points for
tight-binding calculations from Ref. 27, we note that the TBall tubes but the smallest ones, reside on the same line that
results are about 10% larger than #ieinitio ones. Thisis a goes through the poiri0,0). The deviations observed for the
much smaller difference than for CNT’s, where TB numberssmaller radii tubes on the left side in Fig. 1 disappear once

are about 60% larger thaab initio ones?’ the tube radius becomes larger thad A [(5,5 and(8,0)
structure$ This is an indication that for a large range of
IV. FLEXURAL RIGIDITY D curvatures, CNT’s do behave as elastic shells.

A. Carbon tubes

An important characteristic of a 2D sheet of material is its B. BN tubes

flexural rigidity, i.e., the dependence of the strain energy on In contrast to CNT’s, both for zigzag and armchBiN

its curvature along some direction. By bending graphene otubes, we have found a slightly subquadratic dependence of
planar BN sheet, one obtains SWNT's of different chirality. the strain energyU(BN)=[Eqa(BN)-ugng-unnnl/(Ng

Due to the hexagonal symmetry of both graphene and planar ny) on the tube curvaturéChemical potentials are taken

TABLE lll. Predicted elastic constants for,E nanotubes from periodic PBE/3-21G calculations.

Tube d’E/de? C,Jin? v tdE/de® L ShortestF-F
(4,9 58.4 345 —1650 2.492 2.731
(10,10 53.8 323 —1780 2.501 2.564
planar ¢°,) 54.5 328 0.039 —1890 2.513 2.393
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FIG. 1. Curvature strain energy for carbon and BN tubes as a
function of the square of their inverse radiys. and solid lines
represent data fom(0) carbon tubes;] and solid lines represent
data for ,n) carbon tubesQ and dashdotted lines represent data
for (n,0) BN tubes{] and dashdotted lines represent data fonj
BN tubes.

FIG. 3. Log-log plot of UR?] versus the tube radius. Solid lines
represent data points fon{n) carbon tubes; dashdotted lines rep-
resent data forr{(,n) BN tubes. The dotted line indicates asymptotic
behavior of thq U - R?] for carbon tubes.

the strain energy itself, the buckling does not depend on the

BNNT type [(n,0) or (n,n)] and is a function of the tube
from flat BN sheet, andhy=ng.) In Fig. 1, the nonlinearity radius only. Using log-log fits, we established that for large
of the dependence df(BN) on 1R? is evident. The best diameter tubes, the degree of buckling is sublinear with re-
formal fit of energies to a power law yielda=1.94,  spect to the curvature R/ with 6Rg\~0.2% for one of the
D=3.20 for (n,n) BNNT’s with n=5—-40, anda=1.95, largest R=10 A), andSRgy~10% for the smallest tubes
D=3.30 when fitting forn=10—40. Assuming that the (R=1.5 A). Comparing the degree of buckling predicted by
dependence is approximately quadratic, we comput®Ur DFT caI%JI_anns with that obtained via a tight-binding
D=3.62 eV A¥atom for (10,10 BNNT (R=7 A). This Scheme(TB),”" it appears that in our case the radius differ-
coefficientD is directly comparable to the flexural rigidity €nce is smaller, by about 2030 %. . .
values for carbon. The subquadratic dependence of the en- More interestingly, for smaller tubes of matching radius,
ergy on the radius for BNNT's is likely a consequence of theth strain energy for CNT's is larger than for BNNT's, while
BNNT'’s buckling, with B atoms displaced toward the tube for very large tubes the opposite is likely to be true. To
axis and N atoms pushed outwards. The plot of the degree &*amine this issue in more detail, we carried out calculations

buckling versus the tube radius is shown in Fig. 2. Similar tofor large BN tubes(20,20, (28,28, (40,40]. The log-log
plot of UR? on tube radius for CNT’s and BNNT’s ofi(n)

016 . . . . . type is shown in Fig. 3. The slope of the line going through
Q BN tube data points is smaller than for carbon tubes, indi-
014k ! i cating thata<2.0. It is also evident that the lines for CNT’s

| and BNNT’s cross and the strain energy for BN tubes be-
o.12f 3 . comes larger than for carbon ones at ahost40.

o

\ ] C. C,F (n,n) tubes

Analogously to CNT and BNNT’s, the formation energy
S is computed per node of hexagonal netwtat is per each
' C in the tubule as E(C,F)=[Eul(C.F)-uchc-uene]/
&%\ nc, whereur is defined as the fluorine atom energy in a free
. molecularF,, and uc is carbon energy in graphene sheet as
- previously. We note th&(C,F) is the same as 1R, found
' e in Table IV. In contrast to pur€ andBN tubes, the strain
o , , ‘ ‘ ‘ , , , ‘ energy U(C,F)=E(C,F)—-Es.(C,F) does not fit the
0 1 2 8 4 5 .6 7 8 9 10 «1/R? dependence. On the other hand, a formation energy
Radius (A) .
E(C,F) versus curvature (R) dependence is more reveal-
FIG. 2. Buckling in the BN tube equilibrium structures versus ing as it shows approximately parabolic dependence with a
the tube radiusO represent data points fon(0) tubes;] repre-  minimum distinctly away from zero curvature, Fig. @&or
sent data points forn(;n) tubes. comparison purposes, Fig. 4 includes corresponding plots for
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' 5 The response of the isotropic carbon sheet is symmetric with
04r 1 respect to positive and negative curvature, and the depen-
02k ] dence of the strain energy on curvature is quadratic. For an

asymmetric GF sheet, the energy dependence is linear for
or 1 small flexing and attains a minimum for high spontaneous
S ool g | curvatures. The BN sheet is an intermediate material be-
> o tween graphite and fluorinated graphite. While the BN strain
o g4l 'Y 1 energy curve is symmetric with respect to the zero curvature
% S line, the dependence is between linear and quadratic. This is
& 06T e N 1 an indication of induced asymmetry, likely due to buckling in
sk *-j“w-uw | the BN tubes.
+
- : Ty | V. LOCALIZATION OF STRAIN IN FLUORINATED  (n,n)
ol ] TUBES
: +
05 04 —03 -0z 01 0 ] 01 02z 03 04 05 The energy minimum near th@t,4) F-CNT [Fig. 5(c)]
1/Radius (A”") prompted us to look at larger squafer other polygonal

FIG. 4. Strain energy for carbon, BN angFtubes as a func- structures that have four fluori_ne chains and rowssp? .
tion of their curvaturg(inverse radius [ and solid line represent Calrlbonf between them. Adding e'gr;]t fluorine atoms to the unit
data for ,n) CNT's; [ and dashdotted line represent data for C€!IS 0f(6,6), (8,8), and(10,10, we have obtained structures
(h,n) BNNT's; ¢ and dashed line represeB(C,F) [1/2E,] for ~ With the varying stoichiometries £, C,F, CF, respec-
F-CNT’s; + and dotted line represent 1B, for F-CNT’s; ¢ and tively. (10,10 tubes with four and five fluorine chains are

vertical dotted line indicates fluorination energy per carbon inShown in Fi_gs_. @) and Gb). For both th_ese examples we
F,-(10,10) wherey=1—-4. observe a distinctly polygonal cross section with rows pf

carbon forming bands of graphitelike material with very little
visible deviation from planarity.

CNT'’s and BNNT’s) With this shift taken into account, the The data indicating the stability of the fluorinated tubes is
strain energy curve looks again as characteristic parabolighown in Table IV. Energy; (E;=[Eia(CoF) —Ecntce
function U(C,F)=1 DCF(]-/R_]-/Req)Z- Remarkably, the —ugnel/ng) describes how stable the fluorinated tube is
energy minimum corresponds to very large spontaneous cugompared to the carbon in the corresponding pristine CNT
vature 1R,,=0.46 (A1), that is to the tubes of4,4) and and fluorine in F,. In addition, energy E, (E;
even (3,3 type with the diameters as small as near 5 A.=[Ea(C2F) —#cnc— 1enel/ng) describes the relative
Cross sections of6,6), (5,5), (4,4), and (3,3 tubes are dis- energy of a fluorinated tube with respect to carbon in a
tinctly polygonal as shown in Figs(&, 5(b), 5(c), 5(d). The ~ graphene and the fluorine iR,. Therefore,E, is a more
formally defined value of the flexural rigidity is thebce ~ Systematic measure of the comparable stability of various
=3.96 eV A/atom. These R, andDcr values were esti- isomers. Due to the positive strain energy in SWNT’s and
mated by fitting energies for three larger diameter F-CNT’s:consequently higher energy of the formal reactafis,is
(8,9, (10,10, (12,12. It is quite interesting to note th&d always lower thanE, except for the one side fluorinated
coefficients for F-CNT’s and CNT’s are almost the same, andiraphene sheet, where these values are the same. In F-CNT’s
as a result, the difference between the two parabolas repréf C,F stoichiometry the most energetically favorable are
senting the CNT fluorination energy is close to a straight linetubes of the smallest radius, where (8,3) F-CNT the E,
(same as 1/E; in Table IV). energy per fluorine reaches values as low-&51 eV, and

The significant spontaneous equilibrium curvature cause&, reaches-1.62 eV. In contrast, the stabilization energies
by unilateral fluorination is a strong manifestation of asym-for the all-inside(12,12 SWNT is extremely small, witt,
metry of the formed GF layer. Another measure of this being—0.14 eV andE, being—0.09 eV. Such high values
asymmetry is a nonvanishing first derivative of energy withare partially due to the substantial repulsion of fluorine atoms
respect to curvature in the vicinity of zero, which is a finite located too close to each other inside the tube. We have
internal bending torque in a flat fluorinated sheet. The direcalready encounterell; andE, in the previous section while
tion of this torque and the sign of the resulting equilibrium discussing Fig. 4.
curvature correspond to “fluorine repulsion,” making the  For square tubes of varying stoichiometry, the energy with
fluorination on a convex side much more favorable than on @espect to carbon in grapheng&y) slightly increases with
concave side. Tubedl 2,12 with all-outside and all-inside increasing tube size and converges-td.51 eV per fluo-
fluorine are shown in Figs.(6) and 5f), while the difference rine. The fact that the latter value is very similar for all
in their energies is evident from Fig. 4. We will see further square tubes quantifies our statement thatstpe carbons
that the main cause of the curvature is a locally inducedetween fluorinated corners are pretty much the same as car-
angle, a “pinch” in the underlying carbon network, rather bons in a graphene sheet. Another interesting observation is
than a repulsion between the neighboring F-zigzag rows. that for all square tubes, thE, values are lower than for

Overall, for the monatomic shells considered in this work,F-CNT of C,F composition, for example in thés,6) tube
we observe three types of behavior with respect to flexing(—1.56 eV versus-1.48 eV). So, if reaction kinetics per-
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(d)

(®) ()

FIG. 5. Geometries of the fluorinatea,f)) carbon tubes of ¢F stoichiometry.(a) F-(6,6); (b) F-(5,5; (¢) F-(4,4); (d) F-(3,3); (e
F-(12,12; (f) F-(12,12).

mit, fluorination of pristine carbon tubes might producefer to add in chains along the tube, and second, that such
square tubes in cases when the carbon/fluorine ratio is smafluorine chains prefer to add in the area of the tube with the
Formation of square tubes might proceed via a consequetdrgest mechanical strain. Using tk®0,10 tube as an ex-
addition of fluorine chains to the pristine tulpEigs. 7a), ample, we can quantify the energetics of such a mechanism.
7(b), 7(c)]. In order for such a scheme to work in practice, Adding just one chain of fluorines to t{&0,10 SWNT, the

two assumptions should be true, first that fluorine atoms preenergy per fluorinde; (—1.76 eV) is substantially smaller
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TABLE IV. F-CNT fluorination energies and Fermi level in eV.
F-(x,x) are outside fluorinated tubes of,E stoichiometry,
F-(12,12) is the inside fluorinatetl2,12 of C,F stoichiometry,
F,-(x,x) are square tubes, and, wheren=1—3 are fluorinated
tubes shown in Fig. 7. For partially fluorinated tubgs Ehe energy
per new fluorine atom relative to the previous structure is shown in
parentheses.

Tube E; E, Erermi
F-(3,3 -251 -1.62 —6.62
F-(4,9 -2.13 -1.62 —6.80
F-(6,6) -171 —1.48 —6.95
F-(8,8 —1.49 —-1.36 —6.99 (a)
F-(10,10 —-1.36 -1.27 —7.00
F-(12,12 -1.27 -1.21 -7.01
F-(o0,%) —0.83 —0.83 —5.86
Fi-(12,12) —-0.14 —0.09 —4.55
F-(4,9 -2.13 -1.62 —6.80
F4-(6,6) -1.90 —1.56 —6.50
F4-(8,8) -1.79 —1.53 -6.31
F4-(10,10) -1.73 —-1.52 —6.20 o
F4-(12,12) —1.69 —-1.52 —6.08
F4-(14,14) —1.66 —-151 —6.00
F,-(10,10) ~1.76 ~094  -517 (b)
F,-(10,10) —1.84(-1.92) —1.43 —5.61
F3-(10,10) —1.73(-1.51) —1.46 —5.85 FIG. 6. Geometries of the polygonal fluorinated carbon tubes.
F,-(10,10) —1.73(-1.73) —1.52 —-6.20 (@) square £-(10,10);(b) pentagonal £(10,10).

than E; for the entirely fluorinated F-(10,10) tube /
(—1.36 eV). The same is true for all intermediates that lead"d GF lattices.

PHYSICAL REVIEW B64 235406

TABLE V. Summary for computed elastic constants for C, BN,

to a square tube. So, from a thermodynamical perspective,
fluorine chains would like to attach in areas where there are

no other fluorine chains nearby.

The cross sections of all the low-fluorinated structures .
(whereF is attached along the axially directed zigzag motifs
permit simple continuum elasticity interpretation. They es- e
sentially represent elastic sheets constrained by appropriateflexural rigidity D, eV
boundary conditions at the junctions, and belong therefore
to the class of Euler'sLASTICA curves. This again confirms

that uniform domains in nanotubes can be quite well de-
scribed by macroscopic elasticity theory. Figure 8 shows
such curve for &C,oF tube[F4-(10,10)]. It is matched to
form a closed loop with a singl& junction, inserting an
angle ¢=71°. The value ofg is established in a complete

relaxation of a “corner” structure (HC -CCKC---CH), _
hydrogen-terminated in order to eliminate the torque present surface densityy, mg/n?

in a closed loopFig. 7(d)]. The fact that observed deviations
from 71° in different polygonal shapes are very small dem-
onstrate its relative stiffness compared to compliant exten- fext: M
sive carbon sheet. Notably, addition of &g group (linear
motif) to a flat graphite sheet changes its global geometry. f,.,, cm?!

C BN CF
2D properties
in-plane stiffnes<C, N/m 345 271 328
(Youk, Gpa (1029 (810 (979
1.46 1.29 1.49
shear modulu& 150 112 158
Poisson ratiov 0.149 0.211 0.039
3D properties
shell thicknessg, A 0.894 0.936  0.933
Young modulusyy, Gpa 3859 2901 3515
shell shear modulu& 1679 1198 1692
0.749 0.736 1.342
frequencies fo10,10 tube
! 168 148 121
f asial, CM 2 110 93 84
17.0 15.3 12.8

This presents a peculiar chemomechanical coupling where
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- aafing |
’!’ \‘
3 4 ’
“o J;
(a)

(d)

FIG. 7. Geometries of the fluorinaté#l0,10 carbon tubes with
low fluorine content and the unconstrained fluorinated an@le.
F;-(10,10);(b) F,-(10,10);(c) F5-(10,10);(d) unconstrained fluori-
nated angle.
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FIG. 8. Overlay of the Euler’&lasticacurve and the F(10,10)
tube of GgF stoichiometry.

cant simplification of description can be achieved, provided
that the parameters of the shell are accurately deterng@hed
initio, and allows one to employ the well established rela-
tionships for macroscopic shells. Table V summarizes some
of the results for C, BN, and F lattices, omitting the minor
differences discussed in the teetg., for different tube radii
and chiralitie. The first block presents the formal two-
dimensional shell in-plane stiffness, flexural rigidity D,

and the shear moduls=C/[2(1+ v)]. The second line in
parenthesis supplies the bulk Young’s moduyg, of a 3D
stack of layers spaced at 3.35 A apart from each other,
along the plane; we include it here for the sake of convenient
comparison with graphite. We also include the values of two-
dimensional mass densify; for the three materials. In the
second block we define an effective material shell, which is
most common in the studies of macroscopic shells elasticity,
vibrations and nonlinear buckling. The finite thickness and
the effective Young’s modulus is assigned based on(&q.

We note that a very small thickness combines with a very
high Young’s modulus to provide a consistent representation
(the values here differ of course from those based on the
empirical classical potential, Ref).8In the bottom section
we present the frequencies of several basic vibrations calcu-
lated from the shell parametefthe speed of light is in-
cluded to convert to spectroscopic inverse centimeters)units
Extension-breathing mod 4 (circular shape preserved, ra-
dial oscillation

fexi= ! \/ c 5
ext— 2mcR (1_ Vz)psl ( )

Axial shear modeE, (relative axial displacement of the
opposite sides of the cylinder

chemical energy of fluorination can be transformed into me-

chanical work of the sheet bending.

VI. CONCLUSIONS

1 / C
faXial_Zﬂ'CR 2(1+v)pg ®)

We conclude by emphasizing the applicability of the elas-The softest flexural-circumferential modg, (flattening of
tic shell model to the objects of molecular size. This signifi-the cylindej has frequency
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he 12C one to go beyond linear analysis in the assessment of stabil-
frex= . 7 ity, buckling and strength limits of the shell-based structures.
" 4mcR2 Y Bpg(1-v) @
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