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Semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots
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We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using
Berry's conjecture, we calculate peak height distributions and correlation functions. We demonstrate that
corrections to the corresponding results of the standard statistical theory are nonuniversal, and can be expressed
in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an
oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both sym-
metric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distri-
bution of peak heights, but are clearly seen in the correlation function or power spectrum. For nonzero
temperature, the correlation function obtained theoretically is consistent with that measured experimentally.
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[. INTRODUCTION tions to be completely random and uncorrelated with each
other. The random-matrix theory used was known to be a
The Coulomb blockade is a fundamentally classical effecgood description of energy-level statistics, and so likely to be
in microstructures—the addition of an electron to an isolatedeasonable for wave functions. The experimental %fatar
microstructure requires a certain amount of electrostatic erthe distribution of the Coulomb blockade peak heights were
ergy, the charging energs?/2C, whereC is the capacitance found to be in excellent agreement with the predictions of
of the structure. It is the simplest effect of electron charge irthe statistical theory, thus supporting the conjecture of an
microstructures, and has been extensively studied with reeffective “randomness” of quantum dot wave functions.
gard to both fundamentals and applications in single-electron A potential problem with the statistical theory was, how-
transistors. One common way to study the Coulomb block- ever, evident in one of the first experiments: there is no cor-
ade is by measuring the conductance through a nearly isoelation between different wave functions in random-matrix
lated nanoparticléusing tunneling contactss a function of  theory, so the statistical theory predicts zero correlation be-
a gate voltage which tunes the electrostatic potential of théween neighboring conductance peaks; however in one of the
particle. For most values of the gate voltage, the conductancexperiment§correlation was clearly present in the form of a
is very small, since the flow of electrons is blocked becausslowly varying envelope modulating the peak heights. In
the charging energy is not available. However, when the gatsubsequent years a number of different effects were investi-
voltage is tuned so that states differing by one charge havgated as candidates to explain this correlation. The simplest
the same energy, there is a peak in the conductance. Tl these is the effect of nonzero temperature: since excitation
height of this peak is simply the conductance of the twoabove the Fermi level is possible, several resonances contrib-
tunnel barriers in series, and the spacing of the peaks is uniste to each peak, and a given resonance contributes to sev-
form with a separatioe?/C. eral neighboring conductance peaks, inducing correlation.
For the smallest quantum dots and at low temperature-dowever, in a detailed study, this was found to be insuffi-
however, quantum-mechanical interference becomes impoeient to account for the observed correlati8r@ther expla-
tant. Interference causes variations in both the height andations that were explored include correlation due to spin-
spacing of the conductance peaks. For the spacing, singlgaired level$:° those due to a decrease of the effective level
particle quantization and the residual interactions among thspacing found in density-functional calculaticfignd those
electrons are important. For the height, the nature of thelue to level anticrossings in interacting many-particle
wave functions become critical: if the wave function of the systems! While these latter explanations rely on subtle
state at the chemical potential is poorly coupled to theelectron-electron interaction effects, here we argue that peak
leads—if it has nodes at the leads—then the conductandeeight correlations already arise within an effective single-
peak is small, but if the wave function is well coupled to the particle picture of electrons in the quantum dot. The specific
leads then the peak is large. In this paper, we restrict ouinternal dynamics of the dot, even though it is chaotic,
attention to fluctuations in the conductance peak heights, anghodulates the peaks: because all systems have short-time
investigate what this tells us about wave functions in quandynamical features, chaos is not equivalent to randomness.
tum dots. While the statistical theory is “universal” in that it de-
Since dots are generally irregular in shape, the classicglends on no specific features of the quantum dot at hand, the
dynamics of the electrons is chaotic, and so the characteriglassical dynamics in the dot is clearly not universal. Thus,
tics of Coulomb blockade peaks reflect those of wave funcwhile correlations between the conductance peak heights are
tions in chaotic systents.’ Previously, a statistical theory for generally present in quantum dots, the particular correlations
the peaks was developed by assuming these wave func- in a given dot are not universal but rather involve detailed
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information about the dot. The simplest information to in- quantum dot. This connection is well knowhit allows us to

clude is the spatial correlation function of the waveexpress the conductance in terms of single-particle quanti-

functions—this is very short length dynamical information— ties. We consider a dot close to two leads, so that the width

and an approach including this effect was given in Ref. 120f a level comes from the tunneling of the electron to either

Going beyond this, we use semiclassical techniques to deriiead. When the mean separation of levels is larger than the

a relation between the quantum conductance peak height amemperatureT, which itself is much larger than the mean

the classical periodic orbits in the dot. width, the electrons pass through a single quantized level in
The main result is that as a system parameter varies—thgae dot, and the conductance peak heigftt is

magnetic field, for instance, or the number of electrons in the

dot (controlled by varying a gate voltage-the interference e « Iyl

around each periodic orbit oscillates between being destruc- Gpeakzﬁ 2kT r,+0,' @

tive and constructive. When the interference is constructive

for those periodic orbits which come close to the leads usewhereI'; andI'; are the partial decay widths due to the

to contact the dot, the wave function is enhanced near théinneling into a single lead, and spin degrees of freedom are

leads, the dot-lead coupling is stronger, and so the condud€eglected. In particular, when the leads are identical and

tance is larger. Likewise, destructive interference produces 8ymmetrically attached to the dot:

smaller conductance. The resulting modulation at frequen- )

cies corresponding to the periodic orbits can be substantial. G _& ll“ @)
Because of dephasing effects, only the short periodic orbits, peak™ h 4kT 1’

indeed perhaps only the shortest one, is likely to be signifi-

cant. The partial width is related by Fermi's golden rule to the

Similar short-time dynamical effects have been noted irsquare of the matrix element for tunneling between the lead
other contexts such as atomic and molecular spéttfa, and the dotM'~9 A convenient expression for the matrix
eigenfunction scarring?'® magnetotransport in antidot element in terms of the lead and dot wave functicksand
lattices!” and tunneling into quantum well& 2 The peri- Wy, respectively, was derived by Barde€rand can be ex-
odic orbit modulation that we discuss here is completelypressed a8
omitted in theories in which the wave function is assumed to
change randomly as the system charfgé&eassuringly, the
predicted dynamical modulation is of the type in the original
anomalous experimeftMore recently, other experimental
data have been published which show the eftéétout to ~ Where the surfac& is the edge of the quantum dot. The
date no systematic experimental study of this effect has bedpartial widthI", then, depends on the square of the normal
performed. derivative of the dot wave function at the edge weighted by

In the rest of this paper, we generalize some results prethe lead wave function. The dot wave functidry in Eq. (3)
viously reported in Ref. 23 to address asymmetric lead places calculated for the effective potential, which accounts for
ment and to incorporate temperature dependence. The deiteractions in the dot in the mean-field approximation. For
vation given here is completely different from the previousthe partial width we then obtain
one, which relied on the methods of Ref. 21: here our ap-
proach in terms of a statistical ansatz for the wave functions 27h (@)
yields more results for chaotic systems, but misses the results Fa[Wal= m?2 El pi Lder\Ifd(rl)
for regular systems that we obtained previously. It has been *
suggested that a symmetric lead placement would not pro-
duce an observable oscillation in the average conducténce, X Ldrz' VW (1) *[W{(r)* w{(r,)],
but the method employed there only included spatial corre-
lations in the wave functions and not the short-time dynam- (4)
ics which we consider here. In Sec. Il we express the helgh\}vherea is the index of the lead, the integbrrepresents
of the conductance peak in terms of the resonant wave func;

tion. The basic ansatz for the distribution of the wave func—dlfferent transverse subbands in the lead, anis the den-

tions, including dynamical effects, is presented in Sec. Ill. IS of states in the lead for a given subband. To obtain the

Sec. IV our results for the conductance peak heights are o tatistics of the conductance peak heights, we thus need to

tained. Comparison to numerical results for the stadium bil- now the statistical properties of the dot wave functiting.
liard in Sec. V confirms the adequacy of the semiclassical

approach. Finally, we close with a summary and discussion !ll. WAVE FUNCTIONS IN THE DOT: STATISTICAL

of future directions. DESCRIPTION

For asingle dot, we consider an ensemble of Coulomb
blockade peaks—measured either in a narrow interval of gate
voltage or obtained by following a single resonance under a

Our starting point is the connection between the Coulomizontinuously changing magnetic field. The wave functions
blockade peak heights and the widths of the levels in thessociated with the peaks of the conductance will vary—or

M'ﬂdzﬁ—zf dr¥,(r)V¥4(r) 3
m* S l d '

4

II. HEIGHT OF A CONDUCTANCE PEAK IN COULOMB
BLOCKADE
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“fluctuate”™—in a way characterized by a distributid®] ]

which we seek. FLu1= [ ol ~PLutlogPLy1- [ ary [ araara
It was first conjectured by Berry that the wave functions

of a classically chaotic system fluctuate with certain univer-

sal properties, and can be characterized as random X (r)g(ra) PLyl = Clro.ra)y |, (8)

variables?® This is the foundation of the first statistical L

theory of peak heights Subsequently, the statistical ansatz where the Lagrange m_UIt'pl'at(.rl’rZ) can then be deter-

made by Berry has been further developed. One direction dftined from Eq.(5). Setting the first variation df[ ¢/] equal

refinement is the incorporation of some short length-scald® 2€ro, we find thaP[ ] is Gaussian. The final result, ob-

aspects of the real classical dynamics. First, a constraint ¢fined by substituting Ed5) to find A(ry,r2), is

an arbitrary correlation function

P[¢]=Aexr{—§J drlf drzlﬂ*(rl)c_l(rl,rz)lﬂ(rz)},
C(r11r2)5f DYPLf]h* (r1) ¥(r) 5 )

. . . . _1
was incorporated into the ansaZ®By using the correlation WhereAis the normalizatiofindependent of(r)], andC™"
function of a random superposition of plane waves, the prObI_S the functional inverse of the two-point correlation function
ability distributions of level widths and conductance peaks inC(r2.r1/e)
the case of multimode leads to the quantum dot were

found!?2” A distribution similar to this ansatz was derived f draC L(ry,r5)C(ra,rp)=8(r1—ry). (10)
microscopically for disordered systems, a specific kind of
chaotic system, using the nonlinear sigma mddei” The coefficient3=1 for a system with time-reversal invari-

The next step was to constrain the correlation function byance, when the wave functions can be chosen real, gand
the short-time classical dynamics. Using the short-path semi= 2 gtherwise.

classical correlation, Srednicki and co-workéré studied It has been showHi that in the smalk limit for classi-

correlations in chaotic eigenfunctions at large separationgg|ly chaotic systems, the correlation functi6ir,,r;) can

and found that the predicted correlations are in excellenpe expressed in terms of the semiclassical approximation to
agreement with numerical calculations in chaotic billiafs. the Green functiol? Ge(l,r1) as

This semiclassically constrained ansatz fjry/] is much

harder to justify—certainly no derivation in disordered sys- 1

tems can be made. However, progress toward this goal was C(ry,r)=—1ImGg(r,,r)+O(%%?) (11
achieved by Kaplan and Heller by treating the nonlinear ef- TPsc

fects of classical recurrenc&s.In a recent paper by
Kaplan® short-time dynamics were incorporated into the
general probability distribution of Ref. 27 to improve the
random-matrix theory results for the conductance pea
height statistics.

Here we use a maximum entropy technitfite derive the
specific form of the distributiodP[ /] that we need. An ad-
vantage of this approach is that arbitrary constraints can be 11
introduced, as in the case of normalization which we discuss GedTo,F1)=Go(r,r1)+ =
below. We make the following ansatz: the distributief] e ’ ih \27ik
maximizes the information entropy

where p,{&) is the smooth part of the density of states
(DOSY) in the dot, given by the leading ordéfrhomas-Fern)ji
l§emiclassical approximation to the DOS.

In the semiclassical approximation, the energy-averaged
Green function can be expressed in terms of the classical
trajectories(labeled by the index)**38

S o]

:

oo 22
exXpl—-——In;—|ex — ,
H=— | DuPLyI0gPLY] ®) hoa 212

whereS;=S;(r,,r) is the classical actions; is the period,
Fhe integem; is the topological indeX of the trajectoryj,
and the amplitud®; is

3

within the space allowed by the constraints. Here the me
sure corresponding to the distributi ] is defined in the
standard way*

2q 2c
Dipg=lim TI}_ ;desy(r ), 7) 9°§j(rp.r1)  °Si(ra.ry)
N—ox® arzt?rl de (9[‘1
ili Dj=det , 2 (13)
so that the produd®[ 4] Dy represents the probability that 3°§(rp,ry)  9°5i(ra,ry)
a wave functiony(r) of the original ensemble is between de Ir, 962

Pq(r) and gy(r) +dyy(r) for any pointr inside the dot.

Assuming that theonly constraint imposed on the en- We have specialized to two spatial dimensions and the last
semble of wave functions is the correlation functionexponential in Eq(12) is due to a Gaussian averaging over
C(rq,r,), the maximum of functional{6) under constraint an energy window of widthWV described below. The function
(5) is equivalent to the extremum of the functional Gy(r,,rq) is the contribution of the nonclassical so-called
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“zero-length” trajectories, those with actions less than or of

orderf. Therefore,Gy(r,,r;) cannot be obtained using the
stationary-phase approximation, but may be eval#&téty
replacing the actual propagatdr,|exp(—iHt/%)|r,) by its
free-space analog

iHt d p(ry—ry)
<r2|ex;<—7>|r1>~f (ZWZ)Ze)q{I P Zﬁ ! )
xex;{—w (149

wherery=(r,+r,)/2. The corresponding Green function is
then

dp
(27h)?

1
p,ro)+i0’
(15

p-(ry—ry)

ex;{ [ 7

GO(rZurl):f )S—H(

Note that because of the short trajectory involved, this part of
the Green function varies very smoothly as a function of
energy. The smooth part of the correlation function which

results is

p(ry—ry)
h

dp ~
2mh)2

1
CO(rerl):—_j ( )5[s—H(p,r0)],

Psc
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f drly(n)[?=1, (18
the normalization of the wave functions is satisfmay on
average

f D¢<r>P[w<r>1f dr|y(r)[2=1. (19)

As a result, the higher-order momentsA,
=(fdry...[dro|g(r)|?. . [¥(ry)]?), of the distribution
are different from unity. Therefore, in its general from, the
ensemble defined by E@9) is not suitable for calculations
which are sensitive to the>1 moments of the distribution
P[], such as for the description of the residual interactions
in quantum dots2-4!

The method developed in this section yields a straightfor-
ward way to generalize distributiof®) to properly account
for the higher moments. For example, adding an additional
constraint

| puptsn [ an, [ arlpeo =1, o)

to the variational problemiEg. (6)] will yield a generaliza-
tion of distribution(17) which properly accounts for the mo-
mentA,.

Note, in contrast, that the errors in the higher moments,
n>1, produced by thesemiclassicaHistribution [Eq. (17)]

4
(16) ) . Y
are of higher order i, 5,~0O(#°) than the terms taken
and soCq(ry,r1)*Jo(p|ra—ra|/#). This smooth part of the into account inG4..*? As long as these higher-order correc-
correlation function is rather local in that it decays monotoni-tions are not relevant for the quantity under consideration,
cally with separation. Thus, having fully specified the corre-one can generally use thgemiclassicaldistribution [Eq.
lation function we wish to use, we finally obtain a7].

P(l//d|8)~exﬁ{_ gf dl’lJ' drzlr/l*

><(rl)chl(rz,r1|s)¢(r2)}_

IV. PEAK HEIGHT DISTRIBUTION

Since the Coulomb blockade peak heights are uniquely
determined by the corresponding dot wave functiggs the

(170  peak heights distribution functioR(G) is given by

A few remarks are required about the width of the energy P(G)= f DipgP(4hq) (G = Gpeal #4l), (21
window W. In the semiclassical limit there arises an increas-
ingly broad separation between the short-time dynamics thavhereGe,f #] is determined by Eqgl), (2), and(4). The
give rise to system specific behavior and the long orbits thawidth I" depends only on the wave function near the bound-
are responsible for generating universal statisticaRry of the quantum dot, as follows from Eg). If the func-
fluctuations:® The width W is chosen such that the short tion Pg(y) represents the distribution of the wave functions
periodic orbits are included in the sum essentially undampedn a narrow stripSalong the boundary of the quantum dot, so
whereas the long orbits are eliminated since their contributhat

tions are already accounted for in the statistical ansatz. For

the rest of this paper, we will eliminate the explicit depen- {E(r), reS
dence onW and the sum is understood to contain only the W(r)=y . (22)
linear dynamics. Y(r), TéS,

The general ensemble defined by distributi® has, then the conductance distribution is
however, certain limitations. Strictly speaking, in its general
form this ensemble is only suitable for calculations of those N — —
observables which can be represented in terms of only two- P(G):f DyrPq ¢|8]5(G_Gpeal[ 1) (23

point productsy™ (rq) ¥(r,). The reason for this problem is

as follows: instead of the proper normalizationeaich mem-
ber of the ensemble

The “edge” distributionPg can be obtained from the general
distribution P[ ¢] by integrating out the values af:
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— - — - 1
Pl y]= J DyPLY{y. o} (24 InC(Y2,y1)=—=IM3,Gsdy2,y1) + O(h(* D),
TPsc

As the distributionP[ /] is Gaussian, the resulting functional (30
integral can be calculated exactly, yielding where

= B T (0K, o Intm(¥2,0) Fnth(Y1,0)
Ps['r//]—AseXF{_Efsd%fsdchll’*(%)M%ﬂz)'ﬂ(%)}, 3nG(y2,y1|8)E% n msm—s:—ig . 3D

@9 The semiclassical approximation,G. for the normal de-
where rivative Green function was derived in Ref. 21,
?(ql,qz)=C’l(q1,q2)+f dqsf da, _ 4 1
o\S oS ‘?nGSC(yZIyl)_anGO(yZ!yl)—'—ih_S \/m

X C Y(d1,03)C(03,0d4)C 1(04,02) (26)

and Ag is the new normalization constant. The spatial inte-
grals are over the part of the total spaeevhich is orthogo-
nal to the edges, denotedQ\ S.

As follows from Egs.(11) and (12), the “nondiagonal”
part of the correlation function is of a higher order 7in — . _
~0(+#), compared to the “diagonal” pa€,~O(1). The ~ Wheren; and[p;], are, respectively, the Maslov indexés
second term in Eq(26) involves the correlation functions and the normal component of the classical momentum of the
C(a;,05) and C(qy4,q,), taken between the points of the trajectory]. _
differentparts of the dot—the edge strigfor one coordinate In order to connect the dot wave functions to the lead, let
and the internal regiof2\ S for the other. It is therefore of {$m(Y)} be the complete orthogonal set of the wave func-
higher order in#, ~O(#), than the first contribution, tions corresponding to the transverse potential of the lead.

C Y(ay,q) ~5(q2—q1)0(1)+0(\/ﬁ). Keeping such Using this basis, we represent the functipfy) as

xg [p;(y1)1alPj(y2)1nVID;|

X sin

7 _njz (32)

S _77)’

higher-order terms is not consistent with the leading-order o
semiclassical approximation we used f@(q;,q,). We _ a _ 33
therefore obtain () mz=o mén(y=y1), 33

o B . wherey, is the contact point of the lead. Assuming that the
Ps[lp]:Asex;{ — Ef dqlf dg,¢* (gq) tunneling between the lead and the dot is dominated by the
S S contribution of the lowest transverse subband of the lead,

o and using Eq(4) for the partial widthI",,, we obtain
XCl(QlaQZ)‘/’(QZ)}- 27 s 2
| _ . ra=2wp6“)(m—> fdysbo(y)E ambm(y)

An alternative to the argument given here proceeds by noting % m
that integrating outy should yield a Gaussian i, and that 2 #4
this Gaussian, by construction of the ensemble, must repro- =— pga)|ao|2’ (34)
duce the correct two point correlation functi@(q;,q,). m;
This alternative argumefit yields immediately the func- h (@) is the density of in the lead di
tional form [Eq. (27)]. wherepy™ is the density of states in the lead corresponding

When thecloseddot is defined by the Dirichlet boundary to the lowest transverse subband. For an arbitrary moment of

M m .
conditions, the wave function in the narrow stSmear the  the partial width(I';), we therefore find

“edge” can be represented as .

= vy [ da| ool m|ao|2mexr{—|ao|2
y=20(y), (29) « 2 0
wherey is the coordinate along the boundary of the dot, and 1
zis in the direction of the normal. In this limit, the correla- X j dhf dyodo(Y1) 7= Po(Y2) |-
i S InC(y1,y2)
ion function is
(35
C(d1,92) =2,219,C(y1,Y2), (29

To give explicit expressions for the distribution of level
where 3,C(y1,Y,) is defined as the correlation function of widths and conductance, we specialize to the time-reversal
the normal derivatives of the wave function at the boundarysymmetric case =1, GOB for the rest of this paper; the
of the dot and can be obtained as case, when time-reversal symmetry is broken by a magnetic
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field (B=2, GUB), can be treated in an analogous way. In 2mh4
the presence of time-reversal symmetry, the wave functions, I'y=——pFalP2 (42)
and hence the coefficieat, can be chosen real, yielding my
r/oT Assuming an equal density of states in the leasg)()
<Fm>o<f dr FmL\/_), (36) =p{?(e), for the conductanc& we obtain
r
e Jagaf)?
where =S S PO e (43
. @ m kT |ag’[*+|ag”|
—_ 4 ple
I'=s— p_L An arbitrarynth moment of the conductan€ (G"), can
2
My Psc now be calculated by integrating over the coefficiefag}
1 -1 for m#0, yielding
x| | d f d ) ) .

exd — a(()l)Allagl)

(37 <G”>°<fdagl)f da®

Thus the partial width is characterized by the Porter-Thomas

|ag"|?+|ag?)|?

distribution —aP AalP —2afP A8, (44)
where the matrix4 is
P(I") L p( L ) (39
x—exp — —]|,
N 2r Aaﬁ?:f d)ﬁf dyao(y1—Yi)a,C 1(y1,Y2)

with the slowly varying local averag€(e). This explicit X o(Ya—y#) (45)

result for the distribution of level widths is the main result of oty ¥

this section. Note that definition(45) implies that the diagonal elements
The conductance distributioR(G) can now be simply of the matrix.4 are proportional to the corresponding partial

derived in two limiting cases(i) when the leads are placed widths, A;,~T;, A,,~T,. A straightforward evaluation of

symmetrically, so that’;=TI", [cf. Eqg. (2)], and (ii) when the integrals in Eq(44) using the substitution

one of the partial widths is substantially smaller than the

other,I';<T",. In both these cases~1I"; [as follows from (1)12 mec kTG
Eq. (1)], and the conductance distribution is also of Porter- x=[ag"] _—Treghgp , (46)
Thomas type. The “local average” conductanGeis given ) 0
by yields
G(e)= e'm T'(e) (39 (G”)=f dG G"P(G), (47
2vyh kTF ’

— here the distribution i
where the “local average” width’ (&) is defined by Eq(37), where the distribution 1s

In the general casé;; /I",~O(1) but not identical, how- P(G)= —exp{ - ETrAG) f dxwex;{ - EAHX

ever, an exact calculation of the conductance distribution is VG 0 X
complicated by the essentially nonlinear dependence of the < G
cosk{ AlzG< \[6+ ~

conductance on the partial widtHs, and I',. In order to
calculate the actual conductance, we choose theSasahe
composition of two narrow stripS, ands, near each of the Note that it is only the term involvingd,, which makes the
leads. Using the transverse lead wave functions as the ba%@maining integral non-Gaussian and so, thus hard to per-
in each of the two strips, form. However, this term is semiclassically small: from Eq.
o (45) it follows that the leading semiclassical term in the off-
W(y,2)=2 >, aPepPy—yM)+ >, a@ep@y—y@)|, diagonal part of the matrixd is of next order i compared
m m to the leading diagonal terms. Theintegral in Eq.(48) is
40 erefore dominated by the interval between an
( therefore d ted by the int | bet d
where the coordinateg™ andy(® represent the “contact C-A22, Where the off-diagonal matrix elemeAtmakes only
points” of the leads. The partial widtHg, andT, are then & small correctiorquadraticin A;,. Such a correction cor-

1 G?
—5An -

(48)

given by responds, however, to higher-order termé irCorrections of
this order were already neglected in the original semiclassi-
2mh 4 cal expansion of the Green function, and so to be consistent
I'i=——pf"af"?, (41)  we discard all effects of the off-diagonal matrix elemeht
m, here. The integral in Eq48) can now be easily performed.
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The semiclassical approximation to the conductance dis-

R ! oY — 27k
tribution is, then, simply a Porter-Thomas distribution, even =— > Péa)f dylf dy,d.(y1—Vi)
in the general case, m, «
2 12 1 [ X¢§(Y2_Y|)€9nc(y1:Y2), (55)
P(G)= f) \/_geXp oGl (49 \where the correlation function of the normal derivatives of
S the dot wave functiong,C(y1,Y,) is related to the semiclas-
where the “local average” conductan is sical Green function by Ed30).
) If we now use some information about the lead wave
_ 1 1 17? functions, we can obtain an explicit expression for the aver-
G= _\/:+ _\/: ' (50 age widthI" in terms of the classical dynamics in the dot.
Gy G When, as we assumed above, the tunneling from the lead to

the dot is dominated by the lowest transverse energy subband

in the constriction between the lead and the Hte trans-

verse potential in the tunneling region can be taken to be
G,=(me?/2hkT,,. (51) quadraticU,~ k(y—y,)?. In this case, the_transverse depe_n-

dence of the lead wave function is simply a harmonic-

As the semiclassical Green functidB,, and, consequently, oscillator wave function, so that at the edge of the ggt

the correlatorg,C, can be expressed as a sum of the contri-:clexq—(y—y|)2/2a§ﬁ], wherey, is the center of the lead

butions of “zero-length” and longer classical trajectories, and constriction, and the effective width sy

similar decompositions hold for the average partial width—/%/4/2xm*. While the exact form of the lead wave func-

and the “partial conductanceG, is related to the partial
width I", via the standard relation

and average partial conductance: tion is not crucial, theh dependence of the width is impor-
— = e tant for the semiclassical argument which follows; note that
Fo=To+T0 (52) a4~k does not depend on a particular transverse poten-
tial.
G,=G%+G>°, (53) Using this information aboug, in the expression for the

_ o diagonal matrix elementd,;, and.A,,, we see that the lead
where the “oscillatory” partsI'®¢ and G°° depend on the wave function restricts the integration to a semiclassically
longer classical trajectories and are of next ordef ibom-  narrow region of widtha~ v%. This allows one to express
pared to the smooth contributiod®® and G°, which are the contribution of the open trajectories entering the Green

zero-length contributions. A consistent semiclassical apfunction in terms of an expansion near their closed neigh-

proximation, as in Eq(12), then requires expandir@ and bors,
keeping only the linear terms in the oscillatory contribution.

We thus obtai — — 16 (Pi")n(Pf)
© thus obtain T=Tor— [ ay [ apfuy.p) S ol
—0=0 — m a my;+ mo,+2
= GIGY . 1 Go o
= — i m$ _

=0, =0 =0~0 =0,~0 30 712 o _hey2

G{+Gy+2VGIG) 1+VGYG) Gi XGXP[ ﬁmf1+m§2+2(py Py ]
1 GPe S,(y,0y,0:5

+ ﬁ TO . (54) Xex;{i % : (56)

1+ VGYGY G

Note that in the asymmetric lead case, if the mean of thavherel'q is the monotonic part of the resonance widi;)
partial conductances are the san@é}(vgg), then the aver- and (p;), are the normal components of the initial and the

age conductance is one-fourth the average of the partial cofinal momenta of the closed orhit, the momentunp=(p;
ductances. This result differs from the completely symmetrict Pr)/2, and the %2 monodromy matrix’ M ,=(mf) is
case given in Ref. 23, where the average conductance is ondefined via the linearization of the Poincameap near the
half the average partial conductances. The difference is dugosed orbita and calculated at the contact point near the
to the perfect correlation of the widths in the symmetric casdead. In Eq.(56) we have also introduced the Wigner trans-
whereas the mean may be equal in the asymmetric case, biarm f{, of the lead wave function,

the particular values are uncorrelated.

) We now prc:ceeq to t-he iemmlasspgl calculat.lon of the f\?v(y,py)Eh*lf dAY do(y—Ay/2,0) b

local average” partial widthI". The defining equatiof37)

involves the functional inverse of the Green function, which :

is a hard object to calculate. Instead, we will use the original x (y+Ayl2 0exp(ip,Ay/f), ®7
definition[Eq. (4)], which for the local average partial width which describes the distribution in transverse position and
yields momentum of electrons tunneling into the dot.
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In leading order in the distance between the contact point

y of the closed orbitw, and the center of the leay], the
action of the closed orbi, scales linearly,
Sa(Y,0;y,00S(y,,05y1,00 + Apy(y—y)) (58)

PHYSICAL REVIEW B64 235329
y= coSO(Y, = Y1)/ @it SINO Py aes/fi,

p oSO pyaci/fi—sin Oy, — Y1)/ e,

and ¢, is a slowly varying phase. Herkg, is the Bessel

whereAp, is the change of transverse momentum after théunctlon of complex argumeny is the magnitude of the
traversal of the closed orbit. Assuming, e.g., a Gaussian forrlectron momentump* is the electron momentum for the
of the lead wave function, the contribution of each of theseperiodic orbitu at the bounce pointurning poiny, y,, is the
closed orbits is suppressed by a factor exponentially small ifounce point coordinate5, is the action of the periodic
Ap;. This suppression is the effect of the mismatch of theorbit, and M ,=(my;)* is ‘the corresponding monodromy
closed orbit(momentun) with the distribution of transverse Mmatrix.*> Note the sharp suppression of the oscillatory effects
momentum at the lead, which is centered at zero with widtHn Eg. (63) if the periodic orbit does not match up to the lead
Spi~Hilagg~ i for the lowest subband. Therefore, only Wave function inboth position and momentum space. The
closed orbits withsemiclassicallysmall momentum change mismatch is characterized by and p; the most favorable
Ap contribute to the width. This in turn implies that the case is that of a perpendicular periodic orbit hitting the edge

closed orbit is located semiclassically clogeithin a dis-
tance~ /) to aperiodic orbitfor which Ap=0. Using this

of the dot right at the center of the leagy=0 andy,
=y, so thaty=p=0.

proximity to a periodic orbit, we can re-express the actions An explicit expression for the average conductance fol-
and momenta of the injection orbits in terms of the propertiesows from the relation between the partial width and the

of their periodic neighborglabeled by the indey) as fol-
lows:

S,(y,0:y,0)= M _ 2
2% yy ,y, )_SM+ 2m/‘ (y y/.L) 3 (59)
12
— mi;—mb,
py=py+ (Y=Y (60)
y Py 2me, “

Substitution of Egs(59) and(60) into Eq. (56), and integra-
tion overy, yields’

S.
=T+ > A cos<—+¢ﬂ , (61)
uip.o.
where the monotonic part is
— 7, |o2 pagy
Fo=5 Claer e ‘[lo(O) 1D, ¢=— =,
(62)

the amplitude is

A,=4\2 lpZ[TrZ[MM](1+o+)(l+a' )] v4

2.2 2,2
a’p o’y
exp ————— NI (63
(1+0%) (14+02)
with
o.=3[mp—my* \/(sz_ My )2+ (Mg myy)?],
_amp (a0
m”EW _)
1 m m
= —arctar( 22—11) , (64)
2 My +Myp

partial conductancgEqg. (51)]. Using Eq.(54), we see thaG
can be written in the form

G=G,+ >, B cos<5—+¢ﬂ), (65)

wip.o.

whereB,, is simply related toA,, Gf, and G3. This, to-
gether with Eq.(49), defines both the average conductance
and its fluctuations. The oscillating form of this result is the
same as that in Ref. 23, which was derived using a different
approach; in fact(61) of the present paper is identical to Eq.
(3) of Ref. 23. Both approaches are systematic semiclassical
approximations, and so the similarity of the two results is not
surprising. It is, however, important to realize that the main
objective of the present paper is to characterize both the dy-
namical effect in the conductane@dthe peak height distri-
bution, while Ref. 23 dealt only with the former issue.

A further characterization of the peak fluctuations can be
obtained from the peak-to-peak correlation function: this is a
particularly interesting quantity because of the correlations
sometimes observed experiment&llyas discussed in Sec. I.

A natural measure of the statistics of nearby peaks is given
by 6G(E,))=G(E) —(G(E,)),, in terms of which the cor-
relation function is

COMty[ G, 5G1=(8G(Eq m) SG(En) ) ([ 5G(En) 1),y
(66)

Substituting the conductance distributifdag. (49)] into Eq.
(66), we obtain

Ty A
% Bicos( ; m)

4G3+32 B
o

Corty=0mot (1— 6y X (67)

Throughout this paper we have concentrated on the en-
ergy (or equivalently the peak numbeais the tuning param-
eter causing the peak height variation. This is just an ex-
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ample: exactly analogous considerations apply to any Conductance Power Spectrum
parameter causing changes in the wave functions of the
guantum dot. In particular, a similar oscillatory behavior is
expected in the height of givenpeak as a function of mag-
netic field, often the most experimentally accessible param-
eter. As the field varies, the change in the action of a periodic
orbit is proportional to thddirected area that it encloses.
Thus the peak heights should exhibit an oscillatory envelope
whose frequencies are proportional to the areas of the peri
odic orbits.
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V. COMPARISON WITH NUMERICS AND EXPERIMENT & 5 1
o o i [ R
Since one of the main theoretical results of the present 136 138 140 0 2 4 6 8 10
paper concerns the periodic modulation of the Coulomb « [T = T = T 7 < ‘4' t i¢ t iH‘
blockade peak heights, it is natural to consider the Fourier 3 - 1
power spectrum oG q,(K). In Fig. 1 we present a compari- o o [ g ~ .-
son of the numerical and semiclassical power spectra, calcu ~—of p
lated for a chaotidstadiun) dot, for three different place- r | 3
ments of the leads. The exact conductance peaks are obtain C %6 138 140 °8 2 4 6 B 10
numerically from Eq.(1), with the eigenstates being con- Kk L

structed using the the method of Ref. 43. To observe the

variation in peak height, we vary the energy, or equivalently FIG. 1. The peak conductancéft column from tunneling

the wave vectok=p/#, which changes the number of elec- through subsequent energy levels in the stadium quantum dot and
trons on the dot as more levels are filled. Previously, wehe corresponding “length spectrd{L) (right column for differ-
reported the case for leads placed symmetrically, as in thent lead configurationéshown in the insels In the peak conduc-
upper plot of Fig. 1, ankR= 7023 tance plots, each peak is placed at a wave vdctarresponding to

The data clearly demonstrate that the power spectrum hé§ level; R is the radius of the half-circle parts of the stadium dot,
well-defined peaks corresponding to periodic orbits. The nu@nd data forkR~140 are shown. A Gaussian lead wave function
merical results for the symmetric leads show excellent agreéalppropnate for tunneling from a single transverse mode is used with
ment with the semiclassical prediction width kag.z=15. The curves represent the semiclassical envelopes,

. RS . _defined by the contributions of the relevant periodic orlgitsp:
However, the situation is different for asymmetrically po “diameter” orbit; middle: “V"-shaped orbit; bottom: both diameter

S|t|oned'leads when there IS no single short pgrlodlc orbl%md V-shaped orbifs Length spectrum of the oscillations ®&(k)
connecting both leads. In this case, only the main peak cor-

di he fi . fh | iodi obtained from the Fourier power, numericgbick gray ling, and
responding to the Tirst repetition of the relevant periodic Osemiclassicalthin black ling results are compared. The power is

bits, the “diameter” and the V-shaped orbit, is ad‘E’QW’s‘telynormalized to the mean conductance. The arrows at the top show

reproduced. The higher-frequency behavior, however, is sulpe positions of the relevant periodic orbits and their repetitions, as
stantially different from the semiclassical prediction. We at-ye|| as the “combination lengthsL,*L,. In the top panel, the

tribute this difference to the nonlinear mixing of the oscilla- peak at./R=4 is the diameter, and that at 8 is its repetition. In the
tions of different partial widths, neglected in our derivation middle panel, the peak &/R=2(1+ 2)~4.8 corresponds to the
of Eq. (54). The pronounced peak at the difference lengthv-shaped orbit, and the peak latR~9 represents its repetition. In
Ly—Lp, wherelLy and Lp correspondingly represent the the bottom panel(asymmetric leads the broad peak dt/R=4.5
lengths of the V-shaped and diameter orbits, strongly indi+epresents the total contribution of both diameter- &hshaped
cates that, although semiclassically small, the mixing effectsrbits. For the stadium dot, the principal peaks appear at 4 and 4.8,
of higher order terms in Eq50) can be significant in the because we use only wave functions symmetric about the vertical
experimentally relevant parameter range. We numericallyand horizontal symmetry axégquivalent to using only the even-
verified that the sum and difference lengths can be partiallgven states of the stadiunNote the excellent agreement between
obtained by Eq(50). the semiclassical theory and the numerical results for symmetric
As follows from Eq.(61), the oscillatory component of Iead§, and adequate representation of the principal peak for asym-
the “local average” conductance and the height of the corremetric leads.
sponding peak in the power spectrum depends nontrivially
on the position and width of the lead. This dependence isponding power spectrum in Fig. 1 and is in agreement with
illustrated in Fig. 2, where we plot the amplitude of the “di- the semiclassical result. The positive correlation for nearest
ameter” orbit contribution to the conductance as a functionneighbors is also in agreement with the semiclassical theory,
of kag extracted from numerical length spectrum and thedemonstrating the influence of dynamics even in this appar-
corresponding semiclassical prediction. ently nonsemiclassical regime.
In Fig. 3 we compare the semiclassical correlation func- When T>A, the major source of correlations between
tion with numerical data for the stadium dot. The oscillatoryneighboring peaks is the joint contribution of several reso-
behavior for large separations reflects the peak in the corresances to the same conductance pesk.this regime the
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FIG. 2. The dependence of the amplitude of the length spectrum m

peak atL/R=4 onkag; for kR=70. The leads are symmetrically

attached to the middle of the semicircle segments of the stadium FIG. 4. The peak amplitude correlation function for a stadium-
dot. shaped dot with symmetrically attached leads and for temperatures
T=0 (circles, 0.2A (triangleg, 0.5A (X’s), A (squares and 2A
(pluses, andkR=70. The solid, dashed, and dotted lines are only

“nearest-neighbor” correlator is Cofc,~1, and the dy- used to guide the eye

namical effect accounts for only a small correction to the

fﬁgi@ﬁggggzgugﬂé Tgvtveeﬁlqerérg;g’;g@ﬁgﬁﬁ’ su vidual peak-height distribution is essentially a local measure,
p P Y SUBt g not strongly sensitive to the correlations, and both the

pressed. In this regime, as illustrated in Fig. 4, the Correla'standard and dynamical theories predict nearly the same re-

tions induced by dynamical modulation dominate, and theysult, and both are consistent with numerical calculation. This

account for the experimentally observed enhancement of cor-

relations at low temperaturéskor finite temperature each explains why no dynamical effect was observed in the ex-
P ' P perimental peak-height probability distributifr.

resonance IS we|ghted by combinations of Fe_rml-Dlrac func® In contrast, a periodic modulation of the peak heights was
tions and occupation numbersThe occupation numbers ; . >
observed in several recent experimerité? The clearest ob-

used in Fig. 4 were obtained by employing a recursion L ) L
relation® sgee the Appendix. As t%e ter[;p)éra%ure increaseservatlon is in Ref. 9: the data in their Fig. 1 showed modu-

more resonances contribute to a sinale conductance pe Tated peak heights as a function of the number of electrons in
. Y . P€¥fie dot. In their trace of 90 peaks, approximately six oscilla-
and thus dampening the effects of the longer orbits.

: : tions are visible, yielding a period of 15 peaks.
In Fig. 5 we present the results of the calculation of the In our treatment, this period is related to the period of

probability distribution 0fGpeq for a stadium quantum dot fundamental oscillation in Eq61). A variation in action

for both “symmetric” and “asymmetric” placements of the Lo . e )
. . .~ AS, can arise in two different ways: either the Fermi mo-
leads. For comparison, we show both the actual distributiory_~*

[Egs.(49) and(54)], and the standard Porter-Thomas resultme.ntg.rn chk?nggs or tg.?. ddynamlcs, th?tbls :]hef:engths_”oLthe
without any account of the modulation of the average conPeMo I(t: orbits, is modified. In general both effects will be
present.

ductance: P(Gpead = VA/TCpealXP(=Cpead- A the indi- First, if only the momentum varies, then the fundamental
period is given by (1/h)dS, /de] *=h/r, wherer, is the

- ¢ (a) . -t (b) 7 period of the relevant orbit, and the ratio of this to the level
g ] g ] spacingA gives the period of the peak heights. Note that
LN & ] > 0L J
g g i e e o
go%ﬁ'::::'qﬁ go 2 0 () 3 0 (b) 3
_ | ° | ] : | | ] § ) E § " E
0o 10 20 30 0 20 40 N ERR-DN: E
w0 r b w | ]
. ) i z_%ﬁﬁmé o ;Mﬂn?
FIG. 3. The peak-to-peak conductance correlation function for o t 3 ok 3
(a) symmetrically placed lead@ttached to the “diameter” of the 0 1 2 3 4 0 1 2 3 4
stadium do, and(b) asymmetric leadgas in the inset to the length Cpeak / <Cpeak> Coeak / <Cpeak™
spectrum at the bottom of Fig).1The numerical correlation func-
tion (circles with typical error bajs—the average of all pairs of FIG. 5. Conductance statistics: probability distribution function

peaksm peaks apart—is in good agreement with the semiclassicalor (a) symmetric leads aR=140, and(b) asymmetrically placed
theory (solid line). The agreement for smath is surprising since leads akR=70. The numerical probability distributiaiistogram

this regime is not semiclassical, but shows how dynamics can givés for the entire range of data in Fig. 1, and is compared to both the
rise to correlations even between nearest neighbors. The differensemiclassical theorfdotted ling and the standard statistical theory
between the periods of the modulation(® and (b) is accounted based on random wave functioeolid line). The two theories pre-
for by the difference in the values &R used for the correlation dict nearly the same result for this quantigspecially for asym-
function: the calculation fofa) is performed neakR= 70, while(b) metric leads, where the dynamical modulation is wegkard both
corresponds to an interval nelaR=140. are consistent with the numerics.
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presenting the experimental data as the number of peaks psults from this simple modeling of the quantum dot is very
oscillation removes the effects of the charging energy: a conbroad, and so this is hardly a stringent test of the semiclas-
stant shift of all the levels as an electron is added to the dagical theory. A detailed model of the confining potential and
contributes to the peak spacing but not to themberof  gate voltage effects is necessary in order to make a better
levels that need to be filled in order for the interference conprediction of the oscillation period.
dition around a periodic orbit to change. In fact, small fluc- A similar approach to the peak modulation as a function
tuations in either the charging energy or the mean singIeOf magnetic field is also consistent with the experimental
particle level spacing do not matter. In the billiard results;®* where a quasiperiodic modulation of the peak
approximation,7, =L, /ug, whereL , is the length of the heights was observed with a periaB=35 mT. In our
periodic orbit andvr is the Fermi velocity, which can be treatment, this period is given by the ratio of the flux quan-
calculated from the experimenta| denﬁyUsing the appro- tumhc/e to the areaAo enclosed by the pel’iodiC orbit. From
priate spin-resolved level spaciny=10 eV (which is the experimental oscillation, we obtai,=0.12 um?. This
half of the spin-full value from the measurements in Réf. 9 iS consistent with the total area of the dot, 0.32n°,” con-
and the orbit from the lead to the “pin” gate and back Sidering that there is likely to be some cancellation of fluxes
(whose length we estimate to be 0m), we expect an between different parts of the orbit.
oscillation period of~75 peaks. This value is inconsistent A puzzling feature of the initial experiments was that the
with the experimental observatiéf. dynamical modulation of the Coulomb blockade peak

Second’ Changes in the dynamics caused by Qe|ghts was not seen in the eXpeI’iment of Ref. 6. We at-
deformationt? should also be considered. By examining thetribute this behavior to two factors: the positioning of the
configuration of the dot in the inset of Fig. 1 of Ref. 9, the leads relative to the gate, and the relatively small mean free
gate voltage appears to be situated on the shortest periodi@th. First, if the gate used to change the number of electrons
orbit of each lead. By making the gate voltage more negalS not along the shortest periodic orbit of either lead and the
tive, the electron will have a shorter path and thus contributé€rmi energy does not change appreciably in the dot, then
to the change of the action in E@1). If the Fermi energy of ~One should not observe oscillations in the conductance peaks.
the system remains constant, then we can calculate a plal the geometry of Ref. 6, the leads and gate seem to be
sible range for the period using two extreme simplified mod-Jather disconnected, so this is a factor. Second, in this experi-
els for the deformation of the boundary. First, the gate volt-nent the mean free path-0.4 wm only marginally exceeds
age is modeled as a small local semicircular deformationthe typical size of the dad=0.25 xm, while the length of
Equating the area of the semicircle to the number of peakgqe shortest periOdiC orbit is at least twice the effective “di-
times the change of area caused by adding one electron éineter"d of the dot:L;;>2d=0.5 um>1. If the mean free
the dot without a change in the Fermi energy, we estimate theath is caused by short-range diffractive scattering, the dy-
period to be~3 peaks independent of the Fermi energy. Thehamical effects are suppressed and will not affect the Cou-
other extreme is Considering the entire side to move unilomb blockade measurements. However, in the Opposite limit
formly. The same procedure yields a period proportional td®f @ smooth scattering potential, dynamical effects caused by
the square root of the number of electrons on the dot. Ascoherent branched flé& may still be present. The short
suming that the typical dot in these experiments has 100n€an free path measured in Ref. 6 suggests the presence of
electrons’ we obtain a period of-13 peaks. Since the true impurities in the two-dimensional electron-gas layer, leading
behavior of the gate is no doubt intermediate between thed® @ short-range scattering potential and so suppression of
two extremes, we find that this mechanism acting by itseldynamical effects.
would produce a period of5-10 peaks.

A related possiblity is that the adding of electrons may
change the effective potential defining the dot because of the
added charge. This could be another source of a change in In conclusion, using semiclassical methods, we developed
the dynamics. However, such a change in effective potentigd dynamical statistical theory of Coulomb blockade peak
will not be localized near one of the periodic orbits, but will heights in chaotic quantum dots. We derived the peak height
rather spread out across the quantum dot. In fact, experdistributions and the correlation functions, and showed that
ments on “magnetofingerprints” of the pedksuggest a cer- the corrections to the corresponding results of the standard
tain robustness of the effective potential—its change fronstatistical theory can be expressed in terms of the classical
peak to peak seems to be small in this case. In contrast, fgeriodic orbits of the dot. Both our analytical results and
affect the dynamical modulation one must substantiallynumerical simulations clearly demonstrate that the dynami-
change the action of the shortest periodic orbit, which typi-cal effect is significant for both symmetric and asymmetric
cally requires a much larger change in potential such agad placements.
could be caused by the external gates. We close with two further experiments suggested by our

Thus, the experimental result of a period of 15 peaks canresults. First, if the tuning parameter used to change the
not be solely obtained by either the orbit length chattge = number of electrons, such as a gate voltage, does not change
smal) or the change in Fermi momentuftoo large. Acom-  the action of the dominant periodic orbit, then no modulation
bination of these two effects, no doubt both present in reatonnected to that orbit should be seen. In particular, gates
systems, yields an intermediate result consistent with experiwhich affect different parts of the dot may produce different
ment. Unfortunately, the range of possible periods that reescillatory behaviors. Second, several samples made in a ro-

VI. SUMMARY
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bust geometry—a circle with directly opposite leads, forwhere
example—should show the same modulation. Any deviations

from the same behavior would be a sensitive indication of '
the material quality. z(N,M;B)= 21 exp(—BLEL(N)—Eol).  (Ad)
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APPENDIX: TEMPERATURE CALCULATIONS +exp(—Bew)Z(N=1M—-1;5)
For nonzero temperatures the conductance is obtained for N=1M=N, (AS5)

from a weighted sum over the zero temperature partial ith th .
widthsT', .2* For symmetric leads, this yields with the constraints

&2 o Z(OM;B8)=1 YM=0, (A6)
G:FME WAI‘)\. (A1)
» Z(N,N—1;8)=0 VN=1. (A7)

If kT,A<¢€?/C, then the weights are given b .
9 9 y Note that the same recurrence relation also holds for

W, =41 (AFy ~Ep)(nn 1 f(Er(N)~Ep) ], z(N,M; B). The choiceEo(N)==N_, €, yields the result
(A2) 2(N,N; B)=1. (A8)
whereAF, is the change in the canonical free energy from
N—1 to N, (n,)y is the canonical occupatiorEr=Ey Using conditipns(A?) and(A8) as ;tarting points for the
+(N—1/2)e?/C is an effective Fermi energy, arfde)=[1  recurrence relatiofEq. (A5)], we obtainz(N,M —; ) and
+exp(ekT)] s the Fermi-Dirac function. thus Z(N,M —; ). For the small temperatures that we

To obtain the canonical free energy and canonical occuconsider, the convergence of the recurrence relation is rapid.
pation number we use a recurrence relation developed by Similarly, one can calculate a modified partition function
Brack, Genzken, and Hangénfor the partition function Zy(N,M;B) which has leveh removed from the spectrum.
Z(N,M;B); Nis the number of particlesd is the number of The probability for level\ to be unoccupiedP{n, =0}, is,
levels, andB=1/kT. The final result for the partition func- then, simplyZ;/Z. In terms of this probability, the average
tion will not numerically depend upoM for large M. The  occupation numbers are given by, )y=1—P{n,=0}. Fi-

partition function is formally given by nally, the canonical free energy fdi electrons,F(N), ap-
| pearing in Eq(A2), is
NM
Z(NM;B)= 3 expl(— BEL(N))=expl — BEg)Z(N,M; ), 1
“ F(N)=—=InZ(N,M—x; ). (A9)
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