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Semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots
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We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using
Berry’s conjecture, we calculate peak height distributions and correlation functions. We demonstrate that
corrections to the corresponding results of the standard statistical theory are nonuniversal, and can be expressed
in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an
oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both sym-
metric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distri-
bution of peak heights, but are clearly seen in the correlation function or power spectrum. For nonzero
temperature, the correlation function obtained theoretically is consistent with that measured experimentally.
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I. INTRODUCTION

The Coulomb blockade is a fundamentally classical eff
in microstructures—the addition of an electron to an isola
microstructure requires a certain amount of electrostatic
ergy, the charging energye2/2C, whereC is the capacitance
of the structure. It is the simplest effect of electron charge
microstructures, and has been extensively studied with
gard to both fundamentals and applications in single-elec
transistors.1 One common way to study the Coulomb bloc
ade is by measuring the conductance through a nearly
lated nanoparticle~using tunneling contacts! as a function of
a gate voltage which tunes the electrostatic potential of
particle. For most values of the gate voltage, the conducta
is very small, since the flow of electrons is blocked beca
the charging energy is not available. However, when the g
voltage is tuned so that states differing by one charge h
the same energy, there is a peak in the conductance.
height of this peak is simply the conductance of the t
tunnel barriers in series, and the spacing of the peaks is
form with a separatione2/C.

For the smallest quantum dots and at low temperat
however, quantum-mechanical interference becomes im
tant. Interference causes variations in both the height
spacing of the conductance peaks. For the spacing, sin
particle quantization and the residual interactions among
electrons are important. For the height, the nature of
wave functions become critical: if the wave function of t
state at the chemical potential is poorly coupled to
leads—if it has nodes at the leads—then the conducta
peak is small, but if the wave function is well coupled to t
leads then the peak is large. In this paper, we restrict
attention to fluctuations in the conductance peak heights,
investigate what this tells us about wave functions in qu
tum dots.

Since dots are generally irregular in shape, the class
dynamics of the electrons is chaotic, and so the charact
tics of Coulomb blockade peaks reflect those of wave fu
tions in chaotic systems.2–5 Previously, a statistical theory fo
the peaks was developed2–4 by assuming these wave func
0163-1829/2001/64~23!/235329~13!/$20.00 64 2353
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tions to be completely random and uncorrelated with e
other. The random-matrix theory used was known to b
good description of energy-level statistics, and so likely to
reasonable for wave functions. The experimental data6,7 for
the distribution of the Coulomb blockade peak heights w
found to be in excellent agreement with the predictions
the statistical theory, thus supporting the conjecture of
effective ‘‘randomness’’ of quantum dot wave functions.

A potential problem with the statistical theory was, how
ever, evident in one of the first experiments: there is no c
relation between different wave functions in random-mat
theory, so the statistical theory predicts zero correlation
tween neighboring conductance peaks; however in one of
experiments7 correlation was clearly present in the form of
slowly varying envelope modulating the peak heights.
subsequent years a number of different effects were inve
gated as candidates to explain this correlation. The simp
of these is the effect of nonzero temperature: since excita
above the Fermi level is possible, several resonances con
ute to each peak, and a given resonance contributes to
eral neighboring conductance peaks, inducing correlat
However, in a detailed study, this was found to be insu
cient to account for the observed correlations.8 Other expla-
nations that were explored include correlation due to sp
paired levels,8,9 those due to a decrease of the effective le
spacing found in density-functional calculations,10 and those
due to level anticrossings in interacting many-partic
systems.11 While these latter explanations rely on sub
electron-electron interaction effects, here we argue that p
height correlations already arise within an effective sing
particle picture of electrons in the quantum dot. The spec
internal dynamics of the dot, even though it is chaot
modulates the peaks: because all systems have short
dynamical features, chaos is not equivalent to randomne

While the statistical theory is ‘‘universal’’ in that it de
pends on no specific features of the quantum dot at hand
classical dynamics in the dot is clearly not universal. Th
while correlations between the conductance peak heights
generally present in quantum dots, the particular correlati
in a given dot are not universal but rather involve detai
©2001 The American Physical Society29-1
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information about the dot. The simplest information to i
clude is the spatial correlation function of the wa
functions—this is very short length dynamical information
and an approach including this effect was given in Ref.
Going beyond this, we use semiclassical techniques to de
a relation between the quantum conductance peak heigh
the classical periodic orbits in the dot.

The main result is that as a system parameter varies—
magnetic field, for instance, or the number of electrons in
dot ~controlled by varying a gate voltage!—the interference
around each periodic orbit oscillates between being dest
tive and constructive. When the interference is construc
for those periodic orbits which come close to the leads u
to contact the dot, the wave function is enhanced near
leads, the dot-lead coupling is stronger, and so the con
tance is larger. Likewise, destructive interference produce
smaller conductance. The resulting modulation at frequ
cies corresponding to the periodic orbits can be substan
Because of dephasing effects, only the short periodic orb
indeed perhaps only the shortest one, is likely to be sign
cant.

Similar short-time dynamical effects have been noted
other contexts such as atomic and molecular spectra,13–15

eigenfunction scarring,15,16 magnetotransport in antido
lattices,17 and tunneling into quantum wells.18–21 The peri-
odic orbit modulation that we discuss here is complet
omitted in theories in which the wave function is assumed
change randomly as the system changes.2–4 Reassuringly, the
predicted dynamical modulation is of the type in the origin
anomalous experiment.7 More recently, other experimenta
data have been published which show the effect,9,22 but to
date no systematic experimental study of this effect has b
performed.

In the rest of this paper, we generalize some results
viously reported in Ref. 23 to address asymmetric lead pla
ment and to incorporate temperature dependence. The
vation given here is completely different from the previo
one, which relied on the methods of Ref. 21: here our
proach in terms of a statistical ansatz for the wave functi
yields more results for chaotic systems, but misses the re
for regular systems that we obtained previously. It has b
suggested that a symmetric lead placement would not
duce an observable oscillation in the average conductan12

but the method employed there only included spatial co
lations in the wave functions and not the short-time dyna
ics which we consider here. In Sec. II we express the he
of the conductance peak in terms of the resonant wave fu
tion. The basic ansatz for the distribution of the wave fun
tions, including dynamical effects, is presented in Sec. III.
Sec. IV our results for the conductance peak heights are
tained. Comparison to numerical results for the stadium
liard in Sec. V confirms the adequacy of the semiclass
approach. Finally, we close with a summary and discuss
of future directions.

II. HEIGHT OF A CONDUCTANCE PEAK IN COULOMB
BLOCKADE

Our starting point is the connection between the Coulo
blockade peak heights and the widths of the levels in
23532
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quantum dot. This connection is well known;24 it allows us to
express the conductance in terms of single-particle qua
ties. We consider a dot close to two leads, so that the widtG
of a level comes from the tunneling of the electron to eith
lead. When the mean separation of levels is larger than
temperatureT, which itself is much larger than the mea
width, the electrons pass through a single quantized leve
the dot, and the conductance peak height is24

Gpeak5
e2

h

p

2kT

G1G2

G11G2
, ~1!

where G1 and G2 are the partial decay widths due to th
tunneling into a single lead, and spin degrees of freedom
neglected. In particular, when the leads are identical
symmetrically attached to the dot:

Gpeak5
e2

h

p

4kT
G1 . ~2!

The partial width is related by Fermi’s golden rule to th
square of the matrix element for tunneling between the l
and the dot,Ml→d. A convenient expression for the matri
element in terms of the lead and dot wave functions,C l and
Cd , respectively, was derived by Bardeen,25 and can be ex-
pressed as18,19

Ml→d5
\2

m*
E

S
drC l~r !,Cd~r !, ~3!

where the surfaceS is the edge of the quantum dot. Th
partial width G, then, depends on the square of the norm
derivative of the dot wave function at the edge weighted
the lead wave function. The dot wave functionCd in Eq. ~3!
is calculated for the effective potential, which accounts
interactions in the dot in the mean-field approximation. F
the partial width we then obtain

Ga@Cd#5
2p\4

m
*
2 (

l
r l

(a)E
S
dr1•,Cd~r1!

3E
S
dr2•,Cd~r2!* @C l

(a)~r1!* C l
(a)~r2!#,

~4!

where a is the index of the lead, the integerl represents
different transverse subbands in the lead, andr l is the den-
sity of states in the lead for a given subband. To obtain
statistics of the conductance peak heights, we thus nee
know the statistical properties of the dot wave functionsCd .

III. WAVE FUNCTIONS IN THE DOT: STATISTICAL
DESCRIPTION

For a single dot, we consider an ensemble of Coulom
blockade peaks—measured either in a narrow interval of g
voltage or obtained by following a single resonance unde
continuously changing magnetic field. The wave functio
associated with the peaks of the conductance will vary—
9-2
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SEMICLASSICAL THEORY OF COULOMB BLOCKADE . . . PHYSICAL REVIEW B 64 235329
‘‘fluctuate’’—in a way characterized by a distributionP@c#
which we seek.

It was first conjectured by Berry that the wave functio
of a classically chaotic system fluctuate with certain univ
sal properties, and can be characterized as ran
variables.26 This is the foundation of the first statistica
theory of peak heights.2 Subsequently, the statistical ansa
made by Berry has been further developed. One directio
refinement is the incorporation of some short length-sc
aspects of the real classical dynamics. First, a constrain
an arbitrary correlation function

C~r1 ,r2![E DcP@c#c* ~r1!c~r2! ~5!

was incorporated into the ansatz.27,28By using the correlation
function of a random superposition of plane waves, the pr
ability distributions of level widths and conductance peaks
the case of multimode leads to the quantum dot w
found.12,27 A distribution similar to this ansatz was derive
microscopically for disordered systems, a specific kind
chaotic system, using the nonlinear sigma model.29–32

The next step was to constrain the correlation function
the short-time classical dynamics. Using the short-path se
classical correlation, Srednicki and co-workers33,34 studied
correlations in chaotic eigenfunctions at large separatio
and found that the predicted correlations are in excel
agreement with numerical calculations in chaotic billiards33

This semiclassically constrained ansatz forP@c# is much
harder to justify—certainly no derivation in disordered sy
tems can be made. However, progress toward this goal
achieved by Kaplan and Heller by treating the nonlinear
fects of classical recurrences.16 In a recent paper by
Kaplan,35 short-time dynamics were incorporated into t
general probability distribution of Ref. 27 to improve th
random-matrix theory results for the conductance p
height statistics.

Here we use a maximum entropy technique36 to derive the
specific form of the distributionP@c# that we need. An ad-
vantage of this approach is that arbitrary constraints can
introduced, as in the case of normalization which we disc
below. We make the following ansatz: the distributionP@c#
maximizes the information entropy37

H52E Dc P@c# log P@c# ~6!

within the space allowed by the constraints. Here the m
sure corresponding to the distributionP@c# is defined in the
standard way,34

Dcd5 lim
N→`

Pn51
N dcd~rn!, ~7!

so that the productP@cd#Dcd represents the probability tha
a wave functionc(r ) of the original ensemble is betwee
cd(r ) andcd(r )1dcd(r ) for any pointr inside the dot.

Assuming that theonly constraint imposed on the en
semble of wave functions is the correlation functi
C(r1 ,r2), the maximum of functional~6! under constraint
~5! is equivalent to the extremum of the functional
23532
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F@c#5E DcF2P@c# log P@c#2E dr1E dr2l~r1 ,r2!

3$c* ~r1!c~r2!P@c#2C~r1 ,r2!%G , ~8!

where the Lagrange multiplierl(r1 ,r2) can then be deter
mined from Eq.~5!. Setting the first variation ofF@c# equal
to zero, we find thatP@c# is Gaussian. The final result, ob
tained by substituting Eq.~5! to find l(r1 ,r2), is

P@c#5A expF2
b

2E dr1E dr2c* ~r1!C21~r1 ,r2!c~r2!G ,
~9!

whereA is the normalization@independent ofc(r )#, andC21

is the functional inverse of the two-point correlation functio
C(r2 ,r1u«)

E dr3C21~r1 ,r3!C~r3 ,r2!5d~r12r2!. ~10!

The coefficientb51 for a system with time-reversal invar
ance, when the wave functions can be chosen real, anb
52 otherwise.

It has been shown34 that in the small-\ limit for classi-
cally chaotic systems, the correlation functionC(r2 ,r1) can
be expressed in terms of the semiclassical approximatio
the Green function13 Gsc(r2 ,r1) as

C~r2 ,r1!5
1

pr̄sc

ImGsc~r2 ,r1!1O~\3/2! ~11!

where r̄sc(«) is the smooth part of the density of stat
~DOS! in the dot, given by the leading order~Thomas-Fermi!
semiclassical approximation to the DOS.

In the semiclassical approximation, the energy-avera
Green function can be expressed in terms of the class
trajectories~labeled by the indexj )13,38

Gsc~r2 ,r1!5G0~r2 ,r1!1
1

i\

1

A2p i\
(

j
AuD j u

3expS i
Sj

\
2 in j

p

4 DexpS 2
t j

2W2

2\2 D , ~12!

whereSj5Sj (r2 ,r1) is the classical action,t j is the period,
the integernj is the topological index13 of the trajectoryj,
and the amplitudeD j is

D j5detS ]2Sj~r2 ,r1!

]r2]r1

]2Sj~r2 ,r1!

]« ]r1

]2Sj~r2 ,r1!

]« ]r2

]2Sj~r2 ,r1!

]«2

D . ~13!

We have specialized to two spatial dimensions and the
exponential in Eq.~12! is due to a Gaussian averaging ov
an energy window of widthW described below. The function
G0(r2 ,r1) is the contribution of the nonclassical so-calle
9-3
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‘‘zero-length’’ trajectories, those with actions less than or
order\. Therefore,G0(r2 ,r1) cannot be obtained using th
stationary-phase approximation, but may be evaluated26,34by
replacing the actual propagator^r2uexp(2iHt/\)ur1& by its
free-space analog

^r2uexpS 2
iHt

\ D ur1&'E dp

~2p\!2
expS i

p~r22r1!

\ D
3expS 2

iH ~p,r0!t

\ D ~14!

wherer0[(r21r1)/2. The corresponding Green function
then

G0~r2 ,r1!5E dp

~2p\!2
expS i

p•~r22r1!

\ D 1

«2H~p,r0!1 i0
.

~15!

Note that because of the short trajectory involved, this par
the Green function varies very smoothly as a function
energy. The smooth part of the correlation function wh
results is

C0~r2 ,r1!5
1

r̄sc
E dp

~2p\!2
cosS p~r22r1!

\ D d@«2H~p,r0!#,

~16!

and soC0(r2 ,r1)}J0(pur22r1u/\). This smooth part of the
correlation function is rather local in that it decays monoto
cally with separation. Thus, having fully specified the cor
lation function we wish to use, we finally obtain

P~cdu«!;expF2
b

2E dr1E dr2c*

3~r1!Gsc
21~r2 ,r1u«!c~r2!G . ~17!

A few remarks are required about the width of the ene
window W. In the semiclassical limit there arises an incre
ingly broad separation between the short-time dynamics
give rise to system specific behavior and the long orbits
are responsible for generating universal statisti
fluctuations.16 The width W is chosen such that the sho
periodic orbits are included in the sum essentially undamp
whereas the long orbits are eliminated since their contri
tions are already accounted for in the statistical ansatz.
the rest of this paper, we will eliminate the explicit depe
dence onW and the sum is understood to contain only t
linear dynamics.

The general ensemble defined by distribution~9! has,
however, certain limitations. Strictly speaking, in its gene
form this ensemble is only suitable for calculations of tho
observables which can be represented in terms of only t
point productsc* (r1)c(r2). The reason for this problem i
as follows: instead of the proper normalization ofeach mem-
ber of the ensemble,
23532
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E dr uc~r !u251, ~18!

the normalization of the wave functions is satisfiedonly on
average:

E Dc~r !P@c~r !#E dr uc~r !u251. ~19!

As a result, the higher-order momentsDn
[^*dr1 . . . *drnuc(r1)u2 . . . uc(rn)u2&c of the distribution
are different from unity. Therefore, in its general from, th
ensemble defined by Eq.~9! is not suitable for calculations
which are sensitive to then.1 moments of the distribution
P@c#, such as for the description of the residual interactio
in quantum dots.39–41

The method developed in this section yields a straightf
ward way to generalize distribution~9! to properly account
for the higher moments. For example, adding an additio
constraint

E DcP@c#E dr1E dr2uc~r1!u2uc~r2!u251, ~20!

to the variational problem@Eq. ~6!# will yield a generaliza-
tion of distribution~17! which properly accounts for the mo
mentD2.

Note, in contrast, that the errors in the higher momen
n.1, produced by thesemiclassicaldistribution @Eq. ~17!#
are of higher order in\, dn;O(\2) than the terms taken
into account inGsc.

42 As long as these higher-order corre
tions are not relevant for the quantity under considerati
one can generally use thesemiclassicaldistribution @Eq.
~17!#.

IV. PEAK HEIGHT DISTRIBUTION

Since the Coulomb blockade peak heights are uniqu
determined by the corresponding dot wave functionscd , the
peak heights distribution functionP(G) is given by

P~G!5E DcdP~cd!d~G2Gpeak@cd# !, ~21!

whereGpeak@c# is determined by Eqs.~1!, ~2!, and~4!. The
width G depends only on the wave function near the bou
ary of the quantum dot, as follows from Eq.~4!. If the func-
tion PS(c̄) represents the distribution of the wave functio
in a narrow stripSalong the boundary of the quantum dot,
that

c~r !5H c̄~r !, rPS

ĉ~r !, rP” S,
~22!

then the conductance distribution is

P~G!5E Dc̄ PS@c̄u«#d~G2Gpeak@c̄# !. ~23!

The ‘‘edge’’ distributionPS can be obtained from the gener
distributionP@c# by integrating out the values ofĉ:
9-4
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PS@c̄#5E DĉP@c$c̄,ĉ%#. ~24!

As the distributionP@c# is Gaussian, the resulting function
integral can be calculated exactly, yielding

PS@c̄#5AS expF2
b

2ES
dq1E

S
dq2c̄* ~q1!K̄~q1 ,q2!c̄~q2!G ,

~25!

where

K̄~q1 ,q2!5C21~q1 ,q2!1E
V\S

dq3E
V\S

dq4

3C21~q1 ,q3!C~q3 ,q4!C21~q4 ,q2! ~26!

and AS is the new normalization constant. The spatial in
grals are over the part of the total spaceV which is orthogo-
nal to the edgeS, denotedV\S.

As follows from Eqs.~11! and ~12!, the ‘‘nondiagonal’’
part of the correlation function is of a higher order in\,
;O(A\), compared to the ‘‘diagonal’’ partC0;O(1). The
second term in Eq.~26! involves the correlation function
C(q1 ,q3) and C(q4 ,q2), taken between the points of th
differentparts of the dot—the edge stripS for one coordinate
and the internal regionV\S for the other. It is therefore o
higher order in \, ;O(\), than the first contribution
C21(q1 ,q2) ;d(q22q1)O(1)1O(A\). Keeping such
higher-order terms is not consistent with the leading-or
semiclassical approximation we used forC(q1 ,q2). We
therefore obtain

PS@c̄#5ASexpF2
b

2ES
dq1E

S
dq2c̄* ~q1!

3C21~q1 ,q2!c̄~q2!G . ~27!

An alternative to the argument given here proceeds by no
that integrating outĉ should yield a Gaussian inc̄, and that
this Gaussian, by construction of the ensemble, must re
duce the correct two point correlation functionC(q1 ,q2).
This alternative argument28 yields immediately the func-
tional form @Eq. ~27!#.

When thecloseddot is defined by the Dirichlet boundar
conditions, the wave function in the narrow stripS near the
‘‘edge’’ can be represented as

c̄5zw~y!, ~28!

wherey is the coordinate along the boundary of the dot, a
z is in the direction of the normal. In this limit, the correla
tion function is

C~q1 ,q2!5z2z1]nC~y1 ,y2!, ~29!

where]nC(y1 ,y2) is defined as the correlation function o
the normal derivatives of the wave function at the bound
of the dot and can be obtained as
23532
-

r

g

o-

d

y

]nC~y2 ,y1!5
1

pr̄sc

Im]nGsc~y2 ,y1!1O~\ (d11)/2!,

~30!

where

]nG~y2 ,y1u«![(
m

]ncm* ~y2,0!]ncm~y1,0!

«m2«1 i0
. ~31!

The semiclassical approximation]nGsc for the normal de-
rivative Green function was derived in Ref. 21,

]nGsc~y2 ,y1!5]nG0~y2 ,y1!1
4

i\3

1

A2p i\

3(
j

@pj~y1!#n@pj~y2!#nAuD j u

3sinS Sj

\
2n̄ j

p

4 D , ~32!

where n̄ j and @pj #n are, respectively, the Maslov indexes13

and the normal component of the classical momentum of
trajectoryj.

In order to connect the dot wave functions to the lead,
$fm(y)% be the complete orthogonal set of the wave fun
tions corresponding to the transverse potential of the le
Using this basis, we represent the functionw(y) as

w~y!5 (
m50

`

amfm~y2yl !, ~33!

whereyl is the contact point of the lead. Assuming that t
tunneling between the lead and the dot is dominated by
contribution of the lowest transverse subband of the le
and using Eq.~4! for the partial widthGa , we obtain

Ga52pr0
(a)S \2

m*
D 2U E dy f0~y!(

m
amfm~y!U2

5
2p\4

m
*
2

r0
(a)ua0u2, ~34!

wherer0
(a) is the density of states in the lead correspond

to the lowest transverse subband. For an arbitrary momen
the partial width^Ga

m&, we therefore find

^Ga
m&}E da0F2p\4

m
*
2

r0
(a)Gm

ua0u2mexpF2ua0u2

3E dy1E dy2f0~y1!
1

]nC~y1 ,y2!
f0~y2!G .

~35!

To give explicit expressions for the distribution of lev
widths and conductance, we specialize to the time-reve
symmetric case (b51, GOE! for the rest of this paper; the
case, when time-reversal symmetry is broken by a magn
9-5
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field (b52, GUE!, can be treated in an analogous way.
the presence of time-reversal symmetry, the wave functio
and hence the coefficienta0, can be chosen real, yielding

^Gm&}E dG Gm
exp~2G/2Ḡ !

AG
, ~36!

where

Ḡ5
\4

m
*
2

r0
(a)

r̄sc

3S E dy1E dy2f0~y1!
1

Im@]nGsc~y2 ,y1u«!#
f0~y2! D 21

.

~37!

Thus the partial width is characterized by the Porter-Thom
distribution

P~G!}
1

AG
expS 2

G

2Ḡ
D , ~38!

with the slowly varying local averageḠ(«). This explicit
result for the distribution of level widths is the main result
this section.

The conductance distributionP(G) can now be simply
derived in two limiting cases:~i! when the leads are place
symmetrically, so thatG15G2 @cf. Eq. ~2!#, and ~ii ! when
one of the partial widths is substantially smaller than
other,G1!G2. In both these casesG;G1 @as follows from
Eq. ~1!#, and the conductance distribution is also of Port
Thomas type. The ‘‘local average’’ conductanceḠ is given
by

Ḡ~«!5
e2p

2ghkT
Ḡ~«!, ~39!

where the ‘‘local average’’ widthḠ(«) is defined by Eq.~37!,
andg51 for G1!G2, while g52 for G15G2.

In the general case,G1 /G2;O(1) but not identical, how-
ever, an exact calculation of the conductance distributio
complicated by the essentially nonlinear dependence of
conductance on the partial widthsG1 and G2. In order to
calculate the actual conductance, we choose the areaSas the
composition of two narrow stripsS1 andS2 near each of the
leads. Using the transverse lead wave functions as the b
in each of the two strips,

c̄~y,z!5zF(
m

am
(1)fm

(1)~y2yl
(1)!1(

m
am

(2)fm
(2)~y2yl

(2)!G ,
~40!

where the coordinatesyl
(1) and yl

(2) represent the ‘‘contac
points’’ of the leads. The partial widthsG1 andG2 are then
given by

G15
2p\4

m
*
2

r0
(1)ua0

(1)u2, ~41!
23532
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G25
2p\4

m
*
2

r0
(2)ua0

(2)u2. ~42!

Assuming an equal density of states in the leads,r0
(1)(«)

5r0
(2)(«), for the conductanceG we obtain

G5
p

2

e2\3

m
*
2 kT

r0

ua0
(1)u2ua0

(2)u2

ua0
(1)u21ua0

(2)u2
. ~43!

An arbitrarynth moment of the conductanceG, ^Gn&, can
now be calculated by integrating over the coefficients$am%
for mÞ0, yielding

^Gn&}E da0
(1)E da0

(2)F ua0
(1)u2ua0

(2)u2

ua0
(1)u21ua0

(2)u2G
n

exp@2a0
(1)A11a0

(1)

2a0
(2)A22a0

(2)22a0
(1)A12a0

(2)#, ~44!

where the matrixA is

Aab5E dy1E dy2f0~y12yl
(a)!]nC21~y1 ,y2!

3f0~y22yl
(b)!. ~45!

Note that definition~45! implies that the diagonal elemen
of the matrixA are proportional to the corresponding part
widths, A11;G1 , A22;G2. A straightforward evaluation of
the integrals in Eq.~44! using the substitution

x5@a0
(1)#22

2m
*
2 kTG

pe2\3r0

, ~46!

yields

^Gn&5E dG GnP~G!, ~47!

where the distribution is

P~G!5
1

AG
expS 2

1

2
TrAGD E

0

`

dx
G1x

x3/2
expF2

1

2
A11x

2
1

2
A 22

G2

x GcoshFA12GSAx

G
1

G

x D G . ~48!

Note that it is only the term involvingA12 which makes the
remaining integral non-Gaussian and so, thus hard to
form. However, this term is semiclassically small: from E
~45! it follows that the leading semiclassical term in the o
diagonal part of the matrixA is of next order in\ compared
to the leading diagonal terms. Thex integral in Eq.~48! is
therefore dominated by the interval between 1/(GA11) and
GA22, where the off-diagonal matrix elementA makes only
a small correctionquadratic in A12. Such a correction cor-
responds, however, to higher-order terms in\. Corrections of
this order were already neglected in the original semicla
cal expansion of the Green function, and so to be consis
we discard all effects of the off-diagonal matrix elementA12
here. The integral in Eq.~48! can now be easily performed
9-6
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The semiclassical approximation to the conductance
tribution is, then, simply a Porter-Thomas distribution, ev
in the general case,

P~G!5S 2p

Ḡ
D 1/2

1

AG
expF2

G

2Ḡ
G , ~49!

where the ‘‘local average’’ conductanceḠ is

Ḡ[F 1

AḠ1

1
1

AḠ2

G22

, ~50!

and the ‘‘partial conductance’’Ga is related to the partia
width Ga via the standard relation

Ga[~pe2/2hkT!Ga . ~51!

As the semiclassical Green function,Gsc, and, consequently
the correlator,]nC, can be expressed as a sum of the con
butions of ‘‘zero-length’’ and longer classical trajectorie
similar decompositions hold for the average partial wid
and average partial conductance:

Ḡa5Ḡa
01Ḡa

osc, ~52!

Ḡa5Ḡa
01Ḡa

osc, ~53!

where the ‘‘oscillatory’’ partsḠosc and Ḡosc depend on the
longer classical trajectories and are of next order in\ com-

pared to the smooth contributionsḠ0 and Ḡ0, which are
zero-length contributions. A consistent semiclassical
proximation, as in Eq.~12!, then requires expandingḠ and
keeping only the linear terms in the oscillatory contributio
We thus obtain

Ḡ5
Ḡ1

0Ḡ2
0

Ḡ1
01Ḡ2

012AḠ1
0Ḡ2

0 F 11
1

11AḠ1
0/Ḡ2

0

Ḡ1
osc

Ḡ1
0

1
1

11AḠ2
0/Ḡ1

0

Ḡ2
osc

Ḡ2
0 G . ~54!

Note that in the asymmetric lead case, if the mean of
partial conductances are the same (Ḡ1

0'Ḡ2
0), then the aver-

age conductance is one-fourth the average of the partial
ductances. This result differs from the completely symme
case given in Ref. 23, where the average conductance is
half the average partial conductances. The difference is
to the perfect correlation of the widths in the symmetric ca
whereas the mean may be equal in the asymmetric case
the particular values are uncorrelated.

We now proceed to the semiclassical calculation of

‘‘local average’’ partial widthḠ. The defining equation~37!
involves the functional inverse of the Green function, whi
is a hard object to calculate. Instead, we will use the origi
definition @Eq. ~4!#, which for the local average partial widt
yields
23532
s-
n

i-
,

-

.

e

n-
c
e-

ue
e
but

e

l

Ḡ5
2p\4

m
*
2 (

a
r0

(a)E dy1E dy2fa~y12yl !

3fa* ~y22yl !]nC~y1 ,y2!, ~55!

where the correlation function of the normal derivatives
the dot wave functions]nC(y1 ,y2) is related to the semiclas
sical Green function by Eq.~30!.

If we now use some information about the lead wa
functions, we can obtain an explicit expression for the av

age widthḠ in terms of the classical dynamics in the do
When, as we assumed above, the tunneling from the lea
the dot is dominated by the lowest transverse energy subb
in the constriction between the lead and the dot,3 the trans-
verse potential in the tunneling region can be taken to
quadratic:Ul;k(y2yl)

2. In this case, the transverse depe
dence of the lead wave function is simply a harmon
oscillator wave function, so that at the edge of the dotf0

.clexp@2(y2yl)
2/2aeff

2 #, whereyl is the center of the lead
and constriction, and the effective width isaeff

5A\/A4 2km* . While the exact form of the lead wave func
tion is not crucial, the\ dependence of the width is impor
tant for the semiclassical argument which follows; note t
aeff;A\ does not depend on a particular transverse po
tial.

Using this information aboutf0 in the expression for the
diagonal matrix elementsA11, andA22, we see that the lead
wave function restricts the integration to a semiclassica
narrow region of widthaeff;A\. This allows one to expres
the contribution of the open trajectories entering the Gre
function in terms of an expansion near their closed nei
bors,

Ḡ5Ḡ01
16

m*
E dyE dpyf W~y,py!(

a
A ~pi

a!n~pf
a!n

m11
a 1m22

a 12

3expF2
i

\

2m12
a

m11
a 1m22

a 12
~py2 p̄y

a!2G
3expF i

Sa~y,0;y,0;«!

\ G , ~56!

whereḠ0 is the monotonic part of the resonance width, (pi)n
and (pf)n are the normal components of the initial and t
final momenta of the closed orbita, the momentump̄[(pi

1pf)/2, and the 232 monodromy matrix13 Ma[(mi j
a ) is

defined via the linearization of the Poincare´ map near the
closed orbita and calculated at the contact point near t
lead. In Eq.~56! we have also introduced the Wigner tran
form f W

e of the lead wave function,

f W
e ~y,py![h21E dDy f0~y2Dy/2,0!f0*

3~y1Dy/2,0!exp~ ipyDy/\!, ~57!

which describes the distribution in transverse position a
momentum of electrons tunneling into the dot.
9-7
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In leading order in the distance between the contact p
y of the closed orbita, and the center of the leadyl , the
action of the closed orbitSa scales linearly,

Sa~y,0;y,0!}S~yl ,0;yl ,0!1Dpy
a~y2yl ! ~58!

whereDpy is the change of transverse momentum after
traversal of the closed orbit. Assuming, e.g., a Gaussian f
of the lead wave function, the contribution of each of the
closed orbits is suppressed by a factor exponentially sma
Dpy

2 . This suppression is the effect of the mismatch of
closed orbit~momentum! with the distribution of transverse
momentum at the lead, which is centered at zero with wi
dpl;\/aeff;A\ for the lowest subband. Therefore, on
closed orbits withsemiclassicallysmall momentum chang
Dp contribute to the width. This in turn implies that th
closed orbit is located semiclassically close~within a dis-
tance;A\) to aperiodic orbit for which Dp[0. Using this
proximity to a periodic orbit, we can re-express the actio
and momenta of the injection orbits in terms of the proper
of their periodic neighbors~labeled by the indexm) as fol-
lows:

Sa~y,0;y,0!.Sm1
Tr@Mm#22

2m12
m

~y2ym!2, ~59!

p̄y
a.py

m1
m11

m 2m22
m

2m12
m

~y2ym!. ~60!

Substitution of Eqs.~59! and~60! into Eq. ~56!, and integra-
tion overy, yields23

Ḡ5Ḡ01 (
m:p.o.

AmcosS Sm

\
1fmD , ~61!

where the monotonic part is

Ḡ05
Ap

2
cl

2aeff

p2

m*
e2z@ I 0~z!1I 1~z!#, z5

p2aeff
2

2\2
,

~62!

the amplitude is

Am54A2
\cl

2pz
m

m*
@Tr2@Mm#~11s1

2 !~11s2
2 !#21/4

3expS 2
s1

2 p̄2

~11s1
2 !

2
s2

2 ȳ2

~11s2
2 !

D , ~63!

with

s6[ 1
2 @m̄122m̄216A~m̄222m̄11!

21~m̄211m̄12!
2#,

m̄i j [
2mi j

m

Tr@Mm#12 S aeff
2

\ D ( j 2 i )/2

u[
1

2
arctanS m̄222m̄11

m̄211m̄12
D , ~64!
23532
nt

e
m
e
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ȳ[cosu~ym2yl !/aeff1sinu py
maeff /\,

p̄[cosu py
maeff /\2sinu~ym2yl !/aeff ,

and fm is a slowly varying phase. HereI n is the Bessel
function of complex argument,p is the magnitude of the
electron momentum,pm is the electron momentum for th
periodic orbitm at the bounce point~turning point!, ym is the
bounce point coordinate,Sm is the action of the periodic
orbit, and Mm[(mi j )

m is the corresponding monodrom
matrix.13 Note the sharp suppression of the oscillatory effe
in Eq. ~63! if the periodic orbit does not match up to the lea
wave function inboth position and momentum space. Th
mismatch is characterized byȳ and p̄; the most favorable
case is that of a perpendicular periodic orbit hitting the ed
of the dot right at the center of the lead,py

m50 and ym

5yl , so thatȳ5 p̄50.
An explicit expression for the average conductance f

lows from the relation between the partial width and t
partial conductance@Eq. ~51!#. Using Eq.~54!, we see thatḠ
can be written in the form

Ḡ5Ḡ01 (
m:p.o.

BmcosS Sm

\
1fmD , ~65!

where Bm is simply related toAm , Ḡ1
0, and Ḡ2

0. This, to-
gether with Eq.~49!, defines both the average conductan
and its fluctuations. The oscillating form of this result is t
same as that in Ref. 23, which was derived using a differ
approach; in fact,~61! of the present paper is identical to E
~3! of Ref. 23. Both approaches are systematic semiclass
approximations, and so the similarity of the two results is n
surprising. It is, however, important to realize that the ma
objective of the present paper is to characterize both the
namical effect in the conductanceand the peak height distri-
bution, while Ref. 23 dealt only with the former issue.

A further characterization of the peak fluctuations can
obtained from the peak-to-peak correlation function: this i
particularly interesting quantity because of the correlatio
sometimes observed experimentally,6,7 as discussed in Sec.
A natural measure of the statistics of nearby peaks is gi
by dG(Em)[G(Em)2^G(En)&n , in terms of which the cor-
relation function is

Corrm@dG,dG#5^dG~En1m!dG~En!&n /^@dG~En!#2&n .
~66!

Substituting the conductance distribution@Eq. ~49!# into Eq.
~66!, we obtain

Corrm5dm,01~12dm,0!3

(
m

Bm
2 cosS tmD

\
mD

4Ḡ0
213(

m
Bm

2
. ~67!

Throughout this paper we have concentrated on the
ergy ~or equivalently the peak number! as the tuning param
eter causing the peak height variation. This is just an
9-8
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ample: exactly analogous considerations apply to
parameter causing changes in the wave functions of
quantum dot. In particular, a similar oscillatory behavior
expected in the height of agivenpeak as a function of mag
netic field, often the most experimentally accessible para
eter. As the field varies, the change in the action of a perio
orbit is proportional to the~directed! area that it encloses
Thus the peak heights should exhibit an oscillatory envel
whose frequencies are proportional to the areas of the p
odic orbits.

V. COMPARISON WITH NUMERICS AND EXPERIMENT

Since one of the main theoretical results of the pres
paper concerns the periodic modulation of the Coulo
blockade peak heights, it is natural to consider the Fou
power spectrum ofGpeak(k). In Fig. 1 we present a compar
son of the numerical and semiclassical power spectra, ca
lated for a chaotic~stadium! dot, for three different place
ments of the leads. The exact conductance peaks are obt
numerically from Eq.~1!, with the eigenstates being con
structed using the the method of Ref. 43. To observe
variation in peak height, we vary the energy, or equivalen
the wave vectork5p/\, which changes the number of ele
trons on the dot as more levels are filled. Previously,
reported the case for leads placed symmetrically, as in
upper plot of Fig. 1, andkR570.23

The data clearly demonstrate that the power spectrum
well-defined peaks corresponding to periodic orbits. The
merical results for the symmetric leads show excellent ag
ment with the semiclassical prediction.

However, the situation is different for asymmetrically p
sitioned leads when there is no single short periodic o
connecting both leads. In this case, only the main peak
responding to the first repetition of the relevant periodic
bits, the ‘‘diameter’’ and the V-shaped orbit, is adequat
reproduced. The higher-frequency behavior, however, is s
stantially different from the semiclassical prediction. We
tribute this difference to the nonlinear mixing of the oscill
tions of different partial widths, neglected in our derivatio
of Eq. ~54!. The pronounced peak at the difference leng
LV2LD , where LV and LD correspondingly represent th
lengths of the V-shaped and diameter orbits, strongly in
cates that, although semiclassically small, the mixing effe
of higher order terms in Eq.~50! can be significant in the
experimentally relevant parameter range. We numeric
verified that the sum and difference lengths can be parti
obtained by Eq.~50!.

As follows from Eq. ~61!, the oscillatory component o
the ‘‘local average’’ conductance and the height of the cor
sponding peak in the power spectrum depends nontrivi
on the position and width of the lead. This dependence
illustrated in Fig. 2, where we plot the amplitude of the ‘‘d
ameter’’ orbit contribution to the conductance as a funct
of kaeff extracted from numerical length spectrum and
corresponding semiclassical prediction.

In Fig. 3 we compare the semiclassical correlation fu
tion with numerical data for the stadium dot. The oscillato
behavior for large separations reflects the peak in the co
23532
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sponding power spectrum in Fig. 1 and is in agreement w
the semiclassical result. The positive correlation for nea
neighbors is also in agreement with the semiclassical the
demonstrating the influence of dynamics even in this app
ently nonsemiclassical regime.

When T@D, the major source of correlations betwee
neighboring peaks is the joint contribution of several re
nances to the same conductance peak.8 In this regime the

FIG. 1. The peak conductances~left column! from tunneling
through subsequent energy levels in the stadium quantum dot
the corresponding ‘‘length spectra’’I (L) ~right column! for differ-
ent lead configurations~shown in the insets!. In the peak conduc-
tance plots, each peak is placed at a wave vectork corresponding to
its level; R is the radius of the half-circle parts of the stadium d
and data forkR'140 are shown. A Gaussian lead wave functi
appropriate for tunneling from a single transverse mode is used
width kaeff515. The curves represent the semiclassical envelo
defined by the contributions of the relevant periodic orbits~top:
‘‘diameter’’ orbit; middle: ‘‘V’’-shaped orbit; bottom: both diamete
and V-shaped orbits!. Length spectrum of the oscillations inG(k)
obtained from the Fourier power, numerical~thick gray line!, and
semiclassical~thin black line! results are compared. The power
normalized to the mean conductance. The arrows at the top s
the positions of the relevant periodic orbits and their repetitions
well as the ‘‘combination lengths’’L16L2. In the top panel, the
peak atL/R.4 is the diameter, and that at 8 is its repetition. In t
middle panel, the peak atL/R52(11A2)'4.8 corresponds to the
V-shaped orbit, and the peak atL/R'9 represents its repetition. In
the bottom panel~asymmetric leads!, the broad peak atL/R.4.5
represents the total contribution of both diameter- andV-shaped
orbits. For the stadium dot, the principal peaks appear at 4 and
because we use only wave functions symmetric about the ver
and horizontal symmetry axes~equivalent to using only the even
even states of the stadium!. Note the excellent agreement betwe
the semiclassical theory and the numerical results for symme
leads, and adequate representation of the principal peak for a
metric leads.
9-9
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NARIMANOV, BARANGER, CERRUTI, AND TOMSOVIC PHYSICAL REVIEW B64 235329
‘‘nearest-neighbor’’ correlator is Corrm51;1, and the dy-
namical effect accounts for only a small correction to t
correlation function. However, for low temperatureT<D,
the correlations due to temperature are exponentially s
pressed. In this regime, as illustrated in Fig. 4, the corre
tions induced by dynamical modulation dominate, and th
account for the experimentally observed enhancement of
relations at low temperatures.9 For finite temperature eac
resonance is weighted by combinations of Fermi-Dirac fu
tions and occupation numbers.24 The occupation number
used in Fig. 4 were obtained by employing a recurs
relation;44 see the Appendix. As the temperature increa
more resonances contribute to a single conductance p
and thus dampening the effects of the longer orbits.

In Fig. 5 we present the results of the calculation of t
probability distribution ofGpeak for a stadium quantum do
for both ‘‘symmetric’’ and ‘‘asymmetric’’ placements of th
leads. For comparison, we show both the actual distribu
@Eqs. ~49! and ~54!#, and the standard Porter-Thomas res
without any account of the modulation of the average c
ductance:P(Gpeak)5A4/pGpeakexp(2Gpeak). As the indi-

FIG. 2. The dependence of the amplitude of the length spect
peak atL/R.4 on kaeff for kR570. The leads are symmetricall
attached to the middle of the semicircle segments of the stad
dot.

FIG. 3. The peak-to-peak conductance correlation function
~a! symmetrically placed leads~attached to the ‘‘diameter’’ of the
stadium dot!, and~b! asymmetric leads~as in the inset to the length
spectrum at the bottom of Fig. 1!. The numerical correlation func
tion ~circles with typical error bars!—the average of all pairs o
peaksm peaks apart—is in good agreement with the semiclass
theory ~solid line!. The agreement for smallm is surprising since
this regime is not semiclassical, but shows how dynamics can
rise to correlations even between nearest neighbors. The differ
between the periods of the modulation in~a! and ~b! is accounted
for by the difference in the values ofkR used for the correlation
function: the calculation for~a! is performed nearkR570, while~b!
corresponds to an interval nearkR5140.
23532
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vidual peak-height distribution is essentially a local measu
it is not strongly sensitive to the correlations, and both
standard and dynamical theories predict nearly the same
sult, and both are consistent with numerical calculation. T
explains why no dynamical effect was observed in the
perimental peak-height probability distribution.6,7

In contrast, a periodic modulation of the peak heights w
observed in several recent experiments.7,9,22The clearest ob-
servation is in Ref. 9: the data in their Fig. 1 showed mod
lated peak heights as a function of the number of electron
the dot. In their trace of 90 peaks, approximately six osci
tions are visible, yielding a period of;15 peaks.

In our treatment, this period is related to the period
fundamental oscillation in Eq.~61!. A variation in action
DSm can arise in two different ways: either the Fermi m
mentum changes or the dynamics, that is the lengths of
periodic orbits, is modified. In general both effects will b
present.

First, if only the momentum varies, then the fundamen
period is given by@(1/h)]Sm /]«#21[h/tm wheretm is the
period of the relevant orbit, and the ratio of this to the lev
spacingD gives the period of the peak heights. Note th

m

m
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FIG. 4. The peak amplitude correlation function for a stadiu
shaped dot with symmetrically attached leads and for temperat
T50 ~circles!, 0.25D ~triangles!, 0.5D ~X’s!, D ~squares!, and 2D
~pluses!, andkR570. The solid, dashed, and dotted lines are o
used to guide the eye.

FIG. 5. Conductance statistics: probability distribution functi
for ~a! symmetric leads atkR5140, and~b! asymmetrically placed
leads atkR570. The numerical probability distribution~histogram!
is for the entire range of data in Fig. 1, and is compared to both
semiclassical theory~dotted line! and the standard statistical theo
based on random wave functions~solid line!. The two theories pre-
dict nearly the same result for this quantity~especially for asym-
metric leads, where the dynamical modulation is weaker!, and both
are consistent with the numerics.
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presenting the experimental data as the number of peaks
oscillation removes the effects of the charging energy: a c
stant shift of all the levels as an electron is added to the
contributes to the peak spacing but not to thenumber of
levels that need to be filled in order for the interference c
dition around a periodic orbit to change. In fact, small flu
tuations in either the charging energy or the mean sin
particle level spacing do not matter. In the billia
approximation,tm[Lm /vF , whereLm is the length of the
periodic orbit andvF is the Fermi velocity, which can be
calculated from the experimental density.45. Using the appro-
priate spin-resolved level spacingD.10 m eV ~which is
half of the spin-full value from the measurements in Ref.!
and the orbit from the lead to the ‘‘pin’’ gate and bac
~whose length we estimate to be 0.9mm), we expect an
oscillation period of;75 peaks. This value is inconsiste
with the experimental observation.46

Second, changes in the dynamics caused by
deformation12 should also be considered. By examining t
configuration of the dot in the inset of Fig. 1 of Ref. 9, th
gate voltage appears to be situated on the shortest per
orbit of each lead. By making the gate voltage more ne
tive, the electron will have a shorter path and thus contrib
to the change of the action in Eq.~61!. If the Fermi energy of
the system remains constant, then we can calculate a p
sible range for the period using two extreme simplified mo
els for the deformation of the boundary. First, the gate v
age is modeled as a small local semicircular deformat
Equating the area of the semicircle to the number of pe
times the change of area caused by adding one electro
the dot without a change in the Fermi energy, we estimate
period to be;3 peaks independent of the Fermi energy. T
other extreme is considering the entire side to move u
formly. The same procedure yields a period proportiona
the square root of the number of electrons on the dot.
suming that the typical dot in these experiments has
electrons,9 we obtain a period of;13 peaks. Since the tru
behavior of the gate is no doubt intermediate between th
two extremes, we find that this mechanism acting by its
would produce a period of;5 –10 peaks.

A related possiblity is that the adding of electrons m
change the effective potential defining the dot because of
added charge. This could be another source of a chang
the dynamics. However, such a change in effective poten
will not be localized near one of the periodic orbits, but w
rather spread out across the quantum dot. In fact, exp
ments on ‘‘magnetofingerprints’’ of the peaks47 suggest a cer-
tain robustness of the effective potential—its change fr
peak to peak seems to be small in this case. In contras
affect the dynamical modulation one must substantia
change the action of the shortest periodic orbit, which ty
cally requires a much larger change in potential such
could be caused by the external gates.

Thus, the experimental result of a period of 15 peaks c
not be solely obtained by either the orbit length change~too
small! or the change in Fermi momentum~too large!. A com-
bination of these two effects, no doubt both present in r
systems, yields an intermediate result consistent with exp
ment. Unfortunately, the range of possible periods that
23532
per
n-
ot

-
-
-

a

dic
-

te

u-
-
-
n.
s
on
e

e
i-
o
s-
0

se
lf

he
in

al

ri-

to
y
i-
s

n-

al
ri-
-

sults from this simple modeling of the quantum dot is ve
broad, and so this is hardly a stringent test of the semic
sical theory. A detailed model of the confining potential a
gate voltage effects is necessary in order to make a be
prediction of the oscillation period.

A similar approach to the peak modulation as a funct
of magnetic field is also consistent with the experimen
results,7,22 where a quasiperiodic modulation of the pe
heights was observed with a periodDB.35 mT. In our
treatment, this period is given by the ratio of the flux qua
tum hc/e to the areaA0 enclosed by the periodic orbit. From
the experimental oscillation, we obtainA0.0.12 mm2. This
is consistent with the total area of the dot, 0.32mm2,7 con-
sidering that there is likely to be some cancellation of flux
between different parts of the orbit.

A puzzling feature of the initial experiments was that t
dynamical modulation of the Coulomb blockade pe
heights was not seen in the experiment of Ref. 6. We
tribute this behavior to two factors: the positioning of th
leads relative to the gate, and the relatively small mean
path. First, if the gate used to change the number of elect
is not along the shortest periodic orbit of either lead and
Fermi energy does not change appreciably in the dot, t
one should not observe oscillations in the conductance pe
In the geometry of Ref. 6, the leads and gate seem to
rather disconnected, so this is a factor. Second, in this exp
ment the mean free pathl;0.4 mm only marginally exceeds
the typical size of the dotd.0.25 mm, while the length of
the shortest periodic orbit is at least twice the effective ‘‘d
ameter’’d of the dot:Lmin.2d.0.5 mm. l . If the mean free
path is caused by short-range diffractive scattering, the
namical effects are suppressed and will not affect the C
lomb blockade measurements. However, in the opposite l
of a smooth scattering potential, dynamical effects caused
coherent branched flow48 may still be present. The shor
mean free path measured in Ref. 6 suggests the presen
impurities in the two-dimensional electron-gas layer, lead
to a short-range scattering potential and so suppressio
dynamical effects.

VI. SUMMARY

In conclusion, using semiclassical methods, we develo
a dynamical statistical theory of Coulomb blockade pe
heights in chaotic quantum dots. We derived the peak he
distributions and the correlation functions, and showed t
the corrections to the corresponding results of the stand
statistical theory can be expressed in terms of the class
periodic orbits of the dot. Both our analytical results a
numerical simulations clearly demonstrate that the dyna
cal effect is significant for both symmetric and asymmet
lead placements.

We close with two further experiments suggested by
results. First, if the tuning parameter used to change
number of electrons, such as a gate voltage, does not ch
the action of the dominant periodic orbit, then no modulati
connected to that orbit should be seen. In particular, ga
which affect different parts of the dot may produce differe
oscillatory behaviors. Second, several samples made in a
9-11
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bust geometry—a circle with directly opposite leads,
example—should show the same modulation. Any deviati
from the same behavior would be a sensitive indication
the material quality.
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APPENDIX: TEMPERATURE CALCULATIONS

For nonzero temperatures the conductance is obta
from a weighted sum over the zero temperature par
widths Gl .24 For symmetric leads, this yields

G5
e2

h

p

4kT (
l

wlGl . ~A1!

If kT,D!e2/C, then the weights are given by

wl54 f ~DFN0
2ẼF!^nl&N0

@12 f ~El~N!2ẼF!#,
~A2!

whereDFN is the change in the canonical free energy fro
N21 to N, ^nl&N is the canonical occupation,ẼF5EN
1(N21/2)e2/C is an effective Fermi energy, andf (e)5@1
1exp(e/kT)#21 is the Fermi-Dirac function.

To obtain the canonical free energy and canonical oc
pation number we use a recurrence relation developed
Brack, Genzken, and Hansen44 for the partition function
Z(N,M ;b); N is the number of particles,M is the number of
levels, andb51/kT. The final result for the partition func
tion will not numerically depend uponM for large M. The
partition function is formally given by

Z~N,M ;b![ (
a51

I NM

exp~2bEa~N!!5exp~2bE0!z~N,M ;b!,

~A3!
-

.M
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n
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where

z~N,M ;b![ (
a51

I NM

exp„2b@Ea~N!2E0#…. ~A4!

Here Ea(N) is the sum of the energy of the single-partic
occupied levelseM which does not include the charging e
ergy; E0 will be defined below, andI NM is the number of
ways to fill M levels with N identical particles. The recur
rence relation derived in Ref. 44 is

Z~N,M ;b!5Z~N,M21;b!

1exp~2beM !Z~N21,M21;b!

for N>1,M>N, ~A5!

with the constraints

Z~0,M ;b![1 ;M>0, ~A6!

Z~N,N21;b![0 ;N>1. ~A7!

Note that the same recurrence relation also holds
z(N,M ;b). The choiceE0(N)5(m51

N em yields the result

z~N,N;b!51. ~A8!

Using conditions~A7! and ~A8! as starting points for the
recurrence relation@Eq. ~A5!#, we obtainz(N,M→`;b) and
thus Z(N,M→`;b). For the small temperatures that w
consider, the convergence of the recurrence relation is ra

Similarly, one can calculate a modified partition functio
Zl8(N,M ;b) which has levell removed from the spectrum
The probability for levell to be unoccupied,P$nl50%, is,
then, simplyZl8 /Z. In terms of this probability, the averag
occupation numbers are given by^nl&N512P$nl50%. Fi-
nally, the canonical free energy forN electrons,F(N), ap-
pearing in Eq.~A2!, is

F~N!52
1

b
ln Z~N,M→`;b!. ~A9!
tt.
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