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Integer quantum Hall transition in the presence of a long-range-correlated quenched disorder
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We theoretically study the effect of long-ranged inhomogeneities on the critical properties of the integer
quantum Hall transition. For this purpose we employ the real-space renormalization-group~RG! approach to
the network model of the transition. We start by testing the accuracy of the RG approach in the absence of
inhomogeneities, and infer the correlation length exponentn52.39 from a broad conductance distribution. We
then incorporate macroscopic inhomogeneities into the RG procedure. Inhomogeneities are modeled by a
smooth random potential with a correlator which falls off with distance as apower law, r 2a. Similar to the
classical percolation, we observe an enhancement ofn with decreasinga. Although the attainable system sizes
are large, they do not allow one to unambiguously identify a cusp in then(a) dependence atac52/n, as might
be expected from the extended Harris criterion. We argue that the fundamental obstacle for the numerical
detection of a cusp in thequantumpercolation is the implicit randomness in theAharonov-Bohm phasesof
the wave functions. This randomness emulates the presence of ashort-rangedisorder alongside the smooth
potential.

DOI: 10.1103/PhysRevB.64.235326 PACS number~s!: 73.43.Cd, 73.23.2b
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I. INTRODUCTION

The critical behavior of electron wave functions in th
vicinity of the integer quantum Hall~QH! transition is now
well understood.1 That is, the localization length diverges a
«2n, where« is the deviation from the critical energy. Th
most accurate value of the exponentn extracted from nu-
merical simulations isn52.3560.03.2 On the experimenta
side, the study of the critical behavior of the resistance in
transition region at strong magnetic fieldB has a long history
which can be conventionally divided into three periods.

~a! The first experimental works3–9 reported a narrowing
of the transition peak with temperature,T, as Tk with k
;0.4. The spread in the actual value ofk}1/n measured in
different experiments was attributed to the difference in
type of disorder in the samples of Refs. 3, 4 and 5. Anot
experimental method to explore the critical behavior w
employed in Refs. 6 and 7, wherek was deduced from the
sample size dependence of the width,DB, of the transition
region. The value ofk obtained by this technique appear
to be consistent with temperature measurements of Ref.
the sense thatk was found to be sample dependent. On
other hand, it was argued in Ref. 8 that the lack of univ
sality in Refs. 5–7 has its origin in the long-ranged charac
of the disorder in GaAs-based heterostructures studie
these works. This is because for a smooth disorder the en
interval within which the electron transport is dominated
localization effects is relatively narrow.8 The measurement
in Refs. 3 and 4 suggesting the universality ofk, were car-
ried out on InxGa12xAs/InP heterostructures in which diso
der is believed to be short ranged.10 Despite the disagreemen
about universality of the exponentk, the fact that the nar-
rowing of the plateau transition occurs asTk was not ques-
tioned in Refs. 3–9.

~b! The absence of scaling was reported first for the Q
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insulator transition11 and then for the plateau-platea
transition.12 In the latter paper the conclusion about the a
sence of scaling was drawn from the analysis of the f
quency dependence ofDB in GaAs/AlyGa12yAs heterostruc-
tures~in contrast to the similar analysis in Ref. 13!. That is,
the authors of Refs. 11 and 12 concluded that the width
the transition regionsaturatesasT→0. A possible explana-
tion of this behavior14,15is based on the scenario of tunnelin
between electron puddles with a size larger than the dep
ing length. The microscopic origin of these puddles was
tributed to sample inhomogeneities.16–18

~c! Very recent experimental results19 on scaling of
plateau-insulator as well as plateau-plateau QH transiti
carried out on the same InxGa12xAs/InP sample as in Ref. 9
suggested that the narrowing of the transition width w
temperature follows a power-law dependenceDB}Tk with
k'0.4. Even when the authors of Ref. 19 analyzed their d
using the procedure of Ref. 11, i.e., by plotting the logarith
of the longitudinal resistance versusDB, they obtained

straight lines with slopes proportional toTk8 with k8'0.55.
They attributed the difference betweenk andk8 to the mar-
ginal dependence of the critical resistance onT. It was also
speculated in Ref. 19 that this dependence most likely res
from macroscopic inhomogeneities in the sample. In the
est papers20–22 the frequency dependence of the QH tran
tion width was studied. The results did not support the sa
ration of the width,11,12 but rather confirmed the scalin
hypothesis.

Summarizing, it is now conclusively established th
insulator-plateau and plateau-plateau transitions exhibit
same critical behavior. It is also recognized that macrosco
inhomogeneities can either mask the scaling or alter
value ofk.19
©2001 The American Physical Society26-1
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On the theoretical side, in all previous considerations
homogeneities were incorporated into the theory throug
spatial variation of thelocal resistivity.14–18,23 In other
words, all existing theories are either ‘‘homogeneous qu
tum coherent’’ or ‘‘inhomogeneousincoherent.’’ Meanwhile,
there is another scenario which has never been explo
Close to the transition thequantumlocalization lengthj be-
comes sufficiently large. Then the long-ranged disorder
affect the character of the divergence ofj. At this point we
recall the classical limit,24,25 in which the long ranged disor
der does affect the value of the critical exponent in the p
colation problem. Obviously, when the disorder is lon
ranged but has a finite correlation radius, one should
expect any changes in the critical behavior. The princi
finding of Refs. 24 and 25 is that the critical exponent c
change when the correlator of the disorder^V(r )V(r 8)& falls
off with distance as a power law, i.e.,}ur2r 8u2a ~quenched
disorder!. According to Refs. 24 and 25 the critical expone
of the classical percolationn54/3 crosses over ton52/a for
a,3/2, i.e., when the decay of the correlator is slow enou
In the present paper we study the effects of quenched d
der onquantumpercolation. The latter is known to describ
the localization-delocalization transition for a two
dimensional~2D! electron in a strong magnetic field. As
model of quantum percolation we employ the Chalk
Coddington~CC! model26 which is one of the main ‘‘tools’’
for the quantitative study of the QH transition.27–38 The CC
model is a strong-magnetic-field~chiral! limit of a general
network model, first introduced by Shapiro39 and later uti-
lized for the study of localization-delocalization transitio
within different universality classes.40–45 In addition to de-
scribing the QH transition, the CC model applies to a mu
broader class of critical phenomena since the correspond
between the CC model and thermodynamic, field-theory
Dirac-fermions models46–54 was demonstrated.

In order to study the role of the quenched disorder on
localization-delocalization transition we treat the CC mo
within the real-space renormalization-group~RG! approach.
First, in Sec. II we check the accuracy of the RG approa
and show that it provides a remarkably accurate descrip
of the QH transition. In Sec. III we extend the RG approa
to incorporate the quenched disorder. Concluding rema
are presented in Sec. IV.

II. TEST OF THE RG APPROACH TO THE CC MODEL

A. Description of the RG approach

As mentioned in Sec. I, the CC model is a chiral limit
the general network model.39 However, it was originally de-
rived from a microscopic picture of electron motion in
strong magnetic field and a smooth potential.26 Within this
picture, the links can be identified with semiclassical traj
tories of the guiding centers of the cyclotron orbit, while t
nodes correspond to the saddle points~SP’s! at which differ-
ent trajectories come closer than the Larmour radius.
simplicity, the nodes were placed on a square lattice. We
use an equivalent, but slightly different graphical represen
tion of the CC network shown in Fig. 1. In this represen
tion the centers of the trajectories of the guiding centers
23532
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placed on a square lattice and play the role of nodes, whe
the SP’s should be identified with links.

We now apply a real-space RG approach55,56 to the CC
network.57,58 The RG approach is based on the assumpt
that a certain part of the network containing several SP’s,
RG unit, represents the entire network. This unit is th
replaced through the RG transformation by a singlesuper-SP
with anS matrix determined by theS matrices of the consti-
tuting SP’s. The network of super-SP’s is then treated
the same way as the original network. Successive repeti
of the RG transformation yields the information abo
theS-matrix of very large samples, since, after each RG st
the effective sample size grows by a certain factor de
mined by the geometry of the original RG unit. Obviously,
single RG unit is a rather crude approximation of the n
work. Therefore, prior to applying the RG approach to t
study of the quantum Hall transition in the presence
quenched disorder, we first check the accuracy of this
proach for the conventional, uncorrelated case, where
comparison with the results of direct numerical simulatio
is possible.

The RG unit we use is extracted from a CC network on
regular 2D square lattice, as shown in Fig. 1. A super-
consists of five original SP’s by analogy to the RG unit e
ployed for the 2D bond percolation problem.59–61As in any
RG scheme, the unit shown in Fig. 1 leaves out a numbe
bonds of the original lattice. Nevertheless, it is well know
that the application of this scheme to the classical case yi
very accurate results.59

Between the SP’s an electron travels along equipoten
lines, and accumulates a certain Aharonov-Bohm phase.
ferent phases are uncorrelated, which reflects the random
of the original potential landscape. Each SP can be descr
by two equations relating the wave-function amplitudes
incoming and outgoing channels. This results in a system
ten linear equations, the solution of which yields the follo
ing expression for the transmission coefficient of t
super-SP~Ref. 55!:

FIG. 1. Network of SP’s~dashed lines! and equipotential lines
~circles! on a square lattice. The RG unit used for Eq.~1! combines
five SP’s~numbered thick dashed lines!—in analogy with classical
2D bond percolation RG~Refs. 60 and 61!—into a super-SP.
F1 , . . . ,F4 are the phases acquired by an electron drifting alo
the contours indicated by the arrows.
6-2
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Here t i andr i5(12t i
2)1/2 are, respectively, the transmissio

and reflection coefficients of the constituting SP’s;F j are the
phases accumulated along the closed loops~see Fig. 1!.
Equation~1! is the RG transformation, which allows one
generate~after averaging overF j ) the distributionP(t8) of
the transmission coefficients of super-SP’s using the distr
tion P(t) of the transmission coefficients of the origin
SP’s. Since the transmission coefficients of the original S
depend on the electron energy«, the fact that delocalization
occurs at «50 implies that a certain distribution
Pc(t)—with Pc(t

2) being symmetric with respect tot25 1
2

— is the fixed point~FP! of the RG transformation Eq.~1!.
The distributionPc(G) of the dimensionless conductanceG
can be obtained from the relationG5t2, so that Pc(G)
[Pc(t)/2t.

B. Critical exponent within the RG approach

Since the dimensionless SP heightzi and transmission co
efficient t i at «50 are related ast i5(ezi11)21/2, transfor-
mation ~1! determines the height of a super-SP through
heights of the five constituting SP’s. Correspondingly,
distributionP(G) determines the distributionQ(z) of the SP
heights via Q(z)5P(G)(dG/dz)5 1

4 cosh22(z/2)P@(ez

11)21#. In fact, Q(z) is not a characteristic of the actu
SP’s, but rather, as we will see below, represents a con
nient parametrization of the conductance distribution.

The language of the SP heights provides a natural wa
extract the critical exponentn. Suppose that the RG proce
dure starts with an initial distributionQ0(z)5Qc(z2z0) that
is shifted from the critical distribution,Qc(z), by a small
z0}«. Since z0!1, the first RG step would yieldQc(z
2tz0) with some numbert independent ofz0. After n steps
the center of the distribution will be shifted byzmax,n5tnz0,
while the sample size will be magnified by 2n. At the nth
step corresponding tozmax,n;1 a typical SP is no longe
transmittable. Then the localization lengthj should be iden-
tified with 2n}z0

2n}«2n, with n5 ln 2/lnt. When the RG
procedure is carried out numerically, one should check
z0 is small enough so thatzmax,n}z0 for large enoughn.
Consequently, the working formula for the critical expone
can be presented as

n5
ln 2n

lnS zmax,n

z0
D ~2!

which should be independent ofn for largen.

C. Numerical results

In order to find the FP conductance distributionPc(G),
we start from a certain initial distribution of transmissio
23532
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coefficientsP0(t) ~see below!. The distribution is discretized
in at least 1000 bins, such that the bin width is typica
0.001 for the intervaltP@0, 1#. From P0(t), we obtaint i ,
i 51, . . . ,5, andsubstitute them into the RG transformatio
@Eq. ~1!#. The phasesF j , j 51, . . . ,4 arechosen randomly
from the intervalF jP@0, 2p#. In this way we calculate a
least 107 supertransmission coefficientst8. The obtained his-
togram P1(t8) is then smoothed using a Savitzky-Gola
filter62 in order to decrease statistical fluctuations. At the n
step we repeat the procedure usingP1 as an initial distribu-
tion. We assume that the iteration process has conve
when the mean-square deviation*dt@Pn(t)2Pn21(t)#2 of
the distributionPn and its predecessorPn21 deviate by less
than 1024.

We are now able to study samples with short-ranged
order. The actual initial distributionsP0(t) were chosen in
such a way that corresponding conductance distributi
P0(G) were either uniform or parabolic, or identical to th
FP distribution found semianalytically in Ref. 55. All thes
distributions are symmetric with respect toG50.5. We find
that, regardless of the choice of the initial distribution, af
5 –10 steps the RG procedure converges to thesameFP dis-
tribution which remains unchanged for another 4 –6 R
steps. Small deviations from symmetry aboutG50.5 finally
accumulate due to numerical instabilities in the RG pro
dure, so that typically after 15–20 iterations the distributi
becomes unstable and flows towards one of the classical
P(G)5d(G) or P(G)5d(G21). We note that the FP dis
tribution can be stabilized by forcingPn(G) to be symmetric
with respect toG50.5 in the course of the RG procedure

Figure 2 illustrates the RG evolution ofP(G) andQ(z).
In order to reduce statistical fluctuations we average the
distributions obtained from differentP0(G)’s. The FP distri-
bution Pc(G) exhibits a flat minimum aroundG50.5 and
sharp peaks close toG50 andG51. It is symmetric with
respect toG'0.5 with ^G&50.49860.004, where the erro
is the standard error of the mean of the obtained FP distr
tion. The FP distributionQc(z) is close to Gaussian.

We now turn to the critical exponentn. As a result of the
general instability of the FP distribution, an initial shift o
Qc(z) by a valuez0 results in the further drift of the maxi
mum position,zmax,n , away fromz50 after each RG step
As expected,zmax,n depends linearly onz0. This dependence
is shown in Fig. 3~inset! for different n from 1 to 8. The
critical exponent is then calculated from the slope accord
to Eq.~2!. Figure 3 illustrates how the critical exponent co
verges withn to the value 2.3960.01. The error correspond
to a confidence interval of 95% as obtained from the fit to
linear behavior.

Due to the high accuracy of our calculation ofPc(G), we
were able to reliably determine many central moments^(G
2^G&)m& of the FP distributionPc(G). These moments are
plotted in Fig. 4.
6-3
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FIG. 2. Top:P(G) ~thin lines! as function of conductanceG at
a QH plateau-to-plateau transition. Symbols mark every 20th d
point for the initial distribution (j), the FP (h), and the distribu-
tion for RG stepn516 (m). The vertical dashed line indicates th
average of the FP distribution. Bottom: Corresponding plots for
distributionQ(z) of SP heights.

FIG. 3. Critical exponentn obtained by the QH-RG approach a
function of effective linear system sizeL52n for RG stepn. The
error bars correspond to the error of linear fits to the data.
dashed line showsn52.39. Inset:n is determined by the depen
dence of the maximumzmax,n of Qn(z) on a small initial shiftz0.
Dashed lines indicate the linear fits.
23532
D. Comparison with previous simulations

By dividing the CC network into units, the RG approac
completely disregards the interference of the wave-funct
amplitudes between different units at each RG step. For
reason it is not clear to what extent this approach captu
the main features and reproduces the quantitative predict
at the QH transition. Therefore, a comparison of the R
results with the results of direct simulations of the CC mo
is crucial. These direct simulations are usually carried out
employing either the quasi-1D version63 or the 2D version64

of the transfer-matrix method. The results of application
the version of Ref. 63 to the CC model are reported in Re
26 and 27. In Refs. 65–67 the version of Ref. 64 was u
lized. For the critical exponent the valuesn52.560.5 ~Ref.
26! and latern52.460.2 ~Ref. 27! were obtained. Note tha
our result is in excellent agreement with these values, an
also consistent with the most precisen52.3560.03.2 This
already indicates a remarkable accuracy of the RG appro
In Refs. 65–67 the critical distributionPc(G) of the conduc-
tance was studied.Pc(G) was found to be broad, which is in
accordance with Fig. 2. However, a more detailed comp
son is impossible, since the results of the simulations65–67do
not obey the electron-hole symmetry conditionPc(G)
5Pc(12G). On the other hand, within the RG approach, t
latter condition is satisfied automatically. Nevertheless,
can compare the moments ofPc(G) to those calculated in
Refs. 65 and 66. They are presented in Fig. 4. In Ref. 66 o
the standard deviation (^G2&2^G&2)1/2'0.3 was computed
Our result is 0.316. In Ref. 65 the moments were fitted
two analytical functions, which are also shown in Fig.
They agree with our calculations up to the sixth mome
Here we point out that the moments obtained in Ref. 65
hardly be distinguished from the moments of a uniform d
tribution. This reflects the fact thatPc(G) is practically flat
except for the peaks close toG50 andG51.

ta

e

e

FIG. 4. Moments^(G2^G&)m& of the FP distributionPc(G)
(s). Dashed lines are results from Ref. 65. The dotted line co
sponds to the moments of a constant distribution. Inset: Hig
moments ofPc(G) following an exponential behavior. The agre
ment of data and fit demonstrates the quality of the fit result.
6-4
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In Refs. 68 and 69,Pc(G) was studied by methods whic
are not based on the CC model. Both works reported a br
distributionPc(G). In Ref. 68Pc(G) was found to be almos
flat. The major difference between Ref. 68 and Fig. 2 is
behavior of Pc(G) near the pointsG50 and 1. That is,
P(G) in Ref. 68 drops to zero at the ends, while Fig.
exhibits maxima. In Ref. 69 the behavior ofPc(G) is quali-
tatively similar to Fig. 2, with maxima atG50 and 1. How-
ever, the statistics in Ref. 69 are rather poor, which ag
rules out the possibility of a more detailed comparison w
our results.

Finally, we point out that our results agree complete
with Refs. 70–72 where a similar RG treatment of the C
model was carried out. Our numerical data have a hig
resolution, and show significantly less statistical noise. T
is because we took advantage of faster computation by u
the analytical solution of the RG@Eq. ~1!#.55 Also, note that,
in Refs. 70 and 72, the critical exponentn was calculated
using a procedure different from that described in Sec. II
Nevertheless, the values ofn determined by both method
are close. We emphasize that a systematic improvemen
the RG procedure, i.e., by inclusion of more than five S
into the basic RG unit as reported in Refs. 70–72, lead
similar results. The critical distribution of the conductan
was also studied experimentally73,74 in mesoscopic QH
samples. Although an almost uniform conductance distri
tion consistent with theoretical predictions was found in R
73, further detailed analysis of the mesoscopic pattern74 has
revealed the crucial role of the charging effects, which w
neglected in all theoretical studies.

We conclude that the test of the RG approach aga
other simulations proves that this approach provides a v
accurate quantitative description of the QH transition. It c
now be used to study the influence of long-ranged corr
tions.

III. MACROSCOPIC INHOMOGENEITIES

A. General considerations

A natural way to incorporate a quenched disorder into
CC model is to ascribe a certain random shiftzQ to each SP
height, and to assume that the shifts at different SP posit
r and r 8 are correlated as

^zQ~r !zQ~r 8!&}ur2r 8u2a, ~3!

with a.0. After this, the conventional transfer-matrix met
ods of Refs. 63 and 64 could be employed for numerica
precise determination of^G&, the distributionPc(G), its mo-
ments, and most importantly, the critical exponent,n. How-
ever, the transfer-matrix approach for a 2D sample is usu
limited to fairly small sizes~e.g., up to 128 in Ref. 67! due to
the numerical complexity of the calculation. Therefore, t
spatial decay of the power-law correlation by, say, more t
an order in magnitude is hard to investigate for smalla. In
principle the quasi-1D transfer-matrix method26,63 can easily
handle such decays at least in the longitudinal directi
where typically a few million lattice sites are considered
eratively. A major drawback, however, is the numerical ge
23532
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eration of power-law correlated randomness since no ite
tive algorithm is known.75,76 This necessitates the comple
storage of different samples of correlated SP hei
landscapes,77 and the advantage of the iterative transfe
matrix approach is lost. Furthermore, in order to deduce
critical exponent,27 one needs to perform finite-size scaling63

with transverse sizes that should also be large enoug
capture the main effect of the power-law disorder in t
transverse direction. Consequently, even for a single trans
matrix sample, the memory requirements add up to
gabytes.

On the other hand, the RG approach is perfectly suited
study the role of the quenched disorder. First, after each
of the RG procedure, the effective system size doubles
the same time, the magnitude of the smooth potential, co
sponding to the spatial scaler, falls off with r asr 2a/2. As a
result, the modification of the RG procedure due to the pr
ence of the quenched disorder reduces to a rescaling o
disorder magnitude by aconstantfactor 22a/2 at each RG
step. Second, the RG approach operates with the con
tance distributionPn(G), which carries information aboutall
the realizations of the quenched disorder within a sample
a size 2n. This is in contrast to the transfer-matri
approach,63,64 within which a small increase of the syste
size requires the averaging over the quenched disorder
izations to be conducted again.

In order to find out whether or not the critical behavior
affected by the quenched disorder, the following argum
was put forward in Ref. 24. In the absence of the quenc
disorder, the correlation length,j0, for a given energyzQ in
the vicinity of the transition is proportional tozQ

2n . Now
consider a sample with an areaA5j0

2 . The variance of the
quenched disorder within the sample is given by

D0
25

1

A2 K EA
d2rzQ~r !E

A
d2r 8zQ~r 8!L

5
1

A2EA
d2r E

A
d2r 8^zQ~r !zQ~r 8!&}j0

22E
0

j0
drr 12a,

~4!

where the last relation follows from Eq.~3!.
The critical behavior remains unaffected by the quench

disorder if the conditionD0
2/zQ

2 →0 aszQ→0 is met. Using
Eq. ~4!, the ratioD0

2/zQ
2 can be presented as

D0
2

zQ
2

}H zQ
2n22 , a.2

zQ
2n22 ln~zQ

2n!, a52

zQ
an22 , a,2.

~5!

We thus conclude that quenched disorder is irrelevant w

n.1, for a>2,

an.2, for a,2. ~6!

The first condition corresponds to the original Har
criterion78 for uncorrelated disorder, while the second con
6-5
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tion is the extended Harris criterion.24 It yields the critical
value of the exponenta, i.e., ac52/n.

The above consideration suggests the following al
rithm. For the homogeneous case all SP’s constituting
new super-SP are assumed to be identical, which means
the distribution of heightsQn(z) for all of them is the same
For the correlated case these SP’s are no longer identica
rather their heights are randomly shifted by the long-ran
potential. In order to incorporate this potential into the R
scheme,Qn(zi) should be replaced byQn(zi2D i

(n)) for each
SP, i, whereD i

(n) is the random shift. Then the power-la
correlation of the quenched disorder enters into the RG p
cedure through the distribution ofD i

(n) . That is, for eachn
the distribution is Gaussian with the widthb(2n)2a/2. For
large enoughn the critical behavior should not depend on t
magnitudeb, but on the powera only.

B. Numerical results

Here we report the results of the application of the alg
rithm outlined in the previous section. First, we find that f
all values ofa.0 in correlator~3! the FP distribution is
identical to the uncorrelated case within the accuracy of
calculation. In particular,̂ G&50.498 is unchanged. How
ever, the convergence to the FP is numerically less st
than for uncorrelated disorder due to the correlation-indu
broadening ofQn(z) during each iteration step. In order t
compute the critical exponentn(a) we start the RG proce
dure from Q0(z2z0), as in the uncorrelated case, but,
addition, we incorporate the random shifts caused by
quenched disorder in generating the distribution ofz at each
RG step. The results shown in Fig. 5 illustrate that for
creasing long-ranged character of the correlation~decreasing

FIG. 5. Critical exponentn obtained by the QH-RG approach a
a function of RG scale 2n for b52 and different correlation expo
nents a. The dashed line indicatesn52.39, which is the value
that we obtain for uncorrelated disorder. For clarity, we show
errors only fora50.2 and 4. Inset:n vs 2an/2 does not scale for,
e.g.,b52.
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a) the convergence to a limiting value ofn slows down
drastically. Even after eight RG steps~i.e., a magnification of
the system size by a factor of 256), the value ofn with
long-ranged correlations still differs appreciably fromn
52.39 obtained for the uncorrelated case. The RG proced
becomes unstable after eight iterations, i.e.,zmax,9 can no
longer be obtained reliably fromQ9(z). Unfortunately, for
small a the convergence is too slow to yield the limitin
value of n after eight steps only. For this reason, we a
strictly speaking, unable to unambiguously answer the qu
tion whether sufficiently long-ranged correlations result in
a-dependent critical exponentn(a), or the value ofn even-
tually approaches the uncorrelated value of 2.39. Never
less, the results in Fig. 5 indicate that the effective criti
exponent exhibits a sensitivity to the long-ranged corre
tions even after a large magnification by 2563256. There-
fore, in realistic samples of finite sizes, macroscopic inhom
geneities are able to affect the results of scaling studies. N
further that, as shown in the inset of Fig. 5, there is no sim
scaling ofn values when plotted as function of an renorm
ized system size 2an/2. We emphasize thatn(a) obtained
after eight RG steps alwaysexceedsthe uncorrelated value
Thus our results indicate that macroscopic inhomogene
must lead to smaller values ofk}1/n. Experimentally, the
value of k smaller than 0.42 was reported in a number
early ~see, e.g., Ref. 7, and references therein! as well as
recent79 works. This fact was accounted for by different re
sons~such as temperature dependence of the phase brea
time, incomplete spin resolution, valley degeneracy in
based metal-oxide-semiconductor field-effect transistors,
inhomogeneity of the carrier concentration in GaAs-bas
structures with a wide spacer!. Briefly, the spread of thek
values was attributed to the fact that the temperatures w
not low enough to assess the truly critical regime. The p
sibility of having k,0.4 due to the correlation-induced de
pendence of the effectiven on the phase-breaking length o
ultimately, on the sample size, as in Fig. 5, was never c
sidered.

Figure 6 shows the values ofn obtained after the eighth
RG step as a function of the correlation exponenta for dif-
ferent dimensionless strengthsb of the quenched disorder. I
is seen that in the domain ofa, where the values ofn differ
noticeably fromn52.39, their dependence onb is strong.
According to the extended Harris criterion,n(a) is expected
to exhibit a cusp at theb-independent valuea5ac
52/2.39'0.84. From our results in Fig. 6, two basic obse
vations can be made. For a small enough magnitude of
long-range disorder, we see a smooth enhancement ofn(a)
with decreasinga without a cusp. Although such a behavio
is due to the relatively small number of RG steps, the d
might be relevant for realistic samples which have a fin
size and a finite phase-breaking length governed by temp
ture. At the largestb54, the cusp eventually shows up b
the numerics becomes progressively ambiguous, forbidd
us from going to even largerb. The origin for this strongb
dependence of our results is a profound difference betw
the classical and quantum percolation problems. This dif
ence is discussed in Sec. IV.
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IV. DISCUSSION

A. Classical case

In the classical limit, the motion of an a electron in
strong magnetic field and a smooth potential reduces to
drift of the Larmour circle along the equipotential lines. Co
respondingly, the description of the delocalization transit
reduces to the classical percolation problem. As mentio
above, for classical percolation the quenched disorder is
pected to cause a crossover in the exponentnc , describing
the size of a critical equipotential fromnc54/3 to nc52/a
for a,3/2. This prediction25 was made on the basis of Eq
~4!. It was later tested by numerical simulations75 which uti-
lized the Fourier filtering method to generate a long-ran
correlated random potential. The exponentnc(a) was stud-
ied using the same classical real-space RG method60 that we
utilized above. The values ofnc inferred fora.1 were con-
sistently lower than 2/a. For example,nc55 was found for
a50.4,25 whereasnc53.460.3 was observed.

The classical version of the delocalization transition
instructive, since it allows one to trace how the critical eq
potentials grow in size upon approaching the percolat
threshold, and how the quenched disorder affects
growth. Roughly speaking, in the absence of long-ran
correlations, the growth of the equipotential size is due to
attachment of smaller equipotentials to the critical ones. A
result, the shape of a critical equipotential is dendritelike.
the threshold is approached, different critical equipotent
become connected through the narrow ‘‘arms’’ of the de
drite. Long-ranged correlations change this scenario dra
cally. As could be expected intuitively, and as follows fro
the simulations,76 critical equipotentials become more com
pact due to correlations. In fact, fora,0.25, the ‘‘arms’’
play no role,75 i.e., the morphology of a critical equipotentia
becomes identical to its ‘‘backbone.’’ As a result, the form
tion of the infinite equipotential at the threshold occu
through a sequence of ‘‘broad’’ merges of compact criti
equipotentials. The correlation-induced enhancement onc
indicates that due to these merges the size of the cri

FIG. 6. Dependence of the critical exponentn on correlation
exponenta for different b51, 2, 3, and 4 as obtained after eig
QH-RG iterations. The dotted line indicatesac50.84, following the
extended Harris criterion~Ref. 24! for classical percolation.
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equipotential in the close vicinity of the threshold grow
faster than in the uncorrelated case. Since our simulat
also demonstrate the enhancement of the critical expo
due to the correlations, the main result of the present pa
can be formulated as follows: quenched disorder affects c
sical and quantum percolation in a similar fashion.

B. Quantum case

Here we note that there is a crucial distinction betwe
the classical case and the quantum regime of the elec
motion considered in the present paper. Indeed, within
classical picture, correlated disorder implies that the mot
of the guiding centers of the Larmour orbits in two neighbo
ing regions is completely identical. In our study, we ha
incorporated the correlation ofheightsof the saddle points
into the RG scheme. At the same time we have assumed
the Aharonov-Bohm phasesacquired by an electron upo
traversing the neighboring loops are completelyuncorre-
lated. This assumption implies that, in addition to the lon
ranged potential, a certain short-ranged disorder causin
spread in the perimeters of neighboring loops of the orde
the magnetic length is present in the sample. The con
quence of this short-range disorder is the sensitivity of
results to the value ofb which parametrizes the magnitud
of the correlated potential. The presence of this short-ra
disorder affecting exclusively the Aharonov-Bohm phas
significantly complicates the observation of a cusp in
n(a) dependence ata'0.84, as might be expected from th
extended Harris criterion.

Let us elaborate on these complications. A general form
the correlator for long-range disorder is

^V~r !V~r 8!&5V0
2FS ur2r 8u

l D ~7!

where l is the microscopic length;F(0)51, F(x)}x2a for
x@1. Now suppose that the correlator contains an additio
short-range termW0

2G(ur2r 8u/ l ), with G(0)51 andG(x)
falling off much more rapidly thanF(x) for x@1. The ex-
tended Harris criterion implies that this term will not chan
n(a) in an infinite sample. It is obvious, however, that in
order to ‘‘erase the memory’’ of short-range disorder, ma
more RG iterations have to be performed or, equivalen
much larger system sizes should be analyzed. Moreover
larger the ratioW0 /V0, the more challenging the numeric
becomes. At this point, we emphasize that in quantum p
colation the short-range term emulated by the randomnes
the phases has a huge magnitude. Indeed, if we choose i
first RG step all five SP’s to be identical with power tran
mission coefficients equal to 0.5, then, due to the phases
width of theQ(z) distributions after the first step is alread
62.5.55 This translates into an enormously wide spread
the transmission coefficients of effective SP’s ranging fro
0.075 to 0.92. In order to suppress this intrinsic ‘‘quantu
white noise,’’ one either has to perform more RG steps o
increase the magnitude ofV0 ~parameterb in the notation of
Sec. III!. Both strategies are limited by numerical instabi
ties. In particular, a largerb leads to more weight in the tail
6-7
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of theQ(z) distribution in which the uncertainty is maxima
In other words, at largeb the role of rare realizations i
drastically emphasized.

In fact, if we had to draw a quantitative conclusion on t
basis of the accuracy we have achieved, we would base
the curve in Fig. 6 corresponding to the maximal valueb
54. Actually, for thisb, the agreement with the extende
Harris criterion is fairly good. In particular, fora50.5, we
find n'3, whereas 2/a54.

We also want to point out that the limited number~eight!
of RG steps permitted by the numerics nevertheless all
us to trace the evolution of the wave functions frommicro-
scopicscales~of the order of the magnetic length! to macro-
scopicscales~of the order of 5mm! which are comparable to
the sizes of the samples used in the experimental studie
scaling ~see e.g., Refs. 6 and 7! and much larger than th
samples73,74 used for the studies of mesoscopic fluctuatio

C. Concluding remarks

It was argued for a long time that the enhanced value
the critical exponentn extracted from the narrowing of th
transition region with temperature has its origin in the lon
ranged disorder present in GaAs-based samples. To
knowledge, the present work is the first attempt to quan
this argument. We indeed find that the random potential w
a power-law correlator leads to the values ofn exceedingn
'2.35, which is firmly established for short-ranged disord
Anotherqualitativeconclusion of our study is that the spati
scale at which the exponentn assumes its ‘‘infinite-sample’
value is much larger in the presence of the quenched diso
than in the uncorrelated case. In fact this scale can be o
n,
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order of microns. This conclusion can also have serious
perimental implications. That is, even if the sample size
much larger than this characteristic scale, this scale can
exceed the phase-breaking length, which would mask
true critical behavior at the QH transition.

Our numerical results demonstrate that when the crit
exponent depends weakly on the sample size~largen in Fig.
5!, the ‘‘saturated’’ value ofn depends crucially on the
‘‘strength’’ b of the quenched disorder. Thus it is importa
to relate this strength to the observable quantities. We
roughly estimateb assuming that the microscopic spati
scale~lattice constant! is the magnetic length,l, while the
microscopic energy scale~the SP height! is the width of the
Landau level. We denote byg a typical fluctuation of the
filling factor within a region with sizeL. Then the estimate
for b is b;g(L/ l )a/2. Naturally, for a giveng, the larger
values ofa correspond to the ‘‘stronger’’ quenched disord
parameterb.

Note, finally, that throughout this paper we have cons
ered the localization of a single electron. The role
electron-electron interactions in the scaling of the integer
effect was recently addressed in Refs. 80 and 81.
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