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Integer quantum Hall transition in the presence of a long-range-correlated quenched disorder
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We theoretically study the effect of long-ranged inhomogeneities on the critical properties of the integer
guantum Hall transition. For this purpose we employ the real-space renormalization{g@uppproach to
the network model of the transition. We start by testing the accuracy of the RG approach in the absence of
inhomogeneities, and infer the correlation length expomen?.39 from a broad conductance distribution. We
then incorporate macroscopic inhomogeneities into the RG procedure. Inhomogeneities are modeled by a
smooth random potential with a correlator which falls off with distance pswer law r . Similar to the
classical percolation, we observe an enhancementvath decreasingr. Although the attainable system sizes
are large, they do not allow one to unambiguously identify a cusp im¢h¢ dependence at.= 2/v, as might
be expected from the extended Harris criterion. We argue that the fundamental obstacle for the numerical
detection of a cusp in thguantumpercolation is the implicit randomness in tAdaronov-Bohm phasesf
the wave functions. This randomness emulates the presencstafrarangedisorder alongside the smooth
potential.
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I. INTRODUCTION insulator transitioht and then for the plateau-plateau
The critical behavior of electron wave functions in the transition? In the latter paper the conclusion about the ab-
vicinity of the integer quantum HallQH) transition is now sence of scaling was drawn from the analysis of the fre-
well understood. That is, the localization length diverges as guency dependence AfB in GaAs/AlGa;_,As heterostruc-
g ", wheree is the deviation from the critical energy. The tures(in contrast to the similar analysis in Ref.)1Fhat is,
most accurate value of the exponentextracted from nu-  the authors of Refs. 11 and 12 concluded that the width of
merical simulations ig = 2.35+0.03? On the experimental the transition regiosaturatesas T—0. A possible explana-
side, the study of the critical behavior of the resistance in thgjon of this behaviot*'®is based on the scenario of tunneling
transition region at strong magnetic figichas a long history  petween electron puddles with a size larger than the dephas-
which can be conventionally divided into three periods.  jng jength. The microscopic origin of these puddles was at-
(a) The first experimental worRs® reported a narrowing tributed to sample inhomogeneitids1é
of the transition peak with temperatur€, as T with « (c) Very recent experimental r.esdl?son scaling of

70'4' The spr(_ead in the actua}l valueof 1/ measured_m é:)lateau—insulator as well as plateau-plateau QH transitions
different experiments was attributed to the difference in th . .
carried out on the same @a, _,As/InP sample as in Ref. 9

type of disorder in the samples of Refs. 3, 4 and 5. Another

experimental method to explore the critical behavior Wassuggested that the narrowing of the transition width with

employed in Refs. 6 and 7, wherewas deduced from the temperature follows a power-law dependedcBocT* With
sample size dependence of the widttB, of the transition K§0.4. Even when the authors Qf Ref. 19 analyzed the|r_data
region. The value ofc obtained by this technique appeared USing the procedure of Ref. 11, i.e., by plotting the logarithm
to be consistent with temperature measurements of Ref. 5, @f the longitudinal resistance versuSB: they obtained
the sense that was found to be sample dependent. On thestraight lines with slopes proportional 16 with «’~0.55.
other hand, it was argued in Ref. 8 that the lack of univer-They attributed the difference betweerand «’ to the mar-
sality in Refs. 5—7 has its origin in the long-ranged characteginal dependence of the critical resistanceTorit was also
of the disorder in GaAs-based heterostructures studied igpeculated in Ref. 19 that this dependence most likely results
these works. This is because for a smooth disorder the energsom macroscopic inhomogeneities in the sample. In the lat-
interval within which the electron transport is dominated byest paper®~2?the frequency dependence of the QH transi-
localization effects is relatively narroThe measurements tion width was studied. The results did not support the satu-
in Refs. 3 and 4 suggesting the universalityxgfwere car- ration of the widtht"'? but rather confirmed the scaling
ried out on IpGa, _,As/InP heterostructures in which disor- hypothesis.
der is believed to be short rang¥tDespite the disagreement ~ Summarizing, it is now conclusively established that
about universality of the exponert, the fact that the nar- insulator-plateau and plateau-plateau transitions exhibit the
rowing of the plateau transition occurs &§ was not ques- same critical behavior. It is also recognized that macroscopic
tioned in Refs. 3-9. inhomogeneities can either mask the scaling or alter the
(b) The absence of scaling was reported first for the QH-~value of .2°
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On the theoretical side, in all previous considerations in-

homogeneities were incorporated into the theory through a -
spatial variation of thelocal resistivity*~82 In other .. - Y S
words, all existing theories are either “homogeneous quan-

tum coherent” or “inhomogeneouscoherent’ Meanwhile,

there is another scenario which has never been explored. i (I)3

(T
4

= (@,
Close to the transition thguantumlocalization lengthé be- : 2 .
comes sufficiently large. Then the long-ranged disorder can O ."""""“O .......
5
colation problem. Obviously, when the disorder is long-

ranged but has a finite correlation radius, one should no{cir';lfs)' ;n :thgri?;ttsif:(ﬁzhsgIinnt?)tsagsde%l:iégtigﬁléimis
expect any changes in the critical behavior. The principleﬁve SP’s(numg:red thick oiashed Iin):-sinuanalo i )

. . " gy with classical
finding of Refs. 24 and 25 is that the critical exponent €@y hond percolation RGRefs. 60 and 6i—into a super-SP.
change When the correlator of thg dlsordv(E)V(r )) falls ®,, ... 9, are the phases acquired by an electron drifting along
off with distance as a power law, i.e<|r—r'| " (quenched  ihe contours indicated by the arrows.

disordej. According to Refs. 24 and 25 the critical exponent

of the classical percolation= 4/3 crosses over to= 2/« for

a<3/2,i.e., when the decay of the correlator is slow enough. )

In the present paper we study the effects of quenched disoP—Iaced on a square I.attlcg .and play .the role of nodes, whereas
der onquantumpercolation. The latter is known to describe the SP’s should be identified with links.

the localization-delocalization transition for a two- We now apply a real-space RG approactito the CC
dimensional(2D) electron in a strong magnetic field. As a network?”> The RG approach is based on the assumption
model of quantum percolation we employ the Chalker-thata certain part of the network containing several SP’s, the
Coddington(CC) modef® which is one of the main “tools” RG unit, represents the entire network. This unit is then
for the quantitative study of the QH transitiéfi>® The CC  replaced through the RG transformation by a sirsylperSP
model is a strong-magnetic-fiel@hiral) limit of a general  with an S matrix determined by th& matrices of the consti-
network model, first introduced by Shapifaand later uti- tuting SP’s. The network of super-SP’s is then treated in
lized for the study of localization-delocalization transitionsthe same way as the original network. Successive repetition
within different universality classé$-*° In addition to de- of the RG transformation yields the information about
scribing the QH transition, the CC model applies to a muchthe Smatrix of very large samples, since, after each RG step,
broader class of critical phenomena since the correspondengge effective sample size grows by a certain factor deter-
between the CC model ?pd thermodynamic, field-theory anghined by the geometry of the original RG unit. Obviously, a
Dirac-fermions modef§~>*was demonstrated. single RG unit is a rather crude approximation of the net-

In order to study the role of the quenched disorder on thg, k. Therefore, prior to applying the RG approach to the
localization-delocalization transition we treat the CC mOdelstudy of the quantum Hall transition in the presence of

within the real-space renormalization-gro(RG) approach. enched disorder. we first check the accuracy of this ap-
First, in Sec. Il we check the accuracy of the RG approachqu I  We T dracy 'S ap

and show that it provides a remarkably accurate descri tiofjroaCh for the conventional, uncorrelated case, where the
tp y b omparison with the results of direct numerical simulations
of the QH transition. In Sec. Il we extend the RG approach :
to incorporate the quenched disorder. Concluding remark possible. . .
: The RG unit we use is extracted from a CC network on a
are presented in Sec. IV. . N
regular 2D square lattice, as shown in Fig. 1. A super-SP
consists of five original SP’s by analogy to the RG unit em-
ll. TEST OF THE RG APPROACH TO THE CC MODEL ployed for the 2D bond percolation probleft®tAs in any
A. Description of the RG approach RG scheme, the unit shown in Fig. 1 leaves out a number of
bonds of the original lattice. Nevertheless, it is well known
that the application of this scheme to the classical case yields

affect the character of the divergence&fAt this point we
recall the classical lim##2°in which the long ranged disor-
der does affect the value of the critical exponent in the per-

As mentioned in Sec. |, the CC model is a chiral limit of
the general network mod&!.However, it was originally de-

rived from a microscopic picture of electron motion in a Very accurate resuls.

strong magnetic field and a smooth poterffaWithin this . Between the SP’s an electrpn travels along equipotentigl
picture, the links can be identified with semiclassical trajec/ines, and accumulates a certain Aharonov-Bohm phase. Dif-

tories of the guiding centers of the cyclotron orbit, while the ferent phases are uncorrelated, which reflects the randomness
nodes correspond to the saddle poi{88's at which differ-  ©Of the original potential landscape. Each SP can be described
ent trajectories come closer than the Larmour radius. Foby two equations relating the wave-function amplitudes in
simplicity, the nodes were placed on a square lattice. We wilincoming and outgoing channels. This results in a system of
use an equivalent, but slightly different graphical representaten linear equations, the solution of which yields the follow-
tion of the CC network shown in Fig. 1. In this representa-ing expression for the transmission coefficient of the
tion the centers of the trajectories of the guiding centers arsuper-SRRef. 55:

235326-2



INTEGER QUANTUM HALL TRANSITION IN THE . .. PHYSICAL REVIEW B 64 235326

o tyts(rorgr 28 ®2— 1) +t,t,e' (P3P (r roree™'P1— 1) +ty(t,tse'P3+t,1,'P4)

(r3—rar4€'%2)(ra—rirse'®1) + (tg—tatse' P4 (t3—tyt,e'*3)

Heret; andr,= (1—ti2) V2 are, respectively, the transmission coefficientsPy(t) (see below The distribution is discretized
and reflection coefficients of the constituting SRs;are the  in at least 1000 bins, such that the bin width is typically
phases accumulated along the closed loGgee Fig. L 0.001 for the intervat e[ 0, 1]. From Py(t), we obtaint;,
Equation(1) is the RG transformation, which allows one to i=1,...,5, andsubstitute_ them into the RG transformation
generateafter averaging oved;) the distributionP(t’) of ~ [Ed. (D]. The phasesb;, j=1,...,4 arechosen randomly

the transmission coefficients of super-SP’s using the distripufom the interval®; [0, 27]. In this way we calculate at
tion P(t) of the transmission coefficients of the original '€ast 10 supertransmission coefficiertts The obtained his-

ogram P,(t") is then smoothed using a Savitzky-Golay

SP’s. Since the transmission coefficients of the original SP’%_ - e _
depend on the electron energythe fact that delocalization ilter°in order to decrease statistical fluctuations. At the next
step we repeat the procedure uskgas an initial distribu-

occurs at £=0 implies that a certain _distribution, tion. We assume that the iteration process has converged
Wi 2 i ic wi =1 '
P(t)—with P(t?) being symmetric with respect tF= 3 when the mean-square deviatigat] P.(t)— P,_,(t)]2 of

— is the fixed point(FP) of the RG transformation Eq1). R . i
The distributionP(G) of the dimensionless conductanGe :Ean'lsngUt'onP“ and its predecessét,, deviate by less

H : — 12
c;alr; (t:)e/zct)btamed from the relatioB=t", so thatP«(G) We are now able to study samples with short-ranged dis-
¢ ' order. The actual initial distributionBy(t) were chosen in
N o such a way that corresponding conductance distributions
B. Critical exponent within the RG approach Po(G) were either uniform or parabolic, or identical to the
Since the dimensionless SP heighaind transmission co- FP distribution found semianalytically in Ref. 55. All these
efficientt; at e=0 are related ag=(e%+1) 2 transfor-  distributions are symmetric with respect@=0.5. We find
mation (1) determines the height of a super-SP through théhat, regardless of the choice of the initial distribution, after
heights of the five constituting SP’s. Correspondingly, the5—10 steps the RG procedure converges tostivaeFP dis-
distributionP(G) determines the distributio@(z) of the SP  tribution which remains unchanged for another 4-6 RG
heights via Q(z)=P(G)(dG/dz)=1% cosh %(zZ2)P[(e? steps. Small deviations from symmetry ab@ 0.5 finally
+1)"1]. In fact, Q(2) is not a characteristic of the actual accumulate due to numerical instabilities in the RG proce-
SP’s, but rather, as we will see below, represents a convelure, so that typically after 15-20 iterations the distribution
nient parametrization of the conductance distribution. becomes unstable and flows towards one of the classical FP’s
The language of the SP heights provides a natural way t&(G) = 46(G) or P(G)=6(G—1). We note that the FP dis-
extract the critical exponent. Suppose that the RG proce- tribution can be stabilized by forcing,(G) to be symmetric
dure starts with an initial distributio®,(z) =Q.(z—z,) that  with respect toG=0.5 in the course of the RG procedure.
is shifted from the critical distributionQ.(z), by a small Figure 2 illustrates the RG evolution &(G) andQ(z).
Zo*e. Since zg<1, the first RG step would yield).(z  In order to reduce statistical fluctuations we average the FP
— 720) With some number independent of,. After n steps  distributions obtained from differemy(G)’s. The FP distri-
the center of the distribution will be shifted &y, ,= 7"z,  bution P(G) exhibits a flat minimum aroun=0.5 and
while the sample size will be magnified by'.2At the nth ~ sharp peaks close 6=0 andG=1. It is symmetric with
step corresponding t@,.,~1 a typical SP is no longer respect toG~0.5 with (G)=0.498+0.004, where the error
transmittable. Then the localization lengffshould be iden- is the standard error of the mean of the obtained FP distribu-
tified with 2"czy "ce ™7, with »=In2/In7. When the RG  tion. The FP distributiorQ.(z) is close to Gaussian.
procedure is carried out numerically, one should check that We now turn to the critical exponemt As a result of the
Z is small enough so that,..,*z, for large enoughn. general instability of the FP distribution, an initial shift of
Consequently, the working formula for the critical exponentQc(2z) by a valuez, results in the further drift of the maxi-

can be presented as mum position,zm.«n, away fromz=0 after each RG step.
As expectedzn.x, depends linearly od,. This dependence
In2" is shown in Fig. 3(insed for differentn from 1 to 8. The
v= EAY 2 critical exponent is then calculated from the slope according
In(z—’) to Eq.(2). Figure 3 illustrates how the critical exponent con-
0

verges withn to the value 2.3%20.01. The error corresponds
which should be independent offor largen. to a confidence interval of 95% as obtained from the fit to a
linear behavior.

Due to the high accuracy of our calculationPf(G), we
were able to reliably determine many central momée(G

In order to find the FP conductance distributiBg(G),  —(G))™) of the FP distributiorP(G). These moments are
we start from a certain initial distribution of transmission plotted in Fig. 4.

C. Numerical results
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FIG. 4. Moments((G—(G))™) of the FP distributionP(G)
(O). Dashed lines are results from Ref. 65. The dotted line corre-
sponds to the moments of a constant distribution. Inset: Higher
moments ofP(G) following an exponential behavior. The agree-
ment of data and fit demonstrates the quality of the fit result.

D. Comparison with previous simulations

By dividing the CC network into units, the RG approach
completely disregards the interference of the wave-function
amplitudes between different units at each RG step. For this

a QH plateau-to-plateau transition. Symbols mark every 20th dath€aS0n it is not clear to what extent this approach captures

point for the initial distribution W), the FP (J), and the distribu-

the main features and reproduces the quantitative predictions

tion for RG stepn=16 (A). The vertical dashed line indicates the at the QH transition. Therefore, a comparison of the RG
average of the FP distribution. Bottom: Corresponding plots for theresults with the results of direct simulations of the CC model

distributionQ(z) of SP heights.

is crucial. These direct simulations are usually carried out by
employing either the quasi-1D versfSror the 2D versioff

of the transfer-matrix method. The results of application of
the version of Ref. 63 to the CC model are reported in Refs.
26 and 27. In Refs. 65—67 the version of Ref. 64 was uti-
lized. For the critical exponent the values- 2.5+ 0.5 (Ref.

26) and laterr=2.4+0.2 (Ref. 27) were obtained. Note that
our result is in excellent agreement with these values, and is
also consistent with the most precise=2.35+0.032 This
already indicates a remarkable accuracy of the RG approach.
In Refs. 65—67 the critical distributiof(G) of the conduc-
tance was studied®(G) was found to be broad, which is in
accordance with Fig. 2. However, a more detailed compari-
son is impossible, since the results of the simulafiorfédo

not obey the electron-hole symmetry conditidy(G)
=P,(1-G). On the other hand, within the RG approach, the
latter condition is satisfied automatically. Nevertheless, we
can compare the moments Bf(G) to those calculated in
Refs. 65 and 66. They are presented in Fig. 4. In Ref. 66 only
the standard deviation{ G2)—(G)?)¥2~0.3 was computed.
Our result is 0.316. In Ref. 65 the moments were fitted by

FIG. 3. Critical exponent obtained by the QH-RG approach as WO analytical functions, which are also shown in Fig. 4.

function of effective linear system side=2" for RG stepn. The

They agree with our calculations up to the sixth moment.

error bars correspond to the error of linear fits to the data. Thé1ere we point out that the moments obtained in Ref. 65 can
dashed line shows=2.39. Inset:v is determined by the depen- hardly be distinguished from the moments of a uniform dis-

dence of the maximurd,,., of Q,(z) on a small initial shiftz,.
Dashed lines indicate the linear fits.

tribution. This reflects the fact th&.(G) is practically flat
except for the peaks close @=0 andG=1.
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In Refs. 68 and 69 (G) was studied by methods which eration of power-law correlated randomness since no itera-
are not based on the CC model. Both works reported a broaiive algorithm is knowr>’® This necessitates the complete
distributionP(G). In Ref. 68P(G) was found to be almost storage of different samples of correlated SP height
flat. The major difference between Ref. 68 and Fig. 2 is thdandscape$! and the advantage of the iterative transfer-
behavior of P,(G) near the pointsG=0 and 1. That is, matrix approach is lost. Furthermore, in order to deduce the
P(G) in Ref. 68 drops to zero at the ends, while Fig. 2 critical exponent’ one needs to perform finite-size scafifg
exhibits maxima. In Ref. 69 the behavior Bf(G) is quali-  with transverse sizes that should also be large enough to
tatively similar to Fig. 2, with maxima &6=0 and 1. How- capture the main effect of the power-law disorder in the
ever, the statistics in Ref. 69 are rather poor, which agaiiransverse direction. Consequently, even for a single transfer-
rules out the possibility of a more detailed comparison withmatrix sample, the memory requirements add up to gi-
our results. gabytes.

Finally, we point out that our results agree completely On the other hand, the RG approach is perfectly suited to
with Refs. 70—72 where a similar RG treatment of the CCstudy the role of the quenched disorder. First, after each step
model was carried out. Our numerical data have a higheof the RG procedure, the effective system size doubles. At
resolution, and show significantly less statistical noise. Thighe same time, the magnitude of the smooth potential, corre-
is because we took advantage of faster computation by usirgponding to the spatial scalefalls off with r asr ~*2. As a
the analytical solution of the REq. (1)].5° Also, note that, result, the modification of the RG procedure due to the pres-
in Refs. 70 and 72, the critical exponentwas calculated ence of the quenched disorder reduces to a rescaling of the
using a procedure different from that described in Sec. Il Bdisorder magnitude by aonstantfactor 2”2 at each RG
Nevertheless, the values of determined by both methods step. Second, the RG approach operates with the conduc-
are close. We emphasize that a systematic improvement ¢fnce distributiorP,(G), which carries information aboal
the RG procedure, i.e., by inclusion of more than five SP’s¢he realizations of the quenched disorder within a sample of
into the basic RG unit as reported in Refs. 70-72, leads ta size 2. This is in contrast to the transfer-matrix
similar results. The critical distribution of the conductanceapproactf>®* within which a small increase of the system
was also studied experimentdify* in mesoscopic QH size requires the averaging over the quenched disorder real-
samples. Although an almost uniform conductance distribuizations to be conducted again.
tion consistent with theoretical predictions was found in Ref.  In order to find out whether or not the critical behavior is
73, further detailed analysis of the mesoscopic patfdias  affected by the quenched disorder, the following argument
revealed the crucial role of the charging effects, which werevas put forward in Ref. 24. In the absence of the quenched
neglected in all theoretical studies. disorder, the correlation lengtl, for a given energyg in

We conclude that the test of the RG approach againghe vicinity of the transition is proportional tag"”. Now
other simulations proves that this approach provides a vergonsider a sample with an aréa= gé_ The variance of the

accurate quantitative description of the QH transition. It camuenched disorder within the sample is given by
now be used to study the influence of long-ranged correla-

tions. , 1 ) )
— ! ’
AO_A?< fAd er(r)fAd r'zo(r )>
11l. MACROSCOPIC INHOMOGENEITIES
- ; 1 é
A. General considerations == dzrj dzr’(zQ(r)zQ(r’)>oc§52f Odrl’l*a,
A natural way to incorporate a quenched disorder into the AT A A 0
CC model is to ascribe a certain random shiftto each SP (4)

height, and to assume that the shifts at different SP positions i
r andr’ are correlated as where the last relation follows from E3).

The critical behavior remains unaffected by the quenched
(zo(D)zo(r )y |r =14, (3  disorder if the conditiom\ §/z4—0 aszo—0 is met. Using
Eq. (4), the ratioA/z} can be presented as
with > 0. After this, the conventional transfer-matrix meth-

ods of Refs. 63 and 64 could be employed for numerically 2 2(2;72’ a>2

precise determination @fG), the distributionP(G), its mo- ﬂoc 2" 2In(z5"), a=2 5)
ments, and most importantly, the critical exponentHow- 75 S s Q&

ever, the transfer-matrix approach for a 2D sample is usually zy" % a<2.

limited to f{;urly small S|z_e$e.g., up to 128 n Ref. @ue to We thus conclude that quenched disorder is irrelevant when
the numerical complexity of the calculation. Therefore, the

spatial decay of the power-law correlation by, say, more than v>1 for a=2
an order in magnitude is hard to investigate for snaalln ' '
principle the quasi-1D transfer-matrix meti86° can easily av>2  for a<2. ®)

handle such decays at least in the longitudinal direction,
where typically a few million lattice sites are considered it- The first condition corresponds to the original Harris
eratively. A major drawback, however, is the numerical gen-criterion’® for uncorrelated disorder, while the second condi-
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log;g2*" a) the convergence to a limiting value of slows down
0 2 4 6 8 drastically. Even after eight RG stefi®., a magnification of
B=2 ©00=0.2 b ‘ ‘ ‘ "] 40 the system size by a facto.r of .256), the va_lue 10fvith
+ 0205 & long-ranged correlations still differs appreciably from
4.0 L5 =2.39 obtained for the uncorrelated case. The RG procedure

becomes unstable after eight iterations, %9 Can no
longer be obtained reliably frog(z). Unfortunately, for
small « the convergence is too slow to yield the limiting
value of v after eight steps only. For this reason, we are,
strictly speaking, unable to unambiguously answer the ques-
tion whether sufficiently long-ranged correlations result in an
a-dependent critical exponem{«), or the value ofv even-
tually approaches the uncorrelated value of 2.39. Neverthe-
less, the results in Fig. 5 indicate that the effective critical
exponent exhibits a sensitivity to the long-ranged correla-
2‘ 4 8 16 3‘2 6‘4 1é8 256 tions_even _afFer a large ma_gpificgtion by 26856. There—
on fore, in realistic samples of finite sizes, macroscopic inhomo-
geneities are able to affect the results of scaling studies. Note
FIG. 5. Critical exponent obtained by the QH-RG approach as further that, as shown in the inset of Fig. 5, there is no simple
a function of RG scale 2for 8=2 and different correlation expo- scaling ofv values when plotted as function of an renormal-

Pher;ts a. TbTe' d‘f"‘Shed Iinelir:dg:e;tgs:dz.Sglé Whi|Ch_tiS the \;]alueth ized system size /2. We emphasize that(«) obtained
at we obtain for uncorrelated disorder. For clarity, we show the .
errors only fora=0.2 and 4. Insety vs 2°™2 does not scale for, after eight RG steps alwaysxceeddhe uncorrelated value.

e.g.p=2 Thus our results indicate that macroscopic inhomogeneities
= ' must lead to smaller values afoc1/v. Experimentally, the
o o ) . value of k smaller than 0.42 was reported in a number of
tion is the extended Harris criterid.It yields the critical early (see, e.g., Ref. 7, and references thereis well as
value of the exponent, i.e., ac=2/v. _ recent® works. This fact was accounted for by different rea-

_ The above consideration suggests the following algoggns(such as temperature dependence of the phase breaking
rithm. For the homogeneous case all _SP’s constituting thﬁme, incomplete spin resolution, valley degeneracy in Si-
new super-SP are assumed to be identical, which means thghsed metal-oxide-semiconductor field-effect transistors, and
the distribution of heightQ,(z) for all of them is the same. inhomogeneity of the carrier concentration in GaAs-based
For the correlated case these SP’s are no longer identical, by ctures with a wide spademBriefly, the spread of the
rather their heights are randomly shifted by the long-rangeq4yes was attributed to the fact that the temperatures were
potential. In order to incorporate this potential into the RGpt 1ow enough to assess the truly critical regime. The pos-
schemeQ,(z;) should be replaced b@,(z—A") for each  sibility of having k< 0.4 due to the correlation-induced de-
SP,i, where A" is the random shift. Then the power-law pendence of the effective on the phase-breaking length or,
correlation of the quenched disorder enters into the RG proultimately, on the sample size, as in Fig. 5, was never con-
cedure through the distribution @™ . That is, for eacth  sidered.

the distribution is Gaussian with the wid(2") ~*2. For Figure 6 shows the values of obtained after the eighth
large enougm the critical behavior should not depend on the RG step as a function of the correlation exponerfor dif-
magnitudeg, but on the power only. ferent dimensionless strengtBsof the quenched disorder. It

is seen that in the domain of, where the values of differ
noticeably fromv=2.39, their dependence g8 is strong.
According to the extended Harris criterion,«) is expected

Here we report the results of the application of the algoto exhibit a cusp at theg-independent valuea= a,
rithm outlined in the previous section. First, we find that for =2/2.39~0.84. From our results in Fig. 6, two basic obser-
all values of >0 in correlator(3) the FP distribution is vations can be made. For a small enough magnitude of the
identical to the uncorrelated case within the accuracy of oufong-range disorder, we see a smooth enhancemen©f
calculation. In particular{G)=0.498 is unchanged. How- with decreasingr without a cusp. Although such a behavior
ever, the convergence to the FP is numerically less stablig due to the relatively small number of RG steps, the data
than for uncorrelated disorder due to the correlation-inducethight be relevant for realistic samples which have a finite
broadening ofQ,(z) during each iteration step. In order to size and a finite phase-breaking length governed by tempera-
compute the critical exponent(«) we start the RG proce- ture. At the largesB=4, the cusp eventually shows up but
dure from Qqy(z—2p), as in the uncorrelated case, but, inthe numerics becomes progressively ambiguous, forbidding
addition, we incorporate the random shifts caused by theis from going to even larges. The origin for this strong3
quenched disorder in generating the distributiorz et each  dependence of our results is a profound difference between
RG step. The results shown in Fig. 5 illustrate that for in-the classical and quantum percolation problems. This differ-
creasing long-ranged character of the correlataecreasing ence is discussed in Sec. IV.

B. Numerical results
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4.0 v ' ' equipotential in the close vicinity of the threshold grows
faster than in the uncorrelated case. Since our simulations
also demonstrate the enhancement of the critical exponent

————— =2.39 : :
_______________ :;=0_84 due to the correlations, the main result of the present paper

351 o—o pe I can be formulated as follows: quenched disorder affects clas-
5—a B= sical and quantum percolation in a similar fashion.

i o apeo ]
>

o0—-o0 [3:1

3.0 - B. Quantum case

Here we note that there is a crucial distinction between

I | the classical case and the quantum regime of the electron
o5 L | motion considered in the present paper. Indeed, within the
R - = = _ classical picture, correlated disorder implies that the motion

: ' ‘ ‘ ' : : ; of the guiding centers of the Larmour orbits in two neighbor-
ing regions is completely identical. In our study, we have
incorporated the correlation dfeightsof the saddle points
FIG. 6. Dependence of the critical exponenton correlation  into the RG scheme. At the same time we have assumed that
exponenta for different 8=1, 2, 3, and 4 as obtained after eight the Aharonov-Bohm phaseacquired by an electron upon
QH-RG iterations. The dotted line indicates=0.84, following the  traversing the neighboring loops are completelycorre-
extended Harris criteriofRef. 24 for classical percolation. lated This assumption implies that, in addition to the long-
ranged potential, a certain short-ranged disorder causing a
spread in the perimeters of neighboring loops of the order of
A. Classical case the magnetic length is present in the sample. The conse-
quence of this short-range disorder is the sensitivity of our

In the classical limit, the motion of an a electron in a its to th | hich i h itud
strong magnetic field and a smooth potential reduces to thig;Sults to the value 0B which parametrizes the magnitude

drift of the Larmour circle along the equipotential lines. Cor- of the correlated potential. The presence of this short-range

respondingly, the description of the delocalization transitiondlsorder affecting exclusively the Aharonov-Bohm phases

reduces to the classical percolation problem. As mentionealgmﬂgantlydcompI;zit%sthe obs_eL\;att)lon of at(aufsp mtr:he
above, for classical percolation the quenched disorder is eif(a) epencdence at=0.64, as might be expected from the

pected to cause a crossover in the expongntdescribing extended Harris criterion. L

the size of a critical equipotential from,=4/3 to v, = 2/a Let us elaborate on these co_mpllcat!ons. A general form of
for a<3/2. This predictiof® was made on the basis of Eq. the correlator for long-range disorder is

(4). It was later tested by numerical simulatiGhe/hich uti- p—

lized the Fourier filtering method to generate a long-range- (V(r)V(r’))=VSF( ) @
correlated random potential. The exponepta) was stud- |

ied using the same classical real-space RG méthbdt we

utilized above. The values of; inferred fora>1 were con- Wherel is the microscopic lengttf:(0)=1, F(x)ox™“ for
sistently lower than 2. For exampley.=5 was found for ~X>1. Now suppose that the correlator contains an additional
a=0.42% whereasv,= 3.4+ 0.3 was observed. short-range ternW5G(|r—r’|/I), with G(0)=1 and G(x)

The classical version of the delocalization transition isfalling off much more rapidly tharF(x) for x>1. The ex-
instructive, since it allows one to trace how the critical equi-tended Harris criterion implies that this term will not change
potentials grow in size upon approaching the percolatiorv() in aninfinite sample It is obvious, however, that in
threshold, and how the quenched disorder affects thigrder to “erase the memory” of short-range disorder, many
growth. Roughly speaking, in the absence of long-rangednore RG iterations have to be performed or, equivalently,
correlations, the growth of the equipotential size is due to thénuch larger system sizes should be analyzed. Moreover, the
attachment of smaller equipotentials to the critical ones. As #arger the ratioW,/V,, the more challenging the numerics
result, the shape of a critical equipotential is dendritelike. Adoecomes. At this point, we emphasize that in quantum per-
the threshold is approached, different critical equipotentialsolation the short-range term emulated by the randomness in
become connected through the narrow “arms” of the denthe phases has a huge magnitude. Indeed, if we choose in the
drite. Long-ranged correlations change this scenario drastfirst RG step all five SP’s to be identical with power trans-
cally. As could be expected intuitively, and as follows from mission coefficients equal to 0.5, then, due to the phases, the
the simulations® critical equipotentials become more com- width of the Q(z) distributions after the first step is already
pact due to correlations. In fact, far<0.25, the “arms” +2.5% This translates into an enormously wide spread in
play no role’®i.e., the morphology of a critical equipotential the transmission coefficients of effective SP’s ranging from
becomes identical to its “backbone.” As a result, the forma-0.075 to 0.92. In order to suppress this intrinsic “quantum
tion of the infinite equipotential at the threshold occurswhite noise,” one either has to perform more RG steps or to
through a sequence of “broad” merges of compact criticalincrease the magnitude of (parametep3 in the notation of
equipotentials. The correlation-induced enhancement.of Sec. ll)). Both strategies are limited by numerical instabili-
indicates that due to these merges the size of the criticdles. In particular, a large8 leads to more weight in the tails

IV. DISCUSSION
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of the Q(z) distribution in which the uncertainty is maximal. order of microns. This conclusion can also have serious ex-
In other words, at large8 the role of rare realizations is perimental implications. That is, even if the sample size is
drastically emphasized. much larger than this characteristic scale, this scale can still
In fact, if we had to draw a quantitative conclusion on theexceed the phase-breaking length, which would mask the
basis of the accuracy we have achieved, we would base it anue critical behavior at the QH transition.
the curve in Fig. 6 corresponding to the maximal vajgie Our numerical results demonstrate that when the critical
=4. Actually, for this 8, the agreement with the extended exponent depends weakly on the sample damgen in Fig.
Harris criterion is fairly good. In particular, fax=0.5, we 5), the “saturated” value ofv depends crucially on the
find v~3, whereas 2/=4. “strength” B of the quenched disorder. Thus it is important
We also want to point out that the limited numideight  to relate this strength to the observable quantities. We can
of RG steps permitted by the numerics nevertheless allowsughly estimate8 assuming that the microscopic spatial
us to trace the evolution of the wave functions fromcro-  scale(lattice constantis the magnetic lengtH, while the
scopicscales(of the order of the magnetic lengtto macro-  microscopic energy scalghe SP heightis the width of the
scopicscaleqof the order of 5um) which are comparable to Landau level. We denote by a typical fluctuation of the
the sizes of the samples used in the experimental studies §ifling factor within a region with sizd_. Then the estimate
scaling (see e.g., Refs. 6 and and much larger than the for B is B~ y(L/I)*2. Naturally, for a giveny, the larger
sample§*"* used for the studies of mesoscopic fluctuations.values ofa correspond to the “stronger” quenched disorder
parametels.

C. Concluding remarks Note, finally, that throughout this paper we have consid-
red the localization of a single electron. The role of
lectron-electron interactions in the scaling of the integer QH
effect was recently addressed in Refs. 80 and 81.

It was argued for a long time that the enhanced value OE
the critical exponenw extracted from the narrowing of the
transition region with temperature has its origin in the long-
ranged disorder present in GaAs-based samples. To our
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