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Theory of ferromagnetism in planar heterostructures of (Mn,lll )-V semiconductors
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A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with
magnetic impurities is presented. The variable functions in the density-functional theory are the charge and
spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied
to study the Curie temperature of planar heterostructures of 1ll-V semiconductors doped with manganese
atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic
structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie tempera-
ture. By means of these results, we attempt to understand the observed dependence of the Curie temperature of
planar 5-doped ferromagnetic structures on variation of their properties. We predict a large increase of the
Curie temperature by additional confinement of the holes dadmped layer of Mn by a quantum well.
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[. INTRODUCTION value of around 35 K. Single layer samples also show
ferromagnetisni®

Interest in ferromagnetic 111-V semiconductors lies both in  In this paper we provide a theoretical framework to study
fundamental physics and potentially useful technological apferromagnetism in planar heterostructures of ferromagnetic
plications utilizing sping. The growth of Ga_,Mn,As, a  lll-V semiconductors. The model combines the standard pro-
ferromagnetic 111-V semiconductdr,® has raised the basic cedure to calculate the electronic structure of planar semi-
problems of the origin of the ferromagnetism and of the Spirpondqctor heteros_tructures in the envelope—fun_ction formal-
transport properties. In contrast to the much-studied Mnism with a mean-field theory for the ferromagnetic state. Our
doped 11-VI materia]g’ Mn acts as an acceptor in GaAs so goal is to understand the Intel’play of Conﬂnement, Spln—Orblt
that Ga_,Mn,As has free holes that are thought to be re-interaction, and close packing of Mn atoms in the ferromag-
sponsible for the high Curie temperatife. of 110 K for netic digital heterostructures. Keeping the theories of the
x=0.054. Progress in “spintronics” is made by the recentelectronic structure and ferromagnetism simple, enable us to
demonstrations of the injection of a spin-polarized currenlStu.dy the effgcts of varying the system co!ﬂflguratlons, degree
from  both ferromaanetic metdll and  maanetic of interdiffusion, and carrier compensation. We apply the

. 13 9 . 9 theory to calculations of the electronic structure andfor
semiconductor$*3into a semiconductor. Y
o the case of single and multiple digital layers of;GgAs,Mn
The Zener model of ferromagnetism for a bulk alloy of

Y cond 1415 [ he Curi and for the additional confinement effect by a quantum well
(1-vV) semiconductors,”* linking the Curie temperature of a Mn layer. We show that the behavior of the double layer

with the spin susceptibility of the mobile holes, forms a,q 3 function of the layer separation is essentially that of
framewgrk for understandlng_the dependence pf the_ ferromore than two layers.
magnetism on various properties of the system, including the oyr model is an extension to the case of planar hetero-
hole density and the Mn concentration. The semiconductorsiryctures of the Zener model for bulk alloys @i-V ) fer-
afford an opportunity to change the properties to affect thgomagnetic semiconductot$2® It is convenient to express
ferromagnetism, for example, by optical excitation of thethe problem of the localized spins and the carrier spins in an
carriers® and by field-effect control’ Engineering the band- inhomogeneous system in terms of the density-functional
gap profiles of planar heterostructures of the 11I-V semicon-theory?? It expresses the Curie temperature in terms of the
ductors and the doping can also vary the factors influencingarrier-spin susceptibility of the doped semiconductor, taking
the ferromagnetic order. In experimefitin a double quan- into account the spin-orbit interaction of the holes. Such an
tum well of Ga_,As,Mn/Ga _,As,Al, the coupling be- extension involves two technical refinements, compared to
tween the two magnetic layers is observed to depend on botihe bulk case. First, as confinement breaks the translational
the thickness and the composition of the nonmagnetiénvariance along the growth axig the susceptibility be-
barrier. comes a function of two variablegz,z"), rather than one of

A different kind of planar system, the so-called digital (z—2z’). In order to determind& ¢ in a planar heterostructure
ferromagnetic heterostructure, has been introduced bwe have to solve an integral equation whose kernel contains
Kawakami et al® This system consists of a sequence ofthe nonlocal spin susceptibility(z,z'). The derivation of
atomic monolayers of Ga,Mn,As (with x=0.25 and 0.5  the integral equation from the density-functional theory is
separated by several layers of GaAs. Thidoping® struc-  given in Sec. II. Second, as explained in Sec. Ill, the calcu-
ture displays a transition temperature that is a decreasiniation of the electronic structure of the holes in a planar
function of the distance between the magnetic layers. At théeterostructure involves the solution of the self-consistent
shortest distance reportetc is around 50 K° At a large  Schralinger equatio® The calculation of the subbands, for
interlayer distance, the layers are decoupledBndeaches a the in-plane motion, is made using the Luttinger
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Hamiltonian?* which includes the spin-orbit interaction. Our , . ,
calculations address the regime in which both the Mn density Fm[Cm(r),M(f)]ZJ drep(n[fo(M(r))+3zIuM=(r)]
cyv and the carrier density are high. This implies that sev-

eral subbands are occupied. Therefore, our calculations in- s 3
. L . . . +5 | d°r [ d°r’cy(r)ey(r’)
clude both spin-orbit interaction and multiple subbands, in 2 M M
contrast with previous workc =28 , ,
In Sec. IV we apply the formalism to the case of a single XM(r) - Ipm(r,r’)-M(r]. @

digital layer of Ga_,As,Mn embedded in GaAs. From the The number density of the Mn is denoted by (r) and
calculated electronic structure for different values of the dey (1) s the spin expectation per Mn atofin units of %).

gree of compensation and the interdiffusion of the Mn, werhe noninteracting part of the free energy per Mn spin is
find that the calculated ¢ is an increasing function the den- giyen py
sity of holes and a decreasing function of the interdiffusion

of the magnetic impurities. In Sec. V, we investigate the sinh(S+3)b

change inT as a function of the interlayer distance between fo(M)=kgT| Mb—In , (3)
two layers in order to understand the observed behavior of sinh—

multilayers of Mn for different degrees of compensation and 2

interdiffusion. Our numerical results for two layers, which whereks is the Boltzmann constar§=$ is the spin of Mn

are very similar to those fOT up to five layers, reproduce theandb=b(M) is related to the inverse of the usual Brillouin

main features of the experimental results. A remarkable "€ nction

sult is found in Sec. VI where the calculat&d for a digital

layer inside a quantum well is found to increase dramatically 1 1 1 1
o ) =(S+3 +3)b]—3 sb).

by the additional quantum-well confinement, compared to M=(S+2)coth (S+z)b] 3 coth(zb) @

just the confinement due to the Mn layer in Sec. IV. InThe second term in the integral of E@) takes into account

Sec. VII we put our results in perspective and draw someynly the short-range Heisenberg exchange between Mn

conclusions. spins.Jy has the dimension of energy. In GaAs it is believed
to be antiferromagnetit. The third term accounts for the
Il. DENSITY-FUNCTIONAL FORMULATION FOR long-range dipole interactiodyy(r,r’) and is found to be
MAGNETISM IN HETEROSTRUCTURES negligible.

The temperature range under study is sufficiently low
The observed effects of ferromagnetism in Mn-dopedcompared with the Fermi temperature of the holes that the
[1I-V semiconductors appear to be consistent with the microole free energy will be taken as the usual ground-state en-
scopic mechanism of indirect Mn-Mn spin interaction medi-ergy functionalE,[ p(r),S(r)],2 wherep(r) is the hole den-
ated by the mobile holes via the exchange interaction besity andS(r) the spin density. The interaction between holes
tween the hole and the magnetic moment of the localzed is included in the Hartree approximation in the calculation of
electrons of the Mn impurity. A common model for the bulk the subbands. As the density of holes is very high, the ex-
system, which we shall adopt, consists of a gquantumchange and correlation potential in the local-density approxi-
degenerate gas of fermions that interact, via a contaghation is of minor importance.
Heisenberg exchange interaction, with the local magnetic The Mn-hole interaction term is given by
moments of Mn. The random array of Mn impurities is re-
placed by a homogeneous distribution and the exchange in-  Epu[p(r),S(r);cp(r),M(r)]
teraction is reduced correspondingly. This procedure is
dubbed the virtual crystal approximatiériThe exchange :_J d3rf 43/ p(ryu(r—r")[ep(r’) —co(r]
coupling between Mn and the holes is treated in the mean-
field approximatiort>
The study of heterostructures of semiconduc@®idoped +Jj d3rey(r)M(r)-S(r). (5)
with manganese, calls for an extension of the virtual crystal
and mean-field approximations to an inhomogeneous distrithe first term on the right side of the equation is the attrac-
bution of Mn. We formulate the theory of magnetism of thetive potential provided by the Mn donors to the holes with
inhomogeneous system in terms of the density-functionallj(r_r') being the Coulomb interaction. The experin‘?ent
theory, extended to include the spin densities and to finitghows compensation of the acceptors, which are believed to
temperaturé’ The free energy of the system of Mn spins andpe antisite impurities. The compensating impurity concentra-
holes as a functional of the density and spin-density distrition c(r) is taken into account. The second term is the hole-
butions of the Mn spins and the hole carriers is separated intgpin interaction with the Mn spin, for which we use the sim-
three contributions; plest mean-field approximation. Functional terms beyond the
mean field might be constructed from theory, such as, Refs.
F=Fu+E,+Enwm, (1) 29-31. The hole-Mn spin interactiahhas the dimension of
energy volume.
respectively, of Mn spins, the holes, and the Mn-hole inter- In the mean-field and virtual-crystal approximations, the
action. The free energy of the Mn-spin system alone is model describes the hole carriers interacting with an effec-
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tive magnetic field produced by the localized Mn impuritiesMm (z)=S,(z)=0 are always a solution, corresponding to
and vice versa. The variational result of the free-energy functhe stable state only in the paramagnetic phase. The Curie
tional with respect to both the magnetization of the Mn im-temperature is the highest temperature at which Ejsand
purities and the magnetization of the hole carriers shows the10) have nonzero solutions. Elimination 8f(z) from Egs.

interdependence of the two magnetizations. Each is governgd) and (10) by Eq. (8) leads to an integral equation for the
by the effective magnetic field generated by the other. TheyCurie temperaturd ¢

have to be determined selfconsistently. We report here only

the work on the transition temperature. Theoretical finite M (Z)cpn(2)

magnetization studies are being carried out. Close to the Cu- )

rie temperature, the magnetizations are small. The free en- _tm(@)S(S+1)J d ' M (2
ergy is a quadratic functional of the two magnetizations. In a ~ 3(kgTet+ksTyw) 2Xa(2,2')Cu(Z')M(2')

planar heterostructure with the growth axis alanghere is (11)
translational invariance along they plane in the effective
mass approximation so that quantities depend onlg.dime  where kgTy=S(S+1)Jy/3. The factorcy(z) is left in

free-energy functional per unit area is then place on both sides of the equation to signify the existence of
the magetizatioM (z) only in regions of finitecy (z). Equa-
F[p(2),S(2);cu(2),M(2)] tion (11), which relatesT with the nonlocal spin suscepti-
3T bility of the holes for a given planar heterostructure,
B N N . )
=F[p(z),cM(Z)]+%f dzay(2) +Jy X«(z,2"), is a generalization of the Weiss mean-field equa-
S(S+1) tions to inhomogeneous spin densities. Equatidn extends
Eqgs.(10—(12) of Ref. 26 to include multiple subband occu-
X Ma(z)2+Jf dzgy(z2)M (2)S,(2) pation and spin-orbit interaction.

1[ J‘ IIl. NONLOCAL SUSCEPTIBILITY
+35 | dz| dZ'S,(2)K(z2,2')S,(Z"). (6)

The calculation of the Curie temperature for the planar
The first termF[p(z),cy(2)] is the density functional for heterostructure involves the solution of the integral adq),
the holes at zero magnetization including the impurity potenwhose kernel contains the nonlocal spin susceptibility. In this
tial [Ey, in Eq. (1) and second line of Eq5)]. Charge neu- section we briefly describe our calculation of the electronic
trality determines the total number of holes structure and the nonlocal-spin susceptibility for a rather

general planar heterostructure characterized by a profile of

o o the Mn impuritiescy(z), the profile of the compensating
f_mp(z)dzz f_m[CM(Z)_Cc(Z)]dZ- (7)  impuritiesc.(z) (antisites, and a band-gap profile that cre-
ates a potential for the hola5(z).
The first quadratic term iM is the smallM limit of Eq. (3). For a given density profile, we solve the Poisson equation

The coefficient oM? is the inverse susceptibility of the free and obtain the electrostatic potentML;, which, together
Mn spins. The next term is the Mn hole exchange interactiorwith a band-gap potentia¥;(z), defines the effective mass
term[last line in Eq.(5)]. The last term in(6) is the magnetic Hamiltoniarf>?*for the envelope function of the holes
energy of the holes in the small magnetization lifdiiThe
kernel of the integralk ,(z,2'), is the inverse of the nonlo-

cal hole-spin susceptibilit§ x +V(2), (12

19
Heff: H L k, I_ E
, ) wherek is the in-plane wave vectol/(z) =V;(z) + V¢ (2),
f dyKa(z,Y)xaly.2')=06(z=2"). (8 H_ is the standard % 4 Luttinger Hamiltonian, with param-
S o ~etersy;, y=0.5(y2+ vy3), and u=0.5(y3— v,). We adopt
For simplicity, we assume that the magnetization axis ighe cylindrical approximationabout the growth axi€ i.e.,
the same in all the points of the sample. We have considereg@king . =0 in the Luttinger Hamiltonian. This approxima-
two situations, namely, the magnetization of bd#,(z)  tion has the advantage thaf , does only depend ok

and S,(z) pointing along the growth axiz=z or in plane  =|k|. The physical properties involve angular integration
a=X. over k aboutz so that the deviations from the cylindrical
Minimization of the energy functiondb) with respectto  approximations are very smaf.
the magnetizations leads to two coupled equation$/fgfz) The subbandse,, and the corresponding eigenstates
andS,(z): i ,(z) are given by the solution of the set of four coupled
KT second-order differential equations;
cM(z)[ S(S—le)HM +Jsa(z)J:o, (9)

>

fdz'Ka(Z’Z’>Sa(z')+JcM(z)Ma(z)=o. 10 ™2

19
Hﬁ],‘fm(k’l_E +V(Z)5n,m F[KHV(Z)ZEK,VFE’V(Z)!
(13
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where 150 " " " " 150

[F53(2),FY3(2), F142), F 52 1=t (2)  (14)

are the four components of the wave functign,(z). Equa-

tion (13) is solved with the minibané - p method® We first
solve thelk|=0 case, in which the equations are decoupled
into two ordinary Schrdinger equations corresponding to
the light and the heavy holes. These hayeandn, bound
states, evaluated by transforming the one-dimensional Schro
dinger equation into a tridiagonal matrix eigenvalue problem . .
that is solved numerical? The |k|=0 solutions form a 0 %010 0 10 0 05 1
basis set with the 12, statesy,,(1,0,0,0), and/,,(0,0,0,1) z (nm) k, (hm™)
and the 2, statesy,,(0,1,0,0) andy,,(0,0,1,0). The finite

|k| eigenergies, , and eigenstateg ,(z) are obtained in FIG. 1 Left panel: self-consistent potential fqr a si_ngle digital
terms of the basis set as the solutions of B®) as theN  layer with A=0.5nm and p=1.3x10" cm"?, including the

X N secular determinant problem, whe¥e= 2(n,+n;). The heavy-hole(HH) and I_ight_-hole(LH) Ie_vels. Right panel: hole sub-
hole density is given by bands. The dashed line is the Fermi level.

1 100

150

d%k ) GaAs doped with a single digital Mn layer of
p(2)=2 J Wf(fk,v)wk,v(zﬂ (19  (GaysMny9)As, as in the experiments. In an ideaidoping,

" m the Mn atoms occupy a single atomic plane. In the real sys-
where f(e) is the Fermi-Dirac occupation function, the tem, Mn atoms undergo interdiffusion to occupy several lay-
Fermi level being fixed so that the charge-neutrality condi-ers. We assume that the compensating impurities are closely
tion is met. The hole density(z) and the potential/(z) are  associated with the Mn atoms and assume their distributions
determined by iteration to self-consistency. to have the same shape

The nonlocal-spin susceptibility is then given by

d’k | df(e,) cu(2) ci(2) 1 ey
N — WV qa e ’ = = —e o(z—na), 18
xel22)=2 j(zw)z ey XDl a4 (zmna. 09
+ > s (Z)f(fv(k))_f(fv’(k)) where a, and ay, lead, respectively, to the total concentra-
V2 v €,(K)—€,/(K) tions of Mn, ¢y, and of the compensating impurities so

that the density of holes ip=cy—c.. Hence, for a given
" , Mn concentrationcy , a single layer is characterized b
XS¢ (2 )1, 16 (s p Mo 2 IR g
In the limit of A=0, we recover the ideaf-doping case,
wherea=(X,y,z) and the spin matrix elements are given by cy(z) =cqd(z). Then, Eq.(11) can be solved analytically as

Sf,v’,v(z):(w-k,v’(znsal¢k,v(z)>n (17)

where the angular brackets denote the expectation value over

the spin degrees of freedom of the hole stalgs(z). In the

absence of spin-orbit interaction, the spin matrix elementd he dynamics of the holes is contained ¥(0,0). We see
would be independent of the in-plane momentkniviore- that T doesnotdepend on the sign of the hole Mn exchange
over, due to the interplay between the spin-orbit interactiorinteractionJ. On the other hand; kgTy , proportional to the
and confinement, the nonlocal-spin susceptibility takes difdirect Mn-Mn interaction, if antiferromagnetidf,>0), de-
ferent values for in-plane and off-plane orientation. If thecreaseshe Curie temperature, as expected. In the case of a
spin-orbit interaction was the only source of anisotropy, ourandom alloy of Ga_,As,Mn, Jy is found negligible® be-
calculation could determine the easy axis. Other sources ¢fause the distance between the Mn impurities is rather high.
anisotropy, such as, shape anisotropy, are not considered lifi contrast, the in-plane average distance between the Mn is
our calculation. In the calculations reported in this paper, wenuch shorter in the digital heterostructure. However, an ac-
assume an in-plane magnetization, guided by the experimesgurate value for botld andJy is not known. Hereafter, we

keTc=3CuS(S+1)3%x(0,0—KgTy . (19

tal result*® sef J,,=0 andJ=150 meV nm.
In the left panel of Fig. 1 we plot the self-consistent po-
IV. SINGLE DIGITAL LAYER tential for the holes corresponding to a single digital layer

with A=0.5 nm andp=1.3x 10" cm ?, together with the
In this section we present the results of our calculations oénergy levels for the light and the heavy holes. In the right
the electronic structure and the Curie temperaflirgefor  panel we plot the subbands for the in-plane motion of the
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FIG. 3. T¢ as a function of the interdiffusion paramet&rfor
p=1.5 (highes}, 0.6, 0.3, 0.15lowes} in units of 1% cm™ 2. In-

FIG. 2. T¢ as a function of density of holgsfor A=0, 0.5, 1.0, set: Lines of Tc=35 K (crossep and Tc=60 K (starg, in the
1.5 and 2.0 nntfrom top to bottony. Inset: 8 as a function ofA for (p,A) plane(with J=150 meV nni).
the fit Te(p,A) o pA).

for a single digital layer, witlh =0 andp>10" cm™?, as-

holes. The dashed line indicates the Fermi level. Fosuming an off-plane easy axis. It turns out tfiatis approxi-
GaysMngsAs, we havecy=3.13x10" cm 2 Even for a  mately 30% higher for the the easy axis perpendicular to the
density of holes at only 4.1% of the Mn concentration, threeplane than in the plane. Altough further work is needed to
subbands are occupied with holes. For this set of parametegtarify this point, it is possible that other sources of anisot-
the obtainedT, is 35 K the experimental value obtained by ropy, absent in our theory, are reponsible for the observed
Kawakamiet al° in-plane easy axis.

The spin-orbit interaction causes both the anticrossing and
the nonparabolic shape of the hole subbands. As in the bulk
caset® the spin-orbit effect also reduces significantly the ef-
fective magnetic coupling between Mn spins. Therefore, itis In this section we report on our calculations of the elec-
important to include spin orbit in the theory of ferromag- tronic structure and for two identical digital layers, sepa-
netism in planar heterostructures, an ingredient missing imated byN monolayers of GaAs, so that the interlayer dis-
previous papers for quantum wetfs:?® tance isd=NXx0.2825 nm. Both layers are described by Eq.

In Fig. 2 we showT for a single layer, as a function of (18). We choose a point in theA(p) parameter space, So
the density of holes, for different values of the interdiffusionthat, for very larged, the calculatedr is close to the ex-
parameterA and for a fixed value of the Mn concentration perimental value of 35 K. Then we calculalg.(d) for
cy=3.13x 10" cm~2. We take the magnetization to be in smaller values ofl.
the plane of the layers in line with the experimental The results are shown in Fig. 4 for two cases (
result’®For each point we have calculated the electronic=0. 5 nm, p=1.3x10%¥cm ?) (left pane) and (A
structure self-consistently and solved Etyl) to obtainT.. =1.5 nm, p=3%x10 cm ?) (right pane). The theoretical

The general trend is thatc is anincreasingfunction of the  results obtained with the first case give a better fit to the
density of holes. The lines are the best fit usifigep?. In

the inset we ploB as a function ofA. In a two-dimensional 80 — : 80
system with parabolic bands, no spin-orbit interaction, and *
no Coulomb interaction, we would have obtainee 0. Re- y
markably, 8 in the single layer is even larger than the value

for bulk, B=1/31° s I% _
In Fig. 3 we plotT for the same set of single layers, as a <40 | I {i | 405
function of A, for different densities of holes. The model '_:m E ] E ] '_:m
shows that interdiffusion reducés . For a fixed value o3,

there is a line in the plangp(A) that gives the sam&c. In 20 1 :E;?E“,;MENT’ | |20
the inset of Fig. 3 we plot that line for bofh:=35 K and
Tc=60 K for J=150 meV nni. The first (35 K) corre-
sponds to the Curie temperature reported by Kawakatmi

V. DOUBLE DIGITAL LAYER

60

0 —J 9
0 5 10 15 20 5 10 15 20

al.’® to yield an idea of what model parameters could de- D (nm) D (hm)

scribe the experimental conditions. The sec¢6d K) has FIG. 4. Round dots: Curie temperature as a function of the in-
been obtained for the same kind of heterostructures grown @ériayer distance for a double layer system. In the left patel,
slightly higher temperaturé. =0.5 nm andp=1.3x10 cm 2. In the right A=1.5 nm andp

The results shown in this section are calculated assuming 3x 10 cm™2. Square dots: experimental Curie temperature for a
the easy axis to be in the plane. We also have calculfted multilayer casé?®
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—_ VI=0
e Y= 1 @V
A S || v
'
\O
g 0.5
P /]
D
o
]l M
7 R
=7 | | N
0 1 . bR |
r 1 -5 =25 0 2.5 5
Position (nm)
0 1
-10 0 10 FIG. 6. Hole-density profiles for different values of the barrier
z (nm) potentialV for a Mn digital layer(vertical lines with A=0.5 nm,

inside a quantum well of 10 MLL(g\y=2.8 nm). The total density
of holes isp=1.3x10" cm™2. For the sake of clarity, the Mn
distribution has been divided by 20.

FIG. 5. Mn(shaded regionsand hole densitylines) profiles for
a double layer. Left panelp=1.3x 10" cm 2 per layer andA
=0.5nm. Right panel:p=3x10®¥cm 2 per layer and A
=1.5 nm. From top to bottom, the interlayer distance is 10, 20, and
40 monolayers. D smaller than 8 ML is of limited interest and is not shown
in Fig. 4.

experimental datd than those obtained with the second. In VI. DIGITAL LAYER INSIDE A QUANTUM WELL

Fig. 5 we plot the corresponding density profiles for three |, yhis section we study the electronic structure and the
different interlayer distances to represent three regions of—c of a single digital ferromagnetic layer inside a quantum
separation dependence in the Curie temperature. At shoffe|| ysing the formalism of Secs. Il and Ill. The model
layer separationgupper panels of Fig.)5both the hole and  predicts that the confinement effect increadgs up to a
the Mn distributions overlap an@i; depends strongly on the factor of 3 compared with the unconfined single layer. The
separatiord. At intermediate separatiorigeft middle panel  system consists of GAsAI,_, barriers containing a GaAs
of Fig. ), the two layers of Mn do not overlap but the hole well with a single digital layer of GaAsMn,s in the
distribution still does. As a result, the layers are coupled anghiddle. This structure would be the ferromagnetic analog of
Tc is weakly dependent on the interlayer distance. A furthethe Be 5-doped GaAs/Ga.,As,Al quantum well?*

increase ofd leads to the uncoupled regime whefg We model the interface GaAs/GssAl,_, as a barrier
reaches the single layer value(lower panels potential of heightv=550 meV. The distribution of Mn is

of Fig. 5).
Both the calculated and the measureg decrease ad
increases and they reach a stationary value at r§amilar

that of Sec. IV, withA=0.5 nm,p=1.3x 10'3 cm 2. In Fig.
6 we show the distribution of holes of a 10-ML wide quan-
tum well for different values of the aluminum content. As the

behavior is obtained for several values @f,4). We have
also calculatedr for three, four, and five delta layers and
the separation dependence is similar. The steep declifig of
with separation stops at interlayer distances higher than
about 10 ML, the relevant experimental region. In all these
cases, the theory seems to slightipderestimatehe cou-

(b)

OVERLAP

pling between the layers at intermediate distances. This < %6 000 200 300
might indicate that the density of itinerant carriers in be- - e VimeV)
tween the magnetic layers might be higher in the experiment & 1" @
than in our calculations. Further theoretical and experimental a e
work might clarify this point. . mL,-10ML Sl

The increase ofi ¢ in the limit of very smallD can be o OL,,-20ML G 1
understood as the merger of two layers of carrier dersity 0 : : 3 08 et
and Mn concentratiorty, into a single layer with carrier 0 13/0(me\2/§’0 300 V (meV)

density 2<p and Mn concentration 2cy, . Hence, asT¢
scales linearly with both the concentration of Mn gifj we
have Tc(D=0)=2%x2fXT,(D=«). For a spreadA
=0.5nm, B=0.68 andTc(D=0)=3.2XT,(D=<). The

FIG. 7. (a) Curie temperature of a single digital layer, with
=0.5 nm, p=1.3x 10" cm~?, in a quantum well as a function of
the barrier heightv for two different values of the well width,
growth of a sample with interlayer distané& comparable L ,,=10 and 20 ML.(b) Overlap of the hole and the Mn distribu-
with the interdiffusion lengtl\ would be very difficult due tions as a function o¥. (c) density of stateDOS) at the Fermi
to material problems. Hence, the prediction of the theory follevel (in units of the DOS folv=0).
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barrier potential increases, the hole distribution overlapghangesn the behavior of the Curie temperature as a func-
more the Mn layer, increasing thig-. In Fig. 7 we plotT¢ tion of parameters that characterize the planar heterostruc-
as a function of the barrier heigliproportional to the Al  ture. For instance, we have presented an analysig dbr a
content of the barrigy for a quantum well width of both 10 single digital layer as a function of the density of compen-
and 20 ML(2.8 and 5.7 nmwith a Mn layer in the middle of  sating impurities and the spread of the Mn atoms due to
the well, with (A=0.5 nm, p=1.3x10" cm™?). For the interdiffusion. Our results indicate that. increases with the
narrower well the enhancement factor can be as Iarge. afensity of holes and with less interdiffusigemallerA). The

2.9 for V=300 meV, which corresponds to 54% of alumi- t5.¢ thatT. depends on density in a quasi-two-dimensional
num in the barriers. For a wider quantum well the effect iSqystem contrary to a naive calculation with parabolic bands,
smaller. gives some theoretical support to the experiment by Ohno

The increase of ¢ is due to two factors. The first is the 17 ; ; ;
. ) .~ et al*"in which they observed a changef as the densit
increase in the overlap between the Mn and the hole distri- y ge b y

butions(see Fig. 6. In Fig. 7(b) we plot the overlap of the of holes changes in a in,As,Mn quantum well in a field-

S effect transistor. Our theory could be also applied to model
Mn and the hole distributiong,dzyp(z)cw(2)/VPCu, @S @ ferromagnetism observed in a quantum well pHoped

function of the barrier height. The increase of the overlap Te,Mn.37
due to confinement is larger for the narrower well. The sec- Ilr;XSec V we have presented our calculations for the

ond factor is the increase of the density of states at the Fermy, pje_jayer system together with the experimental results
level (DOS). In Fig. 7(c) we plot the DOS as a function of oy ilayers. The qualitative agreement is good, but the
V. normalized by the DOS at the Fermi level for the caseyeqry seems to underestimate e at intermediate inter-

V=0. At V=0 the Fermi level is close to the bottom of | et gistances, i.e., the coupling between the magnetic lay-
i sepond he"’?"y hole band so that ther(-_z three b"?‘”d.s is larger in the experiment than in the theory. Further
occupied(see Fig. 1 The effect of the barrier potential is work on this problem, both in the experimental characteriza-

to increase the energy level spacing so that\asn- }ion and in the improvement of the theory, might shed some
creases, the Fermi level goes below the seco_nd h_eavy-hoGht on the microscopic origin of ferromagnetism in this
band and moves towards the bottom of the first light-hole ;4 of systems.

band. For small values of the DOS at the Fermi level
decreases slightly, increasing up to 40%

X In Sec. VI we have studied the confinement effects on the
for higher valuegygie carriers that mediate the Mn-Mn magnetic coupling.
of V. . This leads to a prediction of an increaselefby as much as
For V>350 meV and.qw=10 nm, the Fermi level gets  , ¢ator of aimost 3, when a single digital layer is grown in a
close to the bottom of the light-hole band where there is &,,,n1m-well structure. The capability to investigate the sys-
dramatic increase of the DOS at the Fermi level. This Iead?emic changes on ferromagnetism and to predict observable

%ffects is a strong point of the effective-mass mean-field
theory.

In conclusion, we have presented a theoretical framework
to calculate the electronic structure and the critical tempera-
ture of heterostructures of 1ll-V ferromagnetic semiconduc-
tors. This work is an extension of the three-dimensional
case’® in which the relevance of the spin-orbit interaction
has been pointed out. The main features of the formalism,
absent in previous papers on heterostructures, are the inclu-
sion of several subbands, necessary because of the high den-
sity of holes in the system, and the inclusion of the spin-orbit

VII. DISCUSSION AND CONCLUSIONS interaction, important because it changes both the magnetic
o ) coupling and the shape of the bands. We have presented cal-

The work presented in this paper is based on a model ofyations of the digital magnetic heterostructures, providing
effective-mass, virtual-crystal and mean-field approxima; qualitative understanding of the experimental values of
tions. A feature of the mean-field theory is thB¢ scales Tc, and we have predicted that. for a single digital

with the square of the exchange coupling consthft'>**  |ayer can increase by a factor of 2 when embedded in a

We have used a value df=150 meV nni from Refs. 5 and quantum well.

25. However, a value three times smaller has also been

reported® This would changél . by a factor of 9. In turn,

this could be compensated in the theory by increasing the

density of holes, including the split-off band in the

calculation®® a larger effective mass associated with the mo- We wish to thank Dr. D.D. Awschalom, Dr. R. Kawakami,

tion in an impurity band® or a direct ferromagnetic coupling and Dr. A. Gossard for stimulating discussions and Dr. E.

Ju between the Mn atoms. Gwinn for suggesting the calculation of Sec. VII. We ac-
These caveats indicate the current difficulties with the theknowledge financial support by Spanish Ministry of Educa-

oretical prediction of the absolute values of the Curie tem+tion and by DARPA/ONR NO0014-99-1-109 and NSF DMR

perature. Our model is less ambitious and is used to provid@099572.

ture. Work is in progress to check if this res(ibt shown in
the figureg remains when the finite temperature of the fer-
mions is taken into account.

We have also checked that, for a 10-ML quantum well
with a density of holes op=2.5x10' cm 2, the relative
increase ofT¢ for V=300 meV, is a factor of 1.8, i.e.,
smaller than the enhancement fox 1.3x 103 cm 2
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