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Mirror effect at the Brewster angle in semiconductor rectangular gratings
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The Green'’s functions of microstructured rectangular gratings, and the electric field for a nonlocal suscep-
tibility are given in explicit form. A very broad energy band with reflectivity of almost 1 is shown by model
calculation for a strongly diffractive grating when the angle of incidence of the light is very close to the
Brewster angle of the equivalent slab, and the grating thickness is about one light wavelength. The physical
origin of this interesting effect is completely explained as an interplay between grating resonances and surface
waves. In the energy range from infrared to ultraviolet, the ratio between bandWitiind band-edge energy
E, scales adE/Ey=L,/d, whereL, is the lateral dimension, artlis the periodicity of the grating. The easy
tailoring of this effect should be promising for optoelectronic and photonic large-band device applications.
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[. INTRODUCTION electromagnetic origin of this anisotropy was confirmed. Fi-
nally, the grating-coupler-induced absorption in a quantum
The optical properties of the gratings were intensivelywell under resonant condition was studied by the authbrs,
studied at the very beginning of the diffractive optldglore  and the anomalous behavior of the exciton absorbance for
recently, papers devoted to the optical response in dielectricigh parallel wave vector was computed by selected numeri-
gratings show an increasing presence in the literatsee cal examples.
Refs. 2—12 and references thepeitue to the improvement Grating-induced distortion in the exciton-polariton absor-
in nanotechnology manipulation. This has allowed one tdance in a planar laser cavity was studied by Kavokin, Kli-
obtain rectangular gratings where the periodicity is of theteevski, and Vladimirovd and by Pilozzi and D’Andre&
order of the light wavelength in the visible range of energy,In the latter paper, a very large Rabi splittit@pout 25 meV
and the lateral dimension of the optically active material isfor a GaAs cavity was obtained by model calculation ex-
close to the Bohr radius of Wannier exciton. These propertiegending dramatically the possibility of performing the
permit the study of new fundamental effects due both to theadiation-matter interaction tailoring in these systems.

electric chargegelectron-hole, excitonand to the electric The aim of the present work is twofold, namely) to
field confinements that are promising for optical device ap-explain by model calculation the physical origin of the broad
plications. reflection bandmirror effecy in strongly diffractive dielec-

The resonant diffractive phenomena in gratings have beetric gratings. The easy tailoring of this interesting phenom-
investigated starting from the pioneering paper of Wood enon, and its promising device applications will be also
(Wood's anomalies Popov, Mashev, and Maysfrehave briefly discussed, andi) to give the general form of the
studied a resonant grating waveguide structure by a phenon@reen’s functions for computing exciton polaritons in a
enological model, and Wargg al2 have explained this effect semiconductor grating of quantum-well wires in semiclassi-
by a rigorous numerical calculation. That calculation shows aal framework and in effective-mass approximation; this for-
maximum(resonancgin the zero-order reflectance spectrum mulation is well suited also for computing the optical re-
when a guided mode is excited in the system. These res@ponse in semi-infinite photonic crystals.
nances were also studied by the present authors in Ref. 4 It is well known that the local electric field in a grating
exactly solving the Maxwell’s equations, while Rosenblatt,can be computed by solving Maxwell’s equations by using
Sharon, and Friesem have summarized this effect in a reviean expansion in a rather large base of plane waves, where the
paper and, moreover, it has been recently proposed to bevanescent waves take a crucial role. On the other hand, for
well suited for the optical spectral filter realizatibn. computing the optical response, and in general for the

Optical emission in quantum wells and in quantum-wellasymptotic optical properties, a rather small number of inter-
wires induced by rectangular grating coupler was experimenacting wavegusually traveling and guidedre sufficient for
tally studied by Kohlet al,”®and a large polarization anisot- obtaining the numerical convergence, and the higher-order
ropy was pointed out by the same authors. The electromagvanescent components usually give negligible con-
netic origin of this phenomenon, at variance with heavy-tribution>* In the present calculation, the optical response
hole—light-hole interaction in quantum wirds,was of the grating, computed at the Brewster angle of the equiva-
accounted for by the present authH8rs by computing the lent slab, is to our knowledge the first case where the former
contribution of local field, and the numerical results compareapproximation gives completely wrong physical results.
well with the experiment. Moreover, the same systems were Finally, the role of disorder in the optical response will be
also studied in a subsequent paper byedtsal,'? and the taken into account in the model calculation. In fact, the full
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coherence in space and time of the exciton-polariton is usu- 2 sif(G—G')L,/2]

ally an implied assumption in the optical response calcula- 6,6/ =80dc e T gAe G- o : (4)
tion, and the in-plane wave-vector conservation is generally

assumed when the interface boundary conditions are im-

posed. This condition is not fully met in real systetis®In , _ _

fact, alloy disorder, phonon scattering, and interface rough?Wheréeo=1 is the vacuum dielectric constant and =g,
ness are dephasing mechanisms that can broaden the absoro IS the dielectric contrast. The averaged dielectric con-
bance peaks and destroy the coherence of the optical rétante, that describe the so called “equivalent slab model,”
sponse, especially when guided wave and the multireflectiol?

mechanism are involvelf. Moreover, for electromagnetic

modes with high parallel-wave-vector values generated by a

dielectric grating, alsae-h mass nonparabolicity must be e=epl,/d+eo(1—L,/d), (5)
taken into account’ In conclusion, negligible dephasing and

parabolice-h effective masses are two largely used condi-

tions that should be carefully checked by comparison wit
experimental results.

hand is equal to the diagonal matrix elements of the dielectric
tensor of Eq(4). The exciton nonlocal polarization is

Il. THEORY

Let us consider a planar dielectric grating of quantum 52) o L
wires as shown in Fig. 1 where the wires are alongythgis. Pkt G,2)= 2 dz" x(ket Gkt G,2,2")
The grating has periodicity, lateral dimensiori.,, and di- G
electric constank,,, while its thickness value i&,. We .
consider an incident plane wave from the vacuum sizle ( XE(ky+G",2),
<0) of frequencyw, and in-plane wave-vector component
K, =ky= w sin(d)/c, where¥; is the angle of incidencek(,
=0). where y(k,+ G,k +G’,z,z") is the susceptibility tensor. It
The grating of quantum well wires is placed between twojs well known that for Wannier exciton in a wire, the suscep-
semi-infinite spacegvacuum forz<0 andz>L,) and its tibility is the degenerate kernel of the integral equation de-
total polarization is rived from the Maxwell’s equations, and it'fs

P(x, 2)=PY(x, 2)+P?(x, 2), (1)

) So(®)
(2) =
P (kX+G,Z) IZJ Eij(kY)—ﬁw—iFNR(w)

where P)(x, z) is the polarization due to the background .
dielectric function modulation, ané(z)(x, z) is the exciton X\Ifi’}(rzo;kar G,z)z dz'
polarization confined in the rectangular wires. The polariza- G' 70

tion of the local dielectric grating and the nonlocal polariza-

tion of Wannier exciton are given in Ref. 4 and Ref. 10, XWij(r=0ke+G",Z")E(k+G",2"),

respectively forL ,<ag<<L,, whereag is the Bohr exciton (6)
radius.
The total polarization in mixed coordinates,( z) is where W;;(r=0;k,+G,z) is the Fourier transform of the

Wannier exciton envelope function computed B0,
Eij(Ky) = Egap— R, + (h%2M)k{ is the exciton energy,
WhereRﬁ is the exciton eigenvalue forandj quantum num-
bers alongk andz directions ky is the center-of-mass wave
where the reciprocal lattice vector @=21/d with =0,  vector, andl'\g(w) is the nonradiative broadening, is
+1,+2,..+N, andN—c. The dielectric grating polariza- Proportional to the square matrix element of the electric di-
tion is pole operatot?

The transformed Maxwell’s equations f&and P polar-

izations k,=0) are

P(k,+G,2) =PV (k,+G,2) + PP (k,+G,z), (2

- 1 -
PO (k,+G,2)=-—2 [ecce —dcc e0]E(ke+G',2), PE (K, + G,z
X P e~ y(a+)+2 KP(G,G")E(k+G',2)
(3) VA G’
=—4 o PP (ke+G 7
where the dielectric tensor of the gratieg ¢/ is given by TRy (ktG,2) (73
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PE(ky+G,2)
— 0z —i(k
2

G)

X

JEL(kyt+ G,z
—i(kX+G)—X( = )

2

where

2

w
K(G.G")= zece—(k+G) e (8)

The solution of the Maxwell's equation in mixed coordinat

w (O] (2)
+- 72 sooExkt G 2)=—4m 5 PP (k+G,2)
GI

4wy PP (K
7702 z ( X+G12)1
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IE,(Ky+ G,2)
0z
2

(7b)

+> KP(G,G"E,(ke+G',2)
GI

(70

whereg(z—z’) is a vector whos& components are Dirac’s
functionss(z—z'). The unitary matrix that solves the eigen-
value problem

K2E,=k2E,, (11)

es

[Egs. (7a—(70)] proceeds as in Ref. 11 by solving the wheren=0,1,...N is U={Ug .} ={E,(G)}, and its Her-

Green’s function equations respectively ®polarization,

9*Gy(ke+G;2,2')
9z*

+2 KP(G,G")Gyy(k+G';2,2")
G/

=0(z=7'), (9a)

and P polarization,

2

PGkt G,2,2")

+— > e66/ Gkt G',2,2")
(922 C e xx\ Px
JG, (k,+G,z,Z'
—i(k,+G) 2 kx )=5(z—z’) (9b)
iz
) G (ke +G,z,2")
—i(k+G) >
+ KZL,G, ket G',2,2')=0. (90)
G!

Notice that the other two components of the Green'’s funct
tensor, namely, (k,+ G;z,z") andG,(k,+G;z,z'), can
be computed fronG,,(k,+ G;z,z') andG,(k,+G;z,z") as
shown in Ref. 11.

For S polarization, let us consider E¢Qa) in the (2N+1)
X (2N+1) matrix form

#*Gyy(z,2")
il ) il

0z (10

+KP?'G,(2,2')=8(z—2"),

\J

x

FIG. 1. Self-sustained rectangular dielectric grating pleriod-
icity, L, lateral dimension, andl, thickness.

mitian conjugate isﬁ*z{uﬁye}.
Applying the former unitary matrix to Eq0), the trans-
formed equation becomes

#*Gyy(kn;2,2")
il s i Ll

- +kﬁ(~3yy(kn;z,z’)=6(z—z’)§ E*(G'),

where, "éyy(z,z')=0’+éyy(z,z’). Finally, by defining the
new transformed Green’'s function, ny(kn;z,z’)
=Gyy(kn:2,2') /3 GE}(G), we obtain

92G (K, :2,2'
P Cyyknizz) )+k§ny(kn;z,z’):5(z—z’).

972 (12

The solution of this kind of differential equation is given in
Ref. 17 by Bagchi, Barrera, and Rajagopal:

Gyy(k,:z z’)=—1 [6(z—2')ekn(z2Z)
yKni2.20) = 5

’_ —ik,(z—2")
ion +6(z' —z)e 1. (13

For P polarization the algebra is a bit more involved. From
Eq. (9¢), we obtain
Gkt G;2,2) =12 (K@) 4 (ketG)
G’ '

><aGXX(kXJrG’;z,z’)
9z '

Substituting this equation in E¢9b), one finds

2

. ?Gy(2,2') . ,
RICHEE) L 622
:5(2—2’), (14)

where

Rea = daa + (ket G)(K?) o g, (ket G).
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Now, this equation can be solved in the following two steps e 1.
(i) We solve the following eigenvalue problem: Sth=12 ¥n: (16)
n
2
w_zgélz)\IEI, (15) and applying the Hermitian conjugate of the matrix of the
c

eigenvectors/= {Vint={en(l)}, we obtain the differential

and multiplying Eq.(14) by the Hermitian conjugate of the equation

unitary matrix of the eigenvecto@={UGJ}={E,(G)}, we

obtain 1 3%Cyy(ky:2,2) -~ ~

~ F anznz +Gux(Kn:2,2")=8(z—2")V,,

~ *Gu(Nrz,2') o , n

Ri—— 7z TMGu(Ni2.2) - -
whereG,,(z,2')=V " G,(z,2') and

:6(2—2’)2 Ef (G), B

G Vo= 3 o (DEF (G)IN.
where, G,,(z,2')=U"G,,(z,z’), and R=U*RU. More- e
over, by applying the diagonal matrix of the square-roots Otl’aking

_ iy the new Green's function: Gy (kn;z.2')
the eigenvalues ~*'%, we have

=Gu(kn:2,2')IV,K2, we have the final form,

*Gux(\152,2) ,
2 S o ez G (kni2.2))

7 +K2G(kn:1z,2)=8(z—2"). (A7)

=8(z=2') 2 EF (G, . . .
G/ Notice that Eq.(17) is formally similar to Eq.(12) for S
polarization and has the same solution.

vy_hereSz)C”Zr?)\’llz and gxx(Z,Z')Z)\y%xx(Z,Z')- _ Finally, knowing the components of the Green’s function
(i) In the second step, we solve the eigenvalue equation faensor, the electric field of the grating of quantum-well wires
the S matrix can be written in the integral form

2 So(w)

(ke Gi2) = E(k Gi2) + = S,
AT ETEANT2EIT g 2 4 E (k) — o

LZ
. f dz' G5kt G;z,2") ¥ (r=0;k+G,2")
—il'nrJo !

Lz >
X2 | dZ Wy(T=0;k+G',2")Eg(ky+G',2) }, (18)
G 40

|
wherea, B=X, Y, z sponse calculation in a two-dimensional semi-infinite photo-
The unperturbed electric field components &orx, y, z  nic crystal by taking into account both the dispersive and the
[see Eqgs(13) and(18) in Ref. 4] are absorbent part of the exciton susceptibility in order to study
the role of the electromagnetic surface states is now in

progress.
E0(ke+G,2)= 2, [Ane "+ B e 2| EO(k,+ G).
n
(19

IlI. RESULTS AND DISCUSSION

It is well known that the reflectivity in a dielectric slab as
Notice that the half width at half maximum of the computed a function of the incidence angle of the light is very sensitive
absorbance spectrum embodies also the radiative broadenitgthe polarization. In fact, while fo® polarization it shows
due to the polaritonic radiation-matter self-enetfore-  a monotonic behavior, fdP polarization it goes to zero at the
over, the formula of Eq91)—(19) allow one to compute the Brewster angle, where all the light intensity is transmitted.
optical response of semi-infinite two-dimensional photonicThe same behavior is also observed in thin dielectric gratings
crystals showing periodicity along and applying the peri- in the range of energy where only the zero-order diffraction
odic boundary conditions alongdirection. The optical re- ray (G=0) is propagating in the structure, while rather dif-
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FIG. 2. Reflectivity computed fdP polarization as a function of
the angle of incidence on the surface of the self-sustained rectangt
lar dielectric grating(solid curve, and of an equivalent homoge- 08
neous slabldashed curve The parameter values are given in the
text.

e
o
T

ferent behavior is observed for thick gratings. In fact, let us
consider a high diffractive rectangular gratifgge Fig. 1
with refractive indices,= \ep=3.34,n,=1, periodicityd
=300nm, lateral dimensiom.,=3/4d, and thicknessL,
=350 nm. The reflectivity foP®)(x,z)—0 is computed by 02}
solving the eigenvalue problem of Eq4.l) and (16) for S
andP polarization, respectively. The reflectivity of the grat- S N
ing for P polarization and incident photon enerdgyw 0.0 e S — 5
=1.4eV is shown in Fig. 2 as a function of the angle of ()
incidenced; . The results for the equivalent slab approxima-
tion shown in the same picture are computed by taking into
account the average dielectric constant value of the grating FIG. 3. Reflectivity computed for a self-sustained rectangular
©=8.617. The reflectivity vanishes for the angle of incidencedielectric grating for incident angle 6@solid line) for (a) S polar-
9,=28° that is lower than the equivalent slab val |zat|on,_ and(b) P polarlzgtlon. Reflectivity of the equivalent slab
=70° Brewster angle Moreover, the reflectivity is nearly approximation (dgshed Ilne}s and for the three lowest-energy
one for a very large range df; values (45% §<75°). waves of the_gratl_ngdotted lines are also reported. The parameter
- L .. values are given in the text.

Now, let us consider the reflectivity for the angle of inci-
dence #;=60°) very close to the Brewster angle of the
equivalent slab. The results of the calculation are shown in
Figs. 3a) and 3b) for SandP polarization, respectively, and Waves. The results are presented in Figg) 4nd 4b) for S
the reflectivity of the equivalent slab, and of the lowest dif-and P polarization, respectively. The lowest-energy curve
fraction waves KN=1) with parallel wave vectorsq, (n=0) shows no energy gap, and its behavior is very close
=(wlc)sind;; q,—G andq,+G are also shown. to the equivalent slab dispersion, while the higher-energy

For Spolarization[see Fig. 83)], Fabry-Perot oscillations curves (>0) show threshold energiesE(. () different
of the equivalent slab are present at low photon energie§fom zero, such that for photon energy greater thanrtie
while very complicated oscillations due to the interference otthreshold energyf{w>E, - () the correspondingth evanes-
two or more waves propagating in the structure are shown aent wave becomes propagating in the grating. Therefore,
high energies. FoP polarization[see Fig. 80)], a rather from Fig. 3a), we notice that foS polarization and photon
small reflectivity is observed at low energy, while a broad-energies lower thariE;=1.1eV the reflectivity shows the
band with the reflectivity almost 1|rp(w)|2> 0.97] is  usual Fabry-Perot oscillations in a slab, while at higher en-
shown at the high energy side of the spectrum. ergies the interference between two propagating waves gives

In order to go a bit deeper in the explanation of thisthe so-called Wood's resonandeghere|r ((w)|?=1] whose
polarization-dependent optical response, let us compute theflectivity peaks are superimposed on the normal Fabry-
dispersion curves of the three lowest energy diffractionPerot oscillations. It is well known that in correspondence to

reflectivity
f=3
Y
T

energy (eV)
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FIG. 4. Dispersion curves of the three lowest-energy eigenval- g 5. P-polarization reflectivity for three values df) L,

ues of a rectangular dielectric grating f@ Sand(b) P polariza-  (00.nm dotted curve, 225-nm solid curve, and 250-nm dashed

tions (solid curve$ for the same parameter values of Fig. 3. curve for Ae=const, and(b) the bulk dielectric constan(9.156
dotted curve, 10.156 solid curve, and 11.156 dashed gidoves

these resonances the first propagating diffracted wave witfr const. The parameter values are given in the text.

high parallel-wave vector is confindduided to the grating

region, and for direct and reflected waves in phase the reflec=0) for P polarization is due to the incident angle chosen,

tivity equal to 1 is reached.For photon energyiw>E, a  that is very close to the Brewster anglég~70°) of the

second diffracted wave propagates in the structure, angero diffracted wave r{=0). This small reflectivity value

therefore, the interference among three waves gives refleiacreases the role in the optical response of the first dif-

tivity with a line shape more and more complicated. In spitefracted wave (=1) for energyf w>E,, and this property

of this, the line shape is roughly composed by the Fabryis of crucial importance in order to obtain sharp edge of the

Perot oscillations of the equivalent slab with superimposedeflection band Eq=1.2 eV).

spikes due to the resonance conditions as assessed beforeThe computed reflectivity spectra f& and P polariza-

[see Fig. 8)]. tions show a rather different behavior approaching the con-
A rather different behavior is shown fdp-polarization  vergence N—x). While S polarization reflectivity forN
reflectivity as a function of photon enerflyig. 3b)]. In fact, =3 is just close to the spectrum at convergence, underlining

a very low value of reflectivit)[|rp(w)|2s0.18] is observed the negligible contribution of the evanescent waves, Hor
for photon energy lower than the first threshold energy fol-polarization a strong contribution is observed. In fact, let us
lowed by a wide range of energy where reflectivity is rathercompare the three spectra Bfpolarized reflectivity com-
one[|rp(w)|2>O.97j. Notice that this broad reflection band puted forN=0, 1 and at convergenc®l(~x), respectively.
(AE=0.85¢V) is observed between the first and the secon®ifferent behaviors are observed for three different ranges of
threshold energies of the diffracted waves as shown in Figenergy, namely(i) for zw<E;, the N=1 reflection curve
4(b). The low intensity of the Fabry-Perot oscillation& (  shows Fabry-Perot oscillations similar to the equivalent slab
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(N=0), while this oscillations disappear at convergence, TABLE I. Reflectivity band energies for different grating pa-
when also the contribution of the evanescent waves is takefgmeters.

into account.(ii) At higher energy E;<Zw<E,) the N
=1 reflection curve shows strong resonance peaksifor Eo (V)

AE (eV) Ly(mm) d(nm) L, (m) A (nm)

values: 1.24, 1.58, and 1.96 eV. This set of resonances is due ; gg 1.32 150 200 240 235
to the constructive interference between the normal wave 4 5q 0.85 295 300 350 352
(n=0) and the first diffracted wavenE1) guided in the 0.90 0.64 300 400 470 469
structure, and is obtained for selected values of the light 0.45 0.33 600 800 960 038

wavelength respect to the periodicity and to the thickness of
the grating’ At the convergence a crucial role in building up
the reflection band is taken by evanescent surface waves that . L
give very high reflectivity between adjacent resonant peak§'Ving & wider energy zone where the reflectivity is still one.
[see Fig. 8)]. Therefore, this large reflection band is due to It is well known that for coherence length of the light
the interplay among traveling, guided, and evanescent wavesurce much greater than the system thickness, the superpo-
in P polarization, and no simple qualitative evaluation is pos-sition of the plane waves is performed coherently, while if
sible for describing this entangled phenomen@ii) For the coherence length is shorter, incoherent superposition
fw>E, the second diffracted wave too becomes traveling irshould be done. In the latter case, by using the equivalence
the structure, and the maximum of reflectivity fdrw  Of thickness averaging and incoherent superpostficine
=2.21eV is not embodied in the reflection band because it ighree resonances present in the reflectivity spectrum of Fig.
very close to the photon energy where the first diffracted3(b) disappear, and analogously the broad-band effect. In our
wave escapes in the vacuuh¢=2.2eV). case the conditionL.>L, is easily satisfied forL.
Finally, we want to point out that the general finding that = \2/A\, whereAX is the bandwidth of the laser, and there-
in a multilayer system, embodying a dielectric grating, thefore coherent superposition of plane waves can be adopted.
convergence of the optical response calculation can be ob- |n Table | are reported the band energies computed by
tained by taking into account only the traveling and guidediaking constant the incident angle of light and the dielectric
waves is incorrect® Moreover, this polarization-sensitive re- contrast of the grating, while the valueslof, L, andd are
flection band is the most important regult of our calculation,gcgled according to the rule€) lateral dimension is scaled
not only ffo.m fundamenta.l point of view, but it shpuld be' asL,/d=3/4, and(ii) grating thicknesd ,~\, where\ is
also g)rom|s(|jng for the fe?"'zj‘]"oﬂ of Iargz—bfﬁnd d_ev:ce_s Or fihe light wavelength. In this case, while the reflectivity spec-
can be used as a mirror in the integrated all-optical circuits, - (not reported heijeis similar to that shown in Fig. (8)

This mirror effect is very sensitive to the dielectric func- the edge energg, changes in a large range of values from
tion values. In Figs. & and 3b) the reflectivity spectra for . 0 . .
gs- & ib) y sP infrared to ultraviolet. Moreover, for the grating witth

different values of the diagonale] and of the out-of- o ) -
diagonal (As) matrix elements of the dielectric tensor, re- =300 nm the reflectivity band is as large as all the visible

spectively, are computed by taking constant the periodicitN€rdy range. Since the raticE/E,~3/4 remains constant,
and the thickness of the grating. In Figiabwe have re- and very close td., /d, the tailoring of this effect is due to
ported the reflectivity for three different values of the lateralthe interplay between the Mie scattering of the light in the
dimension of the wire, namely,,: 250, 225, and 200 nm. rectangular nanoparticle, and the multiscattering in the sys-
Notice that the dielectric contrast of the grating is taken contem with d periodicity. At variance with the photonic band
stant A& =10.156), and the reflection band worsen both in-gap phenomenon, where the internal electric field is station-
creasing or decreasing the diagonal matrix element valuegty, in the present case the internal electric field is a guided
with respect to the optimized one. In Fighbthe reflectivity wave and the vanishing surface waves take a key role in
is computed for three values of the dielectric contrast  reflecting the incident electric field. Therefore, we guess that
obtained by changing the,-values(namely, 12.156, 11.156, the name “mirror effect” does not generate confusion with
10.158, and forL, such thats =8.617. The out-of-diagonal photonic band gap and, on the other hand, is better connected
matrix elements of the dielectric tensor are proportional towith the physical surface origin of this phenomertdn.
the dielectric contrast, that give the mixing among the differ-
ent electromagnetic modes. Also, in this case a small varia-
tion of the Ae value worsen the reflection band line shape_. IV. CONCLUSION

On the other hand, the mirror effect is rather stable with
respect to the fluctuations of both the lateral dimension and Green’s functions for a grating with general nonlocal sus-
thickness of the dielectric grating: in fact, it does not changeceptibility are given, and their application to the optical re-
appreciably for fluctuation within 3% for thickness and 2% sponse in the semi-infinite photonic crystals are briefly dis-
for lateral dimension. Moreover, also the variation of thecussed.
incident angle of the light does not affect the reflectivity Very broad reflection band iR polarization reflectivity at
band as we can see from Fig. 2, where for enetgy  the Brewster angle is observed in a grating with strong di-
=1.4eV we observe reflectivity of about 1 for the rangeelectric contrast. This effect is due 9 the resonance in the
45°<9;=<75°. For higher photon energy the grating Brew- grating between normal and first-diffracted wave, éindthe
ster angle value decreasihkis feature is not reported hgre contribution of the evanescent surface waves. Its easy tailor-
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ing makes this phenomenon very promising for optical ap- ACKNOWLEDGMENTS
plications.
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