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Mirror effect at the Brewster angle in semiconductor rectangular gratings
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~Received 10 November 2000; revised manuscript received 23 March 2001; published 27 November 2001!

The Green’s functions of microstructured rectangular gratings, and the electric field for a nonlocal suscep-
tibility are given in explicit form. A very broad energy band with reflectivity of almost 1 is shown by model
calculation for a strongly diffractive grating when the angle of incidence of the light is very close to the
Brewster angle of the equivalent slab, and the grating thickness is about one light wavelength. The physical
origin of this interesting effect is completely explained as an interplay between grating resonances and surface
waves. In the energy range from infrared to ultraviolet, the ratio between bandwidthDE and band-edge energy
E0 scales asDE/E05Lx /d, whereLx is the lateral dimension, andd is the periodicity of the grating. The easy
tailoring of this effect should be promising for optoelectronic and photonic large-band device applications.
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I. INTRODUCTION

The optical properties of the gratings were intensiv
studied at the very beginning of the diffractive optics.1 More
recently, papers devoted to the optical response in diele
gratings show an increasing presence in the literature~see
Refs. 2–12 and references therein! due to the improvemen
in nanotechnology manipulation. This has allowed one
obtain rectangular gratings where the periodicity is of
order of the light wavelength in the visible range of ener
and the lateral dimension of the optically active materia
close to the Bohr radius of Wannier exciton. These proper
permit the study of new fundamental effects due both to
electric charges~electron-hole, exciton! and to the electric
field confinements that are promising for optical device
plications.

The resonant diffractive phenomena in gratings have b
investigated starting from the pioneering paper of Woo1

~Wood’s anomalies!. Popov, Mashev, and Maystre2 have
studied a resonant grating waveguide structure by a phen
enological model, and Wanget al.3 have explained this effec
by a rigorous numerical calculation. That calculation show
maximum~resonance! in the zero-order reflectance spectru
when a guided mode is excited in the system. These r
nances were also studied by the present authors in Re
exactly solving the Maxwell’s equations, while Rosenbla
Sharon, and Friesem have summarized this effect in a rev
paper,5 and, moreover, it has been recently proposed to
well suited for the optical spectral filter realization.6

Optical emission in quantum wells and in quantum-w
wires induced by rectangular grating coupler was experim
tally studied by Kohlet al.,7,8 and a large polarization aniso
ropy was pointed out by the same authors. The electrom
netic origin of this phenomenon, at variance with heav
hole–light-hole interaction in quantum wires,9 was
accounted for by the present authors10,11 by computing the
contribution of local field, and the numerical results comp
well with the experiment. Moreover, the same systems w
also studied in a subsequent paper by Ilset al.,12 and the
0163-1829/2001/64~23!/235319~8!/$20.00 64 2353
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electromagnetic origin of this anisotropy was confirmed.
nally, the grating-coupler-induced absorption in a quant
well under resonant condition was studied by the author13

and the anomalous behavior of the exciton absorbance
high parallel wave vector was computed by selected num
cal examples.

Grating-induced distortion in the exciton-polariton abso
bance in a planar laser cavity was studied by Kavokin, K
teevski, and Vladimirova14 and by Pilozzi and D’Andrea.13

In the latter paper, a very large Rabi splitting~about 25 meV
for a GaAs cavity! was obtained by model calculation ex
tending dramatically the possibility of performing th
radiation-matter interaction tailoring in these systems.

The aim of the present work is twofold, namely,~i! to
explain by model calculation the physical origin of the bro
reflection band~mirror effect! in strongly diffractive dielec-
tric gratings. The easy tailoring of this interesting pheno
enon, and its promising device applications will be al
briefly discussed, and~ii ! to give the general form of the
Green’s functions for computing exciton polaritons in
semiconductor grating of quantum-well wires in semiclas
cal framework and in effective-mass approximation; this f
mulation is well suited also for computing the optical r
sponse in semi-infinite photonic crystals.

It is well known that the local electric field in a gratin
can be computed by solving Maxwell’s equations by us
an expansion in a rather large base of plane waves, wher
evanescent waves take a crucial role. On the other hand
computing the optical response, and in general for
asymptotic optical properties, a rather small number of in
acting waves~usually traveling and guided! are sufficient for
obtaining the numerical convergence, and the higher-or
evanescent components usually give negligible c
tribution.5,14 In the present calculation, the optical respon
of the grating, computed at the Brewster angle of the equ
lent slab, is to our knowledge the first case where the form
approximation gives completely wrong physical results.

Finally, the role of disorder in the optical response will b
taken into account in the model calculation. In fact, the f
©2001 The American Physical Society19-1
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coherence in space and time of the exciton-polariton is u
ally an implied assumption in the optical response calcu
tion, and the in-plane wave-vector conservation is gener
assumed when the interface boundary conditions are
posed. This condition is not fully met in real systems.15,16 In
fact, alloy disorder, phonon scattering, and interface rou
ness are dephasing mechanisms that can broaden the a
bance peaks and destroy the coherence of the optica
sponse, especially when guided wave and the multireflec
mechanism are involved.16 Moreover, for electromagnetic
modes with high parallel-wave-vector values generated b
dielectric grating, alsoe-h mass nonparabolicity must b
taken into account.15 In conclusion, negligible dephasing an
parabolice-h effective masses are two largely used con
tions that should be carefully checked by comparison w
experimental results.

II. THEORY

Let us consider a planar dielectric grating of quantu
wires as shown in Fig. 1 where the wires are along they axis.
The grating has periodicityd, lateral dimensionLx , and di-
electric constant«b , while its thickness value isLz . We
consider an incident plane wave from the vacuum sidez
,0) of frequencyv, and in-plane wave-vector compone
ki5kx5v sin(qi)/c, whereq i is the angle of incidence (ky
50).

The grating of quantum well wires is placed between t
semi-infinite spaces~vacuum forz,0 and z.Lz! and its
total polarization is

PW ~x, z!5PW ~1!~x, z!1PW ~2!~x, z!, ~1!

where PW (1)(x, z) is the polarization due to the backgroun
dielectric function modulation, andPW (2)(x, z) is the exciton
polarization confined in the rectangular wires. The polari
tion of the local dielectric grating and the nonlocal polariz
tion of Wannier exciton are given in Ref. 4 and Ref. 1
respectively forLz!aB!Lx , whereaB is the Bohr exciton
radius.
The total polarization in mixed coordinates (kx , z) is

PW ~kx1G,z!5PW ~1!~kx1G,z!1PW ~2!~kx1G,z!, ~2!

where the reciprocal lattice vector isG52p l /d with l 50,
61,62,...,6N, andN→`. The dielectric grating polariza
tion is

PW ~1!~kx1G,z![
1

4p (
G8

@«G,G82dG,G8 ,«0#EW ~kx1G8,z!,

~3!

where the dielectric tensor of the gratingeG,G8 is given by
23531
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«G,G85«0dG,G81
2

d
D«

sin@~G2G8!Lx/2#

G2G8
, ~4!

where«051 is the vacuum dielectric constant andD«5«b
2«0 is the dielectric contrast. The averaged dielectric co
stant«̄, that describe the so called ‘‘equivalent slab mode
is

«̄5«bLx /d1«0~12Lx /d!, ~5!

and is equal to the diagonal matrix elements of the dielec
tensor of Eq.~4!. The exciton nonlocal polarization is

PW ~2!~kx1G,z!5(
G8

E dz8 xJ ~kx1G,kx1G8,z,z8!

3EW ~kx1G8,z8!,

wherexJ(kx1G,kx1G8,z,z8) is the susceptibility tensor. I
is well known that for Wannier exciton in a wire, the susce
tibility is the degenerate kernel of the integral equation d
rived from the Maxwell’s equations, and it is10

PW ~2!~kx1G,z!5(
i , j

S0~v!

Ei j ~kY!2\v2 iGNR~v!

3C i j* ~r50;kx1G,z!(
G8

E
0

Lz
dz8

3C i j ~r50;kx1G8,z8!EW ~kx1G8,z8!,

~6!

where C i j (rW50;kx1G,z) is the Fourier transform of the
Wannier exciton envelope function computed atrW50,
Ei j (kY)5Egap2Ri j* 1(\2/2M )kY

2 is the exciton energy,
whereRi j* is the exciton eigenvalue fori andj quantum num-
bers alongx andz directions,kY is the center-of-mass wav
vector, andGNR(v) is the nonradiative broadening;S0 is
proportional to the square matrix element of the electric
pole operator.10

The transformed Maxwell’s equations forS andP polar-
izations (ky50) are

]2Ey~kx1G,z!

]z2 1(
G8

Kz
~2!~G,G8!Ey~kx1G8,z!

524p
v2

c2 Py
~2!~kx1G,z! ~7a!
9-2
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¦

]2Ex~kx1G,z!

]z2 2 i ~kx1G!
]Ez~kx1G,z!

]z

1
v2

c2 (
G8

«GG8Ex~kx1G8,z!524p
v2

c2 Px
~2!~kx1G,z!

2 i ~kx1G!
]Ex~kx1G,z!

]z
1(

G8
Kz

~2!~G,G8!Ez~kx1G8,z!

524p
v2

c2 Pz
~2!~kx1G,z!,

~7b!

~7c!
es
e

io

-

in

m

where

Kz
~2!~G,G8!5

v2

c2 «GG82~kx1G8!2dG,G8 . ~8!

The solution of the Maxwell’s equation in mixed coordinat
@Eqs. ~7a!–~7c!# proceeds as in Ref. 11 by solving th
Green’s function equations respectively forS polarization,

]2Gyy~kx1G;z,z8!

]z2 1(
G8

Kz
~2!~G,G8!Gyy~kx1G8;z,z8!

5d~z2z8!, ~9a!

andP polarization,

]2Gxx~kx1G,z,z8!

]z2 1
v2

c2 (
G8

«GG8Gxx~kx1G8,z,z8!

2 i ~kx1G!
]Gzx~kx1G,z,z8!

]z
5d~z2z8! ~9b!

2 i ~kx1G!
]Gxx~kx1G,z,z8!

]z

1(
G8

KGG8
~2! Gzx~kx1G8,z,z8!50. ~9c!

Notice that the other two components of the Green’s funct
tensor, namely,Gxz(kx1G;z,z8) andGzz(kx1G;z,z8), can
be computed fromGxx(kx1G;z,z8) andGzx(kx1G;z,z8) as
shown in Ref. 11.
For S polarization, let us consider Eq.~9a! in the (2N11)
3(2N11) matrix form

]2GW yy~z,z8!

]z2 1KJ z
~2!GW yy~z,z8!5dW ~z2z8!, ~10!

FIG. 1. Self-sustained rectangular dielectric grating ofd period-
icity, Lx lateral dimension, andLz thickness.
23531
n

wheredW (z2z8) is a vector whoseG components are Dirac’s
functionsd(z2z8). The unitary matrix that solves the eigen
value problem

KJ z
~2!EW n5kn

2EW n , ~11!

where n50,1,...,2N is UJ[$UG,n%5$En(G)%, and its Her-

mitian conjugate isUJ1[$Un,G* %.
Applying the former unitary matrix to Eq.~10!, the trans-
formed equation becomes

]2G̃yy~kn ;z,z8!

]z2 1kn
2G̃yy~kn ;z,z8!5d~z2z8!(

G8
En* ~G8!,

where, G̃W yy(z,z8)5UJ1GW yy(z,z8). Finally, by defining the
new transformed Green’s function, G5 yy(kn ;z,z8)
5G̃yy(kn ;z,z8)/SGEn* (G8), we obtain

]2G5 yy~kn ;z,z8!

]z2 1kn
2G5 yy~kn ;z,z8!5d~z2z8!. ~12!

The solution of this kind of differential equation is given
Ref. 17 by Bagchi, Barrera, and Rajagopal:

G5 yy~kn ;z,z8!5
1

2ikn
@u~z2z8!eikn~z2z8!

1u~z82z!e2 ikn~z2z8!#. ~13!

For P polarization the algebra is a bit more involved. Fro
Eq. ~9c!, we obtain

Gzx~kx1G;z,z8!5 i(
G8

~KJ ~2!!G,G8
21

~kx1G8!

3
]Gxx~kx1G8;z,z8!

]z
.

Substituting this equation in Eq.~9b!, one finds

RJ
]2GW xx~z,z8!

]z2 1
v2

c2 «JGW xx~z,z8!

5dW ~z2z8!, ~14!

where

RGG85dGG81~kx1G!~KJ ~2!!GG8
21

~kx1G8!.
9-3
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Now, this equation can be solved in the following two ste
~i! We solve the following eigenvalue problem:

v2

c2 «JE¢ l5l lE¢ l , ~15!

and multiplying Eq.~14! by the Hermitian conjugate of th
unitary matrix of the eigenvectorsUJ5$UG,l%5$El(G)%, we
obtain

(
l l 8

R̃ll 8

]2G̃xx~l l 8 ;z,z8!

]z2 1l l G̃xx~l l ;z,z8!

5d~z2z8!(
G8

El* ~G8!,

where, G̃W xx(z,z8)5UJ1GW xx(z,z8), and R̃J5UJ1RJUJ . More-
over, by applying the diagonal matrix of the square-roots
the eigenvalueslJ21/2, we have

(
l l 8

Sll 8

]2Gxx~l l ;z,z8!

]z2 1Gxx~l l ;z,z8!

5d~z2z8!(
G8

El* ~G8!/l l
1/2,

whereSJ5lJ21/2R̃JlJ21/2 andGWxx(z,z8)5lJ1/2G̃W xx(z,z8).
~ii ! In the second step, we solve the eigenvalue equation
the SJ matrix
ed
n

ni

23531
s

f

or

SJcW n5
1

kn
2 cW n , ~16!

and applying the Hermitian conjugate of the matrix of t
eigenvectorsVJ5$Vl ,n%5$wn( l )%, we obtain the differential
equation

1

kn
2

]2G̃xx~kn ;z,z8!

]z2 1G̃xx~kn ;z,z8!5d~z2z8!Ṽn ,

whereG̃Wxx(z,z8)5VJ1GWxx(z,z8) and

Ṽn5 (
l ,G

wn* ~ l !El* ~G!/l l
1/2.

Taking the new Green’s function: G5 xx(kn ;z,z8)
5G̃xx(kn ;z,z8)/Ṽnkn

2, we have the final form,

]2G5 xx~kn ;z,z8!

]z2 1kn
2G5 xx~kn ;z,z8!5d~z2z8!. ~17!

Notice that Eq.~17! is formally similar to Eq.~12! for S
polarization and has the same solution.

Finally, knowing the components of the Green’s functi
tensor, the electric field of the grating of quantum-well wir
can be written in the integral form
Ea~kx1G;z!5Ea
0~kx1G;z!1

1

d (
b H (i , j S0~v!

Ei j ~ky!2\v2 iGNR
E

0

Lz
dz9 Gab~kx1G;z,z9!C i j* ~r50;kx1G,z9!

3(
G8

E
0

Lz
dz8 C i j ~r¢50;kx1G8,z8!Eb~kx1G8,z8!J , ~18!
to-
the
dy
in

s
ive

e
d.

ngs
ion
if-
wherea, b5x, y, z.
The unperturbed electric field components fora5x, y, z

@see Eqs.~13! and ~18! in Ref. 4# are

Ea
0~kx1G,z!5(

n
@Aneiknz

1Bne2 iknz#En
0~kx1G!.

~19!

Notice that the half width at half maximum of the comput
absorbance spectrum embodies also the radiative broade
due to the polaritonic radiation-matter self-energy.10 More-
over, the formula of Eqs.~1!–~19! allow one to compute the
optical response of semi-infinite two-dimensional photo
crystals showing periodicity alongx, and applying the peri-
odic boundary conditions alongz direction. The optical re-
ing

c

sponse calculation in a two-dimensional semi-infinite pho
nic crystal by taking into account both the dispersive and
absorbent part of the exciton susceptibility in order to stu
the role of the electromagnetic surface states is now
progress.

III. RESULTS AND DISCUSSION

It is well known that the reflectivity in a dielectric slab a
a function of the incidence angle of the light is very sensit
to the polarization. In fact, while forS polarization it shows
a monotonic behavior, forP polarization it goes to zero at th
Brewster angle, where all the light intensity is transmitte
The same behavior is also observed in thin dielectric grati
in the range of energy where only the zero-order diffract
ray (G50) is propagating in the structure, while rather d
9-4
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MIRROR EFFECT AT THE BREWSTER ANGLE IN . . . PHYSICAL REVIEW B64 235319
ferent behavior is observed for thick gratings. In fact, let
consider a high diffractive rectangular grating~see Fig. 1!
with refractive indicesnb5A«b53.34,n051, periodicityd
5300 nm, lateral dimensionLx53/4d, and thicknessLz

5350 nm. The reflectivity forP¢ (2)(x,z)→0 is computed by
solving the eigenvalue problem of Eqs.~11! and ~16! for S
andP polarization, respectively. The reflectivity of the gra
ing for P polarization and incident photon energy\v
51.4 eV is shown in Fig. 2 as a function of the angle
incidenceq i . The results for the equivalent slab approxim
tion shown in the same picture are computed by taking i
account the average dielectric constant value of the gra
«̄58.617. The reflectivity vanishes for the angle of inciden
q i528° that is lower than the equivalent slab value~q i
570° Brewster angle!. Moreover, the reflectivity is nearly
one for a very large range ofq i values (45°,q i,75°).

Now, let us consider the reflectivity for the angle of inc
dence (q i560°) very close to the Brewster angle of th
equivalent slab. The results of the calculation are shown
Figs. 3~a! and 3~b! for SandP polarization, respectively, an
the reflectivity of the equivalent slab, and of the lowest d
fraction waves (N51) with parallel wave vectors:qx
5(v/c)sinqi ; qx2G andqx1G are also shown.

For Spolarization@see Fig. 3~a!#, Fabry-Perot oscillations
of the equivalent slab are present at low photon energ
while very complicated oscillations due to the interference
two or more waves propagating in the structure are show
high energies. ForP polarization @see Fig. 3~b!#, a rather
small reflectivity is observed at low energy, while a broa
band with the reflectivity almost 1@ ur p(v)u2>0.97# is
shown at the high energy side of the spectrum.

In order to go a bit deeper in the explanation of th
polarization-dependent optical response, let us compute
dispersion curves of the three lowest energy diffract

FIG. 2. Reflectivity computed forP polarization as a function o
the angle of incidence on the surface of the self-sustained recta
lar dielectric grating~solid curve!, and of an equivalent homoge
neous slab~dashed curve!. The parameter values are given in th
text.
23531
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waves. The results are presented in Figs. 4~a! and 4~b! for S
and P polarization, respectively. The lowest-energy cur
(n50) shows no energy gap, and its behavior is very clo
to the equivalent slab dispersion, while the higher-ene
curves (n.0) show threshold energies (En.0) different
from zero, such that for photon energy greater than thenth
threshold energy (\v.En.0) the correspondingnth evanes-
cent wave becomes propagating in the grating. Theref
from Fig. 3~a!, we notice that forS polarization and photon
energies lower thanE151.1 eV the reflectivity shows the
usual Fabry-Perot oscillations in a slab, while at higher
ergies the interference between two propagating waves g
the so-called Wood’s resonances@whereur s(v)u251# whose
reflectivity peaks are superimposed on the normal Fab
Perot oscillations. It is well known that in correspondence

u-

FIG. 3. Reflectivity computed for a self-sustained rectangu
dielectric grating for incident angle 60°~solid line! for ~a! S polar-
ization, and~b! P polarization. Reflectivity of the equivalent sla
approximation ~dashed lines!, and for the three lowest-energ
waves of the grating~dotted lines! are also reported. The paramet
values are given in the text.
9-5
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these resonances the first propagating diffracted wave
high parallel-wave vector is confined~guided! to the grating
region, and for direct and reflected waves in phase the re
tivity equal to 1 is reached.5 For photon energy\v.E2 a
second diffracted wave propagates in the structure,
therefore, the interference among three waves gives re
tivity with a line shape more and more complicated. In sp
of this, the line shape is roughly composed by the Fab
Perot oscillations of the equivalent slab with superimpo
spikes due to the resonance conditions as assessed b
@see Fig. 3~a!#.

A rather different behavior is shown forP-polarization
reflectivity as a function of photon energy@Fig. 3~b!#. In fact,
a very low value of reflectivity@ ur p(v)u2<0.18# is observed
for photon energy lower than the first threshold energy f
lowed by a wide range of energy where reflectivity is rath
one@ ur p(v)u2>0.97#. Notice that this broad reflection ban
(DE50.85 eV) is observed between the first and the sec
threshold energies of the diffracted waves as shown in
4~b!. The low intensity of the Fabry-Perot oscillations (G

FIG. 4. Dispersion curves of the three lowest-energy eigen
ues of a rectangular dielectric grating for~a! S and ~b! P polariza-
tions ~solid curves! for the same parameter values of Fig. 3.
23531
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50) for P polarization is due to the incident angle chose
that is very close to the Brewster angle (qB'70°) of the
zero diffracted wave (n50). This small reflectivity value
increases the role in the optical response of the first
fracted wave (n51) for energy\v.E1 , and this property
is of crucial importance in order to obtain sharp edge of
reflection band (E051.2 eV).

The computed reflectivity spectra forS and P polariza-
tions show a rather different behavior approaching the c
vergence (N→`). While S polarization reflectivity forN
53 is just close to the spectrum at convergence, underlin
the negligible contribution of the evanescent waves, forP
polarization a strong contribution is observed. In fact, let
compare the three spectra ofP-polarized reflectivity com-
puted forN50, 1 and at convergence (N→`), respectively.
Different behaviors are observed for three different range
energy, namely,~i! for \v,E1 , the N51 reflection curve
shows Fabry-Perot oscillations similar to the equivalent s

l- FIG. 5. P-polarization reflectivity for three values of~a! Lx

~200-nm dotted curve, 225-nm solid curve, and 250-nm das
curve! for De5const, and~b! the bulk dielectric constant~9.156
dotted curve, 10.156 solid curve, and 11.156 dashed curve! for ē
5const. The parameter values are given in the text.
9-6
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MIRROR EFFECT AT THE BREWSTER ANGLE IN . . . PHYSICAL REVIEW B64 235319
(N50), while this oscillations disappear at convergen
when also the contribution of the evanescent waves is ta
into account.~ii ! At higher energy (E1,\v,E2) the N
51 reflection curve shows strong resonance peaks for\v
values: 1.24, 1.58, and 1.96 eV. This set of resonances is
to the constructive interference between the normal w
(n50) and the first diffracted wave (n51) guided in the
structure, and is obtained for selected values of the li
wavelength respect to the periodicity and to the thicknes
the grating.5 At the convergence a crucial role in building u
the reflection band is taken by evanescent surface waves
give very high reflectivity between adjacent resonant pe
@see Fig. 3~b!#. Therefore, this large reflection band is due
the interplay among traveling, guided, and evanescent wa
in P polarization, and no simple qualitative evaluation is po
sible for describing this entangled phenomenon.~iii ! For
\v.E2 the second diffracted wave too becomes traveling
the structure, and the maximum of reflectivity for\v
52.21 eV is not embodied in the reflection band because
very close to the photon energy where the first diffrac
wave escapes in the vacuum (\v>2.2 eV).

Finally, we want to point out that the general finding th
in a multilayer system, embodying a dielectric grating, t
convergence of the optical response calculation can be
tained by taking into account only the traveling and guid
waves is incorrect.13 Moreover, this polarization-sensitive re
flection band is the most important result of our calculatio
not only from fundamental point of view, but it should b
also promising for the realization of large-band devices o
can be used as a mirror in the integrated all-optical circu

This mirror effect is very sensitive to the dielectric fun
tion values. In Figs. 5~a! and 5~b! the reflectivity spectra for
different values of the diagonal («̄) and of the out-of-
diagonal ~D«! matrix elements of the dielectric tensor, r
spectively, are computed by taking constant the periodi
and the thickness of the grating. In Fig. 5~a! we have re-
ported the reflectivity for three different values of the late
dimension of the wire, namely,Lx : 250, 225, and 200 nm
Notice that the dielectric contrast of the grating is taken c
stant (D«510.156), and the reflection band worsen both
creasing or decreasing the diagonal matrix element va
with respect to the optimized one. In Fig. 5~b! the reflectivity
is computed for three values of the dielectric contrastD«,
obtained by changing the«b-values~namely, 12.156, 11.156
10.156!, and forLx such that«̄58.617. The out-of-diagona
matrix elements of the dielectric tensor are proportional
the dielectric contrast, that give the mixing among the diff
ent electromagnetic modes. Also, in this case a small va
tion of theD« value worsen the reflection band line shap

On the other hand, the mirror effect is rather stable w
respect to the fluctuations of both the lateral dimension
thickness of the dielectric grating: in fact, it does not chan
appreciably for fluctuation within 3% for thickness and 2
for lateral dimension. Moreover, also the variation of t
incident angle of the light does not affect the reflectiv
band as we can see from Fig. 2, where for energy\v
51.4 eV we observe reflectivity of about 1 for the ran
45°<q i<75°. For higher photon energy the grating Bre
ster angle value decreases~this feature is not reported here!,
23531
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giving a wider energy zone where the reflectivity is still on
It is well known that for coherence length of the ligh

source much greater than the system thickness, the supe
sition of the plane waves is performed coherently, while
the coherence length is shorter, incoherent superpos
should be done. In the latter case, by using the equivale
of thickness averaging and incoherent superposition,16 the
three resonances present in the reflectivity spectrum of
3~b! disappear, and analogously the broad-band effect. In
case the conditionLc@Lz is easily satisfied for Lc

5l2/Dl, whereDl is the bandwidth of the laser, and ther
fore coherent superposition of plane waves can be adop

In Table I are reported the band energies computed
taking constant the incident angle of light and the dielec
contrast of the grating, while the values ofLz , Lx , andd are
scaled according to the rules:~i! lateral dimension is scaled
as Lx /d53/4, and~ii ! grating thicknessLz'l, wherel is
the light wavelength. In this case, while the reflectivity spe
trum ~not reported here! is similar to that shown in Fig. 3~b!
the edge energyE0 changes in a large range of values fro
infrared to ultraviolet. Moreover, for the grating withd
5300 nm the reflectivity band is as large as all the visib
energy range. Since the ratioDE/E0'3/4 remains constant
and very close toLx /d, the tailoring of this effect is due to
the interplay between the Mie scattering of the light in t
rectangular nanoparticle, and the multiscattering in the s
tem with d periodicity. At variance with the photonic ban
gap phenomenon, where the internal electric field is stati
ary, in the present case the internal electric field is a gui
wave and the vanishing surface waves take a key role
reflecting the incident electric field. Therefore, we guess t
the name ‘‘mirror effect’’ does not generate confusion w
photonic band gap and, on the other hand, is better conne
with the physical surface origin of this phenomenon.18

IV. CONCLUSION

Green’s functions for a grating with general nonlocal su
ceptibility are given, and their application to the optical r
sponse in the semi-infinite photonic crystals are briefly d
cussed.

Very broad reflection band inP polarization reflectivity at
the Brewster angle is observed in a grating with strong
electric contrast. This effect is due to~i! the resonance in the
grating between normal and first-diffracted wave, and~ii ! the
contribution of the evanescent surface waves. Its easy ta

TABLE I. Reflectivity band energies for different grating pa
rameters.

E0 ~eV! DE ~eV! Lx ~nm! d ~nm! Lz ~nm! l ~nm!

1.80 1.32 150 200 240 235
1.20 0.85 225 300 350 352
0.90 0.64 300 400 470 469
0.45 0.33 600 800 960 938
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ing makes this phenomenon very promising for optical
plications.

Finally, the validity of the generally used approximation
for the nonlocal optical response computation in gratings
discussed.
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