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Theory of coherent acoustic phonons in IgGa; _,N/GaN multiple quantum wells
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A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically
strained wurtzite(000)) In,Ga _,N/GaN multiple quantum welpin diodes is presented. The generation of
coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser
and is treated theoretically by using the density matrix formalism. We use realistic wurtzite band structures
taking valence-band mixing and strain-induced piezoelectric fields into account. In addition, the many-body
Coulomb interaction is treated in the screened time-dependent Hartree-Fock approximation. We find that under
typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded-string
problem that can be easily solved.
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[. INTRODUCTION range, corresponding to the LA phonon frequency wgth
~2mx/L, varied between samples in accordance with their

In recent years, experiments have shown that optical exdifferent superlattice periods.
citation of electron-hole pairs in semiconductors by ultrafast In this paper, we formulate a microscopic model for the
lasers can coherently excite longitudinal optical phonorngeneration of coherent acoustic phonons in strained wurtzite
modes in semiconductotsi® In uniform bulk semiconduc- superlattices via ultrafast laser photoexcitation of real carri-
tors, since the laser wavelength is much larger than the laers. Whereas in bulk systems the microscopic theory of co-
tice spacing, the photogenerated carriers are typically excitederent LO phonons can be mapped onto a forced oscillator
by the optical pump over spatial areas that are much largenodel® we show that coherent LA phonon generation in su-
than the lattice unit cell. As a result, the excited carrier popuperlattices, under appropriate conditions, can be mapped
lations are generated in a macroscopic state and the carriento aloaded string modethat is readily solved for the
density matrix has only g~0 Fourier component. Coupling lattice displacement. Since acoustic phonons are almost the
of the photoexcited carriers to the phonons leads only teame in the well as in the barrier, to lowest order we can treat
coherent optical phonon modes witt=0. Since the fre- the string as being unifordf. The forcing term on the string,
quency of theg~0 acoustic phonon is zero, coherent acous-however, is not uniform since photoexcitation of carriers oc-
tic phonons are not excited in bulk semiconductors. curs only in the wells.

In semiconductor superlattices, even though the laser Our paper thus provides justification for using a simple,
pump has a wavelength large compared to the lattice spacingniform string model with a nonuniform forcing term, rather
the pump can preferentially generate electron-hole pairs ithan a more complicated microscopic theory. In addition, we
the wells. The result is to create photoexcited carrier distriprovide a microscopic expression for the forcing term to use
butions that have the periodicity of the superlattice. Since thén the simplified string model. The string model provides
density matrix of the photoexcited carrier populations nowadditional insight into the physics of the coherent LA
has ag+ 0 Fourier component, the photoexcited carriers canphonons.
not only couple to the optical phonon modes, but they can
also generate coherent acoustic phonon modes with a non-
zero frequency and wave vectgr=27/L, wherelL is the
superlattice period. In superlattices, the coherent phonon os- In this section, we derive the microscopic theory for co-
cillation of zone-folded acoustic phonons has been observelderent acoustic phonon generation in superlattices and mul-
in AlAs/GaAs superlattice$™® However, the reflection tiple quantum wells, including the effects Gf band struc-
modulation, observed to be on the order &R/R  ture, (ii) strain, (iii) piezoelectric fields,(iv) Coulomb
~10"%-1078, is very smalft° interactions, andv) laser optical excitation. In Sec. lll, we

Recently, Suret al.'! reported studies of coherent acoustic will show how this reduces to a simplified driven uniform
phonon oscillations in wurtzitéd00)) In,Ga, _,N/GaN mul-  string model with a nonuniform forcing term and a micro-
tiple quantum well samples with strain induced piezoelectricscopic expression for the forcing term.
fields. Owing to the strong piezoelectric fields at the inter- We model photogeneration of electrons and holes and the
faces, huge coherent acoustic phonon oscillations were olsubsequant excitation of coherent acoustic phonons in a mul-
served. The oscillations were strong enough to be seen in th&ple quantum wellMQW) pin diode shown schematically
transmision(rather than the usual reflectivitywith AT/T in Fig. 1. The intrinsic active region consists of a left GaN
~10 2-103. The oscillation frequency, in the terahertz buffer region, several pseudomorphically straing@Do02)
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FIG. 1. Schematic diagram of the,[&a _,N multiple quantum B B*
well diode structure. |v,5)=—|(X=iY) )+ —=|[(X+iY)]), (3¢
V2 V2
In,Ga, _,N quantum wells sandwiched between GaN barri- 10,6)=— B*|Z1)+ BlZL). (3

ers, and a right GaN buffer region as indicated in the figure.

The P andN regions are assumed to be abruptly terminatedhe phase factorsy and g8, are functions of the angle
p- and n-doped GaN bulk layers separated by a distalnce :tanfl(ky/kx) and are given by

across which a voltage dropV=V,, is maintained. Pho-

toexcitation of carriers is achieved by means of an ultrafast 1 i

laser pulse incident normally along tk@001) growth direc- a(d)= EGXFII(37T/4+ 3¢12)], (4a)
tion, taken to coincide with the axis.

A. Bulk band structure B(p)= iexp[i(7-r/4+ d12)]. (4b)

In bulk systems, the conduction and valence bands in V2
wurtzite crystals including the effects of strain are treatedThe block diagonalized Hamiltonian can be written as
using effective-mass theory. Near the band edge, the effec- U
tive mass Hamiltonian for electrons is described by>a22 H3xs(k,€) 0

matrix that depends explicitly on electron wave vedt@nd Hexe(k,€)= 0 H'§X3(k,e) , 5
the strain tensoe. The electron Bloch basis states are taken o
to be where the upper and lower blocks of the Hamiltonian are
e )=[S), (1a oK iR
HY. s(k,e)=| K; G A—iH, (6a)
[c.2)=[S]). (1b) iH, A+iH, A
The conduction band Hamiltonian is diagonal and we havénd
(relative to the bottom of the conduction bariiefs. 13 and .
14) F Kt IHt
H: a(k,e=| K G  A+iH{|. (b
h2k2 ﬁ2k2 . .
ngz(k,f):| Z+ t +ag 6., IHt A IHt A
2m:  2m# ' L I .
z Xy The elements appearing in th&x3 Hamiltonian matrices
are
+a + | , 2
c,x—y(Gx-x Gy-y)] 2X2 ( ) F=A1+A2+)\+0, (73)
where |,., is the identity matrix. The electron effective G=A;—A,+\+0, (7b)
masses along (taken to be parallel to the axis) and in the
x-y plane arem; andmj,, respectivelyk{=KkZ+kJ, and K 2 e .
€xx €.y aNde,, are strain tensor components, anyjz and Y o2my o (70
ac x.y are the deformation potentials.
The Hamiltonian for the valence bands is & 6 matrix. 2
Following Ref. 15, the Hamiltoniafrelative to the top of the Hi= T 5—Askikz, (7d)
valence banydcan be block diagonalized into two degnerate
3X 3 submatrices if we adopt the Bloch basis states A= \/§A3, (79
a* ) a ) h? ) )
lv.1)=— EI(X+IY)T>+ EI(X—IY)U. (3a) A= 2_%(A1k2+A2kt)+ Di€s,+ Dol exxt€yy), (79
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h? g 1 g 9
_ 2 2 . - o
0= 2m0(A3kz+A4kt)+D3€z—z+ Da(exxt €yy). (79 B(z)--—5|B(2) -+ —-B(2)|. (11b
In Eq. (7), the A{s are effective-mass parameters, B¢s The quantum-confinement potential4.(z) and V,(z)

are the Bir-Pikus deformation potentials, and thés are  arise from(i) band gap discontinuities between well and bar-
related to the crystal field splitting\ ., , and spin-orbit split-  rier regions, (i) the strain-induced piezoelectric field, and
ting, Ago, by A;=A¢, andA,=A3=A4/3. my is the free-  (jii) the time-dependent electric field due to photoexcited
electron mass. electrons and holes. Thus,

B. Quantized carrier states in MQW diodes Vo(Z,1) =V gad 2) + Viiezd 2) + Vpnad Z,1), (12

In quantum-confined systems such asirediode shown —and the band structure is explicitly time dependent.
in Fig. 1, we must modify the bulk Hamiltonian. The finite ~ Material parameters for InN and GaN used in this work
MQW structure breaks translational symmetry along the can be found in Table I. For }&a N alloys, we interpo-
direction but not in thex-y plane. Thus, quantum confine- late between the GaN and InN values listed in the table.
ment of carriers in the MQW active region gives rise to a set We obtain electron effective masses by linearly interpo-
of two-dimensional subbands. The wave functions in the enlating the reciprocals of the masses as a function of the in-
velope function approximation are dium concentratiom, i.e., the concentration-dependent effec-

tive masses are taken to be
ik-p

e

wﬁur>=25-;ifFﬁkxznaJ>, ®) 1 1 1

J o (x) =X — +(1-x) m_* , (133
wherea={c,v} refers to conduction or valence subbarmls, “ *Y7InN XY GaN
is the subband indexk= (ky,ky,0)=(k,¢) is the two- and
dimensional wave vector, arjdabels the spinor component.
For conduction subbandseE&c) j=1,2 while for valence 1 1 1
subbands ¢=v)j=1, ... ,6. Theslowly varying envelope (%) =x|— | +@=-0{—] . (13b
a z Z/ InN Z/ GaN

functionsF{ , ;(z) are real and depend only én-|k|, while
the rapidly varying Bloch basis statés,j) defined in Egs. For the alloy band gafE,(x), we use an expression in-
(1) and(3) depend ong in the case of valence subbands ascorporating a bowing pare?neter:

given in Eq.(4). The area of the MQW sample in they

plane isA, andp=(x,y,0) is the projection of in the plane. Eg(X) =XEg innt (L =X)Eg gan— bX(1—X), (14

The envelope functions satisfy a set of effective-mass .
Schratinger eqFl)Jations bt where the bowing parametdr=1.0 eV For all other ma-

terial parameters, we use linear interpolationxito obtain
values for the alloy. Since we cannot find deformation poten-
2 {H] (K + 8 [Vo(2) —Ex(K]}Fn, (2)=0, (9 tials for InN, we use GaN values by default. In the absence
bE of values ofe., for either GaN or InN, we use linear inter-

subject to the boundary conditions polation inx to obtainey and simply takee,.~ €.
If the z dependent band gap in the MQW 5,(2) as
nkj(Z=0)=Fg (z=L)=0, (100 determined from Eq(14) and the indium concentration pro-

file, andEg yin=minJEy(2)] is the minimum band gap in the
structure, then the confinement potentials for conduction and
valence electrons are defined as

whereL is again the length of the MQW diode structucef.
Fig. 1, V,(2) are the quantum-confinement potentials for
conduction and valence electrons, @f{k) are the energy

eigenvalues for thath conduction or valence subband. Note Ve gad 2) = Eg mint Q Eq(2) — Eg minl, (159
that in the envelope function approximation, the subband en- ' ' '
ergy depends only on the magnituklef the transverse wave V, gad 2) = — (1= Qo) Eg(2) — Eg minl, (15b)

vector and not on the anglé. For the quantum-confined
case, the matrix operatonsj‘fj,(k) depend explicitly onz
and are obtained by making the replacement —i(d/dz)
and letting all material parameters belependent operators
in the matricedH“(k,€) given in Egs.(2) and(5). To ensure
the Hermitian property of the Hamiltonian, we make the op-
erator replacementts

where the conduction band offset is takerQas= 0.6.18 With
these definitions for th®/,, 4o{2), the zero of the gap con-
finement potential is placed at the top of the valence-band
profile.

The confinement potentials due to the strain-induced pi-
ezoelectric field are given by

2 . Viiezd 2)= —|€|E2(2), (16)
B(Z)Eﬁge’(z)ﬁ’ (119 where |e| is the electric charge an&?(z) is the strain-
induced piezoelectric field. In a pseudomorphically strained
and MQW diode, the bulk source and draijassumed to have
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TABLE I. Material parameters for wurtzite InN and GaN. Ma- identical composition are unstrained while the in-plane
terial parameters for )Ga N are obtained through interpolation MQW lattice constants adjust to the source and drain values.

in x as described in the text.

Parameter InN GaN
Lattice constants

ag(A) 3.54¢ 3.18¢
co(A) 3.708 5.18%
Uo 0.377 0.376
Direct band gaps$eV)

Eq 1.99 3.40
Electron effective massesng)

my, 0.1C¢ 0.18
m? 0.11° 0.1¢
Hole effective mass parameters

A, -9.28 7.24
A, -0.6CF -0.51°
A; 8.68 6.7F
A, -4.34 -3.36°
As -4.37 -3.3%
Ag -6.08 -47F
Hole splitting energiesmeV)

A=A, 17.¢° 22.0¢
A2=A50/3 10: 36?
Asg 1.0° 3.67
Electron deformation potentialgV)

Acxy -4.08'
ac. -4.08'
Hole deformation potentialeV)

D, 0.7
D, 2.1
Ds 1.4
D, -0.7°
Piezoelectric constants (Cfjn

€31 -0.57 -0.49
€33 0.97 0.7%8
Elastic stiffness constan{&Pa

Cn 19¢% 374
Cy, 104 106
Cis 1222 700
Cas 182 379
Cus 107 1018
Static dielectric constant

&0 15.3 8.9

%Reference 17.
bReference 18.
‘Reference 19.
dReference 14.
®Reference 20.
fReference 21.

For a MQW grown alond0001] (the z direction), the z de-
pendent strain 2

ap—a(z)
a(z)

€x(2)= fy-y( 2)= (17)
Here a, is the lattice constant in the source and drain and
a(z) is thez-dependent lattice constant in the MQW. Mini-
mizing the overall strain energy, we fitfd

2C15(2)
Cai(2)

whereC,5(z) andCs4(2) arez-dependent elastic constants.

There are several issues concerning strain that one can
worry about. One is the critical well thickness beyond which
the strain relaxes. Studies have shéinat with 10% in-
dium and 6 nm well width, a 350 kV/cm field is measured,
implying that the well is not fully relaxed, which justifies the
use of pseudomorphic strain approximation as we do in this
paper for wells having 6% indium and thickness near 4 nm.
For thick wells, this pseudormorphic strain approximation
clearly will begin to break down and a more detailed model
will be needed. Interface roughness can also play a role. The
roughness will not significantly affect the acoustic phonon
modes(see Introductionbut may affect the photogeneration
of carriers®® For simplicity, we do not consider interface
roughness.

The strain-induced polarization directed alongs given

by

€,.42)=— €xx(2), (18)

PA2)=e31(2)[ €xx(2) + €y (2) ]+ €35(2) €,,(2), (19)

where e;;(z) and ezy(z) are zdependent piezoelectric con-
stants. The unscreened piezoelectric field in the diode is ob-
tained from the requirement that the electric displacement
vanishe$® Thus,

E%2)= am Po%z2)+P (20)
Z(Z)_ 80(2)[ z(z) 0]!
where Py is a constant polarization induced by externally
applied voltages andy(z) is the position-dependent static
dielectric constant. The value @, is obtained from the
voltage drop across the diodef lengthL) in the unscreened
limit, i.e. with no photoexcited carriers. In this limit, the
voltage drop between source and drain due to the induced
piezoelectric field is just

L
vA:—JodzEg(z), (21)

from which Py can be determined.

When photoexcited electrons and holes are generated by
the laser, then there is an additional time-dependent confine-
ment potential,

Vonod z,t) = —|€|EE™z,1). (22)

235316-4



THEORY OF COHERENT ACOUSTIC PHONONS IN.. .. PHYSICAL REVIEW @&} 235316

This potential is obtained by solving the Poisson equation irEquation (28) describes two-body interactions where elec-
the diode forER™qz,t) subject to the boundary condition ~trons in statege,n,k) and |a’,n’,k’) scatter to subband
stateda,n,k—x) and|a’,n’ k' + k), respectively. Note that
_ L otal to simplify things, we have neglected terms corresponding to
VA__L dzE(z,1). (23 Coulomb-induced interband transitiorige “diagonal ap-
proximation”) since these are energetically very
Here,EtZ"ta'(z,t) is the total electric field and is just the sum unfavorable?® The electrons thus stay in their original sub-
of the strain-induced electric field and the field due to pho-bands(though they may scatter off from other electrons in

togenerated electrons and holes, i.e., different subbandsand exchange crystal momentunThe
matrix elements describing the strength of these transitions
EV?(z,t)=E%(z) + EP"z,t). (24)  are given by

Finally, we can write an effective-mass Sctlimger equa- ank B , L
tion for the conduction electron envelope functions in terms VoK)= | dz| dZ'V|4(z=2")
of an effective electron potentiai®'’(z):

L X2 P w i (DF k(2
- _ - c + eff _ ¢ c
2 {(72 m;(z) 32] Fn,k,](z) {Vc (Z) En(k)}Fn,k,J(Z) L N
X2 P o) (Z)F i (2. (29)
J!

=0, (25
where the effective electron potential is From Eq.(29), it is apparent that the symmetry relation
72K? Ve o (10 =Vl (— w0 (30
ngf(z):Vc(Z)+ P ) +ac,,(2) €,,(2) +ac xy(2) must hold.
o The Fourier transform in the-y plane of the screened
X[ exx(2) + €y, (2)]. (26)  Coulomb potential depends only or=|«| and|z| and is
. i ) VV%iven by
Similar expressions can be derived for valence electrons.
arrive at a set of coupled ordinary differential equations 2me? e 7
(ODE’s) subject to the two-point boundary value condition Vi) = ——+ ) (3D
of Eqg. (10). These are solved for the envelope functions and 0 s
subband energies. To describe screening, we adopt an effective pseudodynamic
In practice, we introduce a uniform grig;} along thez  dielectric function of the form
direction and finite-difference the effective-mass Sdimger
equations to obtain a matrix eigenvalue problem that can be 1 __ K 32)
solved using standard matrix eigenvalue routines. The result- €(K) Ktk

ing eigenvalues are the subband energiggk) and the cor-
responding eigenvectors are the envelope function
Frk,j(z), defined on the finite difference mesh.

In the pseudodynamic screening model, we completely ne-
%Iect screening by the massive holes and treat screening by
the lighter conduction electrons in the static screening limit.

The screening wave vectots is computed in the two-
C. Second quantized electron Hamiltonians dimensional(2D) limit. Thus*’

We next describe the second quantized Hamiltonians for 262 oN
electrons moving freely in the MQW interacting via a Ke= . iy
screened Coulomb potential. We denote creation and destruc- € Jdu
tion operators for electrons in conduction and valence su
bands bycfmk andc, ,, respectively. The second quan-
tized Hamiltonian for free electrons and holes is simply

(33

Bihere N,p, the two-dimensional conduction-electron den-
sity, is related to an effective chemical potentiaby

My keT 4Emm—ﬂ)
o Nop=—2 Inj1+exp —————/|. 34
Heo= 2, ER(KICh niCan: (27) D= i ¥ ke 0
) . S In Eq. (34), E;(0) is the conduction subband energy evalu-
The Coulomb interaction Hamiltonian is given by ated atk=0. In our simulation, the value qf is obtained by
1 requiring thatN,p , evaluated using Eq34), be equal to the
Hee=5 z E 2 Vz’rrzlr'-lkr’kr(’() value

ank o' n’ k' Kk*0
— Cc
xc! c! Lok Cank- (29 Nzo(t)—nzl:( fa(k,t) (35)

a,nk—k“a’ n’ k’'+
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obtained from the time-dependent conduction-electron distri- For the semiclassical laser field, we write the real electric
bution functionsf;(k,t). field as

D. Photogeneration of carriers

E(t)=%[fs€(t)ei‘"t+ e E(te e, (42)

Electron-hole pairs are created by the pump laser and we

treat the electric field of the laser in the semiclassical dipol§yherew is the photon frequency is a complex unit polar-
approximation. In this approximation, the electron-laser in-z5tion vector, and(t) is the pulse shape envelope function.

teraction Hamiltonian is

Her=—|€lE(): X [d3?,(K)CL iy k+H-C,
n,n’,k
(36)

where H.c. denotes the Hermitian conjugate of the first term.

The laser field i€(t) and the dipole matrix elements are

4570 = 3, DEL (o) [ 2R (FY . 2). @D

L

1)

The vector operatdD["/,(¢) is a 2x 6 matrix withx, y, and
z components. Thus,

D[’} (¢)=D}"(¢)x+Dy"()y+D5"($)z,  (39)
whereX, y, andz are unit vectors and
DSV _ P2 -B* 0 a —p* 0

X (¢)_ \/iEg —a* ﬂ 0 a* _B 0 y
(39a

co, o P2 | Ta -B* 0 —a —B* O

DY (d))_\/EEg —a* _B 0 o* ,8 0 y
(39b)

P, 0O 0 —-B 0O B

D%-v(¢)=E—go 0 - 0 0 —p| (399

The 6Xx2 vector operatorD}’;i(¢) is related to the X6
operatorD;"/, () by

D} (6)=[D}7. ()] (40

In Eq. (39), @ and B are thep-dependent phase factors

defined in Eq.(4) and the Kane parameteiB; andP,, for

wurtzite materials are related to the effective masses and

energy gaps ¥

02 52 (@_1 (Eg+A;+Ay)(Eg+2A,)—2A5

1 2m0 m;‘ Eg+2A2 !
(419
2 [ m
Pi=_ | ——1
2m0 m:_y
E(Eq+A+AL)(Eq+2A,)—2A2
5 g{ g 1 2 g 2 3} (41D

(Eg+A1+A5)(Eg+Ay) —Af

We assume a Gaussian pulse shape

t—=tg \°

1
71/
2In2

centered at=t, with an intensity full width at half maxi-
mum (FWHM) of 7. The maximum electric field strength,
&o, Is related to the pump fluencg by

S(t)=&, ex (43)

167F [In2
gO: —

cn,7 m

(44)

wheren,, is the index of refraction at the photon frequency.
For linearly polarized light incident normally on the

MQW, the polarization vectors are real and given by either

or y. For circularly polarized light, the polarization vectors
are complex and given B

X*iy
N
In Eq. (45), the upper sign refers to left circularly polarized

light (positive helicity and the lower sign refers to right
circularly polarized light(negative helicity.

(45)

€+ =

E. Coupling to LA phonons

We treat the acoustic phonons in the MQW as bulklike
plane-wave states with wave vecipr Since the system ex-
hibits cylindrical symmetry, 0n|yq=q2 longitudinal acoustic
phonons are coupled by the electron-phonon interaction. The
free LA phonon Hamiltonian can be written as

HAO=% fwgbibg. (46)

where b; andb, are creation and destruction operators for

LA phonons with wave vectay= qi. The wave-vector com-

ponentq of LA phonons in the MQW is thus defined in an
extended-zone scheme whereeo<q<e. The phonon dis-

persion relation is given by a linear relation

C33
wq=C4lq|= EML (47)
wherepg is the mass density and is just the LA phonon

sound speed for propagation parallel%tb2 In computing the
LA sound speed in the linear phonon dispersion relation of

235316-6



THEORY OF COHERENT ACOUSTIC PHONONS IN.. .. PHYSICAL REVIEW @&} 235316

Eq. (47), we neglect the dependence of the material param- N®® (K t)=(c'

. (k,t)=(c t)Cyr v k(1)), 53

eters and use bulk GaN values 10g; and pg. nnr (KD {Cank(BCarn (1) (53
The LA phonons in wurtzite MQW's interact with the \yhere( ) denotes the statistial average of the nonequilibrium

electrons through deformation potential and screened piezQgate of the system.

electric scattering. The electron—LA phonon interactioninan The interband components of the density matrix,

MQW is governed by the Hamiltonian Nyv.(k,t) and NS (k,t), describe the coherence between

conduction and valence electrons in subbandndn’ and
Hoa= > M anr (K@) (bg+ biq)c;n’kca'n,’k. are related to the optical polarization. The intraband compo-
a,nn’.kq nents of the density matrik®"“ (k,t) describe correlations
(48 . n.n . .
between different subbands of the same carrier typae if
This Hamiltonian describes the scattering of an electron from#n’. If n=n’, Np'7(k,t)=f{(k,t) is just the carrier distri-
subband statgx,n’ k) to subband statar,n,k) with either  bution function for electrons in the subband staté,(r),
the emission or absorption of an LA phonon. We note thailefined in Eq.8).
the electron wave vectde in the x-y plane is conserved in
this process since, as noted earlier, the phonon wave vector
in the x-y plane is zero.
The interaction matrix elements describing deformation The coherent phonon amplitude of théh phonon mode

G. Coherent phonon amplitude

and screened piezoelectric scattering are |q) is defined to b
. f . Dg(t)=(bg(t)+b_q(1)). (54)
Mn'n/(kvq): m Ian’n’(qu) i . i
Polft@q The coherent phonon amplitude is related to the macroscopic
le|ess lattice displacement)(z,t) and velocityV(z,t) through the
- emes(q)Pm”’(k’q)}’ (49)  relations

whereV is the crystal volume. The first term in E9) / h? .

desribes deformation potential scattering while the second U(Z't):% 2po(ﬁwq)velquq(t)’ (59)

term describes screened piezoelectric scattering.

The relative strengths of the various transitions are deter- 72 JD(t
mined by form factors for deformation potential and piezo- V(z,t)zE elaz a(t) (56)
electric scattering. The form factor for screened piezoelectric g ¥ 2po(fiwg)V at

scattering is given by
The coherent phonon amplitudk,(t) will vanish if there
o o are a definite number of phonons in the mode, i.e., if the
Pn’n,(k,q):; f dZngk,J(z)elqun’,k,J(Z)’ (50 phonon oscillator is in one of its energy eigenstatgs, In
this case, there is no macroscopic displacement of the lattice.
while the form factor for deformation potential scattering is  The coherent phonon distributiorf is
defined to be

NE(t)=(bl(1))(by(1)) (57)

Dﬁ,n'(k*Q):; laf dzFj(2)€9F,  ((2). (5D and the total phonon distributiol(t) can be separated into
coherent and incoherent contributions as follows:
The form factor for deformation potential scattering is _
similar to the form factor for piezoelectric scattering except Ny()=(bg()bT () =N+ N (L),  (58)
that in summing over spinor componerjtsthe terms are
weighted byj-dependent deformation potentidly* that can
be represented by the row vectors

In general, a mode can have a number of both coherent and

incoherent phonons, but only the coherent phonons contrib-

ute to the macroscopic lattice displacement.

0°={a,,,a.,} (524 We note that at the beginning of the experiment, there are
ez no coherent phonons present, i&5°(t)=0, and the inco-

herent phonon population is described by a thermal distribu-

;):{Dl+ D3,Dl+ D3,D1,D1+ D3,D1+ D31Dl} tion, NianOh(t)""e_ﬁwq/kBT-

(52b)
for conduction and valence electrons, respectively. H. Equations of motion

In this section, we develop equations of motion for the
electron density matrices and coherent phonon amplitudes.

We define statistical operators in terms of the electron and’he electron density matrices obey the general equations of
phonon eigenstates. The electron density matrix is motion

F. Electron density matrices

235316-7
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NS (k) N (k) . e
Pl (it 69 TS R0 £l 0
where[ | denotes the commutator aKid denotes the aver- _> {QR KON (K)
= :

age over an initial ensemble. The density matrices are de-
fined in the electron picture and initially the valence bands
are filled while the conduction bands are empty. We have
fi(k,t=—o)=0 andf’(k,t=—=)=1, which implies

—NRR(KQL (K}

i< e
+ 3 o AARR(ONGY (k)
N (Kt = =) = 8y 0 Oy O - (60) SRS OAL (). 630

The total Hamiltonian is the sum of the Hamiltonians The e

. . i i . quations of motion de\Ilr’]’ﬁ,(k,t) are redundant since
described in the previous sections, i.e., '

Nf]:ﬁ,(k,t)=[Nf]’,”’n(k,t)]*.
The first terms on the right-hand side of E§3) describe
H=Heot+ Heet HeLt Haot Hea- (61)  the free oscillation of the density matrices in the renormal-
ized single-particle energy bands. The time-dependent
In deriving equations of motion for the density matrices, Single-particle energies are
we make the ansatz that the density matrices depend only on

k=|k|. We use the rotating wave approximatiRWA) to ER(k, D) =Ef(K) + A7 1(K,1), (64)
factor out the rapice'®" behavior of the interband density
matrix elementN", (k,t). In the RWA, we have whereEf(k) are the single-particle subband energies in the

absence of conduction electrons and holes A&fjg(k,t) de-
oo ey _ scribes the time-dependent renormalization of the single-
Ny (k=N (ke (62 particle subbands.
The renormalization energie§; (k,t) are the diagonal
WhereNﬁ";,(k,t) is a slowly varying envelope function. In elements of a ge_neralized renormalization energy maéimix
addition, we treat the Coulomb interaction in the time-N€ subband indices
dependent Hartree-Fock approximation by factoring four-
operator averages arising froly,, into appropriate products Ap (k=31 (k) +Qy 1 (Kb). (65)
of two-operator averages as described in Ref. 27. ) ) o )
The resulting equations of motion for the density matrices! he first term in the renormalization energy mat(65) is
are the generalized exchange self-energy matrix arising from the
Coulomb interaction and is given by

INp'T (K1) i

[
S € = (INGT (K) SEk=— 2 VK (k=K'])
k' #k
=i Q8 (NLE, (k)= N2 (KQYT, (K)} XN (K" D) = 8608001, (66)
m il v il
i Wherevjjg’,‘fk,(lk—k’l) are angular averaged Coulomb in-
+— Z’ {AS W(KNZS(K) teraction matrix elements. The second term in &) ac-
h ' ’ counts for renormalization due to coupling of carriers to co-
—Nﬁ’,fn(k)Aﬁm,(k)}, 633 herent acoustic phonons. We have
aNYE, (Kt Qo (k=2 Dy(OM (ki) (67)

[
e =ER =€ (OIN T (K)
where Dy(t) is the coherent phonon amplitude and the
electron-phonon matrix elements! ;”n,(k,q) are defined in
Eq. (49). The self-energy corrections in E6) are small,
) though they can be important in some circumstances.
I P v, In computing the angular averaged Coulomb matrix ele-
* f Z A7 m(K)Np e (K) ments in Eq.(G%), we agsume smagll momentum transker
v, v and use the fact that the envelope functiéifs, ;(z) depend
_Nn:m(k)Am,n’(k)}’ (630) weakly onk to obtain an effective interaction,

—i 2 {ORRORGE (0 =N R0 QrT (k)
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subject to the initial conditions

vg’,',‘;ﬁ,k,(,()zj dzJ dZ'V,(2=2) 2 (Fn ey, (D1
i’

dDg(t=—)
, Dy(t=—»)=——F7—=0. (74)
X ey (212 (68) o
where, by definition, The closed set of coupled partial differential equations,
(63) and (73), for the carrier density matrices and coherent
. , |F§’k’j(z)|2+||:r‘1”’k,’j(z)|2 phonon amplitudes are converted into a set of coupled
<|Fn,(k,k’),1(z)| )= 2 - 69 opEs by discretizingk andq and solving forNﬁ"r‘f,,(ki) and

. ) i , i , D(q;) for each of the mesh points andq;. The resulting
The effective Coulomb interaction defined in Eq(68) isan  jnjtjal value ODE problem is then solved using a standard
even function of« and is symmetric i andk, thus pre- adaptive-step-size Runge-Kutta routie.
serving the symmetry relatiof80). Preserving this symme-  The phonon distributions do not appear in the coupled set
try is essential in order to maintain conservation of carriers iny equations(63) and (73). If necessary, they can be deter-

the scattering process. : aa ; .
i . . mined fromN_ ", (k) and the pair of equations
The second terms in E¢63) describe photoexcitation of n.n (k) P q

electron-hole pairs by the pump laser. The system reacts to gNEoh 2

an effective field that is the sum of the applied field and the =~ Tim > M?,(k.q)B,NT%(K) (75a
. . s . K . ot A n,n’/\ ™ 9" n,n’

dipole field of the electron-hole excitations. This gives rise to

a matrix of generalized Rabi frequencies in the subband in

a,n,n’ k

dices and
&(t) 4 g8 | > ML (Kg)*NEY (k)
v U n, — Tlw =— 7 (K, " .
th:n’(k):Tdrcl,n’(k)—i_ 2 Vz(j,rrll’k,k’ ot 4 h a,n,n’ k mh “ nn
k' #k (75b)
><(|k—k’|)Nﬁ"f1,(k’,t), (70 In Eq. (75b), B4(t)=(by(t)) satisfies the initial condition
, , ) By(t=—)=0. For the incoherent phonon distribution,
which can be shown to satisfy the symmetry relations
a/\/-incoh
AQe (k) =[AQp° (K)]*. (72) ;t =0 (76)
The Gaussian pump envelope functiét) is defined in - 55 ng incoherent phonons are generated and the incoherent
Eq. (43) and the optical dipole matrix elements phonon population maintains its initial thermal equilibrium
distribution.

m

a0 =[d5, 01 = [ deedznio @72

Ill. LOADED-STRING MODEL

are angular averages in they plane of the vector dipole  The microscopic equations are rather daunting and de-
matrices dotted into the polarization vector. From E2f),  tajled. In this section, we show how they can be simplified
the ¢ dependence Oﬂﬁ’;,(k) only appears irDjC,’j",(cz'J) and  (under certain conditiongo a more tractable model, namely,
we can get the angular averages by settingp) =a,,qy  that of a driven uniform string, provided one uses the appro-
=(1—1)/3m andB( )= Bayg=(1+i)/m in the 2X6 matri-  priate driving function,S(z,t), which is nonuniform. The
cesDY’(¢), DYY(¢) andD3"(¢) defined in Eq.(39). microscopics, including details of the superlattice band struc-
The last terms in Eq(63) are similar in structure to the ture and photogeneration process are included within the
renormalization corrections in the Hartree-Fock energies budriving function.
are more complicated due to mixing among subbands and In our detailed numerical simulations, we use the full mi-
involve the off-diagonal components af* , . The prime on ~ croscopic formalism discussed in the previous sections.

n,n’ -

the summation sign indicates that terms containing factors gioWever, we gain a lot of insight if we can deal with the
lattice displacement(z,t) directly. If we assume that the

a,a, .
Ny q (K) are excluded from the sum since these terms have . \qtic phonon dispersion relation is linear as in @),

already been incorporated in the renormalized Hartree-Foclan we find that)(z,t) satisfies the loaded-string equation
energies in Eq(64).

The coherent phonon amplitudBs,(t) satisfy the driven PU(z,t) PU(z,1)
1 _ 2 1

harmonic oscillator equations C: =5(z,t), (77
at? 9z?
2
d qu(t) +w§Dq(t): _ % s Mﬁ,n,(k,q)* subject to the initial conditions
ot a,n,n’ k
dU(z,t=—)
X{Npm (K,t) = 84 S}, (73) Uzt=-2)= —————=0. (79)
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The LA sound spee€; is defined in Eq(47), and the driv-  where the summation index runs over carrier species, i.e.,
ing functionS(z,t) is given by conduction electrons, heavy holes, light holes, and crystal-
field split holes.
1 2hCJq| Equation(80) suggests that each carrier species makes a
S a 1 1 ni 1 1
S(z,t)z—g 2 2 TM n’,n(k'q)* separate contribution to the driving function. The partial

ann’ kd driving functionsS,(z,t) are

X{Nr(:,’r?’(k't)_5a,v5n,n’}eiqz- (79)
J |eless

1
SV(Z!t):i%[aVa—'_ €. ]pv(zit)! (81)

One may question whether a linear phonon dispersion re-
lation is valid in a superlattice. For small wave vectpifor
which elasticity theory holds, the dispersion relation for LA wWhere the plus sign is used for conduction electrons and the
phonons in a superlattice is linear with a dispersion Minus sign is used for holes. Hepg(z,t) is the photogener-
ZEsq, where Es is the “average” sound speed of LA qted electron or hole number Qensny, which is real and posi-
phonons in the well and barriet$.This, in fact, has been tive, andp, is the mass density. We note that the loaded-

experimentally verified in InGaN/GaN superlattice samplesStfing equation for the propagation of coherent phonons
studied by Suret allt together with the simplified driving function in Eq®0) and

Note that coherent acoustic phonon generation in a Supe[31) have also been independently derived by other authors

lattice is qualitatively different than coherent optical phonon!™ the limit €3=0.% o , _ ,
generation in a bulk system where only tye 0 optic mode | In Eq. (81), the partlal dnymg function for a given species
can be excited. As a result, both the amplitudez,t) and S obtained by applying a simple operator to the photogener-
the Fourier transform of the amplitude,(t) for an optic a}ted carrier denS|ty._Th|s operator Is a sum of two terms, the
mode in bulk satisfy a forced oscillator equation. For thef'rSt due to _deformau.on potentlgl scatterlng and the second to
nonuniform, multiple quantum well case, one can exciteplezoelectrlc scattering. The piezoelectric coupling constant

acoustic modes withj=0. The Fourier transform of the am- eg3 is the same for all carrier species, while the deformation
plitude D4(t) of a coherent acoustic phonon obeys a forceopc’tem'al_av depends on the species. For conduction elec-
oscillator equation, but owing to the linear dependence offNS:@,=2cz, for heavy or_llght holesa, =D, + D3, and
»(q) on g, the amplitude itselfU(z,t), obeys a 1D wave O crystal field split holesa,=D,. ,

equation with a forcing terns(z,t). It is interesting to note that Planck’s constant does not

: o in either the loaded-string equat{@id) or in its as-
Another important point is that E77) can be taken to be 2PP€ar in €iti . . >
a uniform string with anonuniformforcing function. This is sociated driving function defined in E80) and(81). Thus,

because the speed of sound is approximately the same e find that coherent LA phonon oscillations in MQW’s can

both the GaN and iGa,_,N layers(a more detailed theory e viewed as an essentially classical phenomenon, an obser-

would take into account differences in the sound velocities inVatlon that was made in the context of coherent LO phonon

each layer. For propagation of acoustic modes one can ne_osci_llations in bulk semiconductors by Kuznetsov and Stan-
glect, to lowest order, the differences between the differenton In Ref. .6' . -
layers (this is not true for the optic modgsThe nonunifor- The driving functionS(z,1) satisfies the sum rule
mity of the forcing functionS(z,t) results from differences
in the absorptior{not sound velocityin the well and barrier o
layers and is, therefore, dependent. We thus see from Eq. f deSZ,t)ZO- (82
(77) that understanding coherent acoustic phonons in mul-
tiple quantum wells is equivalent to understandingnéorm o . )
string with aninhomogeneouforcing termS(z,t) containing ~ 1His is most easily seen from Eq®0) and (81), but it also
the microscopics. holds for the general expression in Eg@9). The significance

To simplify Eq.(79), we neglect valence band mixing and of the sum rulg is readllly _appremated. After the pump dies
assume that the effective masses, sound speeds, and couplf#fay. the carrier density in Ed81), neglecting tunneling
constants are uniform over regions wh&@,t)#0, i.e., in  Petween wells, is essentially constant and t8(ist) is time
regions where carriers are being photogenerated. We aldBdependent. In the loaded-string analogy, the integral of the
assume that the pump pulses are weak enough so that scre€Rving function over position is proportional to the average
ing of the piezoelectric interaction can be neglected. Finallyforce per unit length on the string. If this integral were non-
if the pump duration is long enough so that transient effect#€r0, then the center of mass of the string would undergo a
associated with photogeneration of virtual carriers can b&onstant acceleration resulting in the buildup of an infinite
ignored, then the off-diagonal elements of the carrier densitgmount of kinetic energy. Such an alarming result in the
matrices in Eq(79) can be dropped. In this case, the driving CONtext of coherent LA phonons is precluded by the sum rule

function takes the simple form in Eq. (82). . _ .
For a given driving function, the wave equati6fv), to-

gether with the initial condition$78), can be solved for the
2= S(z1), 80 coherent phonon lattice displacement by using the Green’s
Sz Ey Uz (0 function method? Thus,
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% % TABLE II. Simulation parameters for photogeneration of coher-
U(z,t)=J' dt’f dz'G(z—2z',t—t')S(z',t"). (83)  ent acoustic phonons in a four well MQW diode under flat band
m o biasing conditions. A schematic of the diode structure is shown in

In our MQW diode model, the substrate is assumed to b&ig. 1.
infinite and the Green’s function in this case is just

MQW diode structure

o) Left GaN buffer width(A) 43.0
G(z,t)= {B(z+C4t)—0(z—C4)}, (84
2Cs Number of wells 4
, o ) Well width (A) 63.0
where®(x) is the Heaviside step function. Indium fraction in well 0.06
We note that the loaded-string model described above ig N parrier width(A) 43.0

not restricted to the special case of an infinite substrate and
can be extended to study the generation and propagation f-’Jight GaN buffer width(A)

coherent LA phonons in more complicated heterostructures. 43.0
If the driving functionS(z,t) due to photoexcited carriers is Apoli .

. . . pplied bias
localized, then the assumptions leading to E§6) and(81) Vi (V) 0.261
need only hold in those regions whe®€z,t) in nonvanish- A '
ing. The wave equation applies to regions where the LA
sound speed, is constant. Heterostructure, in which the LA -attice temperature
sound speed is piecewise constant, have abrupt acoustic im-(K) 300.0
pedance mismatches that can be handled by introducing
more complicated Green'’s functions or by using other stanFump parameters
dard technique®33An example of such a problem would be Photon energyeV) 321
a MQW structure embedded in a free-standing substrate ifluence gJ/cnt) 160.0
which coherent LA phonons generated in the MQW couldGaussian FWHMfs) 180.0
bounce back and forth between two parallel substrate-air inPolarization Left circular

terfaces.

IV. RESULTS . . .
ing to their pure-state wave functionskat 0. For the zone-

In this section, we discuss simulations based on our mieenter HH state, the degenerate wave functions are the basis
croscopic theory of coherent LA phonon generation jpira  stateqv,1) and|v,4) defined in Eq(3). For the zone-center
diode structure with four periods of J|6a_,N/GaN LH state, the wave functions afe,2) and|v,5), and for the
MQW’s photoexcited by a Gaussian pump normally incidentCH band the zone-center wave functions [ar@) and|v,6).
along the(000J) z direction. The parameters for our numeri- The heavy-hole effective masses alangnd x-y are mZHH
cal exa}mple are listed in Table 1. The MQW dimensions and:. |A;+A; " 1=1.96 andm,t'_;'= |Ay+As—Ag| "1=1.92 for
Gaussian pump parameters were chosen to match thpse tylﬂ'éavy holesms=mtH=1.96 andm;_ryi: |A+ A+ A~
c_aIIy encoqntt_ered in room temperature pump-probe dn‘l‘eren-zO.14 for light holes, and,ngH=|A1|71=0.14 andm)((:_H
tial transmission measurements of coherent LA phonon o0s-. y
cillations carried out by Suret al!* on InyGayoN/GaN
MQW structures having 14 periods.

|A,|~1=1.96 for crystal-field splitoff holes.

50 e

A. Bulk wurtzite band structure i GaN ]
. . ) . HH=1.96 HH=1.92 ]
Bulk wurtzite GaN and InN are direct gap materials with or ]

band gaps of 3.4 and 1.95 eV, respectively. The bulk band
structure of unstrained wurtzite GaN is shown in Fig. 2. As
can be seen from equatiof® and(6), the band structure is
anisotropic and depends dg, the wave vector along the [
(000)) z axis, andk;, the wave vector within the-y plane -100 -
perpendicular to the axis. The effective-mass conduction i
band is twofold degenerate and has a parabolic dispersion
with anisotropic effective masses; =0.19 along thez di-
rection andmi_y=0.18 in thex-y plane.

The twofold degenerate valence bands are mixtures of FiG. 2. Bulk GaN valence band structure using effective-mass
heavy hole(HH), light hole (LH), and crystal-field splitoff  parameters taken from Table I. The bands are plotted along the
hole (CH) character. At the zone center, the off-diagonal(0007) k, axis and along the transversgaxis within thex-y plane.
components of the 83 upper and lower Hamiltonians in The anisotropic zone-center effective masses for heavy Kidld}

Eq. (6) vanish and the valence bands can be labeled accordght holes(LH), and crystal-field splitoff holeéCH) are indicated.

Energy (meV)
]
b

Ll A PR T W R
2 0.8 0.4 0.0 0.4 0.8 1.2
<——k, (i/nm) k;——>

150 Lt d i 4
.
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FIG. 3. Strain tensor components for pseudomorphically
strained InGa; 4N multiple quantum well diode as a function of
position. The diode parameters are listed in Table II.

FIG. 4. Electric field and potential for the strain field in Fig. 3.
The applied dc bia®/, has been adjusted so flat-band biasing is
achieved, i.e., so that the band edges are periodic functions of po-
. . sition. The diode parameters are listed in Table II.

B. Pseudomorphic strain

Bulk GaN and InN have different lattice constants soof elecrons and holes in the MQW is mostly due to strong
when an(000)) In,Ga,_;N MQW structure is grown, a sig- built-in piezoelectric fields that result in the triangular con-
nificant lattice mismatch occurs between theGm,_,N  finement potentials seen in each well.
wells and GaN barriers. For the,@a N MQW diode
specified in Table I, we assume pseudomorphic strain con- D. Photogeneration of carriers
ditions. In a pseudomorphically strained device, the lattice

. In our numerical example, we simulate photoexcitation of
constant throughout the MQW adjusts to the value of the ' .
lattice constant in the bulk N and P substrates in order telectrons and holes and the generation and subsequent propa

minimize the overall strain energy. In our simulated diode%atlon of coherent LA phonons in the hypothetical MQW

i when ian pump laser pulse is normally incicen
the substrates are— and p— doped GaN, so the lattice diode when a Gaussian pump laser pulse is normally incicent

. - along thez axis. A n in Table Il, th ian pum
constant throughout the device takes on the GaN value, |.ea0 g thez axis. As see able Il, the Gaussian pump

a,=3.189 A. The nonvanishing position-dependent StrairPulse is assumed to be left circularly polarized with a photon

. f 3.21 eV. Th fl i k
tensor components, ,, €,.,, ande,.,, for the MQW diode, energy of 3 ° e pump fluence is taken to be

nAbi 100.0 pJ/cn? and the Gaussian FWHM is taken to be
as Comp“ted from Eqel7) and(18), are shown in F.'g' 3 aS 180.0 fs. The expermient is assumed to take place at room
a function ofz. Clearly, the GaN barriers are unstrained since; ¢
the N and P substrates are composed of GaN and all the mperature. :
In Fig. 6, the computed conduction and valence subband

strain from the lattice mismatch is accommodated in theenergies are shown as functionsofor the InGa,_,N di-

No.06G2p 0N wells. ode. At the chosen pump energy of 3.21 eV, electrons from
the first two valence subbands are excited into the lowest-
C. Built-in piezoelectric field |y|ng Conduction Subband.

The presence of strain in the MQW's results in the cre- The computed densities of photoexcited electrons and
ation of a strain-induced polarizatid®{(z), directed along ~ Noles, neglecting and including Coulomb interaction effects,

as described by Eq19). The strain-induced polarization, in &€ Shown as functions of position and time in Figs. 7 and 8,
turn, results in a strong bult-in piezoelectric field that can be'€SPectively, and the total photoexcited electron density per

computed from Eq920) and(21), given the strain field and

the dc biasV,, applied across the diode. The computed 0.6 Ecoﬁduct:onbénd' E
strain-induced piezoelectric fielE2(z) and the piezoelectric __ 0.4 (shifted 3.15 eV) =
confinement potentia¥ ,ic,{ z), which result from the strain @ 0.2 F /\/\/\/\/ =
field in Fig. 3 are shown in Fig. 4. Prior to the application of N - 3
the pump pulse, we assume that the applied dc Yjabas § 0.0 /\/\/\/\/ -
been adjusted so that flat-band biasing in the diode is Yo E B
achieved, i.e.V, is such that the band edges seen in Fig. 4 “E valence band ]

are periodic functions of position. —0.4 bbbl
Given the piezoelectric field and confinement potentials -30 =20 —P1q 0 1020 30
position-dependent band edges for the MQW can be com- osition (nm)
puted. The conduction and valence band edges for our FiG. 5. Conduction- and valence-band edges for pseudomorphi-
pseudomorphically strained MQW diode are shown as funceally strained IgGa N multiple quantum well diode as a function
tions of position in Fig. 5. These are just the confinemenf position. The applied dc biag, has been adjusted so flat-band
potentials,V ,(z) =V, gad 2) + Vpiezd 2), in the diode prior to  biasing is achieved, i.e., so that the band edges are periodic func-
photoexcitation. It is clear from Fig. 5 that the confinementtions of position. The diode parameters are listed in Table II.
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FIG. 6. Conduction and valence subband energies as functions
of k for the InGa,_«N diode structure described in Table 1.

unit area as a function of time is shown in Fig. 9. In Fig. 9
the pulse shape is shown for comparison. We find that in-
cluding Coulomb effects decreases the total photogenerated
carrier density. The electrons and holes screen the built-in
piezoelectric field widening the effective band gap. This
quantum confined Stark effect acts to suppress the photoge-
neration of carriers.

E. Generation of coherent phonons

The driving functionS(z,t) for the driven string equation
(77) is shown in Fig. 10 as a function of position and time.

e —A0

PHYSICAL REVIEW @&} 235316

(a) Electrons

20

A0
S osion e

(b) Holes

_—_20 —\O

o A O 20

e ooiion (A

FIG. 8. Density of excited carriers including Coulomb effects

for (a) electrons andb) holes as functions of position for the

(a) Electrons

In,Ga _«N diode structure and laser pumping parameters taken

The driving function has units of acceleration and in Fig. 10,
we computeS(z,t) by using the full microscopic formalism

For comparison, we also computed the driving function in

4

— from Table II.

|E 3 L

© 2

=1

& o of Eq. (79).
S

Ao 29
_~0o —1\O
& °osion e

(b) Holes

the simplified loaded-string model of Eq80) and (81) us-

ing the carrier densities shown in Fig. 8 to facilitate the com-
parison. Since the photoexcited holes are predominantly a
mixture of heavy and light holes, we use=D,+Dj in
computing hole deformation potential contributions in Eq.
(81). The sum over species, then yields the total driving

P function,
‘e 3

S 2 &E - i w/o Coulomb A
— 1.5 i =
== ‘1 Xk with Coulomb
= a s ]
é % ;—o_/1.0_— —
> E ]
= ° 2 o5 =
T 2 3 r <~ Pulse Shape .
Y~ o 0.0C v Ny gt b s
8

A QO
>0 —A\O O
= P osition [€3322))

FIG. 7. Density of excited carriers computed in the absence of

-2 0 2 4 6
Time (ps)

FIG. 9. Total photoexcited electron density with and without

Coulomb effects for(a) electrons andb) holes as functions of

Coulomb effects as a function of time for the,Gg,_,N diode

position for the InGa _,N diode structure and laser pumping pa- structure and laser pumping parameters listed in Table Il. The pulse

rameters shown in Table II.
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FIG. 10. Driving functionS(z,t) for the coherent LA phonon
wave equation as a function of position and time for th&lka N
diode structure and laser pumping parameters in Tab®(#,t) is
computed using the full microscopic expression of Et9).

1 d N le|ess 1 D 4D d
S(Z,t)—% A Pele&Z,t)—E (D, 3)5
leless
+€_ phOle(th)1 (85)

wherepged z,t) and pnhodz,t) are the total conduction elec-
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FIG. 12. Driving functionS(z,t) in the simplified loaded-string
model att=2 ps for the coherent LA phonon wave equation as a
function of position for the IfGa, N diode structure and laser
pumping parameters in Table Il. The total driving functi®{z,t),
is the sum of piezoelectric and deformation potential contributions,

Spiezd Z,t) and Sgef2,1).

havepeied Z,t) ~ ppoid Z,t) and henceS;e,{z,t) ~0, even for
relatively large values of;5. The built-in piezoelectric field
serves to spatially separate the electrons and holes so that
Peled Z,t) # proie(Z,t) and henceS;e,dz,t) # 0. However, if

the built-in piezoelectric field is too strong and the spatial
separation of electrons and holes too large, thgp(z,t)
—proi(Z,t) = 0. This is because the overlap between the con-

tron and valence hole densities plotted in Fig. 8. The resultyyction and valence envelope functions enters into the opti-

ing S(z,t) is shown in Fig. 11.

cal dipole matrix elements in E437). If there is negligible

By comparing Figs. 10 and 11, we see that for the diodeyyerlap between electron and hole envelope functions due to

structure and Gaussian pump used in our simulation the si

effect depends on the piezoelectric constgt the number

of photogenerated electrons and holes, as well as the spatial
separation of electron and hole densities brought about by s (zt)=—=
p

the strong built-in piezoelectric field in the MQW'’s. From
Eq. (85), the piezoelectric contribution to the driving func-
tion is given by

i lefess

Spiezo(zvt): {pelec,(zat)_phole(zvt)}- (86)

Po €

In the absence of a built-in piezoelectric figlsich as the
one found in a square well with infinite barrigrsve would

S(zd) ( 107 nm/ps” )

A0 29

—20 N9 [€3322))

P osi\ion

FIG. 11. Driving functionS(z,t) in the simplified loaded-string

Mstrong piezoelectric fields thetf’ ,(k)~0, no electron-hole
plified loaded-string model produces essentially the same re- gp Edﬁ*” (k)

sults as those obtained using the full microscopic formalism:
Acoustic LA phonon generation due to the piezoelectricf

airs are photogenerated and once aggjgdz,t)~0.
The deformation potential contribution to the driving
unction is given by

ac,z (?Pe|e(,(2,t)
0z

_ (D1+D3) dpnadz:t)
Po iz
(87)

From Table I, the conduction electron deformation potential
ac , is roughly twice the valence-hole deformation potential,
D;+Dj. Thus, the two terms in Eq87) are of comparable
magnitude. The first term, due to conduction electrons, gives
rise to a contribution t&Sy(z,t) which is localized on the
right side of each MQW while the second, due to valence
holes, gives rise to a contribution that is localized on the
left-hand side of each MQW.

In our simulation, we find that piezoelectric and deforma-
tion potential contributions to the driving function are com-
parable. This is seen in Fig. 12 whe$g,{z) and Sy(2),
along with their sum, are plotted &£ 2 ps. In this example,
we find thatSye(z) makes the dominant contribution z,t
as can be seen in Fig. 12.

The macroscopic lattice displacemdhtz,t) and velocity
field V(z,t) can be obtained from the coherent phonon am-
plitudesD(t) using Egs.(55) and (56). Alternatively, they
can also be obtained from the driving functid®(z,t)
through the Green’s function solution of the driven string
equation. In Fig. 13, we plot the macroscopic lattice dis-

model for the coherent LA phonon wave equation as a function oplacementU(z,t), and velocity field,V(z,t), for coherent

position and time for the IGa _,N diode structure and laser
pumping parameters in Table II.

LA phonon modes generated by the driving function shown
in Fig. 10.
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JERYYS —225-\(\2‘« e FIG. 14. Total energy densit o(z,t) for coherent LA phonons

as a function of position and time for the driving function shown in
FIG. 13. Lattice displacemeti(z,t) and velocity fieldV(z,t) Fig. _10. The _total int_egrated energy density as a function of time is
for coherent LA phonons generated by the driving function showrPPtained by integrating over position,
in Fig. 10.

Ast—oo, alocalized energy density appears in the MQW
region due almost entirely to the potential-energy term in Eq.

From the lattice displacemeht(z,t), we can obtain the (880. This is due to near-steady-state loading by the driving
total energy density per unit volume associated with cohererftinction at long times. Assuming that the driving function

F. Coherent phonon energy

LA phonons, S(z,t) is approximately constant at long times, the loaded-
string equatior{77) can be integrated once in the steady-state
EAZ) =T A(Z,t) +V a(Z,1), (883  limit. We find the steady-state solution
as the sum of a kinetic-energy density term,
po(z) [ IU(z,1)\? M@ JZ S(Z)
Tia(zt)= 5 ( at , (88b 97 wdz cz (90)

and a potential-energy density term,

Caf) (VD)2 % 6] & ps | |
z z,
e R T Mi"\]"\_»«/v\m
2 Jz <
The coherent LA phonon energy per unit ar&u(t), is g 4—6 P |
obtained by integrating, o(z,t) over positionz N
B o 4 ps
E0= [ dasan. @@ T 20 —
- ~ Tl 2es npdamyw
The total energy density€ A(z,t) for coherent LA vj 0 0 Ps o |
phonons as a function of position and time is shown in Fig. L —
14 and in Fig. 15 the total energy density is plotted asa —100 =50 0 50 100

function of position for equally spaced values of the time
ranging fromt=0 to t=8 ps in increments of 2 ps. The
curves in Flg 15 for different times have been offset to avoid FIG. 15. Total energy densiﬁ/‘LA(z”[) for coherent LA phonons
overlapping. At short times, the evolution of the total phononas a function of position for several values of the titnfor the
energy density is complicated, but the long time behavior, driving function shown in Fig. 10. The curves for different times
=6 ps, can be easily understood. have been offset to avoid overlapping.

Position (nm)
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from which the long-time behavior of the LA phonon energy
density per unit volume in the MQW's,

N 2
fﬂz’%) , (91

S

Cs3(2)

can be obtained. The fact that the energy density in(&8.
is localized in the MQW's follows directly from the sum rule
(82) and is clearly seen in Figs. 14 and 15.

In addition to the localized energy density, which remains
behind in the MQW's, two propagating wave trains consist-
ing of four pulses each are seen to exit the MQW region and
travel off to infinity at the acoustic phonon sound sp€rd
The distance between the pulses is just the interwell separa-
tion distance. In these radiating wave trains, the kinetic and
potential energy densitie§; o(z,t) and)) 5(z,t), are found
to be equal as one would expect.

The power spectrum of the coherent LA phonon energy
density inq space can be written in terms of the coherent

phonon amplitude® 4(t). The power spectrum for the total 0.0 05 10 15
coherent LA phonon energy density,  Wayevester B o)
ELa(a,t) =7 a0, ) +Vala,t), (923

FIG. 16. Total energy density power spectrém(q,t) for co-
is again the sum of a kinetic-energy term, herent LA phonons as a function of phonon wave vegtand time
for the driving function Fig. 10. The total integrated energy density

2 as a function of time is obtained by integrating oger

: (92b)

1 7

D (1)
Talg,t)= A o —
q

ot

is clear from the figure that the buildup of energy in coherent
LA phonons takes place on a time scale that is much longer
1 than the pump duration. In addition, we see that the total
Via(g,t)= _ﬁwq|Dq(t)|2. (920 energy buildup in the phonons saturates at around 5 ps and
2A that some strong but rapidly decreasing oscillations are su-

The phonon energy density per unit area is obtained by sunf€rimposed on top of an increasing trend.

ming the power spectrum over positive phonon wave vectors | € saturation phenomenon results from the fact that we
q. Thus have a finite number of quantum wells and not an infinite

superlattice. The results can best be explained in terms of the
driven string equation. In general, the rate at which energy is
ELa(h =2 &alanb). (93 fed into the phonon field per unit area is described by the
>0 energy equatiorf
The total energy density power spectrum for coherent LA
phonons as a function of phonon wave veaand time is IE A
shown in Fig. 16. The peak nea=0 is associated with

and a potential-energy term,

L
=Pofo dzSz,1)V(z1), (95

buildup of the steady-state energy density localized in the o

MQW region. Secondary peaks are seen negy N
=0.59 nm! and twice this wave vector, i.eq;=2q, <4 ' ' ‘ 3
=1.18 nni L. The wave vector, corresponds to the wave E 5 £ "ulse Shape E
vector of the MQW period, 3 B FaSNE
o 2; ‘// F’otenholé

2m ° &

Qo= +Ly (94) B RN Y Kinetic 3

s = E

wherelL,, andL,, are the well and barrier widths. MoE L Y IR
-2 0 2 4 6 8

The total coherent LA phonon energy per unit area can be
obtained from either Eq(89) or Eq. (93). In Fig. 17, we
show the total phonon energy per unit aréq,(t), as a FIG. 17. Integrated energy densiy A(t) as a function of time
function of time for the coherent LA phonons generated byfor coherent LA phonons generated by the driving function shown
the driving function shown in Fig. 10. The total energy perin Fig. 10. The total integrated energy density is the sum of kinetic-
unit area is the sum of kinetic- and potential-energy termsand potential-energy terms. The pulse shdgebitrary unit$ is
For comparison, the pulse shape is shown as a dotted line. dhown for comparison.

Time (ps)
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in which S(z,t) andV(z,t) are the phonon driving function curs between the wells and barriers. The presence of strain in
and velocity fields defined in Eq$79) and (56), andpy is  the MQW's results in the creation of strain-induced built-in
the GaN mass density used for computing the sound speegiezoelectric fields on the order of several MV/cm, which
C., in Eq. (47). The energy equation simply suggests thatsignificantly alter the electronic and optical properties of the
the rate at which energy is added to a driven string is prodiode structure. In particular, the effective band gap can be
portional to the local force times velocity integrated over thelower than the band gap in unstraine¢®a, _,N wells due
length of the string. The integral in E¢Q5) vanishes when to the presence of triangular piezoelectric potentials.
the transient velocity field/(z,t) exits the MQW region in To a first approximation, the generation of coherent LA
which the driving functionS(z,t) is localized. Thus, the phonons is driven by optical photoexcitation of electron-hole
time, t,, required for€ A to saturate is just the time it takes pairs by an ultrafast Gaussian pump laser. Under typical ex-
for an LA sound wave to cross the MQW, i.é,,~W/C,,  perimental conditions, the propagation of coherent LA
whereW is the width of the MQW region over which the phonons is described byumiformloaded-string equation for
driving function is localized. In our example, the LA sound the lattice displacement where the time- and position-
speed isC,=80 A/ps in GaN and the MQW widtiffour- ~ dependent driving force on the string is a function of the
well and three-barrier layerss W=381 A, from which we photoexcited carrier density. This differs from coherent LO
obtaint,,=4.8 ps. phonon oscillations in bulk systems where the coherent LO
The oscillations ofE, 5 observed in Fig. 17 reflect the phonons obey a forced oscillator equation. Both deformation
number and periodicity of the diode MQW'’s. The pump laserpotential and piezoelectric coupling mechanisms contribute
generates spatially periodic electron and hole distributionsfo the driving force. We find that deformation potential cou-
as seen in Fig. 7, due to the fact that the pump photoexcite@ling contributes a driving force proportional to the deriva-
carriers in the wells but not the barriers. From each of thdive of the carrier density while piezoelectric coupling con-
wells in the MQW, two double-peaked sound pulses emerg&ibutes a driving force proportional to the photoexcited
traveling in opposite directions thus giving rise to an out-carrier density.
wardly propagating velocity field patteii(z,t) with eight We found that the driving term in the loaded-string equa-
peaks traveling outward in each direction as seen in Fig. 13ion is suddenly turned on by rapid generation of electron-
The driving functionS(z,t), on the other hand, is localized hole pairs by the pump and remains approximately constant
in the MQW's and is relatively constant in time after the theafter. This sudden displacive loading of the string results
pump pulse dies out. The driving functions localized in eachin & new static equilibrium lattice displacement. This new
well do work on eight traveling velocity disturbances, the static equilibrium displacement corresponds to a population
two generated in the well itself as well as the ones generate@f coherent LA phonons witlj~0. As the lattice adjusts to
in the three neighboring wells that subsequently pass by. Thige new equilibrium, coherent LA phonons are transmitted in
gives rise to the six peaks plus saturation plateau seen in Fi§e positive and negativedirections at the LA sound speed.
17. The time interval between coresponding peaks in adjalhese traveling coherent LA phonons are characterized by
cent wells is just the time it takes for the LA sound waves tod~27/L whereL is the superlattice period.
travel between wells, i.etperio= (Lw+Ly)/Cs, WhereL,, The formalism described here can be applied to the analy-
andL, are the well and barrier thicknesses. For the MQWsis of more complicated device geometries as well as more
structure L,,=63.0 A andL,=43.0 A and we havéyeiod complicated laser pulse sequences. This gives a simpler
=1.325 ps, which agrees with the peak-to-peak time pemethod for calculating the coherent LA phonon generation in

tween the first and third or second and fourth peaks seen ifore complicated geometries and gives additional insight
Fig. 17. into the acoustic coherent response.
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