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Theory of coherent acoustic phonons in InxGa1ÀxNÕGaN multiple quantum wells
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A microscopic theory for the generation and propagation of coherent LA phonons in pseudomorphically
strained wurtzite~0001! InxGa12xN/GaN multiple quantum wellpin diodes is presented. The generation of
coherent LA phonons is driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump laser
and is treated theoretically by using the density matrix formalism. We use realistic wurtzite band structures
taking valence-band mixing and strain-induced piezoelectric fields into account. In addition, the many-body
Coulomb interaction is treated in the screened time-dependent Hartree-Fock approximation. We find that under
typical experimental conditions, our microscopic theory can be simplified and mapped onto a loaded-string
problem that can be easily solved.
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I. INTRODUCTION

In recent years, experiments have shown that optical
citation of electron-hole pairs in semiconductors by ultraf
lasers can coherently excite longitudinal optical phon
modes in semiconductors.1–10 In uniform bulk semiconduc-
tors, since the laser wavelength is much larger than the
tice spacing, the photogenerated carriers are typically exc
by the optical pump over spatial areas that are much la
than the lattice unit cell. As a result, the excited carrier po
lations are generated in a macroscopic state and the ca
density matrix has only aq'0 Fourier component. Coupling
of the photoexcited carriers to the phonons leads only
coherent optical phonon modes withq'0. Since the fre-
quency of theq'0 acoustic phonon is zero, coherent aco
tic phonons are not excited in bulk semiconductors.

In semiconductor superlattices, even though the la
pump has a wavelength large compared to the lattice spac
the pump can preferentially generate electron-hole pair
the wells. The result is to create photoexcited carrier dis
butions that have the periodicity of the superlattice. Since
density matrix of the photoexcited carrier populations n
has aqÞ0 Fourier component, the photoexcited carriers c
not only couple to the optical phonon modes, but they c
also generate coherent acoustic phonon modes with a
zero frequency and wave vectorq'2p/L, whereL is the
superlattice period. In superlattices, the coherent phonon
cillation of zone-folded acoustic phonons has been obse
in AlAs/GaAs superlattices.9,10 However, the reflection
modulation, observed to be on the order ofDR/R
;1025–1026, is very small.10

Recently, Sunet al.11 reported studies of coherent acous
phonon oscillations in wurtzite~0001! InxGa12xN/GaN mul-
tiple quantum well samples with strain induced piezoelec
fields. Owing to the strong piezoelectric fields at the int
faces, huge coherent acoustic phonon oscillations were
served. The oscillations were strong enough to be seen in
transmision~rather than the usual reflectivity! with DT/T
;1022–1023. The oscillation frequency, in the teraher
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range, corresponding to the LA phonon frequency withq
'2p/L, varied between samples in accordance with th
different superlattice periodsL.

In this paper, we formulate a microscopic model for t
generation of coherent acoustic phonons in strained wurt
superlattices via ultrafast laser photoexcitation of real ca
ers. Whereas in bulk systems the microscopic theory of
herent LO phonons can be mapped onto a forced oscill
model,6 we show that coherent LA phonon generation in s
perlattices, under appropriate conditions, can be map
onto a loaded string modelthat is readily solved for the
lattice displacement. Since acoustic phonons are almos
same in the well as in the barrier, to lowest order we can tr
the string as being uniform.12 The forcing term on the string
however, is not uniform since photoexcitation of carriers o
curs only in the wells.

Our paper thus provides justification for using a simp
uniform string model with a nonuniform forcing term, rath
than a more complicated microscopic theory. In addition,
provide a microscopic expression for the forcing term to u
in the simplified string model. The string model provid
additional insight into the physics of the coherent L
phonons.

II. MICROSCOPIC THEORY

In this section, we derive the microscopic theory for c
herent acoustic phonon generation in superlattices and m
tiple quantum wells, including the effects of~i! band struc-
ture, ~ii ! strain, ~iii ! piezoelectric fields,~iv! Coulomb
interactions, and~v! laser optical excitation. In Sec. III, we
will show how this reduces to a simplified driven unifor
string model with a nonuniform forcing term and a micr
scopic expression for the forcing term.

We model photogeneration of electrons and holes and
subsequant excitation of coherent acoustic phonons in a m
tiple quantum well~MQW! pin diode shown schematically
in Fig. 1. The intrinsic active region consists of a left Ga
buffer region, several pseudomorphically strained~0001!
©2001 The American Physical Society16-1
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InxGa12xN quantum wells sandwiched between GaN ba
ers, and a right GaN buffer region as indicated in the figu
The P andN regions are assumed to be abruptly termina
p- and n-doped GaN bulk layers separated by a distancL
across which a voltage drop,DV5VA , is maintained. Pho-
toexcitation of carriers is achieved by means of an ultra
laser pulse incident normally along the~0001! growth direc-
tion, taken to coincide with thez axis.

A. Bulk band structure

In bulk systems, the conduction and valence bands
wurtzite crystals including the effects of strain are trea
using effective-mass theory. Near the band edge, the e
tive mass Hamiltonian for electrons is described by a 232
matrix that depends explicitly on electron wave vectork and
the strain tensore. The electron Bloch basis states are tak
to be

uc,1&5uS↑&, ~1a!

uc,2&5uS↓&. ~1b!

The conduction band Hamiltonian is diagonal and we h
~relative to the bottom of the conduction band! ~Refs. 13 and
14!

H232
c ~k,e!5H \2kz

2

2mz*
1

\2kt
2

2mx-y*
1ac,zez-z

1ac,x-y~ex-x1ey-y!J I232 , ~2!

where I232 is the identity matrix. The electron effectiv
masses alongz ~taken to be parallel to thec axis! and in the
x-y plane aremz* and mx-y* , respectively,kt

25kx
21ky

2 , and
ex-x , ey-y andez-z are strain tensor components, andac,z and
ac,x-y are the deformation potentials.

The Hamiltonian for the valence bands is a 636 matrix.
Following Ref. 15, the Hamiltonian~relative to the top of the
valence band! can be block diagonalized into two degnera
333 submatrices if we adopt the Bloch basis states

uv,1&52
a*

A2
u~X1 iY!↑&1

a

A2
u~X2 iY!↓&, ~3a!

FIG. 1. Schematic diagram of the InxGa12xN multiple quantum
well diode structure.
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uv,2&5
b

A2
u~X2 iY!↑&2

b*

A2
u~X1 iY!↓&, ~3b!

uv,3&5b* uZ↑&1buZ↓&, ~3c!

uv,4&52
a*

A2
u~X1 iY!↑&2

a

A2
u~X2 iY!↓&, ~3d!

uv,5&5
b

A2
u~X2 iY!↑&1

b*

A2
u~X1 iY!↓&, ~3e!

uv,6&52b* uZ↑&1buZ↓&. ~3f!

The phase factors,a and b, are functions of the anglef
5tan21(ky /kx) and are given by

a~f!5
1

A2
exp@ i ~3p/413f/2!#, ~4a!

b~f!5
1

A2
exp@ i ~p/41f/2!#. ~4b!

The block diagonalized Hamiltonian can be written as

H636
v ~k,e!5S H333

U ~k,e! 0

0 H333
L ~k,e!

D , ~5!

where the upper and lower blocks of the Hamiltonian are

H333
U ~k,e!5S F Kt 2 iH t

Kt G D2 iH t

iH t D1 iH t l
D ~6a!

and

H333
L ~k,e!5S F Kt iH t

Kt G D1 iH t

2 iH t D2 iH t l
D . ~6b!

The elements appearing in the 333 Hamiltonian matrices
are

F5D11D21l1u, ~7a!

G5D12D21l1u, ~7b!

Kt5
\2

2m0
A5kt

2 , ~7c!

Ht5
\2

2m0
A6ktkz , ~7d!

D5A2D3 , ~7e!

l5
\2

2m0
~A1kz

21A2kt
2!1D1ez-z1D2~ex-x1ey-y!, ~7f!
6-2
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THEORY OF COHERENT ACOUSTIC PHONONS IN . . . PHYSICAL REVIEW B64 235316
u5
\2

2m0
~A3kz

21A4kt
2!1D3ez-z1D4~ex-x1ey-y!. ~7g!

In Eq. ~7!, the Ai8s are effective-mass parameters, theDi8s
are the Bir-Pikus deformation potentials, and theD8s are
related to the crystal field splitting,Dcr , and spin-orbit split-
ting, Dso , by D15Dcr andD25D35Dso/3. m0 is the free-
electron mass.

B. Quantized carrier states in MQW diodes

In quantum-confined systems such as thepin diode shown
in Fig. 1, we must modify the bulk Hamiltonian. The finit
MQW structure breaks translational symmetry along thz
direction but not in thex-y plane. Thus, quantum confine
ment of carriers in the MQW active region gives rise to a
of two-dimensional subbands. The wave functions in the
velope function approximation are

cn,k
a ~r !5(

j

eik•r

AA
Fn,k, j

a ~z!ua, j &, ~8!

wherea5$c,v% refers to conduction or valence subbandsn
is the subband index,k5(kx ,ky,0)5(k,f) is the two-
dimensional wave vector, andj labels the spinor componen
For conduction subbands, (a5c) j 51,2 while for valence
subbands (a5v) j 51, . . . ,6. Theslowly varying envelope
functionsFn,k, j

a (z) are real and depend only onk5uku, while
the rapidly varying Bloch basis statesua, j & defined in Eqs.
~1! and ~3! depend onf in the case of valence subbands
given in Eq.~4!. The area of the MQW sample in thex-y
plane isA, andr5(x,y,0) is the projection ofr in the plane.

The envelope functions satisfy a set of effective-m
Schrödinger equations

(
j , j 8

$H j , j 8
a

~k!1d j , j 8@Va~z!2En
a~k!#%Fn,k, j 8

a
~z!50, ~9!

subject to the boundary conditions

Fn,k, j
a ~z50!5Fn,k, j

a ~z5L !50, ~10!

whereL is again the length of the MQW diode structure~c.f.
Fig. 1!, Va(z) are the quantum-confinement potentials
conduction and valence electrons, andEn

a(k) are the energy
eigenvalues for thenth conduction or valence subband. No
that in the envelope function approximation, the subband
ergy depends only on the magnitudek of the transverse wave
vector and not on the anglef. For the quantum-confined
case, the matrix operatorsH j , j 8

a (k) depend explicitly onz
and are obtained by making the replacementkz→2 i (]/]z)
and letting all material parameters bez-dependent operator
in the matricesHa(k,e) given in Eqs.~2! and~5!. To ensure
the Hermitian property of the Hamiltonian, we make the o
erator replacements16

B~z!
]2

]z2
→ ]

]z
B~z!

]

]z
, ~11a!

and
23531
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B~z!
]

]z
→ 1

2 FB~z!
]

]z
1

]

]z
B~z!G . ~11b!

The quantum-confinement potentialsVc(z) and Vv(z)
arise from~i! band gap discontinuities between well and b
rier regions,~ii ! the strain-induced piezoelectric field, an
~iii ! the time-dependent electric field due to photoexci
electrons and holes. Thus,

Va~z,t !5Va,gap~z!1Vpiezo~z!1Vphoto~z,t !, ~12!

and the band structure is explicitly time dependent.
Material parameters for InN and GaN used in this wo

can be found in Table I. For InxGa12xN alloys, we interpo-
late between the GaN and InN values listed in the table.

We obtain electron effective masses by linearly interp
lating the reciprocals of the masses as a function of the
dium concentrationx, i.e., the concentration-dependent effe
tive masses are taken to be

1

mx-y* ~x!
5xS 1

mx-y* D
InN

1~12x!S 1

mx-y* D
GaN

, ~13a!

and

1

mz* ~x!
5xS 1

mz*
D

InN

1~12x!S 1

mz*
D

GaN

. ~13b!

For the alloy band gapEg(x), we use an expression in
corporating a bowing paremeter:

Eg~x!5xEg,InN1~12x!Eg,GaN2bx~12x!, ~14!

where the bowing parameter,b51.0 eV.18 For all other ma-
terial parameters, we use linear interpolation inx to obtain
values for the alloy. Since we cannot find deformation pot
tials for InN, we use GaN values by default. In the absen
of values ofe` for either GaN or InN, we use linear inter
polation inx to obtaine0 and simply takee`'e0.

If the z dependent band gap in the MQW isEg(z) as
determined from Eq.~14! and the indium concentration pro
file, andEg,min5minz@Eg(z)# is the minimum band gap in the
structure, then the confinement potentials for conduction
valence electrons are defined as

Vc,gap~z!5Eg,min1Qc@Eg~z!2Eg,min#, ~15a!

Vv,gap~z!52~12Qc!@Eg~z!2Eg,min#, ~15b!

where the conduction band offset is taken asQc50.6.18 With
these definitions for theVa,gap(z), the zero of the gap con
finement potential is placed at the top of the valence-b
profile.

The confinement potentials due to the strain-induced
ezoelectric field are given by

Vpiezo~z!52ueuEz
0~z!, ~16!

where ueu is the electric charge andEz
0(z) is the strain-

induced piezoelectric field. In a pseudomorphically strain
MQW diode, the bulk source and drain~assumed to have
6-3
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TABLE I. Material parameters for wurtzite InN and GaN. Ma
terial parameters for InxGa12xN are obtained through interpolatio
in x as described in the text.

Parameter InN GaN

Lattice constants

a0~Å! 3.540a 3.189a

c0~Å! 3.708a 5.185a

u0 0.377a 0.376a

Direct band gaps~eV!

Eg 1.95b 3.40b

Electron effective masses (m0)

mx-y* 0.10c 0.18c

mz* 0.11c 0.19c

Hole effective mass parameters

A1 -9.28c -7.24c

A2 -0.60c -0.51c

A3 8.68c 6.73c

A4 -4.34c -3.36c

A5 -4.32c -3.35c

A6 -6.08c -4.72c

Hole splitting energies~meV!

D15Dcr 17.0c 22.0c

D25Ds0/3 1.0c 3.67c

D3 1.0c 3.67c

Electron deformation potentials~eV!

ac,xy -4.08d

ac,z -4.08d

Hole deformation potentials~eV!

D1 0.7d

D2 2.1d

D3 1.4d

D4 -0.7d

Piezoelectric constants (C/m2)

e31 -0.57a -0.49a

e33 0.97a 0.73a

Elastic stiffness constants~GPa!

C11 190a 374a

C12 104a 106a

C13 121a 70a

C33 182a 379a

C44 10a 101a

Static dielectric constant

«0 15.3e 8.9f

aReference 17.
bReference 18.
cReference 19.
dReference 14.
eReference 20.
fReference 21.
23531
identical composition! are unstrained while the in-plan
MQW lattice constants adjust to the source and drain valu
For a MQW grown along@0001# ~the z direction!, the z de-
pendent strain is22

ex-x~z!5ey-y~z!5
a02a~z!

a~z!
. ~17!

Here a0 is the lattice constant in the source and drain a
a(z) is thez-dependent lattice constant in the MQW. Min
mizing the overall strain energy, we find22

ez-z~z!52
2C13~z!

C33~z!
ex-x~z!, ~18!

whereC13(z) andC33(z) arez-dependent elastic constants
There are several issues concerning strain that one

worry about. One is the critical well thickness beyond whi
the strain relaxes. Studies have shown23 that with 10% in-
dium and 6 nm well width, a 350 kV/cm field is measure
implying that the well is not fully relaxed, which justifies th
use of pseudomorphic strain approximation as we do in
paper for wells having 6% indium and thickness near 4 n
For thick wells, this pseudormorphic strain approximati
clearly will begin to break down and a more detailed mod
will be needed. Interface roughness can also play a role.
roughness will not significantly affect the acoustic phon
modes~see Introduction! but may affect the photogeneratio
of carriers.24 For simplicity, we do not consider interfac
roughness.

The strain-induced polarization directed alongz is given
by

Pz
0~z!5e31~z!@ex-x~z!1ey-y~z!#1e33~z!ez-z~z!, ~19!

wheree31(z) and e33(z) are z-dependent piezoelectric con
stants. The unscreened piezoelectric field in the diode is
tained from the requirement that the electric displacem
vanishes.25 Thus,

Ez
0~z!52

4p

«0~z!
@Pz

0~z!1P0#, ~20!

where P0 is a constant polarization induced by externa
applied voltages and«0(z) is the position-dependent stat
dielectric constant. The value ofP0 is obtained from the
voltage drop across the diode~of lengthL) in the unscreened
limit, i.e. with no photoexcited carriers. In this limit, th
voltage drop between source and drain due to the indu
piezoelectric field is just

VA52E
0

L

dzEz
0~z!, ~21!

from which P0 can be determined.
When photoexcited electrons and holes are generate

the laser, then there is an additional time-dependent confi
ment potential,

Vphoto~z,t !52ueuEz
photo~z,t !. ~22!
6-4
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This potential is obtained by solving the Poisson equation
the diode forEz

photo(z,t) subject to the boundary condition

VA52E
0

L

dzEz
total~z,t !. ~23!

Here,Ez
total(z,t) is the total electric field and is just the su

of the strain-induced electric field and the field due to ph
togenerated electrons and holes, i.e.,

Ez
total~z,t !5Ez

0~z!1Ez
photo~z,t !. ~24!

Finally, we can write an effective-mass Schro¨dinger equa-
tion for the conduction electron envelope functions in ter
of an effective electron potentialVc

e f f(z):

2
\2

2 H ]

]z

1

mz* ~z!

]

]zJ Fn,k, j
c ~z!1$Vc

e f f~z!2En
c~k!%Fn,k, j

c ~z!

50, ~25!

where the effective electron potential is

Vc
e f f~z!5Vc~z!1

\2k2

2mx-y* ~z!
1ac,z~z!ez-z~z!1ac,x-y~z!

3@ex-x~z!1ey-y~z!#. ~26!

Similar expressions can be derived for valence electrons.
arrive at a set of coupled ordinary differential equatio
~ODE’s! subject to the two-point boundary value conditio
of Eq. ~10!. These are solved for the envelope functions a
subband energies.

In practice, we introduce a uniform grid$zi% along thez
direction and finite-difference the effective-mass Schro¨dinger
equations to obtain a matrix eigenvalue problem that can
solved using standard matrix eigenvalue routines. The res
ing eigenvalues are the subband energiesEn

a(k) and the cor-
responding eigenvectors are the envelope functi
Fn,k, j

a (zi), defined on the finite difference mesh.

C. Second quantized electron Hamiltonians

We next describe the second quantized Hamiltonians
electrons moving freely in the MQW interacting via
screened Coulomb potential. We denote creation and des
tion operators for electrons in conduction and valence s
bands byca,n,k

† and ca,n,k , respectively. The second qua
tized Hamiltonian for free electrons and holes is simply

He05 (
a,n,k

En
a~k!ca,n,k

† ca,n,k . ~27!

The Coulomb interaction Hamiltonian is given by

Hee5
1

2 (
a,n,k

(
a8,n8,k8

(
kÞ0

V a8,n8,k8
a,n,k

~k!

3ca,n,k2k
† ca8,n8,k81k

† ca8,n8,k8ca,n,k . ~28!
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Equation ~28! describes two-body interactions where ele
trons in statesua,n,k& and ua8,n8,k8& scatter to subband
statesua,n,k2k& andua8,n8,k81k&, respectively. Note tha
to simplify things, we have neglected terms corresponding
Coulomb-induced interband transitions~the ‘‘diagonal ap-
proximation’’! since these are energetically ve
unfavorable.26 The electrons thus stay in their original su
bands~though they may scatter off from other electrons
different subbands! and exchange crystal momentumk. The
matrix elements describing the strength of these transiti
are given by

V a8,n8,k8
a,n,k

~k!5E dzE dz8Vuku~z2z8!

3(
j

Fn,uk2ku, j
a ~z!Fn,k, j

a ~z!

3(
j 8

Fn8,uk81ku, j
a8 ~z8!Fn8,k8, j 8

a8 ~z8!. ~29!

From Eq.~29!, it is apparent that the symmetry relation

V a8,n8,k8
a,n,k

~k!5V a,n,k
a8,n8,k8~2k! ~30!

must hold.
The Fourier transform in thex-y plane of the screened

Coulomb potential depends only onk[uku and uzu and is
given by

Vk~z!5
2pe2

e0A

e2kuzu

kes~k!
. ~31!

To describe screening, we adopt an effective pseudodyna
dielectric function of the form

1

es~k!
5

k

k1ks
. ~32!

In the pseudodynamic screening model, we completely
glect screening by the massive holes and treat screenin
the lighter conduction electrons in the static screening lim
The screening wave vectorks is computed in the two-
dimensional~2D! limit. Thus27

ks5
2pe2

e0

]N2D

]m
, ~33!

where N2D , the two-dimensional conduction-electron de
sity, is related to an effective chemical potentialm by

N2D5
mx-y* kBT

2p\2 (
n

lnF11expS En
c~0!2m

kBT D G . ~34!

In Eq. ~34!, En
c(0) is the conduction subband energy eva

ated atk50. In our simulation, the value ofm is obtained by
requiring thatN2D , evaluated using Eq.~34!, be equal to the
value

N2D~ t !5(
n,k

f n
c~k,t ! ~35!
6-5
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obtained from the time-dependent conduction-electron dis
bution functionsf n

c(k,t).

D. Photogeneration of carriers

Electron-hole pairs are created by the pump laser and
treat the electric field of the laser in the semiclassical dip
approximation. In this approximation, the electron-laser
teraction Hamiltonian is

HeL52ueuE~ t!• (
n,n8,k

@dn,n8
c,v

~k!cc,n,k
† cv,n8,k1H.c.#,

~36!

where H.c. denotes the Hermitian conjugate of the first te
The laser field isE(t) and the dipole matrix elements are

dn,n8
c,v

~k!5(
j , j 8

Dj , j 8
c,v

~f!E dzFn,k, j
c ~z!Fn8,k, j 8

v
~z!. ~37!

The vector operatorDj , j 8
c,v (f) is a 236 matrix withx, y, and

z components. Thus,

Dj , j 8
c,v

~f![DX
c,v~f!x̂1DY

c,v~f!ŷ1DZ
c,v~f!ẑ, ~38!

wherex̂, ŷ, and ẑ are unit vectors and

DX
c,v~f!5

P2

A2Eg
F a 2b* 0 a 2b* 0

2a* b 0 a* 2b 0G ,
~39a!

DY
c,v~f!5

iP2

A2Eg
F 2a 2b* 0 2a 2b* 0

2a* 2b 0 a* b 0G ,
~39b!

DZ
c,v~f!5

P1

Eg
F0 0 2b 0 0 b

0 0 2b* 0 0 2b* G . ~39c!

The 632 vector operatorDj 8, j
v,c (f) is related to the 236

operatorDj , j 8
c,v (f) by

Dj 8, j
v,c

~f!5@Dj , j 8
c,v

~f!#* . ~40!

In Eq. ~39!, a and b are thef-dependent phase facto
defined in Eq.~4! and the Kane parameters,P1 and P2, for
wurtzite materials are related to the effective masses
energy gaps by28

P1
25

\2

2m0
S m0

mz*
21D ~Eg1D11D2!~Eg12D2!22D3

2

Eg12D2
,

~41a!

P2
25

\2

2m0
S m0

mx-y*
21D

3
Eg$~Eg1D11D2!~Eg12D2!22D3

2%

~Eg1D11D2!~Eg1D2!2D3
2

. ~41b!
23531
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For the semiclassical laser field, we write the real elec
field as

E~ t !5
1

2
@ êE~ t !eivt1 ê* E~ t !e2 ivt#, ~42!

wherev is the photon frequency,ê is a complex unit polar-
ization vector, andE(t) is the pulse shape envelope functio
We assume a Gaussian pulse shape

E~ t !5E0 expF 2S t2t0

tA 1

2 ln 2
D 2G ~43!

centered att5t0 with an intensity full width at half maxi-
mum ~FWHM! of t. The maximum electric field strength
E0, is related to the pump fluenceF by

E05A16pF
cnvt

Aln 2

p
, ~44!

wherenv is the index of refraction at the photon frequenc
For linearly polarized light incident normally on th

MQW, the polarization vectors are real and given by eithex̂
or ŷ. For circularly polarized light, the polarization vecto
are complex and given by29

ê65
x̂6 i ŷ

A2
. ~45!

In Eq. ~45!, the upper sign refers to left circularly polarize
light ~positive helicity! and the lower sign refers to righ
circularly polarized light~negative helicity!.

E. Coupling to LA phonons

We treat the acoustic phonons in the MQW as bulkli
plane-wave states with wave vectorq. Since the system ex
hibits cylindrical symmetry, onlyq5qẑ longitudinal acoustic
phonons are coupled by the electron-phonon interaction.
free LA phonon Hamiltonian can be written as

HA05(
q

\vqbq
†bq . ~46!

wherebq
† and bq are creation and destruction operators

LA phonons with wave vectorq5qẑ. The wave-vector com-
ponentq of LA phonons in the MQW is thus defined in a
extended-zone scheme where2`,q,`. The phonon dis-
persion relation is given by a linear relation

vq5Csuqu5AC33

r0
uqu, ~47!

wherer0 is the mass density andCs is just the LA phonon
sound speed for propagation parallel toẑ.12 In computing the
LA sound speed in the linear phonon dispersion relation
6-6
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Eq. ~47!, we neglect thez dependence of the material param
eters and use bulk GaN values forC33 andr0.

The LA phonons in wurtzite MQW’s interact with th
electrons through deformation potential and screened pi
electric scattering. The electron–LA phonon interaction in
MQW is governed by the Hamiltonian

HeA5 (
a,n,n8,k,q

M n,n8
a

~k,q!~bq1b2q
† !ca,n,k

† ca,n8,k .

~48!

This Hamiltonian describes the scattering of an electron fr
subband stateua,n8,k& to subband stateua,n,k& with either
the emission or absorption of an LA phonon. We note t
the electron wave vectork in the x-y plane is conserved in
this process since, as noted earlier, the phonon wave ve
in the x-y plane is zero.

The interaction matrix elements describing deformat
and screened piezoelectric scattering are

M n,n8
a

~k,q!5A \2

2r0~\vq!V F iqD n,n8
a

~k,q!

2
ueue33

e`es~q!
P n,n8

a
~k,q!G , ~49!

where V is the crystal volume. The first term in Eq.~49!
desribes deformation potential scattering while the sec
term describes screened piezoelectric scattering.

The relative strengths of the various transitions are de
mined by form factors for deformation potential and piez
electric scattering. The form factor for screened piezoelec
scattering is given by

P n,n8
a

~k,q!5(
j
E dzFn,k, j

a ~z!eiqzFn8,k, j
a

~z!, ~50!

while the form factor for deformation potential scattering
defined to be

D n,n8
a

~k,q!5(
j

Q j
aE dzFn,k, j

a ~z!eiqzFn8,k, j
a

~z!. ~51!

The form factor for deformation potential scattering
similar to the form factor for piezoelectric scattering exce
that in summing over spinor componentsj, the terms are
weighted byj-dependent deformation potentialsQ j

a that can
be represented by the row vectors

Q j
c5$ac,z ,ac,z%, ~52a!

Q j
v5$D11D3 ,D11D3 ,D1 ,D11D3 ,D11D3 ,D1%

~52b!

for conduction and valence electrons, respectively.

F. Electron density matrices

We define statistical operators in terms of the electron
phonon eigenstates. The electron density matrix is
23531
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Nn,n8
a,a8~k,t ![^ca,n,k

† ~ t !ca8,n8,k~ t !&, ~53!

where^ & denotes the statistial average of the nonequilibri
state of the system.

The interband components of the density matr
Nn,n8

c,v (k,t) and Nn8,n
v,c (k,t), describe the coherence betwe

conduction and valence electrons in subbandsn andn8 and
are related to the optical polarization. The intraband com
nents of the density matrixNn,n8

a,a (k,t) describe correlations
between different subbands of the same carrier type in
Þn8. If n5n8, Nn,n

a,a(k,t)[ f n
a(k,t) is just the carrier distri-

bution function for electrons in the subband state,cn,k
a (r ),

defined in Eq.~8!.

G. Coherent phonon amplitude

The coherent phonon amplitude of theqth phonon mode
uq& is defined to be6

Dq~ t ![^bq
†~ t !1b2q~ t !&. ~54!

The coherent phonon amplitude is related to the macrosc
lattice displacementU(z,t) and velocityV(z,t) through the
relations

U~z,t !5(
q
A \2

2r0~\vq!V
eiqzDq~ t !, ~55!

V~z,t !5(
q
A \2

2r0~\vq!V
eiqz

]Dq~ t !

]t
. ~56!

The coherent phonon amplitudeDq(t) will vanish if there
are a definite number of phonons in the mode, i.e., if
phonon oscillator is in one of its energy eigenstates,uq&. In
this case, there is no macroscopic displacement of the lat

The coherent phonon distribution is6

N q
coh~ t ![^bq

†~ t !&^bq~ t !& ~57!

and the total phonon distributionNq(t) can be separated int
coherent and incoherent contributions as follows:

Nq~ t !5^bq~ t !b2q
† ~ t !&[N q

coh~ t !1N q
incoh~ t !. ~58!

In general, a mode can have a number of both coherent
incoherent phonons, but only the coherent phonons con
ute to the macroscopic lattice displacement.

We note that at the beginning of the experiment, there
no coherent phonons present, i.e.,N q

coh(t)50, and the inco-
herent phonon population is described by a thermal distri
tion, N q

incoh(t);e2\vq /kBT.

H. Equations of motion

In this section, we develop equations of motion for t
electron density matrices and coherent phonon amplitu
The electron density matrices obey the general equation
motion
6-7
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]Nn,n8
a,a8~k,t !

]t
5 K i

\
@H,ca,n,k

† ca8,n8,k#L , ~59!

where@ # denotes the commutator and^ & denotes the aver
age over an initial ensemble. The density matrices are
fined in the electron picture and initially the valence ban
are filled while the conduction bands are empty. We ha
f n

c(k,t52`)50 and f n
v(k,t52`)51, which implies

Nn,n8
a,a8~k,t52`!5dn,n8da,vda8,v . ~60!

The total HamiltonianH is the sum of the Hamiltonian
described in the previous sections, i.e.,

H5He01Hee1HeL1HA01HeA . ~61!

In deriving equations of motion for the density matrice
we make the ansatz that the density matrices depend on
k5uku. We use the rotating wave approximation~RWA! to
factor out the rapideivt behavior of the interband densit
matrix elementsNn,n8

c,v (k,t). In the RWA, we have

Nn,n8
c,v

~k,t ![Ñn,n8
c,v

~k,t !eivt, ~62!

where Ñn,n8
c,v (k,t) is a slowly varying envelope function. In

addition, we treat the Coulomb interaction in the tim
dependent Hartree-Fock approximation by factoring fo
operator averages arising fromHeL into appropriate products
of two-operator averages as described in Ref. 27.

The resulting equations of motion for the density matric
are

]Nn,n8
c,c

~k,t !

]t
5

i

\
$E n

c~k!2E n8
c

~k!%Nn,n8
c,c

~k!

2 i(
m

$Vn,m
c,v ~k!Ñm,n8

v,c
~k!2Ñn,m

c,v ~k!Vn,n8
v,c

~k!%

1
i

\ ( 8
m

$Ln,m
c ~k!Nm,n8

c,c
~k!

2Nn,m
c,c ~k!Lm,n8

c
~k!%, ~63a!

]Nn,n8
v,v

~k,t !

]t
5

i

\
$E n

v~k!2E n8
v

~k!%Nn,n8
v,v

~k!

2 i(
m

$Vn,m
v,c ~k!Ñm,n8

c,v
~k!2Ñn,m

v,c ~k!Vn,n8
c,v

~k!%

1
i

\ ( 8
m

$Ln,m
v ~k!Nm,n8

v,v
~k!

2Nn,m
v,v ~k!Lm,n8

v
~k!%, ~63b!
23531
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]Ñn,n8
c,v

~k,t !

]t
5

i

\
$E n

c~k!2E n8
v

~k!2\v%Ñn,n8
c,v

~k!

2 i(
m

$Vn,m
c,v ~k!Nm,n8

v,v
~k!

2Nn,m
c,c ~k!Vm,n8

c,v
~k!%.

1
i

\ ( 8
m

$Ln,m
c ~k!Ñm,n8

c,v
~k!

2Ñn,m
c,v ~k!Lm,n8

v
~k!%. ~63c!

The equations of motion forÑn,n8
v,c (k,t) are redundant since

Ñn,n8
v,c (k,t)5@Ñn8,n

c,v (k,t)#* .
The first terms on the right-hand side of Eq.~63! describe

the free oscillation of the density matrices in the renorm
ized single-particle energy bands. The time-depend
single-particle energies are

E n
a~k,t !5En

a~k!1Ln,n
a ~k,t !, ~64!

whereEn
a(k) are the single-particle subband energies in

absence of conduction electrons and holes andLn,n
a (k,t) de-

scribes the time-dependent renormalization of the sing
particle subbands.

The renormalization energiesLn,n
a (k,t) are the diagonal

elements of a generalized renormalization energy matrix~in
the subband indices!

Ln,n8
a

~k,t !5Sn,n8
a

~k,t !1Qn,n8
a

~k,t !. ~65!

The first term in the renormalization energy matrix~65! is
the generalized exchange self-energy matrix arising from
Coulomb interaction and is given by

Sn,n8
a

~k,t ![2 (
k8Þk

V a,n8,k8
a,n,k

~ uk2k8u!

3@Nn,n8
a,a

~k8,t !2da,vdn,n8#, ~66!

whereV a,n8,k8
a,n,k (uk2k8u) are angular averaged Coulomb in

teraction matrix elements. The second term in Eq.~65! ac-
counts for renormalization due to coupling of carriers to c
herent acoustic phonons. We have

Qn,n8
a

~k,t ![(
q

Dq~ t !M n,n8
a

~k,q!, ~67!

where Dq(t) is the coherent phonon amplitude and t
electron-phonon matrix elementsM n,n8

a (k,q) are defined in
Eq. ~49!. The self-energy corrections in Eq.~66! are small,
though they can be important in some circumstances.

In computing the angular averaged Coulomb matrix e
ments in Eq.~66!, we assume small momentum transferk
and use the fact that the envelope functionsFn,k, j

a (z) depend
weakly onk to obtain an effective interaction,
6-8
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V a8,n8,k8
a,n,k

~k![E dzE dz8Vk~z2z8!(
j , j 8

^uFn,(k,k8), j
a

~z!u2&

3^uFn8,(k,k8), j 8
a8 ~z8!u2&, ~68!

where, by definition,

^uFn,(k,k8), j
a

~z!u2&[
uFn,k, j

a ~z!u21uFn,k8, j
a

~z!u2

2
. ~69!

The effective Coulomb interactionV defined in Eq.~68! is an
even function ofk and is symmetric ina and k, thus pre-
serving the symmetry relation~30!. Preserving this symme
try is essential in order to maintain conservation of carriers
the scattering process.

The second terms in Eq.~63! describe photoexcitation o
electron-hole pairs by the pump laser. The system reac
an effective field that is the sum of the applied field and
dipole field of the electron-hole excitations. This gives rise
a matrix of generalized Rabi frequencies in the subband
dices

\Vn,n8
c,v

~k!5
E~ t !

2
dn,n8

c,v
~k!1 (

k8Þk
V v,n8,k8

c,n,k

3~ uk2k8u!Ñn,n8
c,v

~k8,t !, ~70!

which can be shown to satisfy the symmetry relations

\Vn,n8
c,v

~k!5@\Vn8,n
v,c

~k!#* . ~71!

The Gaussian pump envelope functionE(t) is defined in
Eq. ~43! and the optical dipole matrix elements

dn,n8
c,v

~k!5@dn8,n
v,c

~k!#* [E
2p

p

df ê•dn,n8
c,v

~k! ~72!

are angular averages in thex-y plane of the vector dipole
matrices dotted into the polarization vector. From Eq.~37!,
the f dependence ofdn,n8

c,v (k) only appears inDj , j 8
c,v (f) and

we can get the angular averages by settinga(f)5aavg
5(12 i )/3p andb(f)5bavg5(11 i )/p in the 236 matri-
cesDX

c,v(f), DY
c,v(f) andDZ

c,v(f) defined in Eq.~39!.
The last terms in Eq.~63! are similar in structure to the

renormalization corrections in the Hartree-Fock energies
are more complicated due to mixing among subbands
involve the off-diagonal components ofLn,n8

a . The prime on
the summation sign indicates that terms containing factor

Nn,n8
a,a8(k) are excluded from the sum since these terms h

already been incorporated in the renormalized Hartree-F
energies in Eq.~64!.

The coherent phonon amplitudesDq(t) satisfy the driven
harmonic oscillator equations

]2Dq~ t !

]t2
1vq

2Dq~ t !52
2vq

\ (
a,n,n8,k

M n,n8
a

~k,q!*

3$Nn,n8
a,a

~k,t !2da,vdn,n8%, ~73!
23531
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subject to the initial conditions

Dq~ t52`!5
]Dq~ t52`!

]t
50. ~74!

The closed set of coupled partial differential equatio
~63! and ~73!, for the carrier density matrices and cohere
phonon amplitudes are converted into a set of coup

ODE’s by discretizingk andq and solving forNn,n8
a,a8(ki) and

D(qi) for each of the mesh pointski andqi . The resulting
initial value ODE problem is then solved using a standa
adaptive-step-size Runge-Kutta routine.30

The phonon distributions do not appear in the coupled
of equations~63! and ~73!. If necessary, they can be dete
mined fromNn,n8

a,a (k) and the pair of equations

]N q
coh

]t
52

2

\
Im (

a,n,n8,k
M n,n8

a
~k,q!BqNn,n8

a,a
~k! ~75a!

and

]Bq

]t
1 ivqBq52

i

\ (
a,n,n8,k

M n,n8
a

~k,q!* Nn,n8
a,a

~k!.

~75b!

In Eq. ~75b!, Bq(t)[^bq(t)& satisfies the initial condition
Bq(t52`)50. For the incoherent phonon distribution,

]N q
incoh

]t
50 ~76!

so no incoherent phonons are generated and the incoh
phonon population maintains its initial thermal equilibriu
distribution.

III. LOADED-STRING MODEL

The microscopic equations are rather daunting and
tailed. In this section, we show how they can be simplifi
~under certain conditions! to a more tractable model, namel
that of a driven uniform string, provided one uses the app
priate driving function,S(z,t), which is nonuniform. The
microscopics, including details of the superlattice band str
ture and photogeneration process are included within
driving function.

In our detailed numerical simulations, we use the full m
croscopic formalism discussed in the previous sectio
However, we gain a lot of insight if we can deal with th
lattice displacementU(z,t) directly. If we assume that the
acoustic phonon dispersion relation is linear as in Eq.~47!,
then we find thatU(z,t) satisfies the loaded-string equatio

]2U~z,t !

]t2
2Cs

2 ]2U~z,t !

]z2
5S~z,t !, ~77!

subject to the initial conditions

U~z,t52`!5
]U~z,t52`!

]t
50. ~78!
6-9
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The LA sound speedCs is defined in Eq.~47!, and the driv-
ing functionS(z,t) is given by

S~z,t !52
1

\ (
a,n,n8

(
k,q
A2\Csuqu

r0V
M n8,n

a
~k,q!*

3$Nn,n8
a,a

~k,t !2da,vdn,n8%e
iqz. ~79!

One may question whether a linear phonon dispersion
lation is valid in a superlattice. For small wave vectorq, for
which elasticity theory holds, the dispersion relation for L
phonons in a superlattice is linear with a dispersionv

5C̄sq, where C̄s is the ‘‘average’’ sound speed of LA
phonons in the well and barriers.12 This, in fact, has been
experimentally verified in InGaN/GaN superlattice samp
studied by Sunet al.11

Note that coherent acoustic phonon generation in a su
lattice is qualitatively different than coherent optical phon
generation in a bulk system where only theq'0 optic mode
can be excited. As a result, both the amplitudeU(z,t) and
the Fourier transform of the amplitudeDq(t) for an optic
mode in bulk satisfy a forced oscillator equation. For t
nonuniform, multiple quantum well case, one can exc
acoustic modes withqÞ0. The Fourier transform of the am
plitude Dq(t) of a coherent acoustic phonon obeys a forc
oscillator equation, but owing to the linear dependence
v(q) on q, the amplitude itself,U(z,t), obeys a 1D wave
equation with a forcing termS(z,t).

Another important point is that Eq.~77! can be taken to be
a uniform string with anonuniformforcing function. This is
because the speed of sound is approximately the sam
both the GaN and InxGa12xN layers~a more detailed theory
would take into account differences in the sound velocities
each layer!. For propagation of acoustic modes one can
glect, to lowest order, the differences between the differ
layers~this is not true for the optic modes!. The nonunifor-
mity of the forcing functionS(z,t) results from differences
in the absorption~not sound velocity! in the well and barrier
layers and is, therefore,z dependent. We thus see from E
~77! that understanding coherent acoustic phonons in m
tiple quantum wells is equivalent to understanding auniform
string with aninhomogeneousforcing termS(z,t) containing
the microscopics.

To simplify Eq.~79!, we neglect valence band mixing an
assume that the effective masses, sound speeds, and cou
constants are uniform over regions whereS(z,t)Þ0, i.e., in
regions where carriers are being photogenerated. We
assume that the pump pulses are weak enough so that sc
ing of the piezoelectric interaction can be neglected. Fina
if the pump duration is long enough so that transient effe
associated with photogeneration of virtual carriers can
ignored, then the off-diagonal elements of the carrier den
matrices in Eq.~79! can be dropped. In this case, the drivin
function takes the simple form

S~z,t !5(
n

Sn~z,t !, ~80!
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where the summation indexn runs over carrier species, i.e
conduction electrons, heavy holes, light holes, and crys
field split holes.

Equation~80! suggests that each carrier species make
separate contribution to the driving function. The part
driving functionsSn(z,t) are

Sn~z,t !56
1

r0
H an

]

]z
1

ueue33

e`
J rn~z,t !, ~81!

where the plus sign is used for conduction electrons and
minus sign is used for holes. Herern(z,t) is the photogener-
ated electron or hole number density, which is real and p
tive, andr0 is the mass density. We note that the loade
string equation for the propagation of coherent phono
together with the simplified driving function in Eqs.~80! and
~81! have also been independently derived by other auth
in the limit e3350.31

In Eq. ~81!, the partial driving function for a given specie
is obtained by applying a simple operator to the photogen
ated carrier density. This operator is a sum of two terms,
first due to deformation potential scattering and the secon
piezoelectric scattering. The piezoelectric coupling const
e33 is the same for all carrier species, while the deformat
potential an depends on the species. For conduction el
trons,an5ac,z , for heavy or light holes,an5D11D3, and
for crystal field split holes,an5D1.

It is interesting to note that Planck’s constant does
appear in either the loaded-string equation~77! or in its as-
sociated driving function defined in Eqs.~80! and~81!. Thus,
we find that coherent LA phonon oscillations in MQW’s ca
be viewed as an essentially classical phenomenon, an o
vation that was made in the context of coherent LO phon
oscillations in bulk semiconductors by Kuznetsov and St
ton in Ref. 6.

The driving functionS(z,t) satisfies the sum rule

E
2`

`

dzS~z,t !50. ~82!

This is most easily seen from Eqs.~80! and ~81!, but it also
holds for the general expression in Eq.~79!. The significance
of the sum rule is readily appreciated. After the pump d
away, the carrier density in Eq.~81!, neglecting tunneling
between wells, is essentially constant and thusS(z,t) is time
independent. In the loaded-string analogy, the integral of
driving function over position is proportional to the avera
force per unit length on the string. If this integral were no
zero, then the center of mass of the string would underg
constant acceleration resulting in the buildup of an infin
amount of kinetic energy. Such an alarming result in t
context of coherent LA phonons is precluded by the sum r
in Eq. ~82!.

For a given driving function, the wave equation~77!, to-
gether with the initial conditions~78!, can be solved for the
coherent phonon lattice displacement by using the Gre
function method.32 Thus,
6-10
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U~z,t !5E
2`

`

dt8E
2`

`

dz8G~z2z8,t2t8!S~z8,t8!. ~83!

In our MQW diode model, the substrate is assumed to
infinite and the Green’s function in this case is just

G~z,t !5
Q~ t !

2Cs
$Q~z1Cst !2Q~z2Cst !%, ~84!

whereQ(x) is the Heaviside step function.
We note that the loaded-string model described abov

not restricted to the special case of an infinite substrate
can be extended to study the generation and propagatio
coherent LA phonons in more complicated heterostructu
If the driving functionS(z,t) due to photoexcited carriers i
localized, then the assumptions leading to Eqs.~80! and~81!
need only hold in those regions whereS(z,t) in nonvanish-
ing. The wave equation applies to regions where the
sound speedCs is constant. Heterostructure, in which the L
sound speed is piecewise constant, have abrupt acoustic
pedance mismatches that can be handled by introdu
more complicated Green’s functions or by using other st
dard techniques.32,33An example of such a problem would b
a MQW structure embedded in a free-standing substrat
which coherent LA phonons generated in the MQW co
bounce back and forth between two parallel substrate-air
terfaces.

IV. RESULTS

In this section, we discuss simulations based on our
croscopic theory of coherent LA phonon generation in apin
diode structure with four periods of InxGa12xN/GaN
MQW’s photoexcited by a Gaussian pump normally incide
along the~0001! z direction. The parameters for our nume
cal example are listed in Table II. The MQW dimensions a
Gaussian pump parameters were chosen to match those
cally encountered in room temperature pump-probe differ
tial transmission measurements of coherent LA phonon
cillations carried out by Sunet al.11 on In0.06Ga0.94N/GaN
MQW structures having 14 periods.

A. Bulk wurtzite band structure

Bulk wurtzite GaN and InN are direct gap materials w
band gaps of 3.4 and 1.95 eV, respectively. The bulk b
structure of unstrained wurtzite GaN is shown in Fig. 2.
can be seen from equations~2! and~6!, the band structure is
anisotropic and depends onkz , the wave vector along the
~0001! z axis, andkt , the wave vector within thex-y plane
perpendicular to thez axis. The effective-mass conductio
band is twofold degenerate and has a parabolic disper
with anisotropic effective massesmz* 50.19 along thez di-
rection andmx-y* 50.18 in thex-y plane.

The twofold degenerate valence bands are mixtures
heavy hole~HH!, light hole ~LH!, and crystal-field splitoff
hole ~CH! character. At the zone center, the off-diagon
components of the 333 upper and lower Hamiltonians i
Eq. ~6! vanish and the valence bands can be labeled acc
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ing to their pure-state wave functions atk50. For the zone-
center HH state, the degenerate wave functions are the b
statesuv,1& anduv,4& defined in Eq.~3!. For the zone-cente
LH state, the wave functions areuv,2& anduv,5&, and for the
CH band the zone-center wave functions areuv,3& anduv,6&.
The heavy-hole effective masses alongz and x-y are mz

HH

5uA11A3u2151.96 andmx-y
HH5uA21A42A5u2151.92 for

heavy holes,mz
LH5mz

HH51.96 andmx-y
LH5uA21A41A5u21

50.14 for light holes, andmz
CH5uA1u2150.14 andmx-y

CH

5uA2u2151.96 for crystal-field splitoff holes.

TABLE II. Simulation parameters for photogeneration of coh
ent acoustic phonons in a four well MQW diode under flat ba
biasing conditions. A schematic of the diode structure is shown
Fig. 1.

MQW diode structure
Left GaN buffer width~Å! 43.0

Number of wells 4
Well width ~Å! 63.0
Indium fraction in well 0.06
GaN barrier width~Å! 43.0

Right GaN buffer width~Å! 43.0

Applied bias
VA ~V! -0.261

Lattice temperature
T ~K! 300.0

Pump parameters
Photon energy~eV! 3.21
Fluence (mJ/cm2) 160.0
Gaussian FWHM~fs! 180.0
Polarization Left circular

FIG. 2. Bulk GaN valence band structure using effective-m
parameters taken from Table I. The bands are plotted along
~0001! kz axis and along the transversekt axis within thex-y plane.
The anisotropic zone-center effective masses for heavy holes~HH!,
light holes~LH!, and crystal-field splitoff holes~CH! are indicated.
6-11
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B. Pseudomorphic strain

Bulk GaN and InN have different lattice constants
when an~0001! InxGax21N MQW structure is grown, a sig
nificant lattice mismatch occurs between the InxGa12xN
wells and GaN barriers. For the InxGa12xN MQW diode
specified in Table II, we assume pseudomorphic strain c
ditions. In a pseudomorphically strained device, the latt
constant throughout the MQW adjusts to the value of
lattice constant in the bulk N and P substrates in orde
minimize the overall strain energy. In our simulated diod
the substrates aren2 and p2 doped GaN, so the lattice
constant throughout the device takes on the GaN value,
a053.189 Å. The nonvanishing position-dependent str
tensor components,ex-x , ey-y , andez-z , for the MQW diode,
as computed from Eqs.~17! and~18!, are shown in Fig. 3 as
a function ofz. Clearly, the GaN barriers are unstrained sin
the N and P substrates are composed of GaN and all
strain from the lattice mismatch is accommodated in
In0.06Ga0.94N wells.

C. Built-in piezoelectric field

The presence of strain in the MQW’s results in the c
ation of a strain-induced polarizationPz

0(z), directed alongz
as described by Eq.~19!. The strain-induced polarization, i
turn, results in a strong bult-in piezoelectric field that can
computed from Eqs.~20! and~21!, given the strain field and
the dc biasVA , applied across the diode. The comput
strain-induced piezoelectric fieldEz

0(z) and the piezoelectric
confinement potentialVpiezo(z), which result from the strain
field in Fig. 3 are shown in Fig. 4. Prior to the application
the pump pulse, we assume that the applied dc biasVA has
been adjusted so that flat-band biasing in the diode
achieved, i.e.,VA is such that the band edges seen in Fig
are periodic functions of position.

Given the piezoelectric field and confinement potenti
position-dependent band edges for the MQW can be c
puted. The conduction and valence band edges for
pseudomorphically strained MQW diode are shown as fu
tions of position in Fig. 5. These are just the confinem
potentials,Va(z)5Va,gap(z)1Vpiezo(z), in the diode prior to
photoexcitation. It is clear from Fig. 5 that the confineme

FIG. 3. Strain tensor components for pseudomorphica
strained InxGa12xN multiple quantum well diode as a function o
position. The diode parameters are listed in Table II.
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of elecrons and holes in the MQW is mostly due to stro
built-in piezoelectric fields that result in the triangular co
finement potentials seen in each well.

D. Photogeneration of carriers

In our numerical example, we simulate photoexcitation
electrons and holes and the generation and subsequent p
gation of coherent LA phonons in the hypothetical MQ
diode when a Gaussian pump laser pulse is normally incic
along thez axis. As seen in Table II, the Gaussian pum
pulse is assumed to be left circularly polarized with a pho
energy of 3.21 eV. The pump fluence is taken to
100.0 mJ/cm2 and the Gaussian FWHM is taken to b
180.0 fs. The expermient is assumed to take place at ro
temperature.

In Fig. 6, the computed conduction and valence subb
energies are shown as functions ofk for the InxGa12xN di-
ode. At the chosen pump energy of 3.21 eV, electrons fr
the first two valence subbands are excited into the low
lying conduction subband.

The computed densities of photoexcited electrons
holes, neglecting and including Coulomb interaction effec
are shown as functions of position and time in Figs. 7 and
respectively, and the total photoexcited electron density

y
FIG. 4. Electric field and potential for the strain field in Fig.

The applied dc biasVA has been adjusted so flat-band biasing
achieved, i.e., so that the band edges are periodic functions o
sition. The diode parameters are listed in Table II.

FIG. 5. Conduction- and valence-band edges for pseudomor
cally strained InxGa12xN multiple quantum well diode as a functio
of position. The applied dc biasVA has been adjusted so flat-ban
biasing is achieved, i.e., so that the band edges are periodic f
tions of position. The diode parameters are listed in Table II.
6-12
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unit area as a function of time is shown in Fig. 9. In Fig.
the pulse shape is shown for comparison. We find that
cluding Coulomb effects decreases the total photogener
carrier density. The electrons and holes screen the bui
piezoelectric field widening the effective band gap. Th
quantum confined Stark effect acts to suppress the phot
neration of carriers.

E. Generation of coherent phonons

The driving functionS(z,t) for the driven string equation
~77! is shown in Fig. 10 as a function of position and tim

FIG. 6. Conduction and valence subband energies as func
of k for the InxGa12xN diode structure described in Table II.

FIG. 7. Density of excited carriers computed in the absence
Coulomb effects for~a! electrons and~b! holes as functions of
position for the InxGa12xN diode structure and laser pumping p
rameters shown in Table II.
23531
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The driving function has units of acceleration and in Fig. 1
we computeS(z,t) by using the full microscopic formalism
of Eq. ~79!.

For comparison, we also computed the driving function
the simplified loaded-string model of Eqs.~80! and ~81! us-
ing the carrier densities shown in Fig. 8 to facilitate the co
parison. Since the photoexcited holes are predominant
mixture of heavy and light holes, we usean5D11D3 in
computing hole deformation potential contributions in E
~81!. The sum over species,n, then yields the total driving
function,

ns

f

FIG. 8. Density of excited carriers including Coulomb effec
for ~a! electrons and~b! holes as functions of position for th
InxGa12xN diode structure and laser pumping parameters ta
from Table II.

FIG. 9. Total photoexcited electron density with and witho
Coulomb effects as a function of time for the InxGa12xN diode
structure and laser pumping parameters listed in Table II. The p
shape~arbitrary units! is shown for comparison.
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S~z,t !5
1

r0
H ac,z

]

]z
1

ueue33

e`
J relec~z,t !2

1

r0
H ~D11D3!

]

]z

1
ueue33

e`
J rhole~z,t !, ~85!

whererelec(z,t) andrhole(z,t) are the total conduction elec
tron and valence hole densities plotted in Fig. 8. The res
ing S(z,t) is shown in Fig. 11.

By comparing Figs. 10 and 11, we see that for the dio
structure and Gaussian pump used in our simulation the
plified loaded-string model produces essentially the same
sults as those obtained using the full microscopic formalis

Acoustic LA phonon generation due to the piezoelec
effect depends on the piezoelectric constante33, the number
of photogenerated electrons and holes, as well as the sp
separation of electron and hole densities brought abou
the strong built-in piezoelectric field in the MQW’s. From
Eq. ~85!, the piezoelectric contribution to the driving func
tion is given by

Spiezo~z,t !5
1

r0

ueue33

e`
$relec~z,t !2rhole~z,t !%. ~86!

In the absence of a built-in piezoelectric field~such as the
one found in a square well with infinite barriers!, we would

FIG. 10. Driving functionS(z,t) for the coherent LA phonon
wave equation as a function of position and time for the InxGa12xN
diode structure and laser pumping parameters in Table II.S(z,t) is
computed using the full microscopic expression of Eq.~79!.

FIG. 11. Driving functionS(z,t) in the simplified loaded-string
model for the coherent LA phonon wave equation as a function
position and time for the InxGa12xN diode structure and lase
pumping parameters in Table II.
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haverelec(z,t)'rhole(z,t) and henceSpiezo(z,t)'0, even for
relatively large values ofe33. The built-in piezoelectric field
serves to spatially separate the electrons and holes so
relec(z,t)Þrhole(z,t) and henceSpiezo(z,t)Þ0. However, if
the built-in piezoelectric field is too strong and the spat
separation of electrons and holes too large, thenrelec(z,t)
2rhole(z,t)'0. This is because the overlap between the c
duction and valence envelope functions enters into the o
cal dipole matrix elements in Eq.~37!. If there is negligible
overlap between electron and hole envelope functions du
strong piezoelectric fields thendn,n8

cv (k)'0, no electron-hole
pairs are photogenerated and once againSpiezo(z,t)'0.

The deformation potential contribution to the drivin
function is given by

Sdef~z,t !5
ac,z

r0

]relec~z,t !

]z
2

~D11D3!

r0

]rhole~z,t !

]z
.

~87!

From Table I, the conduction electron deformation poten
ac,z is roughly twice the valence-hole deformation potenti
D11D3. Thus, the two terms in Eq.~87! are of comparable
magnitude. The first term, due to conduction electrons, gi
rise to a contribution toSdef(z,t) which is localized on the
right side of each MQW while the second, due to valen
holes, gives rise to a contribution that is localized on t
left-hand side of each MQW.

In our simulation, we find that piezoelectric and deform
tion potential contributions to the driving function are com
parable. This is seen in Fig. 12 whereSpiezo(z) andSdef(z),
along with their sum, are plotted att52 ps. In this example,
we find thatSdef(z) makes the dominant contribution toS(z,t
as can be seen in Fig. 12.

The macroscopic lattice displacementU(z,t) and velocity
field V(z,t) can be obtained from the coherent phonon a
plitudesDq(t) using Eqs.~55! and ~56!. Alternatively, they
can also be obtained from the driving functionS(z,t)
through the Green’s function solution of the driven stri
equation. In Fig. 13, we plot the macroscopic lattice d
placement,U(z,t), and velocity field,V(z,t), for coherent
LA phonon modes generated by the driving function sho
in Fig. 10.

f

FIG. 12. Driving functionS(z,t) in the simplified loaded-string
model att52 ps for the coherent LA phonon wave equation as
function of position for the InxGa12xN diode structure and lase
pumping parameters in Table II. The total driving function,S(z,t),
is the sum of piezoelectric and deformation potential contributio
Spiezo(z,t) andSdef(z,t).
6-14
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F. Coherent phonon energy

From the lattice displacementU(z,t), we can obtain the
total energy density per unit volume associated with cohe
LA phonons,

ELA~z,t !5TLA~z,t !1VLA~z,t !, ~88a!

as the sum of a kinetic-energy density term,

TLA~z,t !5
r0~z!

2 S ]U~z,t !

]t D 2

, ~88b!

and a potential-energy density term,

VLA~z,t !5
C33~z!

2 S ]U~z,t !

]z D 2

. ~88c!

The coherent LA phonon energy per unit area,ELA(t), is
obtained by integratingELA(z,t) over positionz:

ELA~ t !5E
2`

`

dzELA~z,t !. ~89!

The total energy densityELA(z,t) for coherent LA
phonons as a function of position and time is shown in F
14 and in Fig. 15 the total energy density is plotted a
function of position for equally spaced values of the tim
ranging from t50 to t58 ps in increments of 2 ps. Th
curves in Fig. 15 for different times have been offset to av
overlapping. At short times, the evolution of the total phon
energy density is complicated, but the long time behaviot
*6 ps, can be easily understood.

FIG. 13. Lattice displacementU(z,t) and velocity fieldV(z,t)
for coherent LA phonons generated by the driving function sho
in Fig. 10.
23531
nt

.
a

d

As t→`, a localized energy density appears in the MQ
region due almost entirely to the potential-energy term in E
~88c!. This is due to near-steady-state loading by the driv
function at long times. Assuming that the driving functio
S(z,t) is approximately constant at long times, the loade
string equation~77! can be integrated once in the steady-st
limit. We find the steady-state solution

]U~z!

]z
'2E

2`

z

dz8
S~z8!

Cs
2

, ~90!

n

FIG. 14. Total energy densityELA(z,t) for coherent LA phonons
as a function of position and time for the driving function shown
Fig. 10. The total integrated energy density as a function of tim
obtained by integrating over position,z

FIG. 15. Total energy densityELA(z,t) for coherent LA phonons
as a function of position for several values of the timet for the
driving function shown in Fig. 10. The curves for different time
have been offset to avoid overlapping.
6-15
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from which the long-time behavior of the LA phonon ener
density per unit volume in the MQW’s,

E LA
` ~z!'

C33~z!

2A S E
2`

z

dz8
S~z8!

Cs
2 D 2

, ~91!

can be obtained. The fact that the energy density in Eq.~91!
is localized in the MQW’s follows directly from the sum rul
~82! and is clearly seen in Figs. 14 and 15.

In addition to the localized energy density, which rema
behind in the MQW’s, two propagating wave trains consi
ing of four pulses each are seen to exit the MQW region
travel off to infinity at the acoustic phonon sound speedCs .
The distance between the pulses is just the interwell sep
tion distance. In these radiating wave trains, the kinetic
potential energy densities,TLA(z,t) andVLA(z,t), are found
to be equal as one would expect.

The power spectrum of the coherent LA phonon ene
density inq space can be written in terms of the cohere
phonon amplitudesDq(t). The power spectrum for the tota
coherent LA phonon energy density,

ELA~q,t !5TLA~q,t !1VLA~q,t !, ~92a!

is again the sum of a kinetic-energy term,

TLA~q,t !5
1

2A

\

vq
U]Dq~ t !

]t U2

, ~92b!

and a potential-energy term,

VLA~q,t !5
1

2A
\vquDq~ t !u2. ~92c!

The phonon energy density per unit area is obtained by s
ming the power spectrum over positive phonon wave vec
q. Thus,

ELA~ t !5 (
q.0

ELA~q,t !. ~93!

The total energy density power spectrum for coherent
phonons as a function of phonon wave vectorq and time is
shown in Fig. 16. The peak nearq50 is associated with
buildup of the steady-state energy density localized in
MQW region. Secondary peaks are seen nearq0
50.59 nm21 and twice this wave vector, i.e.,q152q0
51.18 nm21. The wave vectorq0 corresponds to the wav
vector of the MQW period,

q05
2p

Lw1Lb
, ~94!

whereLw andLb are the well and barrier widths.
The total coherent LA phonon energy per unit area can

obtained from either Eq.~89! or Eq. ~93!. In Fig. 17, we
show the total phonon energy per unit area,ELA(t), as a
function of time for the coherent LA phonons generated
the driving function shown in Fig. 10. The total energy p
unit area is the sum of kinetic- and potential-energy term
For comparison, the pulse shape is shown as a dotted lin
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is clear from the figure that the buildup of energy in coher
LA phonons takes place on a time scale that is much lon
than the pump duration. In addition, we see that the to
energy buildup in the phonons saturates at around 5 ps
that some strong but rapidly decreasing oscillations are
perimposed on top of an increasing trend.

The saturation phenomenon results from the fact that
have a finite number of quantum wells and not an infin
superlattice. The results can best be explained in terms o
driven string equation. In general, the rate at which energ
fed into the phonon field per unit area is described by
energy equation,32

]ELA

]t
5r0E

0

L

dzS~z,t !V~z,t !, ~95!

FIG. 16. Total energy density power spectrumELA(q,t) for co-
herent LA phonons as a function of phonon wave vectorq and time
for the driving function Fig. 10. The total integrated energy dens
as a function of time is obtained by integrating overq.

FIG. 17. Integrated energy densityELA(t) as a function of time
for coherent LA phonons generated by the driving function sho
in Fig. 10. The total integrated energy density is the sum of kine
and potential-energy terms. The pulse shape~arbitrary units! is
shown for comparison.
6-16
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in which S(z,t) andV(z,t) are the phonon driving function
and velocity fields defined in Eqs.~79! and ~56!, andr0 is
the GaN mass density used for computing the sound sp
Cs , in Eq. ~47!. The energy equation simply suggests th
the rate at which energy is added to a driven string is p
portional to the local force times velocity integrated over t
length of the string. The integral in Eq.~95! vanishes when
the transient velocity fieldV(z,t) exits the MQW region in
which the driving functionS(z,t) is localized. Thus, the
time, tsat, required forELA to saturate is just the time it take
for an LA sound wave to cross the MQW, i.e.,tsat'W/Cs ,
whereW is the width of the MQW region over which th
driving function is localized. In our example, the LA soun
speed isCs580 Å/ps in GaN and the MQW width~four-
well and three-barrier layers! is W5381 Å, from which we
obtain tsat54.8 ps.

The oscillations ofELA observed in Fig. 17 reflect th
number and periodicity of the diode MQW’s. The pump las
generates spatially periodic electron and hole distributio
as seen in Fig. 7, due to the fact that the pump photoexc
carriers in the wells but not the barriers. From each of
wells in the MQW, two double-peaked sound pulses eme
traveling in opposite directions thus giving rise to an o
wardly propagating velocity field patternV(z,t) with eight
peaks traveling outward in each direction as seen in Fig.
The driving functionS(z,t), on the other hand, is localize
in the MQW’s and is relatively constant in time after th
pump pulse dies out. The driving functions localized in ea
well do work on eight traveling velocity disturbances, t
two generated in the well itself as well as the ones gener
in the three neighboring wells that subsequently pass by. T
gives rise to the six peaks plus saturation plateau seen in
17. The time interval between coresponding peaks in a
cent wells is just the time it takes for the LA sound waves
travel between wells, i.e.,tperiod5(Lw1Lb)/Cs , whereLw
and Lb are the well and barrier thicknesses. For the MQ
structure,Lw563.0 Å andLb543.0 Å and we havetperiod
51.325 ps, which agrees with the peak-to-peak time
tween the first and third or second and fourth peaks see
Fig. 17.

V. SUMMARY AND CONCLUSIONS

We have developed a microscopic theory for the gene
tion and propagation of coherent LA phonons in pseudom
phically strained wurtzite~0001! InxGa12xN/GaN multiple
quantum well~MQW! pin diodes. Both GaN and InN hav
different lattice constants so that a significant mismatch
h

se
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curs between the wells and barriers. The presence of stra
the MQW’s results in the creation of strain-induced built-
piezoelectric fields on the order of several MV/cm, whi
significantly alter the electronic and optical properties of t
diode structure. In particular, the effective band gap can
lower than the band gap in unstrained InxGa12xN wells due
to the presence of triangular piezoelectric potentials.

To a first approximation, the generation of coherent L
phonons is driven by optical photoexcitation of electron-h
pairs by an ultrafast Gaussian pump laser. Under typical
perimental conditions, the propagation of coherent
phonons is described by auniform loaded-string equation fo
the lattice displacement where the time- and positio
dependent driving force on the string is a function of t
photoexcited carrier density. This differs from coherent L
phonon oscillations in bulk systems where the coherent
phonons obey a forced oscillator equation. Both deformat
potential and piezoelectric coupling mechanisms contrib
to the driving force. We find that deformation potential co
pling contributes a driving force proportional to the deriv
tive of the carrier density while piezoelectric coupling co
tributes a driving force proportional to the photoexcit
carrier density.

We found that the driving term in the loaded-string equ
tion is suddenly turned on by rapid generation of electro
hole pairs by the pump and remains approximately cons
theafter. This sudden displacive loading of the string res
in a new static equilibrium lattice displacement. This ne
static equilibrium displacement corresponds to a popula
of coherent LA phonons withq'0. As the lattice adjusts to
the new equilibrium, coherent LA phonons are transmitted
the positive and negativez directions at the LA sound speed
These traveling coherent LA phonons are characterized
q'2p/L whereL is the superlattice period.

The formalism described here can be applied to the an
sis of more complicated device geometries as well as m
complicated laser pulse sequences. This gives a sim
method for calculating the coherent LA phonon generation
more complicated geometries and gives additional insi
into the acoustic coherent response.

ACKNOWLEDGMENTS

The works of G.D.S. and C.J.S. was supported by
National Science Foundation through Grant No. DM
9817828 and INT-9414072. The work of C.S.K. was su
ported by Chonnam National University through a grant
the year 1999.
dry,
tt.
1G.C. Cho, W. Kutt, and H. Kurz, Phys. Rev. Lett.65, 764~1990!.
2W. Kutt, G.C. Cho, T. Pfeifer, and H. Kurz, Semicond. Sci. Tec

nol. 7, B77 ~1992!.
3T. Pfeifer, W. Kutt, H. Kurz, and H. Scholz, Phys. Rev. Lett.69,

3248 ~1992!.
4T.K. Cheng, J. Vidal, H.J. Zeiger, G. Dresselhaus, M.S. Dres

haus, and E.P. Ippen, Appl. Phys. Lett.59, 1923~1991!.
-

l-

5W. Albricht, T. Kruse, and H. Kurz, Phys. Rev. Lett.69, 1451
~1992!.

6A.V. Kuznetsov and C.J. Stanton, Phys. Rev. Lett.73, 3243
~1994!.

7A.V. Kuznetsov and C.J. Stanton, Phys. Rev. B51, 7555~1995!.
8E.R. Thoen, G. Steinmeyer, P. Langlois, E.P. Ippen, G.E. Tu

C.H. Brito Cruz, L.C. Barbosa, and C.L. Sedar, Appl. Phys. Le
6-17



rs

,

M
.

d

e

i,
J.E.
K.

d

ry,
,

ys.

G. D. SANDERS, C. J. STANTON, AND CHANG SUB KIM PHYSICAL REVIEW B64 235316
73, 2149~1998!.
9A. Yamamoto, T. Mishina, and Y. Masumoto, Phys. Rev. Lett.73,

740 ~1994!.
10A. Bartels, T. Dekorsy, H. Kurz, and K. Ko¨hler, Phys. Rev. Lett.

82, 1044~1999!.
11C.-K. Sun, J.-C. Liang, and X.-Y. Yu, Phys. Rev. Lett.84, 179

~2000!.
12P.Y. Yu and M. Cardona,Fundamentals of Semiconducto

~Springer-Verlag, Berlin, 1996!.
13J.B. Jeon, B.C. Lee, M. Sirenko, K.W. Kim, and M.A. Littlejohn

J. Appl. Phys.82, 386 ~1997!.
14S.L. Chuang and C.S. Chang, Phys. Rev. B54, 2491~1996!.
15S.L. Chuang and C.S. Chang, Appl. Phys. Lett.68, 1657~1996!.
16S.L. Chuang,Physics of Optoelectronic Devices~Wiley, New

York, 1995!.
17O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu,

Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M
Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys.85,
3222 ~1999!.

18S. Nakamura and G. Fasol,The Blue Laser Diode: GaN Base
Emitters and Lasers~ SpringerVerlag, Berlin, 1997!.

19Y.C. Yeo, T.C. Chong, and M.F. Li, J. Appl. Phys.83, 1429
~1998!.

20G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc¸, Appl.
Phys. Lett.68, 2541~1996!.

21B. Doshi, K.F. Brennan, R. Bicknell-Tassius, and F. Grunthan
23531
.

r,

Appl. Phys. Lett.73, 2784~1998!.
22A.F. Wright, J. Appl. Phys.82, 2833~1997!.
23S.F. Chichibu, A.C. Abare, M.P. Mack, M.S. Minsky, T. Deguch

D. Cohen, P. Kozodoy, S.B. Fleischer, S. Keller, J.S. Speck,
Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars,
Wada, T. Sota, and S. Nakamura, Mater. Sci. Eng., BB59, 298
~1999!.

24This will affect the forcing termS(z,t) in Eq. ~79!.
25D.L. Smith and C. Mailhiot, J. Appl. Phys.63, 2717~1988!.
26W. C. Chow, S. W. Koch, and M. Sargent,Semiconductor-Laser

Physics~Springer-Verlag, Berlin, 1994!.
27H. Haug and S. W. Koch,Quantum Theory of the Optical an

Electronic Properties of Semiconductors~World Scientific, Sin-
gapore, 1993!.

28S.H. Park and S.L. Chuang, Phys. Rev. B59, 4725~1999!.
29J. D. Jackson,Classical Electrodynamics~Wiley, New York,

1975!.
30W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne

Numerical Recipes~Cambridge University Press, New York
1992!.

31N.V. Chigarev, D.Yu. Parachuk, X.Y. Pan, and V.E. Gusev, Ph
Rev. B61, 15 837~2000!.

32P.W. Berg and J. L. McGregor,Elementary Partial Differential
Equations~Holden-Day, San Francisco, 1966!.

33B.A. Auld, Acoustic Fields and Waves in Solids~Krieger Publish-
ing, Malabar, Florida, 1973!.
6-18


