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Average forces in bound and resonant quantum states

W. Zawadzki and P. Pfeffer
Institute of Physics, Polish Academy of Sciences, Aleja. Lotnikow 32/46, 02–668 Warsaw, Poland

~Received 29 May 2001; published 16 November 2001!

Average forces in bound and resonant states of simple quantum systems realizable in semiconductor hetero-
structures are considered theoretically. First, an average electric force in a bound state of electron characterized
by a constant effective mass is calculated and shown to be zero. Next, a total force is calculated for a system
in which electron effective mass varies in space and it is demonstrated that this force has a component related
to the mass variation. Average electric force is then determined from the condition that in a bound state the
average total force must vanish. Finally, average electric field is calculated for a system consisting of a
quantum well placed in a constant field. A comparison with the density of states shows that the average field
is strongly quenched at the energies corresponding to resonant states.
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I. INTRODUCTION

Due to recent advancement in modern semicondu
technology it has become possible to produce handm
quantum systems. The observable quantization in such
tems is caused by small values of electron effective ma
in most semiconductors. Because the gaps of forbidden
ergies in different materials may vary considerably, it is p
sible to create energy barriers at semiconductor interface
systems using alloys one can vary the barrier heights c
tinuously by varying the chemical composition. Since t
effective masses of electrons and light holes are to a g
approximation proportional to the energy gap in the mater
one often deals with carriers’ masses having different val
in various parts of the system. During the last few year
has become possible to apply external electric fields to se
conductor heterostructures using the so called gated arra
ments.

Physical effects produced by the above possibilities ar
importance for basic research and industrial applicatio
Hand-made quantum systems can serve to achieve a b
understanding of quantum phenomena since they are m
flexible and can be manipulated much more easily than
natural systems like atoms or molecules. In this paper we
concerned with average forces arising from potential a
mass discontinuities as well as applied electric fields. O
considerations are limited to one dimension. We encounte
the problems of average forces when dealing with a sub
of spin splitting due to inversion asymmetry in semicondu
tor heterostructures, Ref. 1, but clearly the properties of
erage forces have more general implications. We point
the consequences of general results for semiconductor p
lems.

Our paper is organized in the following way. In Sec. II w
consider an average electric force in bound states of quan
systems characterized by a constant electron mass. Se
III treats a similar problem in systems in which the effecti
mass varies in space. In Sec. IV we go beyond the bo
states and treat average electric forces in resonant state
ated by an application of external electric field.
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II. AVERAGE FORCE IN A SYSTEM WITH CONSTANT
ELECTRON MASS

We calculate an average value of the time derivative
momentumṗz in a bound eigenstateCn of the Hamiltonian
Ĥ. Such a state satisfies the Schro¨dinger equation

ĤCn5enCn , ~1!

whereen is the eigenenergy. The average value ofṗz is

~Cn ,ṗzCn!5
1

i\
@~Cn ,ĤpzCn!2~Cn ,pzĤCn!#

5
1

i\
@en~Cn ,pzCn!2en~Cn ,pzCn!#50

~2!

if Cn is square integrable, i.e., if it describes a bound sta
To arrive at the result~2! we used the Hermiticity of the
HamiltonianĤ.

Now we consider the standard case of a constant elec
mass:m* 5const. The Hamiltonian for this case reads

Ĥ5
1

2m*
pz

21U~z!, ~3!

where the potential energyU(z)5qV(z), in which V(z) is
the electric potential andq52e for the electron charge. Us
ing the Ehrenfest relation we have

ṗz5
1

i\
@pz ,Ĥ#5

1

i\
@pz ,U#52

]U

]z
5Fel . ~4!

Equation~4! is the well known quantum equivalent of th
Newton’s second law stating that the time increment of m
mentum is equal to the force. In case of the Hamiltonian~3!
the force is purely electric.

It follows from Eqs.~2! and ~4! that the average electri
force ~or electric field! in a bound state of the Hamiltonia
~3! is zero. In symmetric quantum wells the above theorem
manifestly fulfilled, in asymmetric wells it is satisfied les
obviously. In this connection we want to discuss a ‘‘tricky
©2001 The American Physical Society13-1
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W. ZAWADZKI AND P. PFEFFER PHYSICAL REVIEW B64 235313
case for which the theorem is seemingly not satisfied. Le
consider a triangular well with an infinite barrier. This
represented in Fig. 1 if one takesU05` and U(z)5qEz
with constantE. For the infinite barrier the wavefunctio
vanishes atz50: C0(0)50. Then the average field appea
to be

^E&5E
0

`

C0* EC0dz5E

sinceC0 is normalized. Thus the average field appears to
nonzero. The flaw in the above reasoning is that, by takin
the outsetC0(0)50, we have neglected the electric fie
resulting from the potential drop at the barrier.

A correct treatment of the problem is illustrated in Fig.
One should first take a finite barrierU0. Then the wave func-
tion penetrates the barrier into thez<0 region and the elec
tric force due to the potential drop is1U0d(z), whered(z)
is the Dirac delta function. This contributes the amou
1U0uC0(0)u2 to the average electric force, which exact
compensates the positive contribution from the regionz.0.
One can now take higher values ofU0, which increases the
electric force due to the potential drop but diminishes
value ofC0(0). Thelimit of this contribution forU0→` is
nonzero and it compensates exactly the contribution to
average force from the regionz.0. This compensation is
illustrated in Fig. 2. HereFU is the contribution from the
potential drop atz50, andFE is that from the regionz.0.
At all values ofU0 the two contributions cancel each othe
so that the average electric force~or electric field! vanishes.
At higher U0 both contributions saturate.

The electric field component related to the potential d
at the high barrier in MOS structures was overlooked
Refs. 2,3. The fact that in a bound state the average ele
field must vanish was remarked by Da¨rr, Kotthaus, and
Ando.4

III. AVERAGE FORCE IN A SYSTEM WITH VARIABLE
ELECTRON MASS

The modern semiconductor technology allows one to c
ate systems in which the effective carrier mass varies w

FIG. 1. Triangular quantum well and the wave function of t
ground state calculated for the electron massm* 50.066m0 and
electric fieldE520 kV/cm.
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position continuously or abruptly. In classical physics o
encounters a similar case considering, for example, a ro
burning fuel during its motion, so that its total mass chang
The initial Hamiltonian for this case is

Ĥ52
\2

2

]

]z

1

m* ~z!

]

]z
1U~z!. ~5!

It is easy to verify that in the above form the Hamiltonian
Hermitian.

We want to calculate an average electric force~or field! in
bound eigenstates of the Hamiltonian~5!. The reasoning pre-
sented in Eq.~2! still holds, which means that the averag
value of ṗz vanishes. On the other hand the calculation p
sented in Eq.~4! should now be replaced by

ṗz5
1

i\

\

i F ]

]z S 2
\2

2

]

]z

1

m*

]

]z
1U D

2S 2
\2

2

]

]z

1

m*

]

]z
1U D ]

]zG
52

]U

]z
1

\2

2

]

]zF S ]

]z

1

m*
D ]

]zG . ~6!

Thus the total force has now an electric component relate
the potential gradient and a ‘‘mass’’ component related to
mass gradient. Since the average total force in a bound s
must still be zero, the average electric force is

^Fel&5E Cn* S 2
]U

]z DCndz52^FM&

5
\2

2 E U]Cn

]z U2S ]

]z

1

m*
D dz. ~7!

For a real wave functionCn this agrees with the result o
Lommeret al.5 It follows then that, if in a system the mas
depends on the position, the average electric force~or field!
in a bound state is nonzero.

FIG. 2. Two components of average electric force~in newtons!
calculated for the well shown in Fig. 1 (m* 50.066m0 , E
520 kV/cm). At all values ofU0 the barrier componentFU com-
pensates the constant field componentFE , so the total average
force vanishes.
3-2
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AVERAGE FORCES IN BOUND AND RESONANT . . . PHYSICAL REVIEW B 64 235313
Next we consider a practical situation in which the ma
has a constant value in one region of space and another
stant value in the neighboring region. This case is often
alized in semiconductor heterostructures composed of
different materials. Since the effective mass in each mate
is proportional to its energy gap, the abrupt changes of
mass and of the potential occur at the same point, that
the interface. We takem* 5m2* for z,0, andm* 5m1* for
z.0 ~see Fig. 1!. It is well known that in this case the
boundary conditions for the wave functions at the interfa
are

Cnu025Cnu01 and
1

m2*

]Cn

]z U025
1

m1*

]Cn

]z U
01

. ~8!

These conditions result from the continuity of the probabil
current across the interface. For the mass variation assu
above, one has]m* /]z5(m1* 2m2* )d(z), and Eq.~7! gives

^FM&5
\2

2
~m1* 2m2* !U 1

m*

]Cn

]z U
z50

2

~9!

in which the value atz50 can be taken either usingm2* and
the limit 02, or m1* and the limit 01, since according to Eq
~8! they coincide.

Figure 3 illustrates three contributions to the average t
force calculated numerically form2* /m1* 51.5 as functions of
the barrier heightU0. The average electric force~or field! is
given by the sum of contributionsFU of the potential drop
U0 and the constant fieldFE from the regionz.0. This sum
is now nonzero since it compensates the contribution fr
the mass gradient at the interface, as given by Eq.~9!. The
result shown in Fig. 3 may appear paradoxical since it in
cates that at high values of the barrierU0 the force related to
the mass gradient does not vanish but saturates, althoug
wavefunction penetrates less and less the region ofz,0 and
the mass differencem2* 2m1* is constant. We cannot offer a
intuitive argument justifying this result, but observe that t

FIG. 3. Two components of the average electric force and
average ‘‘mass’’ force~related to the mass change atz50!, calcu-
lated for the quantum well shown in Fig. 1 as functions of barr
height U0 for the electron massm1* 50.066m0 and E520 kV/cm.
At all values ofU0 the average electric forcêFel&5FE1FU com-
pensates the average ‘‘mass’’ force^FM&, so the total average forc
vanishes.
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‘‘mass’’ force, as given by Eq.~9!, is related to the slope
]Cn /]z at z50 and this slope reaches a constant value
the barrier increases. Within the effective mass approxim
tion the jumps of the potential and the mass occur simu
neously, so that the assumed model, although idealized
quite realistic.

According to Eq.~9!, for m1* ,m2* the average ‘‘mass’’
force is negative, form1* .m2* it is positive. This means tha
the average electric force~or field! must also have opposit
signs in the two cases in order to keep the average total f
equal to zero. This is indeed the case since the relative m
nitude of the two masses influences theFU component of the
electric force via the boundary conditions~8!. In a three-
dimensional system with two different effective masses
free electron motion parallel to the interface results in the
called kinetic barrier, which leads to new effects~see Kubisa
and Zawadzki6!.

Finally, Fig. 4 shows a real potential well i
Ga0.7Al0.3As/GaAs heterojunction doped with Si donors
the GaAlAs barrier. The wave function and the potential a
computed self-consistently using the Schro¨dinger and the
Poisson equations according to the procedure describe
Bastard.7 The subband energye0 is found by requiring that
the wave function goes to zero at high positivez values. The
electron effective mass in the Ga0.7Al0.3As barrier is m2*
50.088m0, while the mass in the GaAs well ism1*
50.066m0. The barrier value is 0.24 eV. The average elect
force consists of three parts:FL523.22310214N ~from the
region z,0), FR527.48310213N ~the regionz.0), and
FU59.53310213N ~the offset drop!. The average ‘‘mass’’
force is calculated according to Eq.~9!: ^FM&521.728
310213N. The electric contributions add up tôFel&
51.728310213N, so that the average total force vanishes,
it should.

IV. AVERAGE ELECTRIC FIELD IN RESONANT STATES

Now we go beyond the bound states and consider an
erage electric field~or force! for quantum wells placed in an
external electric field. This situation can be realized now

e

r
FIG. 4. Real quantum well and the ground state wave funct

in a modulation doped heterojunction Ga0.7Al0.3As/GaAs. The av-
erage electric forcêFel&5FL1FR1FU compensates the averag
‘‘mass’’ force ^FM&, so the total average force vanishes~see text!.
3-3
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W. ZAWADZKI AND P. PFEFFER PHYSICAL REVIEW B64 235313
so called gated semiconductor heterostructures to which
applies a variable external field by means of the gate~see
Nitta et al.8!. To describe the main features of the proble
we take the case of a constant effective mass. If after
application of external field the state in the well remains
be bound, the theorem exposed in Sec. II is valid and
average electric field remains zero. However, for a cons
electric field the potential energy isU5qEz and, if the well
is finite, the resulting situation is shown in Fig. 5. In this ca
the states in the well are not bound because the electron
tunnel to the region on the right-hand side. Then the ab
theorem is not valid anymore and the question of aver
field remains open.

We will characterize the quantum states in the syst
shown in Fig. 5 by the density of states~DOS! and calculate
the wave functions and the average electric field numerica
Since there are no bound states in the system, the spectr
continuous and the calculation of DOS is not trivial, Re
9–11. Since we require the knowledge of the wave functi

FIG. 5. Rectangular quantum well with a superimposed lin
potential and the electron wave functions calculated with the us
a constant electron massm* 50.066m0 and E52500 kV/cm for
three electron energies: lower resonancee1, upper resonancee2,
nonresonant energye1,e,e2.
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in order to compute the average field, we will calculate t
total DOS in the energy space by means of a local DOS

A local density of states is defined to treat situation
where the contribution to each state is weighted by the d
sity of its wavefunction at the point in question. The loc
DOS is ~see Davies12!,

h~e,z!5(
n

uCn~z!u2d~e2en!, ~10!

where the sumation is over all quantum numbers. If we c
sider one dimension and spin degenerate electron states
can take the continuous energy to been5e8, the sum in Eq.
~10! is replaced by an integral and we obtainh(e,z)
52uCe(z)u2, where the factor 2 is due to spin. It can b
shown that the total DOS is given by~see Ref. 12!,

r~e!5E
2`

1`

h~e,z!dz52E
2`

1`

uCe~z!u2dz. ~11!

The wave functionsCe(z) of the continuous energy spec
trum are ortonormalized to the Dirac delta function of e
ergy.

We proceed in the following way. Choosing an energye
within the well we compute numerically a correspondi
wavefunction for the potential shown in Fig. 5. For this pu
pose we employ the method of Runge-Kutta and the bou
ary conditions requiring the vanishing wave function and
derivative sufficiently far away on the left, but not require
vanishing on the right-hand side~RHS!. The calculation of
the wave functions is carried out up to 106 Å to the right of
the well. The computed wave functions are then used to
termine the local DOS of Eq.~10! and the total DOS accord
ing to the Eq.~11!. The same wave function is used to com
pute the average electric field for the potential shown in F
5 including the vertical potential drops.

The results obtained forr(e) and^E(e)& for the potential
shown in Fig. 5 and the electron massm* 50.066m0 are
shown in Figs. 6~a! and 6~b!. It can be seen from Fig. 6~a!
that there are two resonant states in the well. It is m

r
of
e peaks
with
ies the
FIG. 6. ~a! Total density of electron states for the potential shown in Fig. 5 calculated as a function of electron energy. Th
correspond to the resonant states.~b! Average electric field as a function of electron energy calculated for the potential shown in Fig. 5
the use of a constant massm* 50.066m0. At nonresonant energies the average field is equal to the external field, at resonant energ
average field is markedly quenched.
3-4
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AVERAGE FORCES IN BOUND AND RESONANT . . . PHYSICAL REVIEW B 64 235313
difficult to tunnel to the right from the lower statee1, so the
latter is almoust bound, which corresponds to the narrow
high peak in DOS. The wave function for the resonant
ergy e1 is shown in Fig. 5. This function is concentrate
mostly in the well, but it also has a weak oscillatory comp
nent on the RHS which indicates the tunneling probability
this state were truly bound, there would be no oscillato
component and DOS would have the shape of the Dirac d
function. Figure 6~b! shows that for the resonant energye1
the average electric field̂E(e1)& drops as sharply as th
DOS increases. For a bound state the average field woul
exactly zero in agreement with the above theorem. At n
resonant energies DOS is almost constant, the correspon
wave functions are not concentrated in the well~see Fig. 5!
and the average electric field is equal almost exactly to
applied external field. In other words, at nonresonant en
gies the effect of the well on DOS and on the average fiel
almost negligible. Around the higher resonant energye2
DOS has a smaller and wider peak, the wave function ha
sizable oscillatory component and the drop of the aver
field is less pronounced. As follows from the comparison
Figs. 6~a! and 6~b!, r(e) and ^E(e)& look almost similar to
mirror images of each other. Thus the resonant~or semi-
bound! character of the state markedly quenches the co
sponding average electric field.

In our model of the resonant states we assumed a
high value of the constant electric field. In realistic cases
the gated semiconductor heterostructures the applied field
the order of 104 V/cm would result in quasibound resona
states for which the average electric field would be pra
cally zero. Thus, when interpretating experiments on ga
semiconductor heterostructures~see, e.g., Ref. 8! one should
hy
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keep in mind that the application of an external electric fie
can change asymmetry of the electron wave function and
electron density in the quantum well, but the average elec
field in the well remains zero.

V. SUMMARY

We consider theoretically an average electric force act
on the electron in a bound state and show it to vanish, if
electron effective mass is constant. Next we calculate an
erage force in a system with the effective mass varying w
electron position and show that the force has electric
‘‘mass’’ components, the first related to the potential gradi
and the second related to the mass gradient. The ave
total force in a bound state must still vanish. A real case o
quantum well in Ga0.7Al0.3As/GaAs heterostructure is give
as an example. Finally, an average electric field is calcula
for resonant and nonresonant electron states in a system
finite rectangular well with a superimposed linear poten
~created by a constant electric field!. For the same system th
total density of states is computed with the use of a lo
density of states. A comparison of the average field with
total DOS shows that in nonresonant~delocalized! states the
average electric field is equal to the applied constant fie
while for the resonant states the average field is stron
quenched. This result has important implications for the
terpretation of experiments on gated semiconductor het
structures.
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