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Average forces in bound and resonant quantum states
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Average forces in bound and resonant states of simple quantum systems realizable in semiconductor hetero-
structures are considered theoretically. First, an average electric force in a bound state of electron characterized
by a constant effective mass is calculated and shown to be zero. Next, a total force is calculated for a system
in which electron effective mass varies in space and it is demonstrated that this force has a component related
to the mass variation. Average electric force is then determined from the condition that in a bound state the
average total force must vanish. Finally, average electric field is calculated for a system consisting of a
quantum well placed in a constant field. A comparison with the density of states shows that the average field
is strongly quenched at the energies corresponding to resonant states.
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I. INTRODUCTION Il. AVERAGE FORCE IN A SYSTEM WITH CONSTANT
ELECTRON MASS

Due to recent advancement in modern semiconductor We calculate an average value of the time derivative of
technology it has become possible to produce handmad@omentump, in a bound eigenstat# , of the Hamiltonian
quantum systems. The observable quantization in such sy§; sych a state satisfies the Satirger equation
tems is caused by small values of electron effective masses
in most semiconductors. Because the gaps of forbidden en- AV, =€V, (D
ergies in different materials may vary considerably, it is pos- ) _ .
sible to create energy barriers at semiconductor interfaces. fhereey is the eigenenergy. The average valugpis
systems using alloys one can vary the barrier heights con- 1
tinuously by varying the chemical composition. Since the (¥, p,¥,)=—[(¥,,Ap,¥,)—(¥,,p,A¥,)]
effective masses of electrons and light holes are to a good i%

approximation proportional to the energy gap in the material, 1

one often deals with carriers’ masses having different values =7 Len(Wn.pVn) — (W, p,¥i)]=0

in various parts of the system. During the last few years it

has become possible to apply external electric fields to semi- (2
conductor heterostructures using the so called gated arrangg-y is square integrable, i.e., if it describes a bound state.
ments. To arrive at the resulf2) we used the Hermiticity of the

Physical effects produced by the above possibilities are of,;miitonianHi.

importance for basic research and industrial applications. Now we consider the standard case of a constant electron
Hand-made quantum systems can serve to achieve a betighss:m* = const. The Hamiltonian for this case reads

understanding of quantum phenomena since they are more
flexible and can be manipulated much more easily than the ~
natural systems like atoms or molecules. In this paper we are H=
concerned with average forces arising from potential and
mass discontinuities as well as applied electric fields. Ouwhere the potential energy(z)=qV(z), in which V(z) is
considerations are limited to one dimension. We encounterette electric potential and= — e for the electron charge. Us-
the problems of average forces when dealing with a subjednhg the Ehrenfest relation we have
of spin splitting due to inversion asymmetry in semiconduc-
. . 1 N 1 U

tor heterostructures, Ref. 1, but clearly the properties of av- p,=—I[p,.Al==[p,,U]l=— —=F (4)

. ! . . 2704k Z i% ral el
erage forces have more general implications. We point out I

2
piHU), 3

dz

the consequences of general results for semiconductor proﬁ'quation(4) is the well known quantum equivalent of the
lems. Newton’s second law stating that the time increment of mo-
Our paper is organized in the following way. In Sec. Il we mentum is equal to the force. In case of the Hamiltor{@n

consider an average electric force in bound states of quantuie force is purely electric.

systems characterized by a constant electron mass. Section|t follows from Egs.(2) and (4) that the average electric
Il treats a similar problem in systems in which the effective force (or electric field in a bound state of the Hamiltonian
mass varies in space. In Sec. IV we go beyond the boun(B) is zero. In symmetric quantum wells the above theorem is
states and treat average electric forces in resonant states creanifestly fulfilled, in asymmetric wells it is satisfied less
ated by an application of external electric field. obviously. In this connection we want to discuss a “tricky”
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0 Z FIG. 2. Two components of average electric fof@enewton$
calculated for the well shown in Fig. 1m*=0.066n,, E
=20 kV/cm). At all values ofU, the barrier componerf; com-
pensates the constant field compon€nit, so the total average
force vanishes.

case for which the theorem is seemingly not satisfied. Let us

consider a triangular well with an infinite barrier. This is position continuously or abruptly. In classical physics one
represented in Fig. 1 if one také$,=o andU(z)=qEz encounters a similar case considering, for example, a rocket
with constantE. For the infinite barrier the wavefunction burning fuel during its motion, so that its total mass changes.
vanishes az=0: ¥4(0)=0. Then the average field appears The initial Hamiltonian for this case is

to be

FIG. 1. Triangular quantum well and the wave function of the
ground state calculated for the electron mass=0.066n, and
electric fieldE=20 kV/cm.

A= -~ U (5)
oo = ———— Z .
<E>=f VEEWdz=E 2 92 m*(z) 92
0
It is easy to verify that in the above form the Hamiltonian is

sinceWV is normalized. Thus the average field appears to b?—|ermitian
nonzero. The flaw in the above reasoning is that, by taking at We want to calculate an average electric fofuefield) in

the outsetW,(0)=0, we have neglected the electric field p,, g gigenstates of the Hamiltoniéh). The reasoning pre-
resulting from the potential drop at the barrier. sented in Eq(2) still holds, which means that the average

A correct treatment of the problem is illustrated in Fig. 1. - . .
One should first take a finite barrieky. Then the wave func- value ofp, vanishes. On the other hand the calculation pre-
0 sented in Eq(4) should now be replaced by

tion penetrates the barrier into tke=0 region and the elec-
J ( 29 1 9 )

17

tric force due to the potential drop i58Uy8(2), where §(z)
P T2\ T2 2 72

is the Dirac delta function. This contributes the amount +
+Uo|¥o(0)|? to the average electric force, which exactly 2 0z m* 9z

d
0z

. (6)

compensates the positive contribution from the regiorD. 5
One can now take higher values Gf, which increases the | At 1 4 9
electric force due to the potential drop but diminishes the Jz

value of W4(0). Thelimit of this contribution forUy,— o is

nonzero and it compensates exactly the contribution to the U k2ol 1

average force from the region>0. This compensation is I + 2 9z 5?

illustrated in Fig. 2. Herd~, is the contribution from the

potential drop az=0, andFg is that from the regioz>0.  Thus the total force has now an electric component related to
At all values ofU, the two contributions cancel each other, the potential gradient and a “mass” component related to the

so that the average electric forgar electric field vanishes. mass gradient. Since the average total force in a bound state
At higher U, both contributions saturate. must still be zero, the average electric force is
The electric field component related to the potential drop

at the high barrier in MOS structures was overlooked in (F >:f p* _ﬂ W, dz= —(Fy)
Refs. 2,3. The fact that in a bound state the average electric el n\ogz) 0 m M
field must vanish was remarked by MaKotthaus, and
Ando? W2 [ ow,l?[ o 1
== — —|dz 7
2 0z 0Z m*

IIl. AVERAGE FORCE IN A SYSTEM WITH VARIABLE
ELECTRON MASS For a real wave functionl’,, this agrees with the result of
Lommeret al® It follows then that, if in a system the mass
The modern semiconductor technology allows one to credepends on the position, the average electric fgocdield)
ate systems in which the effective carrier mass varies witlin a bound state is nonzero.
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FIG. 3. Two components of the average electric force and the z

average “mass” forcerelated to the_ mass changem_ 0), calcu- . FIG. 4. Real quantum well and the ground state wave function
lated for the quantum well shown in Fig. 1 as functions of barrier.

heightU, for the electron masm} =0.066n, and E=20 kV/cm. ::r:‘ :Ziﬂﬁ?éo?o?ccé?d) ie;erfjlg nitll?n gﬂ“ﬁgﬁ(:ﬁi’h;gﬁ;\g e
At all values ofU, the average electric fordg,))=Fg+F com- 9 AN P g

“mass” force (F\,), so the total average force vanishese te
pensates the average “mass” for@@,,), so the total average force (Fu), g h X

vanishes. . .
“mass” force, as given by Eq(9), is related to the slope

Next we consider a practical situation in which the mass’¥n/9z atz=0 and this slope reaches a constant value as
has a constant value in one region of space and another cofile barrier increases. Within the effective mass approxima-
stant value in the neighboring region. This case is often retion the jumps of the potential and the mass occur simulta-
alized in semiconductor heterostructures composed of twH€ously, so that the assumed model, although idealized, is
different materials. Since the effective mass in each materigluite realistic.
is proportional to its energy gap, the abrupt changes of the According to Eq.(9), for my <mj the average “mass”
mass and of the potential occur at the same point, that is d@rce is negative, fomi >mj it is positive. This means that
the interface. We taken* =mj for z<0, andm*=m? for  the average electric ford@r field) must also have opposite
z>0 (see Fig. 1 It is well known that in this case the Signs inthe two cases in order to keep the average total force

boundary conditions for the wave functions at the interface2qual to zero. This is indeed the case since the relative mag-
are nitude of the two masses influences thg component of the

electric force via the boundary conditiori8). In a three-

1 9v, 1 v, dimensional system with two different effective masses a
Volo-=Wolo+ and — 7z 1T % a7 (8)  free electron motion parallel to the interface results in the so
m; my o+ called kinetic barrier, which leads to new effetsge Kubisa

and ZawadzK).
Finally, Fig. 4 shows a real potential well in
7AlgAs/GaAs heterojunction doped with Si donors in
the GaAlAs barrier. The wave function and the potential are
2 computed self-consistently using the Salinger and the
9 Poisson equations according to the procedure described by
Bastard’ The subband energy, is found by requiring that
the wave function goes to zero at high positaealues. The
in which the value az=0 can be taken either usimgy and  electron effective mass in the G#lysAs barrier ismj
the limit 0, or m} and the limit 07, since according to Eq. =0.088n,, while the mass in the GaAs well isn}
(8) they coincide. =0.066ny. The barrier value is 0.24 eV. The average electric
Figure 3 illustrates three contributions to the average totalorce consists of three part§; = —3.22< 10~ N (from the
force calculated numerically fans /m7 = 1.5 as functions of  region z<0), Fg=—7.48x 10 N (the regionz>0), and
the barrier height,. The average electric forder field) is  Fy=9.53x10" 13N (the offset drop. The average “mass”
given by the sum of contribution§,, of the potential drop force is calculated according to E@9): (Fy)=—1.728
U, and the constant fielfl¢ from the regiorz>0. This sum  x10 '*N. The electric contributions add up toF,)
is now nonzero since it compensates the contribution fron+ 1.728< 10 3N, so that the average total force vanishes, as
the mass gradient at the interface, as given by (Bg.The it should.
result shown in Fig. 3 may appear paradoxical since it indi-
cates that at h|_gh values of the parm% the force related to IV. AVERAGE ELECTRIC FIELD IN RESONANT STATES
the mass gradient does not vanish but saturates, although the
wavefunction penetrates less and less the regiaxd and Now we go beyond the bound states and consider an av-
the mass differencen; —mj is constant. We cannot offer an erage electric fieldor force for quantum wells placed in an
intuitive argument justifying this result, but observe that theexternal electric field. This situation can be realized now in

These conditions result from the continuity of the probability
current across the interface. For the mass variation assum
above, one hasm*/dz=(mj —mj3)8(z), and Eq.(7) gives

2

oV
(Fw)= > (m}—m}) -

m¥* 0z

z=0
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T A T in order to compute the average field, we will calculate the
total DOS in the energy space by means of a local DOS.

A local density of states is defined to treat situations,
where the contribution to each state is weighted by the den-
sity of its wavefunction at the point in question. The local
DOS is(see Davie¥),

U(meV)

n(e,z):; W (2)|28(e—€p), (10)

¥.(z) (arbitrary units)

I ¥, where the sumation is over all quantum numbers. If we con-
sider one dimension and spin degenerate electron states, we
200 o 200 can take the continuous energy to &g= €', the sum in Eq.
z(A) (10) is replaced by an integral and we obtaie€,z)
=2|¥ (2)|?, where the factor 2 is due to spin. It can be

FIG. 5. Rectangular quantum well with a superimposed lineargp,o\wn that the total DOS is given ligee Ref. 12
potential and the electron wave functions calculated with the use of

a constant electron masgs* =0.066n, and E=—500 kVv/cm for +oo too
three electron energies: lower resonarge upper resonance,, p(e)=f n(e,z)dZZZJ' |V .(2)]%dz (12
nonresonant energyy, < €< e,. ’°° ’°°

-1

The wave functionsV (z) of the continuous energy spec-
so called gated semiconductor heterostructures to which orfeum are ortonormalized to the Dirac delta function of en-
applies a variable external field by means of the date  ergy.

Nitta et al®). To describe the main features of the problem We proceed in the following way. Choosing an enetgy
we take the case of a constant effective mass. If after awithin the well we compute numerically a corresponding
application of external field the state in the well remains towavefunction for the potential shown in Fig. 5. For this pur-
be bound, the theorem exposed in Sec. Il is valid and th@ose we employ the method of Runge-Kutta and the bound-
average electric field remains zero. However, for a constarary conditions requiring the vanishing wave function and its
electric field the potential energy $=qEzand, if the well  derivative sufficiently far away on the left, but not require its
is finite, the resulting situation is shown in Fig. 5. In this casevanishing on the right-hand sid®HS). The calculation of
the states in the well are not bound because the electron caine wave functions is carried out up to®1A to the right of
tunnel to the region on the right-hand side. Then the abovéhe well. The computed wave functions are then used to de-
theorem is not valid anymore and the question of averagéermine the local DOS of Eq10) and the total DOS accord-
field remains open. ing to the Eq.(11). The same wave function is used to com-
We will characterize the quantum states in the systenpute the average electric field for the potential shown in Fig.
shown in Fig. 5 by the density of statd809) and calculate 5 including the vertical potential drops.
the wave functions and the average electric field numerically. The results obtained fqgr(e) and(E(e)) for the potential
Since there are no bound states in the system, the spectrumskown in Fig. 5 and the electron mass =0.066n, are
continuous and the calculation of DOS is not trivial, Refs.shown in Figs. 6 and Gb). It can be seen from Fig.(8
9-11. Since we require the knowledge of the wave functionshat there are two resonant states in the well. It is more

500 T T T T T T T T T T T T T 500
= =
0 ©
2o i - £
= w
300+ - 3 1300
200+ — B F 4\ 1200
100+ 4 - 4100
0 P T T T T ! ) ! ! 0
0.4 0.8 1.2 1.6 2 2.4 0 200 400 600
(a) p(mev™t) (b) —<E>(kV/cm)

FIG. 6. (a) Total density of electron states for the potential shown in Fig. 5 calculated as a function of electron energy. The peaks
correspond to the resonant stat@s.Average electric field as a function of electron energy calculated for the potential shown in Fig. 5 with
the use of a constant mass’ = 0.066n,. At nonresonant energies the average field is equal to the external field, at resonant energies the
average field is markedly quenched.
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difficult to tunnel to the right from the lower statg, so the  keep in mind that the application of an external electric field
latter is almoust bound, which corresponds to the narrow andan change asymmetry of the electron wave function and the
high peak in DOS. The wave function for the resonant en<€lectron density in the quantum well, but the average electric
ergy e; is shown in Fig. 5. This function is concentrated field in the well remains zero.

mostly in the well, but it also has a weak oscillatory compo-

nent on the RHS which indicates the tunneling probability. If V. SUMMARY

this state were truly bound, there would be no oscillatory Wi ider th ticall lectric f .
component and DOS would have the shape of the Dirac delta € consider theoretically an average electric force acting

fncion.Figure @ Shows that for e resonant energy o e EE1O 1  bourd State an show o uenih fre
the average electric fieldE(e;)) drops as sharply as the ;

DOS increases. For a bound state the average field would ea9e force in a system with the effective mass varying with

; . Llectron position and show that the force has electric and
exactly zero in agreement with the above theorem. At non; ” X ; .
mass” components, the first related to the potential gradient

resonant energies DOS is almost constant, the corresponding]d h d related h di h
wave functions are not concentrated in the weée Fig. 5 and the second related to the mass gradient. The average
e ) total force in a bound state must still vanish. A real case of a
and the average electric field is equal almost exactly to the uantum well in Ga-Al, As/GaAs heterostructure is given
applied external field. In other words, at honresonant enerd 287\ o. e 9
gies the effect of the well on DOS and on the average field i s an example. Finally, an average electric fle]d is calculated
almost nedligible. Around the higher resonant ene or resonant and nonresonant electron states in a system of a
DOS has gs%wallér and wider peagk the wave functior?ﬁas finite rectangular well with a superimposed linear potential
sizable oscillatory component and ’the drop of the averag created by a constant glectnc flg‘slﬁort_he same system the
field is less pronounced. As follows from the comparison of otal _den3|ty of states is cc_)mputed with the use of a local
Figs. 6a) and Gb), p(e) and(E(e)) look almost similar to density of states. A comparison of the average field with the
mirrér images of,each other. Thus the reson@nt semi- total DOS shows that in nonresonddelocalized states the
bound character of the state.markedly guenches the correaverage electric field is equal to the applled. con_stant field,
sponding average electric field while for the resonant states the average field is strongly
P 9 g ' ?euenched. This result has important implications for the in-

_In our model of the resonant states we assumed a ver, rpretation of experiments on gated semiconductor hetero-
high value of the constant electric field. In realistic cases Os*ructures

the gated semiconductor heterostructures the applied fields 0
the order of 16 V/cm would result in qga5|bound resonant' ACKNOWLEDGMENT

states for which the average electric field would be practi-

cally zero. Thus, when interpretating experiments on gated It is our pleasure to acknowledge informative discussions
semiconductor heterostructurese, e.g., Ref.)8ne should with Dr. Maciej Kubisa.
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