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Mesoscopic circuits with charge discreteness: Quantum transmission lines
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We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is
composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear
equation of motion because of the discreteness of the charge. In the basis of one energy per site, the spectrum
can be calculated explicitly. The incorporation of electrical resistance in the line has been considered briefly.
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I. INTRODUCTION:  LC QUANTUM CIRCUITS As pointed out in Ref. 2, the above set of operators de-
WITH CHARGE DISCRETENESS fines an algebra with some similitude to this related to space-

time discretenes’:® In fact, the charge-current commutator

Noyvadays, tephnological r_niniaturization of circuits is in- [Q,f], usually proportional to the identity, becomes modified
creasing and their mesoscopic aspects become more releva\mth a kinetic term that is zero wheg,=0. So, space and

Recently, a theory for MEsOoScopic circuits was prqposed b}fharge discreteness could be described with the same math-
Li and Chert where charge discreteness was considered % matical tools

plicitly. This is very much related to miniaturization since the On the other hand, dissipation is a subject very much

number of charges in these systems is expected to be MOl€lated to electric circuits. This phenomenon defines a deco-
and more reduced. In thieC circuit studied in Ref. 1, the ) P

Hamiltonian operator was given by herence_ time r_elated to mesoscopic aspect. Dissipation can
be considered in many forms, the usual one is to connect the
A=T+V, (1) system to a bath with many degrees of freedom, and with
some assumptions with respect to the decaying ‘rétke-
where V(Q)=Q%2C, with O the charge operator, is the nomenologicalRLC circuits can be also considered using
electrical energy in the capacitan€ and the magnetic- Caldirola-Kanai theo¥%in a direct way**

energy operator terni, related to the inductance, was In this paper we are interested in a quantum transmission
given by line. Such transmission lines are usually used in mesoscopic
physics. For instance, in Ref. 12, a quantum transmission

. 2h? 2 Lge line with continuous charge was considered and connected to

T= ng St (ﬁk 2) a metal ring. It was quantized and used as an environment to

study zero-point fluctuations influence on a metal ring. Par-
in k representatior{or pseudocurrent representation<R ticularly, we shall consider a quantum transmission line with
<2m). The above operator has some resemblance with gharge discreteness. For this purpose we shall use the ideas
mechanical kinetic operator in the limit of sméllin Eq.(2) discussed above. In this way, we consider a periodic trans-
the constang, represents the elementary charge in the elecigsion line composed of cells. Every cell has an inductance
tric system. In this representation, the charge operQtd# | and a capacitance.

given by In Sec. I, we consider briefly the classical transmission
line that will be quantized by standard procedure. In Sec. lll,
we present the quantized Hamiltonian that contains explicitly
charge discreteness. Also in that section, we write the motion
and the corresponding eigenfunctions af& %K% with dis- equation of the charge in the line using Heinsenberg equation

- . . . of motion. In Sec. IV, in the one energy per site approxima-
crete eigenvaluesg, wheren is an integer. Since the current . : .

A ) N ~ A , tion, we find the spectral properties of the systems. In Sec. V,
operator is formally obtained from =[1/#%][H,Q] then,in e study briefly the incorporation of electrical resistance in
the k representation, it becomes the quantum transmission line with charge discreteness. In

5 Lq the Sec. VI, conclusions are touched.
e

|=L—quIn Tk

N
Q—fﬁ, 3

: (4)

- Il. CLASSICAL TRANSMISSION LINE
In the limit g.—0 all these operators become the usual

ones associated with a quantdr@ circuit with continuous In this section we shall consider a periodic transmission
charge® Moreover, the current operatéd) is bounded with  line composed in every cell of an inductaricand a capaci-
extrema valuest (/Lg.). After Ref. 1, the above Hamil- tanceC. Classically, the evolution equation for the continu-
tonian describes phenomena such as persistent current, Caus charge,, at celll (I €Z) in the transmission line, is
lomb blockage and others. given by the expression
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d? 1 shall call cirquitonsthe normal modegpropagating modes
L2 Q = Q1+ Qi-1—2Q)), (5)  of the above Hamiltonian. This appellation seems appropri-
ate because it remembers) the quantization process and
which can be obtained from the classical Hamiltonian given(ii) the discreteness of the chargg.l. The existence of
by these propagating modes is ensured since the Hamiltonian

5 (8) is invariant underdiscrete spatial traslation.
H :2 ﬁ+ —(Q1.1-0))? ©) The motion equation related to the quantum transmission

clas™ 4 o) T pCc eIt <o line can be found with the usual quantum mechanical evolu-
tion rules(Heisenberg equationsThe pseudocurrert; has
where the variable, corresponds to the magnetic flux in the associated the canonical conjugate operator of the charge,
Lnuoll:g;??r?ihaé[ ggﬁ't:??sazg |;ti(|:?tlproport|%nal to the classical namely, the operatdf, with eigenvalues, . It satisfies the

: plicitly given by canonical commutation relation

¢|=L%. (7 L[Qi Ri]=it. )

] ) ] As function of this operator, the Hamiltonian of the trans-
The integer in Eq. (5) represents the index of the cell at yission line becomes

positionl. The first term depending on the current in Eg).

is the equivalent to the kinetic energy of a mechanical system -

and is related to the stored magnetic energy in the induc- H:Z
tance. In the quadratic potential, the crossed term
(Q,+1Q,/C) represents the interaction term between cellsand the evolution equation for the charge operator in the
In fact, for continuous variables, the above Hamiltonian isHeinsenberg representatiod/dt)@l:(i/h)[ﬂ,(gl] can be
equivalent to this one of mechanical vibrations and could b&omputed explicitly

quantized directly. By canonical transformation, the classical

Hamiltonian(6) could be transformed to normal modes and d h (Lqu )

2h° LQe ~ 1 . R
{L_qzsmz(%Kl)"'i(QHl_Ql)z}u (10)

its spectral frequencies are well known. For us, the important ﬁQ' :@S'n N

f
fact is that the crossed term in E®) defines the interaction . ) )
between two consecutive sites or cells. This interaction terny/hich is similar to the nonlinear expressi¢4) for every

will be preserved in the quantization process. cell. In fact, Eq.(11) defines the current operator and it is
bounded such as in the case mentioned in Sec. |. The
IIl. A HAMILTONIAN FOR QUANTUM TRANSMISSION motion equation for the pseudocurrent operatdfd¢)K;
LINES WITH CHARGE DISCRETENESS =(i/h)[H,K ] is

(11

Due to charge discreteness in the quantum case, the struc- d. 1 . N N
tural changes are only expected to occur in the kinetic part of dt Ki :a(QI +1+1Qi-1—2Q). (12)
Eq. (6) where the usual quadratic term is transformed in a
trigonometric functionSec. ). Then, the quantum transmis- In Egs.(11) and(12), we notice that the formal limit|,
sion line with charge discreteness can be quantized directly.-0 gives the usual linear motion equation for transmission
So, from the classical Hamiltoniai6), and Eq.(2) and(3),  lines with similitude to the classical orig). Nevertheless, in

the quantum Hamiltonian for the transmission line withthe general case, the evolution equation is nonlinear.
charge discreteness is

2
2h (Lqe ON THE TRANSMISSION LINE

2 2 IV. ONE ENERGY PER SITE: EXCITATIONS

A=> in? —k)—j—h (L—i)

H= @™\ 2n )~ 207 okyy ak) | . -

(8) The study of _the 'spectral properties of the Hamﬂtoman

(8), or Eqg. (10), is difficult because of the nonlinear term

where the quantitk; corresponds to the pseudocurrent in theassociated with the magnetic energy. Without charge dis-

cell at positionl and varies between<0k|<2m. As pointed  cretenessd,—0), this operator is quadratic and the usual

before, the kinetic part is not quadratic kp, which is very  normal modes technique could be ug&dh this section we

much related to the charge discreteness assumptiggs (solve the spectral properties on the vector basis of the system

#0). The study of the Hamiltoniaf8) is the purpose of this  without interaction. We shall find a particular spectral solu-

work. Remark that in the limitg.—0 the kinetic part be- tion in the basis of one energy per site or cell.

comes proportional t&? with formal similitude to the case The Hamiltonian(10) can be written as

of mechanical vibrationgphonons$. This corresponds to the L

continuous charge case and the nacireuitons for these - - P

propagating modes is appropriate. Neverthelegsuitons H=E| H'_EQ'“Q" (13

are the limit case with zero charge discretengss: 0. In a R

general context, since the above Hamiltonian describes thehere the site-Hamiltoniakl, corresponds to this one of a

guantization of the line and the quantization of the charge wé.C circuit (1) with capacitanceC/2. Since the total Hilbert
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space, where the Hamiltonidh3) acts, is the direct product So, quantization becomes attainable from the usual corre-
of the spaces associated to every kitden we consider the spondence between position momentum and its associated
sub-basig|l),l  Z}, where every elemetii is an eigenstate operator$=° In our case, a similar procedure could be

of the Hamiltonian, with energyV. Namely, implemented and we obtain the time-dependent Hamiltonian

Hill)=VII). (14) 252 Lqe -

I:|(t)=§|: [e(R’L)tqu sir? (ﬁKI)

Since(n|l)=§, , and the operato®, acts only in the sité,

the complete Hamiltoniafl is Hermitian and becomes tridi- 1 . R
agonal in this basis. Explicitly, it is given by the matrix ele- +e(R’L)tE(Q|+1—Q|)2], (18
ments
~ ~ 2 where the constanR represents the resistance. With the
([H|IY=V and (l|H|I+1)= s, (15  above Hamiltonian, and the Heinsenberg motion equations,

we obtain for the charge operator

where « is a dimensionless constant that we keep as one
(a=1). Formally, this can be carried out by an adequate d. %
normalization. Noticed that the off-diagonal terms in Eq. EQF—Le(*R’L)t sin
(15) are related to the interacting term in Ed.3), namely, e
(1/C), .10, and then it was expected to be proportional to

2
Qe-

The LC energy stored in a cell is now spread into a band q 1
due to charge interaction with the two neighboring cells. The —K=—eRLUYD 40O, —20 20
spectrum of the tridiagonal Hamiltonian is well known and dt' CL (Qir1+Qi-172Q). 20
corresponds to the so-called tight-binding approximations in
solid state physics. In fact, assuming a general state of thErom Eqs.(19) and(20), the equation for the variation of the
form |)=Z=4|l), the Schrdinger equation related to the charge becomes
tridiagonal Hamiltonian(15) becomes

Lqe -
e a9

and for the pseudocurrent operator

d2 d.
2
q L =—-R—
E =V~ o (et i), (16 a9~ R
. . i 1 LQe ~ ~ ~ A
with E the energy. The eigenstates are of the fafpw e n tc cos(%K,) (Q11+0,_1-20)),
where the phas® is a real number (& 6<2), and the
spectrum becomes (21)
2
E=V— %cosa (17) which in the formal limitg.— 0 becomes the usual one in-
C ' corporating a resistande in every cell of the transmission

line. So, the time-dependent HamiltoniélB) describes the
dynamics of a quantum transmission line with charge dis-
eteness and resistance.

where we have considered an infinite transmission (iree,
#is a continuous variabjeThe above expression defines the
density of states and the thermodynamics properties of thesd
lines could be calculated.

The spectrun{17) defines an ensemble of quantum exci- VI. CONCLUSIONS AND DISCUSSIONS
tations on the transmission line, nevertheless, they are not the o ]
more general because they are only defined in the subspace \We have proposed a quantum Hamlltonla_n for a transmis-
spanned by{|1),I € Z} in the complete Hilbert space. For Sion I|_ne compqsed of a pe_I’IOdIC array of inductances and
instance, others kind of excitations could be found if wecapacitances with charge discretengsg. (8) or Eq. (10)].

consider two energies by site, or different energies by site. TO construct this Hamiltonian we have used the charge-
discreteness procedure proposed in Ref. 1 fo€aircuit. In

our case, the corresponding Hilbert space is given by the

tensorial product of this one of every cell, corresponding to a
The Hamiltonian(10) describes a quantum transmission LC circuit. In the particular basis of one energy per site, or

line with charge discreteness, but it does not consider dissiell, we have found the spectrum of the (k).

pation. On the other hand, electrical resista(@bm law) is Note that charge discreteness produces nonlinear terms in

an intrinsic phenomenon in electrical conduction. After Bate-the equation of motion in the transmission line Hq$1) and

man’s work’* classical linear dissipation could be studied in (12)]. The incorporation of electrical resistance was consid-

a Lagrangian way by consider a time-decaying exponentia¢red by using the Caldirola-Kanai thedi$ec. \j.

factor multiplying the Langrangian function. From this, the As a final remark we note that disorder systems are usu-

classical Hamiltonian could be written in the standard wayally studied in solid state physitsand it is well known that

V. TRANSMISSION LINES WITH RESISTANCE
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localization of states could exist. In our case, we believe that ACKNOWLEDGMENTS
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