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Mesoscopic circuits with charge discreteness: Quantum transmission lines
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We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is
composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear
equation of motion because of the discreteness of the charge. In the basis of one energy per site, the spectrum
can be calculated explicitly. The incorporation of electrical resistance in the line has been considered briefly.
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I. INTRODUCTION: LC QUANTUM CIRCUITS
WITH CHARGE DISCRETENESS

Nowadays, technological miniaturization of circuits is i
creasing and their mesoscopic aspects become more rele
Recently, a theory for mesoscopic circuits was proposed
Li and Chen1 where charge discreteness was considered
plicitly. This is very much related to miniaturization since th
number of charges in these systems is expected to be m
and more reduced. In theLC circuit studied in Ref. 1, the
Hamiltonian operator was given by

Ĥ5T̂1V̂, ~1!

where V(Q̂)5Q̂2/2C, with Q̂ the charge operator, is th
electrical energy in the capacitanceC and the magnetic-
energy operator termT̂, related to the inductanceL, was
given by

T̂5
2\2

Lqe
2 Fsin2S Lqe

2\
kD G , ~2!

in k representation~or pseudocurrent representation, 0,k
,2p!. The above operator has some resemblance wi
mechanical kinetic operator in the limit of smallk. In Eq. ~2!
the constantqe represents the elementary charge in the e
tric system. In this representation, the charge operatorQ̂ is
given by

Q̂5
i\

L

]

]k
, ~3!

and the corresponding eigenfunctions areeinLqek/\ with dis-
crete eigenvaluesnqe wheren is an integer. Since the curren
operatorÎ is formally obtained fromÎ 5@1/i\#@Ĥ,Q̂# then, in
the k representation, it becomes

Î 5
\

Lqe
sinS Lqe

\
kD . ~4!

In the limit qe→0 all these operators become the us
ones associated with a quantumLC circuit with continuous
charge.3 Moreover, the current operator~4! is bounded with
extrema values6(\/Lqe). After Ref. 1, the above Hamil-
tonian describes phenomena such as persistent current,
lomb blockage and others.
0163-1829/2001/64~23!/235309~4!/$20.00 64 2353
ant.
y
x-

re

a

-

l

ou-

As pointed out in Ref. 2, the above set of operators
fines an algebra with some similitude to this related to spa
time discreteness.4–6 In fact, the charge-current commutato

@Q̂, Î #, usually proportional to the identity, becomes modifi
with a kinetic term that is zero whenqe50. So, space and
charge discreteness could be described with the same m
ematical tools.

On the other hand, dissipation is a subject very mu
related to electric circuits. This phenomenon defines a de
herence time related to mesoscopic aspect. Dissipation
be considered in many forms, the usual one is to connect
system to a bath with many degrees of freedom, and w
some assumptions with respect to the decaying rate.7 Phe-
nomenologicalRLC circuits can be also considered usin
Caldirola-Kanai theory8–10 in a direct way.11

In this paper we are interested in a quantum transmiss
line. Such transmission lines are usually used in mesosc
physics. For instance, in Ref. 12, a quantum transmiss
line with continuous charge was considered and connecte
a metal ring. It was quantized and used as an environmen
study zero-point fluctuations influence on a metal ring. P
ticularly, we shall consider a quantum transmission line w
charge discreteness. For this purpose we shall use the i
discussed above. In this way, we consider a periodic tra
mission line composed of cells. Every cell has an inducta
L and a capacitanceC.

In Sec. II, we consider briefly the classical transmiss
line that will be quantized by standard procedure. In Sec.
we present the quantized Hamiltonian that contains explic
charge discreteness. Also in that section, we write the mo
equation of the charge in the line using Heinsenberg equa
of motion. In Sec. IV, in the one energy per site approxim
tion, we find the spectral properties of the systems. In Sec
we study briefly the incorporation of electrical resistance
the quantum transmission line with charge discreteness
the Sec. VI, conclusions are touched.

II. CLASSICAL TRANSMISSION LINE

In this section we shall consider a periodic transmiss
line composed in every cell of an inductanceL and a capaci-
tanceC. Classically, the evolution equation for the contin
ous chargeQl , at cell l ( l PZ) in the transmission line, is
given by the expression
©2001 The American Physical Society09-1
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L
d2

dt2
Ql5

1

C
~Ql 111Ql 2122Ql !, ~5!

which can be obtained from the classical Hamiltonian giv
by

Hclas5(
l

f l
2

2L
1

1

2C
~Ql 112Ql !

2, ~6!

where the variablef l corresponds to the magnetic flux in th
inductance at positionl and it is proportional to the classica
current in the cell. It is explicitly given by

f l5L
dQl

dt
. ~7!

The integerl in Eq. ~5! represents the index of the cell
position l. The first term depending on the current in Eq.~6!
is the equivalent to the kinetic energy of a mechanical sys
and is related to the stored magnetic energy in the ind
tance. In the quadratic potential, the crossed te
(Ql 11Ql /C) represents the interaction term between ce
In fact, for continuous variables, the above Hamiltonian
equivalent to this one of mechanical vibrations and could
quantized directly. By canonical transformation, the class
Hamiltonian~6! could be transformed to normal modes a
its spectral frequencies are well known. For us, the impor
fact is that the crossed term in Eq.~6! defines the interaction
between two consecutive sites or cells. This interaction te
will be preserved in the quantization process.

III. A HAMILTONIAN FOR QUANTUM TRANSMISSION
LINES WITH CHARGE DISCRETENESS

Due to charge discreteness in the quantum case, the s
tural changes are only expected to occur in the kinetic par
Eq. ~6! where the usual quadratic term is transformed in
trigonometric function~Sec. I!. Then, the quantum transmis
sion line with charge discreteness can be quantized dire
So, from the classical Hamiltonian~6!, and Eq.~2! and ~3!,
the quantum Hamiltonian for the transmission line w
charge discreteness is

Ĥ5(
l

H 2\2

Lqe
2 sin2 S Lqe

2\
kl D2

\2

2L2C S ]

]kl 11
2

]

]kl
D 2J ,

~8!

where the quantitykl corresponds to the pseudocurrent in t
cell at positionl and varies between 0,kl,2p. As pointed
before, the kinetic part is not quadratic inkl , which is very
much related to the charge discreteness assumptionsqe
Þ0). The study of the Hamiltonian~8! is the purpose of this
work. Remark that in the limitqe→0 the kinetic part be-
comes proportional tokl

2 with formal similitude to the case
of mechanical vibrations~phonons!. This corresponds to the
continuous charge case and the namecircuitons for these
propagating modes is appropriate. Nevertheless,circuitons
are the limit case with zero charge discretenessqe→0. In a
general context, since the above Hamiltonian describes
quantization of the line and the quantization of the charge
23530
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shall callcirquitons the normal modes~propagating modes!
of the above Hamiltonian. This appellation seems appro
ate because it remembers:~i! the quantization process an
~ii ! the discreteness of the charge (qe). The existence of
these propagating modes is ensured since the Hamilto
~8! is invariant under~discrete! spatial traslation.

The motion equation related to the quantum transmiss
line can be found with the usual quantum mechanical evo
tion rules~Heisenberg equations!. The pseudocurrentkl has
associated the canonical conjugate operator of the cha
namely, the operatorK̂ l with eigenvalueskl . It satisfies the
canonical commutation relation

L@Q̂l ,K̂ l #5 i\. ~9!

As function of this operator, the Hamiltonian of the tran
mission line becomes

Ĥ5(
l

H 2\2

Lqe
2 sin2 S Lqe

2\
K̂ l D1

1

2C
~Q̂l 112Q̂l !

2J , ~10!

and the evolution equation for the charge operator in
Heinsenberg representation (d/dt)Q̂l5( i /\)@Ĥ,Q̂l # can be
computed explicitly

d

dt
Q̂l5

\

qeL
sinS Lqe

\
K̂ l D . ~11!

Which is similar to the nonlinear expression~4! for every
cell. In fact, Eq.~11! defines the current operator and it
bounded such as in the case mentioned in Sec. I.
motion equation for the pseudocurrent operator (d/dt)K̂ l

5( i /\)@Ĥ,K̂ l # is

d

dt
K̂ l5

1

CL
~Q̂l 111Q̂l 2122Q̂l !. ~12!

In Eqs. ~11! and ~12!, we notice that the formal limitqe
→0 gives the usual linear motion equation for transmiss
lines with similitude to the classical one~5!. Nevertheless, in
the general case, the evolution equation is nonlinear.

IV. ONE ENERGY PER SITE: EXCITATIONS
ON THE TRANSMISSION LINE

The study of the spectral properties of the Hamiltoni
~8!, or Eq. ~10!, is difficult because of the nonlinear term
associated with the magnetic energy. Without charge
creteness (qe→0), this operator is quadratic and the usu
normal modes technique could be used.13 In this section we
solve the spectral properties on the vector basis of the sys
without interaction. We shall find a particular spectral so
tion in the basis of one energy per site or cell.

The Hamiltonian~10! can be written as

Ĥ5(
l

Ĥ l2
1

C
Q̂l 11Q̂l , ~13!

where the site-HamiltonianĤ l corresponds to this one of
LC circuit ~1! with capacitanceC/2. Since the total Hilbert
9-2
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MESOSCOPIC CIRCUITS WITH CHARGE . . . PHYSICAL REVIEW B 64 235309
space, where the Hamiltonian~13! acts, is the direct produc
of the spaces associated to every sitel, then we consider the
sub-basis$u l &,l PZ%, where every elementul& is an eigenstate
of the HamiltonianĤ l with energyV. Namely,

Ĥ l u l &5Vu l &. ~14!

Since^nu l &5d l ,n and the operatorQ̂l acts only in the sitel,
the complete HamiltonianĤ is Hermitian and becomes tridi
agonal in this basis. Explicitly, it is given by the matrix el
ments

^ l uĤu l &5V and ^ l uĤu l 11&52a
qe

2

C
, ~15!

where a is a dimensionless constant that we keep as
(a51). Formally, this can be carried out by an adequ
normalization. Noticed that the off-diagonal terms in E
~15! are related to the interacting term in Eq.~13!, namely,
(1/C)Q̂l 11Q̂l and then it was expected to be proportional
qe

2.
The LC energy stored in a cell is now spread into a ba

due to charge interaction with the two neighboring cells. T
spectrum of the tridiagonal Hamiltonian is well known a
corresponds to the so-called tight-binding approximations
solid state physics. In fact, assuming a general state of
form uc&5(c l u l &, the Schro¨dinger equation related to th
tridiagonal Hamiltonian~15! becomes

Ec l5Vc l2
qe

2

C
~c l 111c l 21!, ~16!

with E the energy. The eigenstates are of the formc l5eiu l ,
where the phaseu is a real number (0,u,2p), and the
spectrum becomes

E5V2
2qe

2

C
cosu, ~17!

where we have considered an infinite transmission line~i.e.,
u is a continuous variable!. The above expression defines t
density of states and the thermodynamics properties of th
lines could be calculated.

The spectrum~17! defines an ensemble of quantum ex
tations on the transmission line, nevertheless, they are no
more general because they are only defined in the subs
spanned by$u l &,l PZ% in the complete Hilbert space. Fo
instance, others kind of excitations could be found if w
consider two energies by site, or different energies by si

V. TRANSMISSION LINES WITH RESISTANCE

The Hamiltonian~10! describes a quantum transmissi
line with charge discreteness, but it does not consider d
pation. On the other hand, electrical resistance~Ohm law! is
an intrinsic phenomenon in electrical conduction. After Ba
man’s work,14 classical linear dissipation could be studied
a Lagrangian way by consider a time-decaying exponen
factor multiplying the Langrangian function. From this, th
classical Hamiltonian could be written in the standard w
23530
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So, quantization becomes attainable from the usual co
spondence between position momentum and its assoc
operators.8–10 In our case, a similar procedure could b
implemented and we obtain the time-dependent Hamilton

Ĥ~ t !5(
l

H e~2R/L !t
2\2

Lqe
2 sin2 S Lqe

2\
K̂ l D

1e~R/L !t
1

2C
~Q̂l 112Q̂l !

2J , ~18!

where the constantR represents the resistance. With th
above Hamiltonian, and the Heinsenberg motion equatio
we obtain for the charge operator

d

dt
Q̂l5

\

qeL
e~2R/L !t sinS Lqe

\
K̂ l D , ~19!

and for the pseudocurrent operator

d

dt
K̂ l5

1

CL
e~R/L !t~Q̂l 111Q̂l 2122Q̂l !. ~20!

From Eqs.~19! and~20!, the equation for the variation of th
charge becomes

L
d2

dt2
Q̂l52R

d

dt
Q̂l

1
1

C FcosS Lqe

\
K̂ l D G~Q̂l 111Q̂l 2122Q̂l !,

~21!

which in the formal limitqe→0 becomes the usual one in
corporating a resistanceR in every cell of the transmission
line. So, the time-dependent Hamiltonian~18! describes the
dynamics of a quantum transmission line with charge d
creteness and resistance.

VI. CONCLUSIONS AND DISCUSSIONS

We have proposed a quantum Hamiltonian for a transm
sion line composed of a periodic array of inductances a
capacitances with charge discreteness@Eq. ~8! or Eq. ~10!#.
To construct this Hamiltonian we have used the char
discreteness procedure proposed in Ref. 1 for aLC circuit. In
our case, the corresponding Hilbert space is given by
tensorial product of this one of every cell, corresponding t
LC circuit. In the particular basis of one energy per site,
cell, we have found the spectrum of the line~17!.

Note that charge discreteness produces nonlinear term
the equation of motion in the transmission line Eqs.@~11! and
~12!#. The incorporation of electrical resistance was cons
ered by using the Caldirola-Kanai theory~Sec. V!.

As a final remark we note that disorder systems are u
ally studied in solid state physics15 and it is well known that
9-3
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localization of states could exist. In our case, we believe
disorder can be incorporated in the line by considering
instance, every inductance as a random quantity. In this c
it seems interesting to study the role of disorder and
nonlinearity due to charge discreteness. On the other han
is known that decoherence effects break localization,16,17

then the role of environment and resistance on the trans
sion line must also break localization.
n
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n
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