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Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement
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We present the conditional quantum dynamics of an electron tunneling between two quantum dots subject to
a measurement using a low transparency point contact or tunnel junction. The double dot system forms a single
qubit and the measurement corresponds to a continuous in time readout of the occupancy of the quantum dot.
We illustrate the difference between conditional and unconditional dynamics of the qubit. The conditional
dynamics is discussed in two regimes depending on the rate of tunneling through the point contact: quantum
jumps, in which individual electron tunneling current events can be distinguished, and a diffusive dynamics in
which individual events are ignored, and the time-averaged current is considered as a continuous diffusive
variable. We include the effect of inefficient measurement and the influence of the relative phase between the
two tunneling amplitudes of the double dot/point contact system.
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[. INTRODUCTION ample, in the case of a continuous measurement it is neces-
sary to determine how long it takes for a confident determi-
One of the key requirements for a physically implement-nation of the state of the qubit at the start of the
ing a quantum computational scheme is the ability to readouneasurement, even if the qubit itself undergoes additional
a single quantum bitqubit) with high efficiency* In an ion ~ coherent evolution during the measurement process. Further-
trap implementation this problem has already been solvefore it may be possible to consider adaptive measurement
using She'ving Spectroscoﬁy.However in solid state SChemeS Wh|Ch take a g|Ven time continuous measurement
schemes implementing a high efficiency measurement of theecord, subject it to real-time signal processing, and then
Charge or Spin degree of freedom of a Sing'e elec(mn Change the way in which the measurement acts through a
Cooper pair will be very challenging. Various implementa- feedback loop. Such schemes are already being implemented
tions of quantum bitgqubits and quantum gates for a solid- N quantum optics and offer the promise of reaching sensi-
state quantum computer has been propdsédhe condi- fivities at the quantum lim:*° _ .
tional dynamics of a single quantum partialgubit) in a We illustrate, in this paper, the difference between condi-
single realization of continuous measurements is quite differtional and unconditionalensemble averagedynamics by
ent from the ensemble averagenconditional behavior that ~ considering the problem of an electron tunneling between
is more familiar to the condensed matter physics communitytwo coherently coupled quantum datSQD’s), a two-state
An apparatus by its very nature as a measurement devicguantum systenfiqubit), using a low-transparency point con-
must at least cause decoherence of the measured systemt@¢t(PC) or tunnel junction as a detect@nvironment con-
the basis which diagonalizes the measured quantity. Frofinuously measuring the position of the electron, schemati-
this perspective, the measurement apparatus behaves like ly illustrated in Fig. 1. We assume strong inner and inter
environment, that is, a system with many degrees of freedom
for which correlations between its subcomponents decay rap-
idly with time. Indeed for a system to function as a measure-
ment apparatus it must be composed of many degrees of
freedom® Thus every measured system is an open system. To
understand the influence of the detedemvironmenkon the
measured system, the conventional approach is to study the
(unconditional master equation of the reduced density ma-
trix. However, integrating or tracing out the environmental
(detectoy degrees of the freedom to obtain the reduced den-
sity matrix is equivalent to completely ignoring or averaging
over the results of all measurement records. This averaging
means the detector is treated as a pure environment for the dot 2
system, rather than a measurement device which can provide
information about the change of the state of the qubit. On the
other hand, for the purpose of quantum computing, it is im-  FG. 1. Schematic representation of an electron tunneling be-
portant to understand how the quantum state of a single quween two coupled quantum dot€QD’s), a two-state quantum
bit, conditioned on a particular single realization of the mea-ystem(qubit), using a low-transparency point cont&BC) or tun-
surement, evolves in time. A number of questions need to bgel junction as a detectéenvironmenk continuously measuring the
answered that cannot be answered if we only determine thgosition of the electron. Herg, and ug stand for the chemical
ensemble averaged behavior of the measured qubit. For egetentials in the left and right reservoirs, respectively.
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dot Coulomb repulsion, so only one electron can occupy thishe second detector inaccessible. The information loss is due

CQD system. The logical qubit states in this case are, respete the interaction with the second detector, treated as a “pure

tively, the perfect localization of the electron charge states irenvironment” (which does not affect the observed detector

one of the two CQD’s. A controlled-not-gate operation based:urren). As a consequence, the decoherence rhjg, in

on the charge qubit of two asymmetric CQD’s has been sugthat case is larger than the decoherence rate for the PC as an

gested in Ref. 7. Experimentally, coherent coupling betweegnvironment alonel’—I'y=y4>0. Hence an extra deco-

two CQD's has been reported. It has been shdwfthat if ~ herence term:—yyp,,, for example, is added in the rate

the inter-dot tunneling barrier is low and the strength of theequationp,,. However, this approach does not account for

coupling of two CQD’s is strong, the two CQD'’s behave as athe inefficiency in the measurements, which arises when the

large single dot in a Coulomb blockade phenomenon. In addetector sometimes misses detection. In that case, there is

dition, the energy splitting between bonding and antibondinggtill only one PC detectafenvironmenk and disregarding all

states of two CQD’s has been confirmed by microwave abmeasurement records leaddtg,=1"4. Furthermore, the de-

sorption measurement3!* The CQD system studied here is tector current is affected and in fact reduced by the ineffi-

similar to the superconducting Cooper-pair-box chargeciency in the measurements.

qubit*>18in that they both use charge degrees of freedom as In this paper, we take into account the effect of inefficient

qubit basis states. For the superconducting Cooper-pair boxyeasurement of the PC detector on the dynamics of the qu-

the charge on the island differs by the number of Coopebit. We also analyze the conditional qubit dynamics analyti-

pairs times the chargee2 compared to the electron charge cally and numerically. The different behavior of uncondi-

in one of the two dots in the CQD system. The PC, consid{ional and conditional evolution is demonstrated. We present

ered here, is a charge-sensitive detector. The tunneling bafe conditional qguantum dynamics over the full range of be-

rier height or the current through the tunneling junction ofhavior, from quantum jumps to quantum diffusi$tin Refs.

the PC detector depends on the proximity of an external7, 19, 21, and 25, the two tunneling amplitudes of the

charge. Hence the study of charge measurements by a FEQD—PC model were assumed to be real. In Ref. 26, the

detector is applicable to different types of charge qubit, suchielative phase between them was taken into account. Here,

as the CQD’s or the Cooper-pair box. The problem of thewe discuss and illustrate furthermore their influence on the

CQD system measured by a low-transparency PC has begubit dynamics. In Sec. I, we describe the model Hamil-

extensively studied in Refs. 17-26. The case of measurdenian and the unconditional master equation. We then obtain

ments by a general quantum point contact detector with arin Sec. Il the quantum-jump and quantum-diffusive, condi-

bitrary transparency has also been investigated in Refs. 27tional master equations for the case of inefficient measure-

32. In addition, a similar system, a Cooper-pair-box qubit,ments. Section IV is devoted to the analysis for the qubit

measured by a single electron transistor has been studied élynamics. Numerical simulations of the conditional evolu-

Refs. 33, 22, 20, 23, 25, 34, and 35. tion are presented in this section. Finally, a short conclusion
Korotkov**?%?°has obtained the Langevin rate equationsis given in Sec. V. In the Appendix, the stationary noise

for the CQD system measured by an ideal PC detector. Theg®wer spectrum of the current fluctuations through the PC

rate equations describe the random evolution of the densitharrier is calculated in terms of the quantum-jump formal-

matrix that both conditions, and is conditioned by, the PCism.

detector output. Recently, Ref. 26 presentedjwantum

trajectorfe“‘emeasgrement analysis of the same system. We Il. UNCONDITIONAL MASTER EQUATION

found tha_lt the conditional dyn_am!_cs_ of the CQD system can FOR THE CQD AND PC MODEL

be described by the stochastic Satirger equation for the

conditioned state vector, provided that the information car- Following the model of Refs. 17, 19, 21, and 26, we de-

ried away from the CQD system by the PC reservoirs can bé&cribe the whole systeiisee Fig. 1 by the following Hamil-

recovered by the perfect detection of the measurements. Wenian:

also analyzed the localization rates at which the qubit be-

comes localized in one of the two states when the coupling H=Hcop+ Hpct Heoups 1)

frequency() between the states is zero. We showed that the

localization time discussed there is slightly different from thewhere

measurement time defined in Refs. 33,22,23. The mixing rate

at which the two possible states of the qubit become mixed Hego="Hil w1cci+ wyche,+ Q(cic,+cle)], (2

when(Q#0 was calculated as well and found in agreement

with the result in Refs. 22 and 23. In this paper, we focus on

the qubit dynamics conditioned on a particular realization of Hpczﬁ; (wga] @t opakary

the actual measured current through the PC device. Espe-

cially, we take into account the effect of inefficient measure-

ment on the conditional dynamics and illustrate the condi- +k2 (Tkq@l @R+ TgkaJFrzqaLk)a ©)

tional quantum evolutions by numerical simulations. i
The problem of a “nonideal” detector was discussed in

Refs. 19-21. There the nonideality of the detector is mod- _ T t x A1

eled as two ideal detectors “in parallel” with the output of Heoup qu C1C1(Xkq@LkBRg T XqkBRAALK) - (4)
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Heop represents the effective tunneling Hamiltonian for thecause an effective shift in the energy mismatch in the uncon-
measured CQD systefmesoscopic charge qupiffhe tun-  ditional dynamics. Physically, the presence of the electron in
neling Hamiltonian for the PC detector is represented bydot 1 (state|a)) raises the effective tunneling barrier of the
Hpc. Herec; (CiT) and# w; represent the electron annihila- PC due to electrostatic repulsion. As a consequence, the
tion (creation operator and energy for a single electron stateeffective tunneling amplitude becomes lower, i.®/

in each dot, respectively. The coupling between these twa=|7+ X |[°<D=|T . This sets a condition on the relative
dots is given byi Q). Similarly, a, ,ar, andfiwk el are, Phased betweent and7: coso<—|X'|/(2|T]).

respectively, the electron annihilation operators and energies

for the left and right reservoir states at wave numker IIl. CONDITIONAL MASTER EQUATION

Hcoupr Eq. (4), describes the interaction between the detec- FOR INEFFICIENT MEASUREMENT

tor and the measured system, depending on which dot is

occupied. When the electron in the CQD system is located in Equation(5) describes the time evolution of reduced den-

dot 1, the effective tunneling amplitude of the PC detectorsity matrix when all the measurement results are ignored, or
changes fronTq— Tyq+ Xkq- averaged over. To make contact with a single realization of

The (unconditional zero-temperatur&, Markovian mas- the measurement records and study the stochastic evolution
ter equation of the reduced density matrix for the CQD sys©f the quantum state, conditioned on a particular measure-
tem (qubit) has been obtained in Refs. 17 and 26: ment realization, the conditional master equation should be

employed. The conditional master equations for a perfect

. i detector in the quantum-jump and quantum diffusive cases
p()=- g[HCQDvP(t)]JFD[TJFX"l]P(t) (58 have been derived in Refs. 25 and 26. In this paper, to take
account the effect of the inefficiency in the measurements,

=Lp(1), (5p)  which arises when the detector sometimes misses detection,

. ) we write first for the quantum-jump case that
wheren;=c;c; is the occupation number operator for dot 1

and the parameters and X are given by D=|7|? 2_

=2me|Tod 2gLgrV/ A and D'=|T+X|?°=27e|Ty [ANC(D)]"=dNc(t), (103
+ X0l ?9LgrV/A. Here D and D’ are the average electron _

tunneling rates through the PC barrier without and with theE[dN¢(t)]={ Tr[p1c(t+dt)]=¢[D+(D’'—D){ny).(t)]dt.
presence of the electron in dot 1, respectivey= wu, (10b)
— ug is the external bias applied across the R @nd ug
stand for the chemical potentials in the left and right reser- S . S
voirs, respectively Too and yo, are energy-independent tun- Here the subscript indicates that the quantity to which it is

neling amplitudes near the average chemical potential, anﬁttached is conditioned on previous measurement results, the

and o are the enerav-independent densitv of states fOpccurrences(detectio_n r_ecordsof the electrons tunneling
tghLe Ie?tR and  right g)r/eserv‘())irs. In Eq.%Sa) the through the PC barrier in the past. In Ed0), dN(t) is a
superoperatd?#842D is defined as ' stochastic point process which represents the nurtdirer

zero or ongof tunneling events seen in an infinitesimal time
D[Blp=J[Blp—A[B]p, ) dt, (ny)c(t)=Tr[n;pc(t)], E[Y] denotes an ensemble aver-

age of a classical stochastic proc&sand
where

J[Blp=BpB", (7) Pre(t+dt)=T [T+ Xn,]pc(t)dt (11)

A[Blp=(B"Bp+pB'B)/2. (8) is the unnormalized density mattfgiven the result of an
electron tunneling through the PC barrier at the end of the
time interval[t,t+dt). The factor{<1 represents the frac-
. o tion of detections which are actually registered by the PC
charge statgsia) and|b) (.e., perfectllocalllzanon state of detector. The valué= 1 then corresponds to a perfect detec-
the charge in dot 1 and dot 2, respectivelys in Ref. 17, We 4, o efficient measurement. By using the fact that current
obtain through the PC is(t)=e dN(t)/dt, Eq. (10D with {=1
. . states that the average currentei® when dot 1 is empty,
Paa1) =1QLpap(t) =ppa(V)], (93 2nd iseD’ when dot 1 is occupied. In Ref. 25 the case of
. . ] 5 inefficient measurements is discussed in terms of insuffi-
Pab() =1Epap(t) +iQ[ paa(t) = pop(t)]1— (| X |2/2) pan(t) ciently small readout period. In other words, the bandwidth
: * of the measurement device is not large enough to resolve and
FHM (T V) par(t), (D) record every electron tunneling through the PC barrier.
wheren =% (w,— w,) is the energy mismatch between the By following the similar derivation as in Ref. 26, the sto-
two dots, I'y=|X |?/2 is the decoherence rate, apeg(t) chastic quantum-jump master equation of the density matrix
=(i|p(t)|j). The relative phase between the two complexoperator, conditioned on the observed event in the case of
tunneling amplitudesTand X') [the last term in Eq(9b)],  inefficient measurement in timgt can be obtained:

Finally, Eq. (5b) defines the Liouvillian operatof.
Evaluating the density matrix operator in the logical qubit
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J [T+ &nq]
Pac(t)
+ &N, ]pc(t)+ (1= T[T+ Ang]pc(1)

—AT

dpc(t)=ch(t)[ _1}Pc(t)+dt

+ {P1e(t)pe(t) — I%[,}'{CQDaPc(t)]] ) (12

where

Pio(t)=D+ (D" =D)(Nny)c(t). 13

In the quantum-jump case, in which individual electron tun-

PHYSICAL REVIEW B34 235307

unconditional, deterministic master equati@a. It is also
easy to verify that for zero efficiency=0 [i.e., also
dN.(t) =0], the conditional equationd?2) and(16), reduce
to the unconditional onéa). That is, the effect of averaging
over all possible measurement records is equivalent to the
effect of completely ignoring the detection records or the
effect of no detection results being available.

To make the quantum-diffusive, conditional stochastic
master equatiofil6) more transparent, we evaluate Ef6)
in the charge state basis as for Eg). and obtain

Paa(t) =1 QL pap(t) — ppa(t)]

neling current events can be distinguished, the qubit state

[see Eq(12)] undergoes a finite evolutiof@ quantum jump
when there is a detection resyiliN,(t)=1] at randomly
determined timesgconditionally Poisson distributed

The extension to the case of quantum diffusion can be
carried out similarly as in Ref. 26. In this case, the electron

counts or accumulated electron number in tift@s consid-

+V8{I'g cosbpaa(t) ppu(t)E(1), (17

Pan(t) =1 (E+|T || X |SiN0) pap(t) +iQ paa(t) — pou(t)]

—Tapan(t) + V24T 4 {cosO[ ppp(t) — paa(t) ]
+ising}p,p(t) &(L), (17b

ered as a continuous diffusive variable satisfying a Gaussian

white noise distributioff*

SN(t)={¢|T|2[1+2€ cosf(n)(t)]+ @lTlf(t)}at(,M

wheree=(|X'|/|T])<1, 6 is the relative phase between

and 7, and&(t) is a Gaussian white noise characterized by

E[£(t)]=0, E[&()&(t")]=6(t—t"). (19

Here E denotes an ensemble average. In obtaining(E4),
we have assumed that2|| X' |cos#>|X |2. Hence, for the

guantum-diffusive equations obtained later, we should re-

gard, to the order of magnitude, thatosf~O(1l)>e

=(X|/|T]) and |sinf~O(e)<1l. The quantum-diffusive

where we have seatt’ |=+/2I'4. Again, either by taking en-
semble average or for zero efficienty: 0, Eq.(17) reduces
to Eq. (9).

IV. CONDITIONAL DYNAMICS UNDER CONTINUOUS
MEASUREMENTS

As in Ref. 26, we represent the qubit density matrix ele-
ments in terms of Bloch sphere variables in the charge state
basis as

p()=[1+x(t)ox+y(t)o,+2(t)o,]/2, (18

where o satisfies the properties of Pauli matrices. In this
representation, the variablgt) represents the population

conditional master equation for the case of inefficient meagyjtference between the two dots. Especialiyt)=1 and

surements can be found as
) i
pc(t)=— %[HCQDuPc(t)]+D[T+ Any]pe(t)

+&(1) %[T* Anyp(t)+ X *Tpc(t)nl

—2RET* X)(ny)c(t)pol1)]. (16

z(t)=—1 indicate that the electron is localized in dot 2 and
dot 1, respectively. The valug(t)=0 corresponds to an
equal probability for the electron to be in each dot. Generally
the product of the off-diagonal elements @ft) is smaller
than the product of the diagonal elements, leading to the
relation x2(t) + y2(t) + Z2(t)<1. Whenp(t) is represented

by a pure state, the equal sign holds. In this case, the system
state can be characterized by a poirty(z) on the Bloch

unit sphere.

In arriving at Eqg.(16), we have used the stochastic Ito  The master equations written as a set of coupled stochas-
calculué®®® for the definiton of derivative asp(t) tic diffgrential equations in terms of the_ Bloch sphere var_i-
=limg;_o[p(t+dt)— p(t)]/dt. The conditional equations ableg in Ref. 26 are under t_he assumptions of real tunneling
(12) and(16), under similar assumptions and approximations@mplitudes and perfedtefficieny measurements. Here we
as in Ref. 26 but taking into account the effect of inefficientinclude the effect of inefficient measurement and the influ-
measurement, are the main results in this paper. We wilgnce of the relative phase between the two tunneling ampli-
analyze the qubit dynamics in detail in Sec. IV using thesetudes_lnto th_e coupled equations. The_ uncondlt_|onal master
equations in terms of Bloch sphere variablese Egs(20) equation(5g) is equivalent to the following equations:

and (21)]. In particular, the effect of inefficient measure-

ments will be discussed in Sec. IV D. It is easy to see that the w: —(E+|T|X |sin@)y(t) —Tgx(t), (193
ensemble average evolution of H4.6) reproduces the un- dt

conditional master equatiofba) by simply eliminating the

white noise term using Eq.15). Similarly, averaging Eq. dy(t)

(12) over the observed stochastic process, by setting qr — (EHITIX[sino)x(t) —2Q2(t) —Tgy(v),

E[dN(t)] equal to its expected value EQLOb), gives the (19b
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dz(t) dyc(t) .

—ar - 2y. (199 at =(E+|T| X [sin @)x(t) —2Qz¢(t) =T gy (1)

We find that the quantum-diffusive, conditional master equa- TN2LT gl sinOx (1) +cosbzc(t)yc(t) ]&(1),
tion (16) can be written as 20b
(20D

dz(t)
%:—(5+|T||X|sin 0)y(t) — T gxc(1) %ﬂﬂyc(t)—ﬂﬂd cosf[1—z(t)J&(t).
(200
TN2ET e[ = sinfye(t) +cosoze()x(D)1£(1), For the qguantum-jump, conditional master equatib®), we
(209 obtain
_ . {(D'-D)
dx(t)=dt _[5+(1_§)|T||X|sm0]yc(t)_(1_§)rdxc(t)_Tzc(t)xc(t) —dN(t)
X( 2|7 ||x lsineyc<t>+[2rd—<o'—D)zc<t)]xc<t>) | o1
2D+ (D' —D)[1—2z(t)]
. {(D'—D)
dye(t) =dt| [£+ (1= | T||X [sin0]Xe(t) = (1= HT gye(t) = 202(1) = ————Zc(t)Yc(t) | —dNe(t)
X( —2|T||X|sin0xc(t>+[2rd—(D'—D)zc<t>]yc<t>) o1
2D+ (D' —D)[1-z(1)]
{(D'-D) ) (D'—D)[1-Z%(1)] )
=dt| 20 ——[1- —~ :

dz(t) dt(z Yoll)+ =g L= 20| ~dN(D)| S (219

As expected, Eq20) averaged over the white noise reducesthe PC is blockedno electron is transmittedvhen dot 1 is

to Eq. (19), provided thatE[ x.(t) ]=x(t) as well as similar
replacements are performed foi(t) andz.(t). Similarly, by
using Eq.(10b), the ensemble average of EG1) reduces to
the unconditional equatiofil9). One can also observe that
for zero efficiency/=0, the conditional equation®1) and
(20), reduce to the unconditional equati@iB) as well. Next

occupied. As a consequence, whenever there is a detection of
an electron tunneling through the PC barrier, the qubit state
is collapsed into statdb), i.e., dot 2 is occupied. The
guantum-jump conditional evolution shown in Figb2[us-

ing the same parameters and initial condition as in Fig.]2

is rather obviously different from the unconditional one in

we analyze the qubit dynamics in detail and present the nu=ig. 2[@). The conditional time evolution is not smooth, but

merical simulations for the time evolution using E¢20)

exhibits jumps, and it does not tend towards a steady state.

and(21). Part of the results in Sec. IV A have been reportedOne can see that initially the system starts to undergo an

in Ref. 51.

A. From quantum jumps to quantum diffusion

Figure Za) shows the unconditiondensemble average
time evolution of the population differenaét) with the ini-
tial qubit state being in stat@), i.e., dot 1 is occupied. The
unconditional population differencgt), rises from—1, un-
dergoing some oscillations, and then tends towards zero,

steady(maximally mixed state. On the other hand, the con-
ditional time evolution, conditioned on one possible indi-

oscillation. As the population difference,(t) changes in
time, the probability for an electron tunneling through the PC
barrier increases. This oscillation is then interrupted by the
detection of an electron tunneling through the PC barrier,
which bringz.(t) to the value 1, i.e., the qubit state is col-
lapsed into statéb). Then the whole process starts again.
The randomly distributed moments of detectiod$\.(t),
corresponding to the quantum jumps in Figb)2is illus-
taated in Fig. 2c). Although little similarity can be observed
between the time evolution in Figs(e2 and 2b), averaging
over many individual realizations shown in Figb2leads to

vidual realization of the sequence of measurement results closer and closer approximation of the ensemble average in
behaves quite differently. We consider first the situation,Fig. 2(a).

whereD'=|T+ X |?=0, discussed in Ref. 18. In this case, Next we illustrate how the transition from the quantum-
due to the electrostatic repulsion generated by the electrojump picture to the quantum-diffusive picture takes place. In
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05k i FIG. 2. lllustration for differ-
ent behaviors between uncondi-
NoOF (@) tional and conditional evolutions.
_05F - The initial qubit state ida). The
parameters aré=1, £=0, 0=,
|T]?=|X]?=Q, and time is in
units of Q1. (8 Unconditional,
ensemble-averaged time evolution
of z(t), which exhibits some os-
cillation and then approaches a
(b) zero steady state valugy) Condi-
tional evolution ofz.(t). The qu-
bit starts an oscillation, which is
then interrupted by a quantum
jump [corresponding to a detec-
tion of an electron passing
Un through the PC barrier ifc)]. Af-
ter the jump, the qubit state is re-
© set to|b) and a new oscillation
T starts. (¢) Randomly distributed
moments of detections, which cor-

0 respond to the quantum jumps
1 1 1 1 1

0 5 10 15 20 25 30 in (b).
time (Qt)

|
-
1

Ref. 26 and Sec. lll, we have seen that the quantum-diﬁusivmcreasing (7|/|X|) ratio, the number of jumps increases.
equations can be obtained from the quantum-jump descripFhe amplitudes of the jumps df(t), however, decreases
tion under the assumption ¢f |>|X|. In Figs. 3a-3(d)  from D’ =0 with the certainty of the qubit being in stats)

we plot conditional, quantum-jump evolution af(t) and to the case of@ —D’)<(D+D’) with a smaller probability
the corresponding moments of detectia§ (t), with dif- of finding the qubit in stat¢b). Nevertheless, the population
ferent (7|/|X]) ratios. Each jump(discontinuity in the  difference z,(t) always jumps up sinceD=|7|>>D’
z.(t) curves corresponds to the detection of an electron=|7+ X|2. In other words, whenever there is a detection of
through the PC barrier. One can clearly observes that witlan electron passing through PC, dot 2 is more likely occu-

z
[+

(@

i ‘ ’ | ‘ ‘ ‘ M ‘ ‘ |H H ‘ ] FIG. 3. Transition from quan-

tum jumps to quantum diffusion.

The initial qubit state ida). The

B parameters aré=1, £=0, 0=,

_ — |X|2=Q, and time is in units of

-1
[ o T 0% (@@ are the quantum-
jump, conditional evolutions of
z.(t), and corresponding detection
moments with different| 7 |/|X|

‘ ©  ratios: (@ 1, (b) 2, (©) 3, (d) 5.

i With increasing |7|/|X| ratio,
jumps become more frequent but
smaller in amplitude(e) Repre-

d sents the conditional evolutions of

] ‘ | ] z.(t) in the quantum diffusive

‘ ‘ ‘ ‘ ‘ ‘ | ‘ | limit. The variable&(t), appearing
in the expression of current

- . through PC in quantum-diffusive

() limit, is a Gaussian white noise
with zero mean and unit variance.
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FIG. 4. lllustration of the
quantum Zeno effect. Both condi-
tional (in solid line) and uncondi-
tional (in dashed ling evolutions
of the population difference for
different ratios of (a) (I'y/Q)
=0.04, (b) 2, (c) 8, are shown.
The initial qubit state ida). The
other parameters aré=1, £=0,
6=, |T|?=200Q, and time is in
units of (20)~ 1. Increasing
(I'q/Q) ratio increases the period
of coherent oscillations between
the qubit states, while the time of
a transition (switching time de-
creases.

0 10 20 30 40 50 60
time (2 Q 1)

pied than dot 1. The case for quantum diffusion using Eqof the wave function into the observed state. Alternatively,
(20) is plotted in Fig. 8e). In this case, very small jumps the interaction with one measurement apparatus destroys the
occur very frequently. We can see that the behaviaz¢f) ~ quantum coherenceoscillations between|a) and |b) at a
for | 7|=5| x| in the quantum-jump case shown in Figdg  rate that is much faster than the tunneling rteFor fixed
is already very close to that of quantum diffusion shown in, |7, and 6, by increasing the interaction with the PC
Fig. 3(€). To minimize the number of controllable variables, detector] X|= 2T 4, we increase the number and amplitude
the same randomness is applied to produce the quanturf jumps and hence the probability of the wave function
jump, conditional evolutions in Figs.(8&—3(d). This, how- being collapsed to the localized state. The time evolutions of
ever, does not mean that they would have had the same dée population difference.(t) for different ratios of {'4/(2)
tection output,dN.(t). The number of tunneling events in are shown in Fig. 4. Here, the initial qubit state|#y, and
time dt, dN,(t), does not depend on the randomness aloneother parameters aré=1£=0,6=m,|7|°=100. We can
It also depends ofi7 |, |X|, and ¢, and has to satisfy Eq. Observe that the period of coherent oscillations between the
(10b) in a self-consistent manner. In fact, it both conditionstWo qubit states increases with increasitg ((2), while the
and is conditioned by the conditional qubit density matrix.time of a transitior(switching time decreases. In the limit of
Note that the unconditional evolution does not depend on thganishing(}, a transition from one qubit state to the other
parametef 7 | when 6= 7 [see Eq.19)]. This implies that state takes a timéswitching time of order of localization
depending on the actual measured detection events, differefime?® 1/yf5°=(D+D")/[T'4('D++D’)?]. In the param-
measurement schemésneasurement devices with different eter regime of Fig. &) (I'4/Q=8), this time is still much
tunneling barriers or different values ¢f | when §==)  smaller than the average time between state-changing transi-
give different conditional quantum evolutions. But they tions (period of oscillations due to (), i.e., the mixing
would have the same ensemble average property if other paime,26 Uymix=T4/(4Q2?). Hence, we can already see from
rameters and the initial condition are the same. Hence, aveFig. 4(c) for I'y/{) =8 that very frequent repeated measure-
aging over all possible realizations, for each measuremenhents would tend to localize the system.
scheme in Fig. 3, will lead to the same ensemble average The ensemble average behaviorzf) is also shown in
behavior shown in Fig. @). dashed line in Fig. 4. IE=0 and initially the electron is in
dot 1, from the solution of Eq(9), the probability p,,(t)

B. Quantum Zeno effect

=[1-2(t)]/2 can be written as

The quantum Zeno effect can be naturally described by =1t o &t N Ty i &t
the conditional dynamics. The case for quantum diffusion Paa(l)= 2 s> Qr S| 2 ’
has been discussed in Refs. 19 and 21. Here, for complete-

; . (22)

ness, we discuss the quantum-jump case. The quantum Zeno
effect states that repeated observations of the system slowhere QF=\/Fd2—(4Q)2. In the Appendix, the stationary
down transitions between quantum states due to the collapsmise power spectrum of the current fluctuations through the

1+e” I'yt/2
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o 7
3 (@
7] 2| i
FIG. 5. A plot of the noise
0 A . . . ) power spectrum of the current,

-3 -2 -1 0 1 2 3 normalized by the shot noise level
for different ratios of(a) (I'y/Q)
=0.04,(b) 2, (c) 8. All the param-
eters are the same as the corre-
sponding ones in Fig. 4. For small

(®) (I'y/Q) ratio, two sharp peaks ap-
pear in the noise power spectrum,
as shown in(a). In (b), a double

0 L L L L L peak structure is still visible, indi-

cating that coherent tunneling be-

50 ; . . . . tween the two qubit states still ex-

ists. In the classical, incoherent

040 regime "' ;=4(Q, only one single
% S0 1 peak appears, as shown(it).
& 20} .
10} -
o 1 1 ]
-6 -4 -2 0 2 4 6

PC barrier is calculated for the case &0 and the result the case that=1 and€=0. From Eq.(21), after each jump

can be written aé? the imaginary part of the produc(* X) seems to cause an
additional rotation around theaxis in the Bloch sphere, but
40%(AI)Ty does not directly change the population probabiitt) of
S(w)=S,+ 5 S (23)  the qubit. However, the actual conditional evolution of the
(0°=40%) "+ T'jo Bloch sphere variables is complicated. It is stochastic and

. 5 , _ nonlinear, and depends on the relative phase of the tunneling
where 80,:2e|x=_e ¢{(D"+D) represents the shot noise, ympjitudes in a nontrivial way. Nevertheless, after ensemble
i.=e{(D’+D)/2 is the steady-state current and=e{(D  ayerage, the imaginary part of ¢ X) generates an effective
—D’) represents the difference between the two averaggnift in the energy mismatch of the qubit stafsse Eq(9)].
currents. Fol’4<<4(), p,,(t) shows the damped oscillatory  There are situations in which the effect of the relative
behavior in the immediate time reginieee dashed line in phase of the tunneling amplitudes can be easily seen¢ For
Figs. 4a) and 4b)]. In this case, the spectrum has a double=1 and£=0, if the tunneling amplitudes are real, i.@.,
peak structure, indicating that coherent tunneling is taking= 7, and the initial conditiorx,(0)=0, then the time evo-
place between the two qubit states. This is illustrated in Figslution of x.(t), from Eqg.(21), does not change and remains
5(a) and 8b). WhenI'4=4(), p.,(t) does not oscillate but at the value 0 at all times. But if)# 7 or sin§#0, the
decays in time purely exponentially, saturating at the probconditional evolution ofx.(t) behaves rather differently. It
ability 1/2 [see dashed line in Fig(@)]. This corresponds to changes after the first detectigguantum jump takes place.

a classical, incoherent behavior. In this case, only a singl&igure 6 shows the evolutions of the Bloch variables
peak, centering ab=0, appears in the noise spectrum, asXc(1),Yc(t),z(t) with the same initial conditiorithe qubit
illustrated in Fig. §c). The evolution ofz.(t) in Fig. 4(c), is  Peing in|a)) and parameters but different relative phases:
one of the possible conditional evolutions in this parametef= for (@)—(c) and 6= cos (X |/|T]) for (d)~(f). We can
regime ((4/Q=8). In this parameter regimE =40, the  Clearly see quite different behaviors gf(t) in th_ese_two
conditional evolutiorz.(t) behaves very close to a probabi- cases. The asymmetry of the electron populatiorzt),

listic jumping or random telegraph process. After ensemblélue to effectively generated energy mismatch in the second
averaging over all possible realizations of such conditionafase in Fig. &), can be roughly observed. The effect of the

evolutions, one would then obtain the classical, incoherenfielative phase is small in the case of quantum diffusion. As
behavior. noted in Sec. lll, in order for the quantum-diffusive equa-

tions to be valid, we should regard, to the order of magni-

tude, that|cos#|~0O(1) and|sin#|~O(e). This implies that

in this casef~ 7. Hence the effect of the relative phase is
The relative phase between the two complex tunnelingmall and the conditional dynamics does not deviate much

amplitudes produces effects on both conditional and uncorfrom the case that the tunneling amplitudes are assumed to

ditional dynamics of the qubit. In the following, we consider be realt%212°

C. Relative phase of the tunneling amplitudes

235307-8
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1F T T T T T T T 3
=<° 0 (a)
. I 1 I I 1 I I I B
] 0 5 10 15 20 25 30 35 40
> OF 1
-1kE ! L L L L FIG. 6. Effect of relative phase
! 5 10 15 20 25 30 35 40 on the qubit dynamics. The condi-
o tional evolutions ofx.(t), y.(t),
N OF © and z,(t) with the same initial
-1 L L h L 1 condition (the qubit being ina))
! 5 10 15 20 25 30 35 40 and parameters {1, £=0, 6
. =, |T|2=4|X|?>=4Q), but dif-
x 0 B ferent relative phases are shown:
1k 1 1 1 1 1 (@—(c) for = and (d)—(f) for
412 5 10 15 20 25 80 35 40 6=cos {|X|/|T|). The relative
phase causes quite different evolu-
> o (e) tions for x.(t).
-1k 1 ! ! ! 1 1 1 -
0 5 10 15 20 25 30 35 40
1F T T T T T T 3
] )
| 1 1 1 1 1 =
0 5 10 15 20 25 30 35 40

time (Q t)

D. Inefficient measurement and non-ideality

i(t)=edN(t)/ st with SN(t) given by Eq.(14) and the av-

We have showdf that for /=1, the conditional time evo- €rage currenti,=e;(D+D")/2, where D= |T_|2_and D"
lution of the qubit can be described by a ket state vector |7 |°=2|7||X| in the quantum-diffusive limit. In this
satisfying the stochastic Schfinger equation. It is then ob- form, Eq.(24) elegantly shows how the qubit density matrix
vious that perfect detection or efficient measurement prelS conditioned on the measured current. We find that the last
serves state purity for a pure initial state. However, the inefferm in Eq.(24) is responsible for decoherence. In other
ficiency and nonideality of the detector spoils this picture.words, the partial decoherence rate for an individual realiza-
The decrease in our knowledge of the qubit state leads tHon of inefficient measurements is ¢1/)I'y. For a perfect
partial decoherence for the qubit state. We next find the padetector/=1, this decoherence rate vanishes and the condi-
tial decoherece rate introduced in this way. tional pap(t), as expected, does not decay exponentially in

The stochastic differential equations in the form of Ito time. Similar conclusion could be drawn from EQ1) for
calculug®°°have the advantage that it is easy to see that théhe quantum-jump case. For=, the off-diagonal variables
ensemble average of the conditional equations over the ras(t) andy.(t) seem to decrease in time with the rate (1
dom procesg(t) leads to the unconditional equations. How- —&)T'g.
ever, it is not a natural physical choice. For example,for ~ In Bloch sphere variable representation, we can use the
—1, the term—Tgpay(t) in Eq. (17D does not really cause quantity Po(t) =x3(t) +yZ(t) +z5(t) as a measure of the pu-
decoherence of the conditional qubit density matrix. It sim-rity of the qubit state, or equivalently as a measure of how
ply compensates the noise term due to the definition of demuch information the conditional measurement record gives
rivative in Ito calculus. Hence, in this case the conditionalabout the qubit state. If the conditional state of the qubit is a
evolution ofp,,(t) does not really decrease in time exponen-pure state therP (t)=1; if it is a maximally incoherent
tially. To find the partial decoherence rate generated by inefmixed state therP (t)=0. We plot in Fig. 7 the quantum-
ficiency £<1, we transform Eq(17b) into the form of Stra-  jump, conditional evolution of the purit(t) for different
tonovich calculug?®*°we then obtain fo= : inefficiencies,¢=1,0.6,0.2(in solid line), and 0 (in dotted
line). Figure {a) is for an initial qubit state being in a pure
state|a), while Fig. 7b) is for a maximally mixed initial
state. We can see from Fig(&J that the purityP.(t)=1 at
all times for{=1, while it hardly or not at all reaches 1 for
almost all time for{<1. This means that partial information
about the changes of the qubit state is lost irretrievably in
(1=l gpap(t), inefficient measurements. In addition, roughly speaking, the

overall behavior ofP(t) decreases with decreasiggThis
Wherei(t)—i0=e|T|{§\/2_l“d[1—2paa(t)]+ \/Zg(t)}. Here indicates that after being averaged over a long period of
we have used the following relations: the conditional currentime, (P.(t)); would also decrease with decreasifigFor

Pan(t) =1 Epap(t) +1 QL paa(t) — ppp(t)]

NI
—[pbba)—paa(t)]d—ﬂd[l(t)—lo]pabm

(29)
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FIG. 7. Effect of inefficiency
on the state purity. The quantum-
jump, conditional evolution of the
purity P.(t) for different ineffi-
ciencies, {=1,0.6,0.2 (in solid
line), and O (in dotted ling are
plotted in (@) for an initial qubit
state being in a pure state), (b)
for a maximally mixed initial
state. The other parameters dfe
=0, 0=, |T|*=4|X|*=4Q.
The purity-preserving conditional

0 5 10 16

0.8 evolution for a pure initial state,

o and gradual purification for a non-
.6 O )
N;o ®) pure initial state for(=1 are il-

lustrated. However, the complete
purification of the qubit state can-
not be achieved fof<1.

¢=0

time (2 Q 1)

(=0, the evolution ofP(t) becomes smooth and tends to- V. CONCLUSION
ward the value zer¢the maximally mixed steady staté=or . .
a nonpure initial statgsee Fig. )], the qubit state is even- We ‘have obtained the quantum-jump and quantum-
tually collapsed towards a pure state and then remains in ccillffuswe, coqd|t|qngl master equations, taking into account
pure state fot = 1. But the complete purification of the qubit the effect of inefficient measuremengs<1 under the weak
state cannot be achieved o 1. As in Figs. 38—3(d), the ~ SyStém-environment coupling and Markovian approxima-
same randomness has been applied to generate the quantUins- These conditional master equations describe the ran-
jump, conditional evolution in Figs.(# and 7b). Note that dom evolution of the measured qubit density matrix, which
the only difference between evolution in Fig@¥ and the both conditions and is conditioned on, a particular realization
corresponding one in Fig.(B) is the different initial states. Of the measured current. If and only if detections are perfect
So when the qubit density matrix in Fig.(J gradually  (efficient measuremepti.e., (=1, are the stochastic master
evolves into the same state as in Figa)7the corresponding equations for the conditioned density matrix operaid®
P.(t) in Fig. 7(b) would then follow the same evolution as in and(16), equivalent to the stochastic Schieger equations
Fig. 7(a). This behavior can be observed in Fig. 7. The[Egs. (35 and(41) of Ref. 26, respectivelyfor the condi-
purity-preserving conditional evolution for a pure initial tioned states. If the detection is not perfect and some infor-
state, and gradual purification for a nonpure initial state formation about the system isrecoverablethe evolution of
an ideal detector have been discussed in Refs. 19-21,24 ihe system can no longer be described by a pure state vector.
the quantum-diffusive limit. For the extreme case of zero efficiency detection, the infor-
The nonideality of the PC detector is modeled in Refs.mation (measurement results at the detectoarried away
19-21,24 by another ideal detector “in parallel” to the origi- from the system to the reservoirs(&e completely ignored,
nal one but with inaccessible output. We can add, as in Refso that the stochastic master equati¢h®) and (16) after
19-21,24, an extra term; yqpan(t), to Eq.(24) to account being averaged over all possible measurement records re-
for the “nonideality” of the detector. The ideal factey in-  duces to the unconditional, deterministic master equation
troduced ther€—?1?4can be modified to take account of in- (58, leading to decoherence for the system.

efficient measurement discussed here. We find We have used the derived conditional equations to ana-
lyze the conditional qubit dynamics in detail and illustrate
r Ty the conditional evolution by numerical simulations. Specifi-
n=1- ﬁot: Tyt vq' (25 cally, the conditional qubit dynamics evolving from quantum

jumps to quantum diffusion has been presented. Further-
wherel'=(1—-)I'y+ yq4 andl'y; =14+ vq. For y4=0, we  more, we have described the quantum Zeno effect in terms of
have = {. In Ref. 25, inefficient measurement is discussedthe quantum-jump conditional dynamics. We have calculated
in terms of insufficiently small readout period. As a result,the stationary noise power spectrum of the current fluctua-
the information about the tunneling times of the electrongions through the PC barrier in terms of the quantum-jump
passing through the PC barrier is partially lost. formalism. We have also discussed the effect of inefficient

235307-10



DYNAMICS OF A MESOSCOPIC CHARGE QUANTUM BT . .. PHYSICAL REVIEW B 64 235307

measurement and the influence of relative phase between tli#ence, to leading order idt, we obtain forr>0:
two tunneling amplitudes on the qubit dynamics.
E[dN(t+ 7)dN(t)]=2dt* T J [T+ Anq]
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APPENDIX: CALCULATION OF THE NOISE POWER For short times, this term dominates and we may regard

SPECTRUM OF THE CURRENT FLUCTUATIONS dN(t)/dt ass-correlated noise for a suitably definédunc-
. ) ) . tion. Thus the current-current two-time correlation function
In this Appendix, we calculate the stationary noise powefgr =0 can be written as

spectrum of the current fluctuations through the PC when

there is the possibility of coherent tunneling between the two _ _ dN.(t+7) dN(t)

qubit states. Usually one can calculate this noise power spec-  E[i(t+7)i(t)]= E[T T}

trum using the unconditional, deterministic master equation

approach, which gives only the average characteristics. We, =e?{D+(D'—D)Trnp(t)]}
however, calculate it through the stochastic formalism pre- )

sented here. The fluctuations in the observed curién, Xo(m)+ LTI [T+ Any]

are quantified by the two-time correlation function: X £ T[T+ An,1p()}]. (A7)

G(7m)=E[i(t+n)i()]-E[i(t+7)]E[i(t)]. (A1) In this form, we have related the ensemble averages of clas-
sical random variable to the quantum averages with respect
to the qubit density matrix. The case=0 is covered by the
- fact that the current—current two-time correlation function or
S(w)=2f drG(7)e ', (A2)  G(7) is symmetric in7, i.e., G(7)=G(— 7).
o Next we calculate steady-sta@®(7) and S(w). We can
The ensemble expectation values of the two-time correlatio§MP!ify EA- (A7) using the following identities for an arbi-

. — LT —
function for the current in the case of quantum diffusion hasary operatol: Tr{.J[n;]B]=Tr[n,B], T e™"B]=Tr[B],
been calculated in Ref. 21. Here we will present the2"d T{Be p..]=Tr[Bp..], where the= subscript indicates

quantum-jump case. The current in this case is given byat the system is at the steady state and the steady-state
i(t)=e dN(t)/dt. We will follow closely the calculation in density matrixp., is a maximally mixed state. Hence we
the Appendix of Ref. 39 to calculate the two-time correlation®Ptain the steady-statd(r) for r=0 as

function, E[dN.(t+ 7)dN(t)]. First we consider the case . 2.2/ 2

when r>dt>0, wheredt is the minimum time step consid- G(7)=ei.d(7)+e’%(D'~D)
ered. SincalN(t) is a classical point process, itis either zero X{Trn;eTnyp..]—Trinip. 1%, (A8)

or one. As a resultE[dN.(t+ 7)dN(t)] is nonvanishing _

only if there is an electron-tunneling event inside each ofwhere the steady-state average currente{(D+D")/2.
these two infinitesimal time intervalft,t+dt] and[t+,t  The first term in Eq(A8) represents the shot noise compo-

The noise power spectrum of the current is then given by

+ 7+dt]. Hence, we can write nent. It is easy to evaluate EGA8) analytically for £=0
case. The case for the asymmetric qubit,0, can be calcu-
E[dN.(t+ 7)dN(t)]=Prod dN(t) lated numerically. Evaluating EGA8) for £=0, we find
=1]E[dNc(t+ 7)[gny=1], (A3) A2 [ et-T—p_eH+T
‘ © G(r)=ei a(r)+ D[ He T p . (A9)
where the subscript to the vertical line is the condition 4 Moy ™ K-

for which the subscript ordN.(t+ 7) exists.~Fr0m Egs. where . = — (I y2) = (T 412)2— 402, and we have repre-
(10b) and (11), we have ProfN(t)=1]={Tr[ps(t+dt)]  sentedAi=e/(D-D’) as the difference between the two
and  E[dNc(t + 7)|gnw=1] = {THIT [T+ An]E[p1(t  average currents. After Fourier transform following from Eq.
+7)|angy-1]}- Using the fact thaE[ pc(t)]=p(t) and Egs.  (A2), the power spectrum of the noise is then obtained as the

(5b) and(11), we can write expression of Eq(23). Note that from Eq(23), the noise
_ _ spectrum at = 2() for 6=, i.e., real tunneling amplitudes,
Elp1c(t+ T)|dN(t):1]:eﬁ(ridt)pl(t"'dt)/Tr[Pl(t+ dt)] can be written as
= (e I T[T+ XnyJp(t)dt}/ S(20)-S,  (yD+D')?
~ =2 , A10
T py(t+db)]. (A4) So ¢ (D+D") (A10)
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whereS,=2ei,,=e?{(D’'+D) represents the shot noise. In of Q andI'y. These results fot=1 and in the limit of

obtaining Eq.(A10), we have used the relatioRy= (/D

quantum diffusion are consistent with those derived in Ref.

—D")?/2 for the case of real tunneling amplitudes. In the21 using both the unconditional master equation approach

quantum-diffusive limit|7|>|X| or (D+D')>(D—-D’),
this ratio[ S(2Q) — Sy]/Sy—4¢, independent of the values

and conditional stochastic formalism with white noise cur-
rent fluctuations for an ideal detector.
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