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Phase separation frustrated by the long-range Coulomb interaction. II. Applications
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The theory of first-order density-driven phase transitions with frustration due to the long-range Coulomb
~LRC! interaction developed in paper I of this series is applied to the following physical systems:~i! the
low-density electron gas,~ii ! electronic phase separation in the low-density three-dimensionalt-J model, and
~iii ! in the manganites near the charge-ordered phase. We work in the approximation that the density within
each phase is uniform and we assume that the system separates into spherical drops of one phase hosted by the
other phase with the distance between drops and the drop radius much larger than the interparticle distance. For
~i! we study a well-known apparent instability related to a negative compressibility at low densities. We show
that this does not lead to macroscopic drop formation as one could expect naively and the system is stable from
this point of view. For~ii ! we find that the LRC interaction significantly modifies the phase diagram favoring
uniform phases and mixed states of antiferromagnetic~AF! regions surrounded by metallic regions over AF
regions surrounded by empty space. For~iii ! we show that the dependence of local densities of the phases on
the overall density found in paper I gives a nonmonotonous behavior of the Curie temperature on doping in
agreement with experiments.

DOI: 10.1103/PhysRevB.64.235128 PACS number~s!: 71.10.Hf, 64.75.1g, 71.10.Ca, 75.30.Vn
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I. INTRODUCTION

In the last decades continuous progress in the chara
ization and preparation of complex compounds has produ
a variety of systems with very rich phase diagrams when
concentration of some dopant is varied. Notable examp
includes doped cuprates and manganites where one finds
ferent phases as the electronic density is varied. Quite g
erally and in analogy with familiar first-order phase tran
tions, like the ice-liquid transition, it is natural to ask und
what conditions one can find ranges of global electronic d
sity with phase separation among the many electronic ph
that one finds in these materials.1,2

This problem has arisen naturally for doped Mo
insulators3,4 and Fermi liquid instabilities5 in the context of
the cuprates and also in the related problem of doped m
netic semiconductors.6

It is by now settled that close to the Mott transition the
is a natural tendency for the system to phase separat
insulator and metallic phases with different densities. T
tendency is frustrated by the long-range interaction wh
tends to favor uniform phases. As a result the system
choose to phase separate in an inhomogeneous state
islands of one phase in the other phase keeping long-s
neutrality. The same phenomena can occur in a variety
situations and in particular in the doped magnetoresis
manganites phase separation at various scales is observ
different regions of the phase diagram.7 Also there is evi-
dence that the two-dimensional~2D! electron gas phase sep
rates at low densities.8

In paper I of this series~hereafter referred as I! we have
presented a theory of phase separation frustrated by the l
range Coulomb~LRC! interaction and in the presence of
surface energy cost. We showed that if the Coulomb
surface energy cost are not too strong, the phase-sepa
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state survives but it is inhomogeneous. In a certain glo
density range drops of one phase~A! are formed and hosted
by the other phase (B). The free energy per unit volum
reads

f 5~12x! f A~nA!1x fB~nB!1em , ~1!

wherex is the volume fraction. The first two terms are th
bulk contribution of theA andB phases and the last term
the mixing energy

em5Fs2e2~nB2nA!2

e0
G1/3

u~x!, ~2!

whereu(x) is a geometric factor which in the case of dro
is

u~x!535/3S p

10D
1/3

x~223x1/31x!1/3. ~3!

The mixing energy includes the surface energy cost and
electrostatic cost.

In our computations we have assumed that the scale
the inhomogeneities are much larger than the interpart
distance. This study is complementary to others which h
considered the opposite limit~frustrated phase separation at
scale comparable to the interparticle distance! to explain phe-
nomena like the striped states in cuprates.3,5

We have considered spherical drops as done by Nag
and collaborators in the context of doped magnetic semic
ductors in general and of manganites in particular.6,9 How-
ever, we obtain similar results in other geometries like
periodic array of layers and we believe that for any reas
able geometry similar behavior for thermodynamic quantit
would be obtained.
©2001 The American Physical Society28-1
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To illustrate the generality of theses ideas in this paper
consider some relevant applications to open problems in c
densed matter.

It is well known that the low-density electron gas has
negative compressibility.10 We discuss the fundamental pro
lem of the stability of the electron gas and of the Wign
crystal at low density against a bubble phase~Sec. II!. The
system is shown to be stable against this kind of phenom
showing explicitly that a negative compressibility can be o
served in this system because the LRC interactions mak
stable. Interestingly negative compressibility has been m
sured in the 2D electron gas.11

To make a link with the problem of phase separation~PS!
in doped Mott insulators we consider frustrated PS in thet-J
model ~Sec. III!. This is one of the simplest models used
the context of high-temperature superconductors where f
trated phase separation is believed to play an important r
We illustrate the importance of the LRC forces in determ
ing the phase diagram.

Finally we study the problem of phase separation in
manganites between a ferromagnetic metallic phase an
charge-ordered phase~Sec. IV!. This problem illustrates
nicely how the anomalous behavior of local densities fou
in I can be reflected in measurable quantities. We propos
explanation for the anomalous behavior of the Curie te
perature close to a charge-ordered instability; i.e., the C
temperature decreases as the charge-ordered instability i
proached. We conclude with a summary of the main res
~Sec. V!.

II. STABILITY OF THE JELLIUM MODEL

Here we discuss the case of a system of electrons
uniform rigid background usually called the ‘‘jellium’
model. Although we find that drops do not form in this ca
this first discussion is very useful to illustrate the range
applicability of the present ideas.

The problem is the following: It is well known that
low-density electron gas has a negative electro
compressibility.10 Will this lead to drop formation?

To describe in an approximate way the electronic ene
one can use the Wigner interpolation formula for the cor
lation energy. In this approximation the ground-state ene
per particle at zero temperature is given by10

Eel /Ry5
2.2099

r s
2

2
0.9163

r s
2

0.88

r s17.8
, ~4!

where the first term is the kinetic energy, the second term
the exchange energy, and the last term is the correlation
ergy. Herer s5@3/(4pn)#1/3/a0 anda0 is Bohr’s radius.

The energy per unit volume isf el(n)5Eeln. In Fig. 1 we
plot f el andEel as a function of density. These curves can
interpreted in two different ways. If the background com
pressibility is given only by the electrostatic self-energy~al-
ready included!, then the curves represent the total energy
the system, background plus electrons. We call this the c
pressible background case. Two different criteria give th
modynamic instability for the compressible background ca
23512
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First for na0
3,0.0015~up arrow! the compressibility is nega

tive. More importantly forna0
3,0.003[nel

0 ~down arrow!
the pressure is negative. The latter means that if the syste
prepared with a density lower thannel

0 , then electrons and
background will relax to a self-bound system with a low
volume andn5nel

0 ~from now on we shall measure densitie
in units of Bohr inverse volumea0

3). We can consider this
result as due to the usual Maxwell construction~MC! argu-
ment applied to phase separation between the electr
system1background and the vacuum. In fact it is easy to s
thatn5nel

0 satisfies a MC in which the MC line intersects th
origin. By applying an external pressure densities higher t
nel

0 become physically accessible. The numerical value ofnel
0

can change when more accurate forms of the correlation
ergy are considered, but the qualitative picture will rema
the same.

The above interpretation is not useful in real situatio
where forces other than the electrostatic one can cons
the background to have a certain density. This leads t
second interpretation of the curves in Fig. 1. Since the ba
ground has additional nonelectrostatic contributions to
compressibility~for example, coming from core-core repu
sion of the atoms!, the plots of Fig. 1 are not anymore th
total energy of the~neutral! system as a function of density

A simple hypothesis to describe such a system is to
sume in the model that the substrate is completely rigid.
call this the incompressible background case. The curve
Fig. 1 represent then the energy of many different reali
tions of this system, each with a different density. The ene
includes the electrostatic cost to change the density of
background from one system to another but excludes
~infinite! nonelectrostatic energy cost to change the den
of the background.

Now the total density is fixed at some value, the inve
compressibility of the whole system is infinite, and the abo
instability criteria do not apply anymore. This, however, do

FIG. 1. Energy per particle~left axis, solid line! and per unit
volume ~right axis, dashed line! as a function of density obtaine
from the Wigner interpolation formula. The vertical arrows indica
the density at which the pressure is zero~lower one! and the density
at which the jellium model contribution to the compressibility b
comes zero~upper one!. In the latter case the corresponding chan
of curvature is almost indistinguishable to the bare eye.
8-2
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PHASE SEPARATION FRUSTRATED. . . . II. . . . PHYSICAL REVIEW B 64 235128
not guarantee the stability of the system. One can imag
that the system may be unstable towards an inhomogen
phase with electron-rich and electron-poor bubbles in
uniform fixed background.

We analyze below the case in which the electron-p
regions have zero electron density. In principle we can w
as in I with a quadratic expansion of the free energy aro
the MC case; however, the free energy has now a sim
form which can be dealt with analytically.

A. Electron drops in background

The compressible background case suggests that the
tem has the tendency to separate into electron-rich reg
and regions of zero electron density. We will take theA and
B phases of I to be the background with no electrons and
background with an undercompensated density of electr
respectively. Consider first the case of low densities for thB
phase. We can take for the bulk drop free energy the en
of a classical Wigner crystal, i.e., the leading 1/r s term in Eq.
~4! for larger s . This microscopic Wigner crystal should no
be confused with the mesoscopic Wigner crystal that
drops would form.

It is instructive to write the free energy in the followin
way:

f 5
6pe2n

5 H 2nelr el
2 1nelRd

2F223S n

nel
D 1/3

1
n

nel
G J . ~5!

The volume fraction of theB phasex has been eliminated b
using the constraint in the density given byn5xnel where
nel[3/(4pr el

3 )[nB andnA50. The first term in the brack
ets comes from the classical Wigner crystal contribution~the
leading term inf B[ f el at low density! and the second term
is the mixing energy contribution computed in I. The latt
contains the electrostatic bubble contribution and the sur
energy contribution. The radius is not a free parameter
Rd[Rd(n,nel ,s) is the drop radius that minimizes the fre
energy.

Notice that the drop of electrons is not neutral since
density of electrons is larger than the compensating ba
ground, i.e., within the drops we are dealing with a charg
Wigner crystal of electrons in contrast with the usual neu
Wigner crystal of electrons. On the other hand, in the co
putation of the charging energies of the drops in I we ha
assumed for simplicity that the density is uniform inside t
drop. In Appendix A of paper I we compute the correction
the electrostatic energy due to the nonuniform electro
density at the microscopic scale as it should be for a char
Wigner crystal and conclude that this only changes num
cal factors, which are not important for the present analy

Since the drop radius has already been minimized, on
left with the density inside the drops~or equivalently with
r el) to be minimized.Rd depends on the density explicitl
and indirectly ons(nel). If the last term in the curly bracket
grows with nel faster thannelr el

2 , the minimum occurs a
nel→n, i.e., x51. This corresponds to the uniform case.
insteadnelr el

2 grows faster, one finds a solution withnel

→`; the term in the square brackets becomes a constan
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clearly r el.Rd . In this case the mesoscopic bubble mode
clearly not adequate. In order for both terms to balance
actly one finds that the surface energy has to fulfill the re
tion s;e2nel

2/3/r el . If one estimates the surface energy as
characteristic energy density (nele

2/r el) times a characteris
tic length (r el;nel

21/3), one can conclude on dimensional a
guments that this surface energy is precisely the one o
Wigner crystal. Smaller surface energies give drops wh
are too small for the mesoscopic treatment and larger sur
energies give no drops at all.

What about the other contributions to the bulk free ene
in Eq. ~4! which will become important as the density insid
the drop becomes large? They only make the drop bulk t
less negative, so an even smaller value of the drop radiu
needed to stabilize the drop solution. From this point of vi
we can conclude that mesoscopic or macroscopic drop
electron gas are not possible.

The only dubious case could be close tox51 (nel→n),
since in this case the term in the square brackets can be
small. In principle this allows for large drops without payin
too much mixing energy. However, in this region Eq.~5! is
not strictly valid since the volume fraction is close to 1 a
one has to revert the geometry as done below.

B. Drops of empty background „voids…

We consider the possibility of formation of drops of ze
electronic density~voids! hosted by electron rich region
with densitynel .

We look again to the limit of the classical Wigner crysta
Now x will represent the fraction of empty electronic vo
ume. The constraint in the density is given byn5(1
2x)nel and the free energy reads

f 5
6pe2

5 H 2nnelr el
2 1~nel2n!nelRd

2

3F323S 12
n

nel
D 1/3

2
n

nel
G J . ~6!

We see that ifnel→n, we can getRd@r el with a small sur-
face and electrostatic energy~the last term in the curly brack
ets!. Using the density constraint to eliminatenel in favor of
x we find that for smallx the free energy behaves asn2

(25r 0
216Rd

2)x with r 0 given by n[3/(4pr 0
3). Clearly to

have a minimum for smallx.0 we needRd,r 0 and the
model does not apply. The full expression for the free ene
taking into account the electron kinetic energy gives an e
smaller sloop for the dependence off on x so that an even
smaller drop radius is obtained. We could still have dro
with finite electronic densities in both the drop and the h
phases. In this way one can reduce the mixing energy
cause it depends on the density differencenB2nA @Eq. ~2!#.
One could expect to find a solution close to the critical de
sity for zero pressurenel

0 . We have searched for such a s
lution assumingEel;(n2nel

0 )2. It has higher energy than
the uniform solution.

We can conclude that a 3D electron-jellium model is n
unstable towards mesoscopic or macroscopic drop forma
8-3
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and density regions where the compressibility of the elect
gas is negative are physically accessible. Interestingl
negative compressibility is actually observed for the 2D el
tron gas.11 Our result stems from the fact that both the ene
gain coming from the MC and the energy cost have the sa
electrostatic origin. Of course we cannot discard instabilit
that can occur at a microscopic scale.

III. FRUSTRATED PHASE SEPARATION
IN THE 3D T-J MODEL

In the last few years it has become clear that many of
strongly correlated models used to describe high-tempera
superconductors exhibits PS in some regions of param
space.1,2 Due to the strong anisotropy of these materials, u
ally 2D models are considered. In this section we apply
idea of a Wigner crystal of drops to PS in models of stron
correlated electrons on a lattice. We will consider, for si
plicity and homogeneity with I and the other sections of t
paper, isotropic 3D lattice models. We expect, however,
the results will remain qualitatively valid even for 2D mo
els. Needless to say, the 3D models are interesting on
own right given the large class of strongly correlated ma
rials where anisotropy is not important like doped C60, mag-
netoresistant manganites, etc.

Usually in strongly correlated lattice models the Coulom
interaction is truncated to a distance of a few lattice sites
often only the on-site HubbardU term is kept. The underly-
ing assumption is that in a uniform ground state most of
interesting physics is governed by the short-range inte
tions and that the effect of the long-range interactions can
absorbed in the Madelung potential through a proper Har
renormalization of the on-site energies. However, in a n
uniform ground state the long-range part of the interact
has an important role even at the Hartree level. A simple w
to take this into account is to maintain the relevant sho
range interactions~e.g., the HubbardU!, to evaluate the en
ergy of the intrinsicA or B phase and to add the electrosta
and surface contributions of the drops to the total free
ergy. This means that we are still neglecting the Coulo
interaction at distances larger than the lattice constanta, as in
the usual Hubbard model, but we keep the Coulomb rep
sion for mesoscopic distances of the order of the inhomo
neity scale. In other words in the Fourier transform of t
Coulomb potential, 4pe2/q2, we maintain terms with wave
vector q close toq50 that do not cancel with the back
ground and hence give a large contribution to the energy

As an example of the relevance of this approach
strongly correlated systems we focus on thet-J model, one
of the more often used models in the cuprates. The Ha
tonian is given by

H52t (
^ i j &,s

ci ,s
† cj ,s1J(̂

i j &
S Si .Sj2

1

4
ninj D ,

whereci ,s
† creates an electron of spins on the sitei. Hereni

and Si are the electron number and spin operators, resp
tively. Double occupation is not allowed and summations
extended to the nearest neighbor of a 3D cubic lattice.
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large-J/t limit has been studied in detail in two4,12,13 and
more dimensions based on a large-d expansion.14 We study
the limiting case of a small number of electrons~hole doping
close to 1!. This is not particularly relevant for the cuprate
but illustrates the issue of frustrated PS in a strongly co
lated system.

A. Maxwell construction analysis

We start by reviewing the usual MC arguments4,14 in the
absence of LRC adapted to the 3D case. The antiferrom
netic ~AF! phase at half filling, hereafter theB phase, can be
model by an incompressible phase with one electron per
The density is given bynB5nB

051/a3. Our densities refer to
real electrons, not to holes. The energy is

f B5 f B
0523bJnB

0 , ~7!

wherebJ is the magnetic energy per bond. From estimates
the ground-state energy in the 3D Heisenberg model14 one
finds b50.550.

Two different situations are found for the PS. For ve
largeJ/t one finds PS between the AF phase and the elec
vacuum (AF1V). In this case we call the vacuum theA
phase withf A50. ReducingJ/t one finds PS between th
AF phase and a dilute metal of electrons (AF1M ). In this
case we call the metal theA phase with energy

f A~nA!526tnA1
35/3

5
p4/3a2nA

5/3t. ~8!

Here t is the hopping matrix element and we have used
effective mass approximation in the dispersion relation of
low-density limit of thet-J model.4,14

In Fig. 2 we show the free energies in the absence of L
and different values oft/(2 f B

0). The total free energy is
given by Eq.~1! with em50. Since densities are assumed
be low, we can neglect the short-range interaction betw

FIG. 2. Free energy normalized to the incompressible phase
energy without LRC and~from top to bottom close to the origin! the
metal with 6t50.6u f B

0 u, PS between the AF and vacuum (AF1V),
the metal with 6t52.1u f B

0 u, and MC phase separation between t
AF and the metal (AF1M ) (nB

0[a[1).
8-4
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the electrons. We define the number of electrons per unit
n[n/nB

0 . In addition we seta[1 and restore it when con
venient for clarity.

For very largeJ/t the AF1V solution is the lowest in
energy. Indeed in Fig. 2 the upper curve corresponding to
uniform metallic energy does not intersect the AF1V line,
f 5n f B

0 , corresponding to the MC between then50 andn
51 points. Decreasing the value ofJ/t when the chemica
potential of the metal fulfills mA(0)(526t), f B

0 , i.e.,
t.bJ/2, the metallic free energy intersects the AF1V free
energy at some finite density and the lowest-energy sta
achieved by doing the MC between the antiferromagnet
the metal. In this case as shown in Fig. 2, one finds a p
metallic phase at small density and MC phase separa
between the AF and the metal for larger density. In Fig.
below, we show the phase diagram deduced from this an
sis. The dilute metal can be unstable towards a gas of bo
particles.4,14 Here we do not consider this effect for simpli
ity.

In the next two subsections we analyze the effect of
LRC interaction on the AF1V PS and the AF1M PS. Since
the electronic free energy has a simple form, we solve
equations exactly rather than making a linearization as in

B. Drops of an incompressible phase in vacuum„AF¿V…

As shown above, in the absence of the LRC interacti
this case is realized in the large-J/t limit. Now we generalize
the above discussion with the inclusion of LRC and surfa
energy effects. TheA phase is the electron vacuum~V! (nA
50 and f A50) and theB phase is the AF with one electro
per site,nB5nB

051/a3, and energy given by Eq.~7!. The
total free energy is given by Eq.~1! with the above replace
ments. An expansion of the densities around the MC solu
~Sec. III of paper I! gives a trivial result sincel50 ~notice
thatkm50) and the densities are fixed at the MC values@Eq.
~29! of paper I#. However, this is a peculiar limit. In fact a
we will show below the total free energy does not coinc
with the MC free energy because of the mixing energy. Si
the densities are fixed, only the radius has to be determ
which is given by Eq.~8! of paper I.

The surface energy of the AF is given by the energy c
to cut a bond divided by the associated surfaces5bJ/a2

and the volume fraction is determined by the constrainx
5n/nB

05n. Inserting this into Eq.~8! of paper I we obtain

Rd5F 15

4p

bJe0

~223n1/31n!e2/a
G 1/3

a. ~9!

As long as the dielectric constant is sufficiently large t
radius is much larger than the lattice spacing and our
proximations are valid.

By writing the free energy in dimensionless variables
can define a coupling constant that will determine the tr
sition form the AF1V solution and the AF1M solution in
the presence of LRC. It is given by
23512
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2 f B
0 F9pe2s2~nB

0 !2

5e0
G1/3

. ~10!

Inserting the parameters for AF drops in Eq.~10! we find

a35
9p

5

e2/a

bJe0
, ~11!

i.e., the ratio of a Coulomb energy to a magnetic energy.
Imposing thatRd.a for n50 one findsa,3/2, so we

will concentrate on this range of coupling.
From Eqs.~1! and ~3! we obtain the free energy as

function of density:

f ~n!5F2n1S 5

243p D 1/3

au~n!G~2 f B
0 !. ~12!

The first term in the square brackets is the bulk contribut
and the second term is the mixing energy contribution. T
is plotted in Fig. 3 for different values of the couplinga. As
in the above the results are only rigorously valid for smalx
(5n).

The effect of the mixing energy is to bend upwards t
AF1V free energy~see Fig. 3! so that the metallic phase ca
become stable with a lower value oft with respect to the case
with no LRC force~compare with Fig. 2!. One can show tha
for a.1 the AF1V solution is never stable and one h
either a uniform metal of an AF1M solution depending on
doping. Fora,1 the drops can coexist with a metal or n
depending on the value oft/J. We will analyze the compe-
tition with the AF1M solution in the next section.

C. Drops of an incompressible phase in a metallic host„AF
¿M …

ReducingJ/t at some point the solution of the previou
section (AF1V) will not be stable any more. This has a
ready been shown in the absence of LRC interactiona
50). We consider now theA phase to be the metal.

The surface energy will have now density-dependent c
tributions coming from the metal. However, since we are

FIG. 3. f /(2 f B
0) for a phase of drops of an incompressib

phase in vacuum fora50,0.5,1,2~from bottom to top! vs n.
8-5
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the low-density limit, the surface energy will be dominat
by the magnetic surface energy described in the prev
case and can be taken as constant. The AF1V solution is
then not anymore stable whenmA(0)526t,mAF1V(0)
5(a21)(2 f B

0).
In Fig. 4 we show the locus of stability of the AF1V

solution in thet-a plane. Above the line the stable solution
either a uniform metal or drops of AF in the metal depend
on the density. In Ref. 14 the ratio ofJ/t below which the
AF1V solution is not stable fora50 is calledYc . In 2D
they foundYc(0)53.4367 andYc(0)→4 for d→`.14 Using
their estimate of the 3D AF energy we haveYc(0)53.637.
Figure 4 shows thatYc ~proportional to the critical value o
2 f B

0/6t) increases witha. Remarkably in the presence o
LRC forces a smallert is enough to stabilize metallic phas
regions. In other words, we can have a situation in wh
without LRC forces all the electrons are in a self-bound
AF state and as the LRC forces are switched on some e
trons ‘‘evaporate’’ to form a dilute gas around the AF drop

To solve for the AF1M drop solution the free energ
now has to be minimized with respect to the radius and
density of the metal subject to the constraintn5xnB

01(1
2x)nA . We are implicitly assuming that the density is n
low enough to form a Wigner crystal of electrons. One c
check that for reasonable parameters and increasinga the
radius of the drop becomes of the order of the lattice cons
much before an electronic Wigner crystal can form.

Above the boundary line on Fig. 4 one finds either a u
form metal or AF1M depending on the density. This can b
seen in Fig. 5 where we plot the free energies fort
52.1u f B

0 u and a50.5. Above a certain densitynbi f

5nbi f /a3 we have the coexistence of AF drops in the met
lic host. The behavior close tonbi f is very similar to the
behavior for parabolic free energies in the uniform dens
approximation~UDA! of paper I.

Here also there is a bifurcation of the solution, and
creasing the density, the AF drops appear with a nonz
value of the volume fraction. However, with the present p
rameters the initial volume fraction is very small~see Fig. 6!.

FIG. 4. Locus of stability of the AF drops in vacuum (A
1V) in the t-a plane. Above the line the more stable solutio
depends on the density.
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As the B density grows thenA density decreases due t
the effect discussed in paper I. TheB density is kept constan
at nB

0 due to the incompressibility. In Fig. 7 we show th
behavior. In real systems this effect can be detected thro
physical properties which depend on the local densities a
discussed below for the manganites.

In Fig. 8 we show the phase diagram in the absence
LRC force (a50) and fora50.5. We see that a portion o
the phase diagram in which a uniform solution is unsta
towards PS without LRC, fora.0, becomes stable and th
AF1M solution extends its region with respect to the A
1V solution due to the ‘‘evaporation’’ effect.

IV. APPLICATION TO THE MANGANITES

As a further application we consider the magnetoresis
manganites7 like La12yCayMnO3. In the last years strong
experimental evidence has accumulated indicating that in
mogeneous phase separation occurs in these materials in
tain regions of parameter space.15–20

FIG. 5. Free energy normalized to the incompressible phase
energy with parametersa50.5 and 6t52.1u f B

0 u. We show the me-
tallic free energy, the AF1V free energy, and the AF1M free
energy. The cross indicates the value withx50 of the AF1M drop
solution.

FIG. 6. Volume fraction vsn for AF drops in a metallic host and
parameters as in Fig. 5.
8-6
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At y50 all Mn have formal valence 31. Each ion has
three electrons int2g orbitals and one electron in aneg or-
bital. The four electron spins are all parallel due to the stro
Hund’s rule coupling forming anS52 spin. The spins of
different Mn31 ions form an antiferromagnetic phase due
the superexchange interaction and the system is an insu
As the eg band is doped, mobile holes tend to align theS
53/2 core (t2g) spins in different ions because this max
mizes the transfer integral and minimize the holes kine
energy, leading to a ferromagnetic state. This is the so-ca
double-exchange~DE! mechanism.21–23

Experimentally one finds indeed the ferromagnetic st
but close toy50.5 a new charge-ordered~CO! insulating
phase with a chessboard structure of Mn31 and Mn41 is
stabilized. The CO phase is not predicted by conventio
DE but does appear in more recent theories incorpora
Mn-Mn Coulomb repulsion24 or orbital degrees of
freedom.25

Close to y50 and y50.5 the metallic ferromagnetic

FIG. 7. Density in the metallic host vs total densityn for 6t
52.1u f B

0 u and different values ofa.

FIG. 8. Phase diagram for the large-J/t limit of the 3D t-J
model without LRC (a50) and with a small LRC (a50.5). The
high-density part has to be taken with care since the densit
electrons can be large in the metal so that short-range interac
within the metallic phase cannot be neglected anymore, and
drops of AF lose sense.
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~FM! phase competes with the corresponding insulat
phase. The drop state due to the competition between thy
50 AF phase and the metallic phase taking into account
LRC interaction has been studied theoretically by Naga
and collaborators.6,9 Evidence for such a phase has recen
been found in neutron scattering experiments.18

Here we will analyze the competition of the CO pha
with the FM phase close toy50.5 and show that a phase
separated state can explain the puzzling maximum of
Curie temperatureTc(y) at y;0.35.26,27 On the contrary,
conventional DE would predict that the Curie temperature
maximum at half doping (y50.5) because for this filling the
kinetic energy of the holes is maximized.

We will consider a mixed state in which theA phase is the
ferromagnetic metal and theB phase is the charge order sta
at y50.5 which corresponds to inverse specific volumenB

0

50.5/a3. In the following the densities refer to holes~i.e.,
the concentration of Mn41 ions!.

In the FM phase the core spins of the Mn ions are fu
polarized and the mobile holes have the maximum ba
width W. In order to model the FM in a simple fashion w
follow Varma28 and take a flat density of states with ban
width W. The FM free energy atT50 is then given by the
cohesive energy of the holes in the fully polarized state:

f A~nA!5
Wa3

2
~nA2nB

0 !2. ~13!

We have chosen to measure the single-particle energies
the center of the band and we have dropped a constant w
can be absorbed in the free energy constant of theB phase
f B

0 . At finite temperatures one has to consider the entro
contribution to the free energy. However, for a given te
perature one can expand the fullA free energy around thenB

0

density and an expression like Eq.~13! is still valid with an
effective temperature dependentW.

The CO state can be modeled as a doped incompres
phase around the inverse specific volumenB

0 . The free en-
ergy atT50 can be put as

f B~nB!5
EG

2
unB2nB

0 u1e0~nB2nB
0 !1 f B

0 . ~14!

f B
0 measures the difference in free energy per hole betw

the CO state and the FM state aty50.5 (n5nB
0) and e0

controls the difference in chemical potentials of the tw
phases.EG is the gap in the charge-ordered state, i.e.,
difference between the energies to create defects with
added hole and one removed hole without destroying the
state.~It should be of the order of the activation energy in t
transport properties of a pure CO state.! The dip in the free
energy atn5nB

0 will become rounded with temperature. Fo
simplicity we will neglect this effect. For temperatures mu
smaller than the gap, this is a good approximation. Eve
the temperature gets comparable to the gap, a small roun
of the CO free energy close tonB5nB

0 will not affect signifi-
cantly the results close to the density at which drops fi
appear (nbi f).
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The chemical potential of the CO state atT50 is given
by

m15e01Eg/2, nB.nB
0 , ~15!

m25e02Eg/2, nB,nB
0 . ~16!

By construction the discontinuity atnB
0 is equal to the gap a

it should be.m2 is the energy to create a Mn31 defect in the
CO state; i.e., it is the energy to remove a hole in the
state. This single-particle energy is measured from the s
reference energy as the one used for theA phase in Eq.~13!.
This fixes the value ofe0.

In Fig. 9 we have plottedf A , f B as a function ofy. We
constructed the free energies for the uniform phases phen
enologically by relying on the metallic and insulating cha
acter of each phase and on the fact that due to the diffe
magnetic symmetries they cannot be joined with continu
but a level crossing should occur as a function ofy. It is
interesting to note that a recent microscopic model gi
practically the same energy scheme as a function
doping.25

In Fig. 9 we report also the MC and the free energy
the drop solution fora53 andW8[WnB

0/(2 f 0
B)515 ~thick

line!. The coupling constanta is defined in Eq.~10!. W8
measures the effective bandwidth in units of (2 f 0

B).
For the sake of simplicity we assume that the slope off B

for nB,nB
0 ~i.e., m2) is so large thatf B never crosses the

drop solution. Under these simplifying conditions one of t
phases involved in phase separation is always the defect
CO state aty50.5. In this situationEg ande0 do not enter
into the problem and a precise description off B(nB) is not
needed. For example we have neglected the kinetic energ
the defects which will give some curvature tof B(nB) but
will not change the present picture.

Alternatively toa we could use the coupling constantl
defined in Sec. III of paper I since the FM free energy

FIG. 9. Free energy normalized to the incompressible phase
energy aty50.5 with a bandwidthW515u f B

0 u/nB
0 . We show the

FM free energy (f A), the CO free energy with a large negativ
value ofm2, and the FM1CO free energy fora50 ~MC! and for
a53. The cross indicates the value withx50 of the FM1CO drop
solution. The arrow indicates the same for the MC (y0).
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parabolic (kA
215km

215Wa3) and the CO free energy can b
considered as thekB→0 limit of a parabola. The two cou
pling constants are related by

l5
22/3

3

a

~W8!1/3
. ~17!

Specifically l50.64 for a53 and W8515. Notice, how-
ever, that here~as in the previous section! we can introduce
two dimensionless parameters. One isa ~or alternativelyl)
and the other isW8. The latter plays the same role ast/J in
the previous section. In particular it fixes the MC densities
follows. In the absence of LRC interactions (a50) and for
W8,4 the f A parabola is too flat and PS between the F
and CO states is not possible. One gets PS between the
state and vacuum~this is similar to the AF1V PS considered
in Sec. III B!. ForW8.4 the Maxwell construction gives PS
between FM and CO with the critical doping given by

y05
1

2
2

1

AW8
. ~18!

In Fig. 9 the value ofy0 is indicated by an arrow.
In the presence of LRC interactions the range of coex

ence contracts with respect to the Maxwell construction ca
The transition from the FM to the drop solution is qui
abrupt atybi f50.38 ~for a53) with a substantial jump of
the volume fraction from zero to a finite valuexbi f50.17
~see Fig. 10!.

In Fig. 11 we show the local density inside the metal
region. Fory,ybi f the stable phase is uniform FM and th
total density coincides with the nominal densityn5y/a3.
For y.ybi f the drop solution is stable and the density in t
metallic region decreases with increasing nominal dens
As discussed in paper I, in deriving this effect it is importa
that the density dependence of the surface energy can
neglected. The strongest dependence of the surface ener
expected to arise from the kinetic energy of the metal. Ho
ever, this dependence is important close toy;1 andy;0
and can be safely neglected close toy;0.5.

ee FIG. 10. Volume fraction vsy for CO drops in a FM host and
parameters as in Fig. 9. The lower branch close toy;0.4 is un-
physical.
8-8
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The decrease of the local density with the increase of
global density can explain the nonmonotonous depende
of the Curie temperatureTc on y. Since the ferromagnetic
interaction between the core Mn spins is mediated by
conduction electrons through the double-exchange me
nism, one expects the Curie temperature to be a monoto
increasing function of the local metallic densitynA(,nB

0) of
the FM phase. We associate the region in which the C
temperature increases with doping, i.e., the ‘‘normal’’ regi
~roughly 0.1,y,0.33 for La12yCayMnO3), with a uniform
FM phase and the ‘‘anomalous’’ regions in which the Cu
temperature decreases with doping with a drop state. In
latter statenA decreases with doping and this gives t
anomalous behavior ofTc as a function of doping.

To be more specific we assume the following simple fo
for the dependence of the Curie temperature on the local
density:

tc~a3nA!2tc~0!

tc~0.5!2tc~0!
54~12a3nA!* a3nA . ~19!

We are using a lowercaset for the local Curie temperature o
the FM phase to distinguish it from the true Curie tempe
ture of the system which is a function of the overall dopin
Tc(y). A similar form to Eq.~19! with tc(0)50 was derived
by Varma for a uniform FM phase.28 More sophisticated
treatments also give a form roughly parabolic withtc(0)
.0.29

For a uniform FM phasey5nAa3, Tc(y)5tc(y). This fits
correctly the experimental data in the normal region. We
use this fit to fix the parameters in Eq.~19!. For
La12yCayMnO3 one obtains tc(0);80 K and tc(0.5)
;300 K. Close toy50.5 we have the anomalous behavi
and the measuredTc differs considerably fromtc(0.5), the
Curie temperature of a hypothetically uniform phase. F
example, experimentallyTc(0.5);225 K.

From the knownnA(y) ~Fig. 11! and Eq.~19! we compute
Tc(y)[tc@a3nA(y)#. This curve~which is quite similar to
the experimental one! is shown in Fig. 12. Indeed we see th
the drop solution combined with the uniform solution fory
,ybi f gives a nonmonotonous behavior ofTc(y). In evalu-

FIG. 11. Density in the metallic host vs dopingy for parameters
as in Fig. 9.
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ating the theoretical curve to be compared with the exp
mental data we fix the values ofa andW8 in the following
way. We associate the experimental maximum inTc with the
bifurcation point, i.e., the doping at which the uniform sol
tion switches to the drop solution. This gives us an expe
mental value of the bifurcation doping,ybi f;0.38. From the
experimental data we also obtain the depression of the C
temperature@Tc(0.5)2tc(0)#/@ tc(0.5)2tc(0)#;0.66. With
these two dimensionless numbers we obtain the dimens
less parameters of our theory and finda53 and W8515,
i.e., the values that we have been using in the present sec
A rough microscopic estimate of these parameters is give
the Appendix to show that indeed the above values are
sonable for the manganites.

A similar behavior as the one discussed here fory;0.5 is
observed close toy;0. We speculate that this is due to th
same general phenomena involving inhomogeneous p
separation between the insulator aty50 and the ferromag-
netic metal.

V. CONCLUSIONS

In this work we have applied the ideas developed in I
three different physical systems. First we analyzed w
known apparent instabilities in the low-density limit of th
jellium model. The usual instability criteria like a negativ
compressibility are formulated for a neutral system a
should be taken with care in a charged system with a co
pensating background. In a charged system an instabilit
the kind implied by a MC analysis is a necessary but
sufficient condition for mesoscopic phase separation. In
we have seen that for the Wigner crystal of electrons
Coulomb strength and the surface energy balance in su
way that large drops are not possible. This is basically du
the fact that the energy gain from the MC and the energy c
due to the LRC interaction and surface energy have all
same electrostatic origin. This prevents the mixing ene
from being small compared to the MC energy as required
I to have mesoscopic PS. We mention that in the 2D elect
gas~not considered here! there is evidence for both a densi

FIG. 12. Tc of the FM host minustc(0) normalized totc(0.5)
2tc(0) as a function of dopingy. Parameters are as in Fig. 9. W
showTc in the uniform solution and in the drop solution.
8-9
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region of negative compressibilities and at lower densitie
phase separation.8,11 For the latter, however, the effect o
disorder not considered by us may be crucial.

The study of thet-J model illustrates the importance o
the mixing energy in determining the phase diagram. T
LRC interaction tends to stabilize the nonseparated unifo
phases in the presence of a rigid background. Apart from
intuitive effect the LRC interaction can also favor one mix
state over another. In fact we showed that the LRC inter
tion can transform the clusters of AF electrons in vacu
into clusters of AF electrons in equilibrium with its vapor~a
dilute electron gas!, a phenomenon which we referred to
‘‘evaporation.’’

In paper I of this series we showed that the local densi
of the two phases tend to have an anomalous behavior in
mixed state. Both of them tend to decrease when the glo
density increases. This nonlinear effect can affect the pr
erties of the system which are sensitive to the local dens
as we have illustrated for the Curie temperature in the m
ganites. We have thus provided an explanation to anoma
that occur in the phase diagram, i.e. a decreasing Curie
perature when the CO state is approached by varying
doping.

APPENDIX MICROSCOPIC ESTIMATE OF PARAMETERS
IN THE MANGANITES

In Sec. IV we find that the parametersl50.64 andW8
515 give a curveTc(y) similar to the experimental one. T
decide if these parameters are reasonable one needs a m
scopic computation.

To evaluateW8 which appears in Eq.~18! we refer to a
recent zero-temperature microscopic computation wh
takes into account double exchange and orbital orderin25

Their Fig. 2 showing the free energy~without LRC! is quite
similar to our a50 curves in Fig. 9. From there we tak
y0;0.24 which determinesW8;15 @Eq. ~18!# in agreement
with the value we used to fitTc . l is more difficult to obtain
because it requires a microscopic computation of surface
ergies and screening effects. We parametrize the surface
ergy by a dimensionless quantityg defined bys[gW/a2.
Putting d05(0.52y0)/a3 and kA

215km
215Wa3 in Eq. ~25!

of paper I we get
v
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l52S 9p

5 D 1/3 g2/3

~0.52y0!4/3S e2

e0aWD 1/3

. ~A1!

For the bandwidth we can take an estimate based on M
theiss’s local density approximation~see Ref. 28!, W
52.5 eV. For a cubic array of Mn with a Mn-Mn distanc
of 4 Å we gete2/a53.4 eV for the bare Coulomb strength
Inserting the numerical values in the above equation we h

l;21S g2

e0
D 1/3

.

One obtainsl;0.64, the value we have used in Sec. IV,
taking e0;100 andg;0.05. These are reasonable para
eters considering thate0 should be understood as a sta
dielectric constant taking into account conventional diel
tric screening plus Thomas-Fermi screening effects~Sec. IV
of paper I! andgW should be a small fraction of the band
width.

We mention that since a real background is never p
fectly rigid, a volume relaxation will also occur inside th
drop phase. In general the positive background will contr
in the electron-rich phase and expand in the electron-p
phase to reduce the mismatch between the ionic positive
sity and the electronic density. This is in agreement with
situation in Pr0.7Ca0.3MnO3 where the electron-poor CO
phase has a larger volume than the electron-rich FM phas17

Clearly this effect has to be included in the effective defi
tion of e0.

The drop radius reads

Rd5
321/3ga

l@~da3!2~0.52y0!4~223x1/31x!#1/3
. ~A2!

Using the above parameters we can estimate the radius a
onset (xbi f50.17) to be of the order of

Rd;10a.

Correspondingly the cell radius isRc5Rd /x1/3;18a. We see
that these scales are much larger than the lattice constan
our approximations apply.
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