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Phase separation frustrated by the long-range Coulomb interaction. Il. Applications

J. Lorenzan&? C. Castellant, and C. Di Castrb
IDipartimento di Fisica, Universitali Roma “La Sapienza” and Istituto Nazionale di Fisica della Materia, UrdiaRoma I,
Piazzale A. Moro 2, 1-00185 Roma, Italy
2Consejo Nacional de Investigaciones Ciéinais y Tecnicas, Centro Attico Bariloche, 8400 S. C. de Bariloche, Argentina
(Received 29 May 2001; published 3 December 2001

The theory of first-order density-driven phase transitions with frustration due to the long-range Coulomb
(LRC) interaction developed in paper | of this series is applied to the following physical systentise
low-density electron gasii) electronic phase separation in the low-density three-dimensiehahodel, and
(iii ) in the manganites near the charge-ordered phase. We work in the approximation that the density within
each phase is uniform and we assume that the system separates into spherical drops of one phase hosted by the
other phase with the distance between drops and the drop radius much larger than the interparticle distance. For
(i) we study a well-known apparent instability related to a negative compressibility at low densities. We show
that this does not lead to macroscopic drop formation as one could expect naively and the system is stable from
this point of view. For(ii) we find that the LRC interaction significantly modifies the phase diagram favoring
uniform phases and mixed states of antiferromagné{fe) regions surrounded by metallic regions over AF
regions surrounded by empty space. Fb) we show that the dependence of local densities of the phases on
the overall density found in paper | gives a nonmonotonous behavior of the Curie temperature on doping in
agreement with experiments.
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[. INTRODUCTION state survives but it is inhomogeneous. In a certain global
density range drops of one phag®e are formed and hosted
In the last decades continuous progress in the charactepy the other phaseB). The free energy per unit volume
ization and preparation of complex compounds has produce¢ads
a variety of systems with very rich phase diagrams when the
concentration of some dopant is varied. Notable examples f=(1=x)fa(na) +xfg(np) +en, (1)
includes doped cuprates and manganites where one finds dif-

ferent phases as the electronic density is varied. Quite ger\{\_/herex is the volume fraction. The first two terms are the

erally and in analogy with familiar first-order phase transi-Pulk contribution of theA andB phases and the last term is
tions, like the ice-liquid transition, it is natural to ask under the mixing energy

what conditions one can find ranges of global electronic den-
sity with phase separation among the many electronic phases
that one finds in these materidl$.

This problem has arisen naturally for doped Mott
insulators** and Fermi liquid instabilitiesin the context of yvhereu(x) is a geometric factor which in the case of drops
the cuprates and also in the related problem of doped madS
netic semiconductor.

It is by now settled that close to the Mott transition there
is a natural tendency for the system to phase separate in
insulator and metallic phases with different densities. This
tendency is frustrated by the long-range interaction whichThe mixing energy includes the surface energy cost and the
tends to favor uniform phases. As a result the system caalectrostatic cost.
choose to phase separate in an inhomogeneous state withIn our computations we have assumed that the scales of
islands of one phase in the other phase keeping long-scatbe inhomogeneities are much larger than the interparticle
neutrality. The same phenomena can occur in a variety oflistance. This study is complementary to others which have
situations and in particular in the doped magnetoresistartonsidered the opposite linfifrustrated phase separation at a
manganites phase separation at various scales is observedsitele comparable to the interparticle distarioeexplain phe-
different regions of the phase diagrdnAlso there is evi- nomena like the striped states in cuprates.
dence that the two-dimension@D) electron gas phase sepa- We have considered spherical drops as done by Nagaev
rates at low densitie’. and collaborators in the context of doped magnetic semicon-

In paper | of this serie¢hereafter referred a3 e have  ductors in general and of manganites in particéifaHow-
presented a theory of phase separation frustrated by the longver, we obtain similar results in other geometries like a
range CoulomiLRC) interaction and in the presence of a periodic array of layers and we believe that for any reason-
surface energy cost. We showed that if the Coulomb an@ble geometry similar behavior for thermodynamic quantities
surface energy cost are not too strong, the phase-separateduld be obtained.
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To illustrate the generality of theses ideas in this paper we 0 [/ . . - 0
consider some relevant applications to open problems in con- 0.02 { .0.02
densed matter. 004 1 1 0.04

It is well known that the low-density electron gas has a ) ) ) o
negative compressibilitif We discuss the fundamental prob- —_ -0.06 r ;006 s
lem of the stability of the electron gas and of the Wigner Q 0.08 1 1-0.08 &
crystal at low density against a bubble pha&Sec. 1). The F 01y 101 %
system is shown to be stable against this kind of phenomena, 012 ] 012 =
showing explicitly that a negative compressibility can be ob- 014! 1 014 -
served in this system because the LRC interactions make it : :
stable. Interestingly negative compressibility has been mea- 0.16 | 1 -0.16
sured in the 2D electron gas. 0.18 : : : -0.18

To make a link with the problem of phase separatiB8) 0 0005 001 0015 002
in doped Mott insulators we consider frustrated PS inttie nag

model (Sec. ll). This is one of the simplest models used in ) . o .
the context of high-temperature superconductors where frus- FIG- 1. Energy per particléleft axis, solid ling and per unit
trated phase separation is believed to play an important rol¢olume (right axis, dashed lineas a function of density obtained

We illustrate the importance of the LRC forces in determin—ILO”:jthe W ig?erhi_nﬁﬁo'ation forn?u'aé;:e Vergcg:]gzrﬁzvje'zg;fate
ing the phase dlagram e density at whic e pressure s z er on Yy

Finally we study the problem of phase separation in theat which the jellium model contribution to the compressibility be-

? . . comes zerdqupper ong In the latter case the corresponding change
manganites between a ferromagnguc metallic _phase and ot curvature is almost indistinguishable to the bare eye.
charge-ordered phas€sec. IV). This problem illustrates
nicely how the anomalous behavior of local densities found 3 o
in | can be reflected in measurable quantities. We propose dri'st fornag<<0.0015(up arrow the compressibility is nega-
explanation for the anomalous behavior of the Curie temfive. More importantly fornag<0.003=ng; (down arrow
perature close to a charge-ordered instability; i.e., the Curighe pressure is negative. The latter means that if the system is
temperature decreases as the charge-ordered instability is aprepared with a density lower thaif,, then electrons and
proached. We conclude with a summary of the main resultbackground will relax to a self-bound system with a lower
(Sec. V. volume anch=n?, (from now on we shall measure densities
in units of Bohr inverse voluma3). We can consider this
Il. STABILITY OF THE JELLIUM MODEL result as due to the usual Maxwell constructidhC) argu-
ment applied to phase separation between the electronic
Here we discuss the case of a system of electrons in gystem-background and the vacuum. In fact it is easy to see
uniform rigid background usually called the “jellium” thatn=nJ, satisfies a MC in which the MC line intersects the
model. Although we find that drops do not form in this case,origin. By applying an external pressure densities higher than
this first discussion is very useful to illustrate the range ofn% become physically accessible. The numerical valuelpf
applicability of the present ideas. can change when more accurate forms of the correlation en-
The problem is the following: It is well known that a ergy are considered, but the qualitative picture will remain
low-density electron gas has a negative electroniche same.
compressibility:® Will this lead to drop formation? The above interpretation is not useful in real situations
To describe in an approximate way the electronic energyvhere forces other than the electrostatic one can constrain
one can use the Wigner interpolation formula for the correthe background to have a certain density. This leads to a
lation energy. In this approximation the ground-state energgecond interpretation of the curves in Fig. 1. Since the back-

per particle at zero temperature is giveriby ground has additional nonelectrostatic contributions to the
compressibility(for example, coming from core-core repul-
2.2099 0.9163 0.88 sion of the atom)s the plots of Fig. 1 are not anymore the
Eel/Ry= 12 1y rg+7.8 @ fotal energy of theéneutra) system as a function of density.

s A simple hypothesis to describe such a system is to as-

where the first term is the kinetic energy, the second term isume in the model that the substrate is completely rigid. We
the exchange energy, and the last term is the correlation emwall this the incompressible background case. The curves in
ergy. Herer ;=[3/(47n)]1¥%a, anda, is Bohr's radius. Fig. 1 represent then the energy of many different realiza-
The energy per unit volume ig,(n)=Egn. In Fig. 1 we  tions of this system, each with a different density. The energy
plot f¢; andE,, as a function of density. These curves can beincludes the electrostatic cost to change the density of the
interpreted in two different ways. If the background com-background from one system to another but excludes the
pressibility is given only by the electrostatic self-enefgls  (infinite) nonelectrostatic energy cost to change the density
ready includedl then the curves represent the total energy ofof the background.
the system, background plus electrons. We call this the com- Now the total density is fixed at some value, the inverse
pressible background case. Two different criteria give thereompressibility of the whole system is infinite, and the above
modynamic instability for the compressible background caseinstability criteria do not apply anymore. This, however, does
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not guarantee the stability of the system. One can imaginelearlyr,>R. In this case the mesoscopic bubble model is
that the system may be unstable towards an inhomogeneogkarly not adequate. In order for both terms to balance ex-
phase with electron-rich and electron-poor bubbles in thectly one finds that the surface energy has to fulfill the rela-
uniform fixed background. tion a~e2n§’|3/re|. If one estimates the surface energy as a
We analyze below the case in which the electron-pookharacteristic energy densitpde®/r,) times a characteris-
regions have zero electron density. In principle we can workjc |ength (re|”ne_|1/3), one can conclude on dimensional ar-
as in | with a quadratic expansion of the free energy arounguments that this surface energy is precisely the one of a
the MC case; however, the free energy has now a simplyigner crystal. Smaller surface energies give drops which

form which can be dealt with analytically. are too small for the mesoscopic treatment and larger surface
energies give no drops at all.
A. Electron drops in background What about the other contributions to the bulk free energy

in Eqg. (4) which will become important as the density inside
Yhe drop becomes large? They only make the drop bulk term
MRss negative, so an even smaller value of the drop radius is
needed to stabilize the drop solution. From this point of view
fe can conclude that mesoscopic or macroscopic drops of
Blectron gas are not possible.

The only dubious case could be closexte 1 (ng—n),

nce in this case the term in the square brackets can be very
small. In principle this allows for large drops without paying
too much mixing energy. However, in this region Ef) is

ot strictly valid since the volume fraction is close to 1 and
one has to revert the geometry as done below.

tem has the tendency to separate into electron-rich regio
and regions of zero electron density. We will take fhand
B phases of | to be the background with no electrons and th
background with an undercompensated density of electron
respectively. Consider first the case of low densities foBhe
phase. We can take for the bulk drop free energy the energy.
of a classical Wigner crystal, i.e., the leadingglterm in Eq.
(4) for larger. This microscopic Wigner crystal should not
be confused with the mesoscopic Wigner crystal that th
drops would form.

It is instructive to write the free energy in the following

way: .
B. Drops of empty background (voids)
_ 6me”n ) ) n\¥”® n We consider the possibility of formation of drops of zero
=—5 | “NefatNeiRy| 23 el +n_e| - O electronic density(voids hosted by electron rich regions

with densityng, .
The volume fraction of th® phasex has been eliminated by We look again to the limit of the classical Wigner crystal.
using the constraint in the density given hy=xn,; where  Now x will represent the fraction of empty electronic vol-
Ne=3/(4mr3)=ng andn,=0. The first term in the brack- ume. The constraint in the density is given mby=(1

ets comes from the classical Wigner crystal contributitile ~ —X)Ne; and the free energy reads
leading term infg=f, at low density and the second term
is the mixing energy contribution computed in I. The latter 6me? 2 5
i ; it f= —NNglg;+(Ng—N)Ng R
contains the electrostatic bubble contribution and the surface 5 ellel™ \lel el™d
energy contribution. The radius is not a free parameter but s
Ry=Ry(n,ng,0) is the drop radius that minimizes the free w|3-3[1- npeon ©)
energy. Ng| Ng ’

Notice that the drop of electrons is not neutral since the
density of electrons is larger than the compensating backWe see that ih,—n, we can geRy>r,, with a small sur-
ground, i.e., within the drops we are dealing with a chargedace and electrostatic ener@ye last term in the curly brack-
Wigner crystal of electrons in contrast with the usual neutrakts. Using the density constraint to eliminatg, in favor of
Wigner crystal of electrons. On the other hand, in the comx we find that for smallx the free energy behaves a$
putation of the charging energies of the drops in | we have(—5r§+ 6R§)x with ry given by n53l(47-rr8). Clearly to
assumed for simplicity that the density is uniform inside thehave a minimum for smalk>0 we needRy<r, and the
drop. In Appendix A of paper | we compute the correction tomodel does not apply. The full expression for the free energy
the electrostatic energy due to the nonuniform electronigaking into account the electron kinetic energy gives an even
density at the microscopic scale as it should be for a chargesimaller sloop for the dependence foén x so that an even
Wigner crystal and conclude that this only changes numerismaller drop radius is obtained. We could still have drops
cal factors, which are not important for the present analysiswith finite electronic densities in both the drop and the host

Since the drop radius has already been minimized, one ighases. In this way one can reduce the mixing energy be-
left with the density inside the drop®r equivalently with  cause it depends on the density differenge-n, [Eq. (2)].
re)) to be minimized.Ry depends on the density explicitly One could expect to find a solution close to the critical den-
and indirectly ono(n). If the last term in the curly brackets sity for zero pressuragl, We have searched for such a so-
grows with ng, faster thanne|r§|, the minimum occurs at |ution assumingEe|~(n—ngI)2_ It has higher energy than
ne—n, i.e.,, x=1. This corresponds to the uniform case. If the uniform solution.
insteadn,r, grows faster, one finds a solution with, We can conclude that a 3D electron-jellium model is not
—o0; the term in the square brackets becomes a constant amhstable towards mesoscopic or macroscopic drop formation
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and density regions where the compressibility of the electron 0 < . . . .

gas is negative are physically accessible. Interestingly a

negative compressibility is actually observed for the 2D elec- 02

tron gas'! Our result stems from the fact that both the energy e

gain coming from the MC and the energy cost have the same 04 Breea

electrostatic origin. Of course we cannot discard instabilities % S

that can occur at a microscopic scale. E 06 [ fy (6t< 'fBO) S— ‘\\\\:::\
Fo(6r<fyl) e S

IIl. FRUSTRATED PHASE SEPARATION 08 1 ¢ (615f0) wo S
IN THE 3D T-J MODEL 4 B S,
q L f o (erfp) N

In the last few years it has become clear that many of the . . . .
strongly correlated models used to describe high-temperature 0 0.2 0.4 0.6 08 1
superconductors exhibits PS in some regions of parameter ) ' ) )
space-? Due to the strong anisotropy of these materials, usu-

ally 2D models are considered. In this section we apply the giG. 2. Free energy normalized to the incompressible phase free
idea of a Wigner crystal of drops to PS in models of stronglyenergy without LRC anéfrom top to bottom close to the origithe
correlated electrons on a lattice. We will consider, for sim-metal with &=0.6/f3|, PS between the AF and vacuum (AW),
plicity and homogeneity with | and the other sections of thethe metal with 6=2.1f9|, and MC phase separation between the
paper, isotropic 3D lattice models. We expect, however, thahF and the metal (AF M) (n3=a=1).

the results will remain qualitatively valid even for 2D mod-

els. Needless to say, the 3D models are interesting on thefgrgeJ/t limit has been studied in detail in t#&**% and
own right given the large class of strongly correlated matemore dimensions based on a lagy@xpansion* We study
rials where anisotropy is not important like dopeghCmag-  the limiting case of a small number of electrghsle doping
netoresistant manganites, etc. close to 1. This is not particularly relevant for the cuprates

~Usually in strongly correlated lattice models the Coulombpyt illustrates the issue of frustrated PS in a strongly corre-
interaction is truncated to a distance of a few lattice sites anghted system.

often only the on-site Hubbard term is kept. The underly-
ing assumption is that in a uniform ground state most of the
interesting physics is governed by the short-range interac-
tions and that the effect of the long-range interactions can be We start by reviewing the usual MC arguméhitsin the
absorbed in the Madelung potential through a proper Hartregbsence of LRC adapted to the 3D case. The antiferromag-
renormalization of the on-site energies. However, in a nonnetic (AF) phase at half filling, hereafter tfphase, can be
uniform ground state the long-range part of the interactiormodel by an incompressible phase with one electron per site.
has an important role even at the Hartree level. A simple wayhe density is given byg= ng= 1/a%. Our densities refer to
to take this into account is to maintain the relevant short+eal electrons, not to holes. The energy is
range interactionge.g., the Hubbardl), to evaluate the en-
ergy of the intrinsicA or B phase and to add the electrostatic fg= fg: —3bJ ng, (7)
and surface contributions of the drops to the total free en-
ergy. This means that we are still neglecting the CoulomhbwherebJ is the magnetic energy per bond. From estimates of
interaction at distances larger than the lattice constaa¢ in  the ground-state energy in the 3D Heisenberg mdmie
the usual Hubbard model, but we keep the Coulomb repulfinds b=0.550.
sion for mesoscopic distances of the order of the inhomoge- Two different situations are found for the PS. For very
neity scale. In other words in the Fourier transform of thelargeJ/t one finds PS between the AF phase and the electron
Coulomb potential, 4€?/g?, we maintain terms with wave vacuum (AF+V). In this case we call the vacuum tie
vector q close toq=0 that do not cancel with the back- phase withf,=0. Reducingl/t one finds PS between the
ground and hence give a large contribution to the energy. AF phase and a dilute metal of electrons (AM). In this

As an example of the relevance of this approach forcase we call the metal th& phase with energy
strongly correlated systems we focus on the model, one
of the more often used models in the cuprates. The Hamil- 35R
tonian is given by fa(na)=—6tny+ ?Wmazni/ : (8)

A. Maxwell construction analysis

Heret is the hopping matrix element and we have used the
' effective mass approximation in the dispersion relation of the
low-density limit of thet-J model®**
WherecIS creates an electron of sp#on the sitei. Heren; In Fig. 2 we show the free energies in the absence of LRC
and S are the electron number and spin operators, respe@nd different values of/(—fg). The total free energy is
tively. Double occupation is not allowed and summations areyiven by Eq.(1) with e,,=0. Since densities are assumed to
extended to the nearest neighbor of a 3D cubic lattice. Thée low, we can neglect the short-range interaction between

1
H:_tE CiT,st,S—i_‘]Z (SSJ_—nan
(if).s (ij) 4
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the electrons. We define the number of electrons per unit cell
v=n/nY. In addition we sek=1 and restore it when con-
venient for clarity.

For very largeJ/t the AF+V solution is the lowest in
energy. Indeed in Fig. 2 the upper curve corresponding to the
uniform metallic energy does not intersect the -A¥ line,
f= vfg, corresponding to the MC between the=0 andv
=1 points. Decreasing the value &ft when the chemical
potential of the metal fulfills xa(0)(=—6t)<f3, ie.,
t>bJ/2, the metallic free energy intersects the -A¥ free
energy at some finite density and the lowest-energy state is -
achieved by doing the MC between the antiferromagnet and - - - -
the metal. In this case as shown in Fig. 2, one finds a pure 0 0.2 04 0.6 0.8 1
metallic phase at small density and MC phase separation v
between the AF and the metal for larger density. In Fig. 8,
below, we show the phase diagram deduced from this analy- FIG. 3. f/(=fg) for a phase of drops of an incompressible
sis. The dilute metal can be unstable towards a gas of bourRhase in vacuum fow=0,0.5,1,2(from bottom to top vs ».
particles** Here we do not consider this effect for simplic-
ity. 3

In the next two subsections we analyze the effect of the a= — 0
LRC interaction on the AFV PS and the AF-M PS. Since B
the electronic free energy has a simple form, we solve the
equations exactly rather than making a linearization as in I.

-~
>

filfz

9’77920'2( ng)Z 1/3

560

(10

Inserting the parameters for AF drops in Ef0) we find

, 97 €%la
ac=— , (11
B. Drops of an incompressible phase in vacuunfAF+V) 5 ble
As shown above, in the absence of the LRC interactioni.e., the ratio of a Coulomb energy to a magnetic energy.
this case is realized in the largét limit. Now we generalize Imposing thatRy>a for »=0 one findsa<3/2, so we
the above discussion with the inclusion of LRC and surfacewill concentrate on this range of coupling.
energy effects. Thé phase is the electron vacuufv) (na From Egs.(1) and (3) we obtain the free energy as a
=0 andf,=0) and theB phase is the AF with one electron function of density:
per site,ng=n9%=1/a%, and energy given by Eq7). The U3
total free energy is given by E@l) with the above replace- _| )
ments. An expansion of the densities around the MC solution f)=| —v+ 243 au(v)|(=Tg). (12)

(Sec. Il of paper ) gives a trivial result sinca =0 (notice ] ) ] o
thatk,,=0) and the densities are fixed at the MC val[&s. The first term in the square brackets is the bulk contribution
(29) of paper ]. However, this is a peculiar limit. In fact as gnd the s&_acor_ld term is the mixing energy contrlb_uuon. This
we will show below the total free energy does not coincidelS Plotted in Fig. 3 for different values of the coupling As
with the MC free energy because of the mixing energy. Sincé" the above the results are only rigorously valid for snxall

the densities are fixed, only the radius has to be determineld=*)- L _
which is given by Eq(8) of paper I. The effect of the mixing energy is to bend upwards the

The surface energy of the AF is given by the energy cosF+V free energy(see Fig. 3 so that the metallic phase can
to cut a bond divided by the associated surfacebJ/a? become stable with a lower value tofvith respect to the case
and the volume fraction is determined by the constraint With no LRC force(compare with Fig. 2 One can show that
=n/ng:v. Inserting this into Eq(8) of paper | we obtain fqr a>1 the AF+V solution is never s_table and one has

either a uniform metal of an AFM solution depending on
doping. Fora<1 the drops can coexist with a metal or not
15 bJe 13 depending on the value ofJ. We will analyze the compe-
0 (9) tition with the AF-M solution in the next section.

47 (2-31 1 )e?/a

Rq

C. Drops of an incompressible phase in a metallic hostAF

As long as the dielectric constant is sufficiently large the +M)

radius is much larger than the lattice spacing and our ap- ReducingJ/t at some point the solution of the previous

proximations are valid. section (AF-V) will not be stable any more. This has al-
By writing the free energy in dimensionless variables weready been shown in the absence of LRC interactian (

can define a coupling constant that will determine the tran=0). We consider now thé phase to be the metal.

sition form the ARV solution and the AF-M solution in The surface energy will have now density-dependent con-

the presence of LRC. It is given by tributions coming from the metal. However, since we are in
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1.2 0 . | | |
! -0.2
N 08 r AF+Mor M Y ‘
S m < ==
) L 28 N
E 0.6 E o . - -
04 r AF+V f(AF+M) ——— -
08 1 x=0 +
02 | \
a1t J
0 I I I I L L 1 I
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
“ v

FIG. 4. Locus of stability of the AF drops in vacuum (AF FIG. 5. Free energy normalized to the incompressible phase free
+V) in the t-a plane. Above the line the more stable solution energy with parameterg=0.5 and 6=2.11fg|. We show the me-
depends on the density. tallic free energy, the AFV free energy, and the AFM free

energy. The cross indicates the value withO of the AF-M drop

the low-density limit, the surface energy will be dominatedsomon'

by the magnetic surface energy described in the previous As the B density grows the
case and can be taken as constant. The-XFsolution is A
then not anymore stable wheaa(0)=—6t<uagr,yv(0)

density decreases due to
the effect discussed in paper |. TBalensity is kept constant
A at ng due to the incompressibility. In Fig. 7 we show this
=(a—1)(—fp). behavior. In real systems this effect can be detected through
In Fig. 4 we show the locus of stability of the ARV physical properties which depend on the local densities as is
solution in thet-a plane. Above the line the stable solution is discussed below for the manganites.
either a uniform metal or drops of AF in the metal depending In Fig. 8 we show the phase diagram in the absence of
on the density. In Ref. 14 the ratio dft below which the LRC force (@=0) and fora=0.5. We see that a portion of
AF+V solution is not stable for=0 is calledY.. In 2D  the phase diagram in which a uniform solution is unstable
they foundY(0)=3.4367 and¥ (0)—4 ford—=."*Using  towards PS without LRC, foa>0, becomes stable and the
their estimate of the 3D AF energy we havg(0)=3.637. AF+M solution extends its region with respect to the AF
Figure 4 shows thaY . (proportional to the critical value of +V solution due to the “evaporation” effect.
—fg/6t) increases withw. Remarkably in the presence of
LRC forces a smallet is enough to stabilize metallic phase
regions. In other words, we can have a situation in which
without LRC forces all the electrons are in a self-bounded As a further application we consider the magnetoresistant
AF state and as the LRC forces are switched on some ele@anganites like La;_,CaMnO;. In the last years strong
trons “evaporate” to form a dilute gas around the AF drops.experimental evidence has accumulated indicating that inho-
To solve for the AR-M drop solution the free energy Mogeneous phase separation occurs in these materials in cer-
now has to be minimized with respect to the radius and théain regions of parameter space®’
density of the metal subject to the constramt:xngﬂl
—X)n,. We are implicitly assuming that the density is not
low enough to form a Wigner crystal of electrons. One can

IV. APPLICATION TO THE MANGANITES

check that for reasonable parameters and increasirtge 0.8
radius of the drop becomes of the order of the lattice constant
much before an electronic Wigner crystal can form. 06 |
Above the boundary line on Fig. 4 one finds either a uni- ’
form metal or AF+M depending on the density. This can be
seen in Fig. 5 where we plot the free energies fdr 6 04 r
=2.1f3] and «=0.5. Above a certain densityn,;
= ;¢ /a® we have the coexistence of AF drops in the metal- 02
lic host. The behavior close toy,; is very similar to the
behavior for parabolic free energies in the uniform density 0 . . . .
approximation(UDA) of paper I. 0 0.2 0.4 0.6 0.8 1

Here also there is a bifurcation of the solution, and in-
creasing the density, the AF drops appear with a nonzero
value of the volume fraction. However, with the present pa-
rameters the initial volume fraction is very smaee Fig. 6.

A%

FIG. 6. Volume fraction vs for AF drops in a metallic host and
parameters as in Fig. 5.
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04 - - - - (FM) phase competes with the corresponding insulating
035 | phase. The drop state due to the competition betweewy the
=0 AF phase and the metallic phase taking into account the
0.3t y LRC interaction has been studied theoretically by Nagaev
025 | e ] and collaborator§? Evidence for such a phase has recently
e: [ been found in neutron scattering experiméfits.
= 02 1 Here we will analyze the competition of the CO phase
0.15 | 1 with the FM phase close tg=0.5 and show that a phase-
o1 | 0=0 | separated state can explain the puzzling maximum of the
) 0.1 e Curie temperaturél (y) at y~0.35%27 On the contrary,
0.05 | =0.5 1 conventional DE would predict that the Curie temperature is
0 . . . . maximum at half dopingy(=0.5) because for this filling the
0 0.2 0.4 0.6 0.8 1 kinetic energy of the holes is maximized.

We will consider a mixed state in which tidephase is the

M ferromagnetic metal and tHigphase is the charge order state
FIG. 7. Density in the metallic host vs total densityfor 6t at y=0.5 which corresponds to inverse specific volun@e
=2.1]f9| and different values of. =0.5/@%. In the following the densities refer to holéise.,
the concentration of Mh ions).
At y=0 all Mn have formal valence 8. Each ion has In the FM phase the core spins of the Mn ions are fully

three electrons i,y orbitals and one electron in @y or-  polarized and the mobile holes have the maximum band-
bital. The four electron spins are all parallel due to the strongvidth W. In order to model the FM in a simple fashion we
Hund's rule coupling forming ar8=2 spin. The spins of follow Varme’® and take a flat density of states with band-
different Mr®* ions form an antiferromagnetic phase due towidth W. The FM free energy atf =0 is then given by the
the superexchange interaction and the system is an insulat@ohesive energy of the holes in the fully polarized state:

As the ey band is doped, mobile holes tend to align the

=3/2 core (,4) spins in different ions because this maxi- wa’

0
mizes the transfer integral and minimize the holes kinetic fa(na) = T(nA_nB)Z- (13
energy, leading to a ferromagnetic state. This is the so-called

double-exchangéDE) mechanisnf! 23 We have chosen to measure the single-particle energies from

Experimentally one finds indeed the ferromagnetic statghe center of the band and we have dropped a constant which
but close toy=0.5 a new charge-orderg@O) insulating  can be absorbed in the free energy constant oftthase
phase with a chessboard structure of ¥inand Mrf™ is {3 At finite temperatures one has to consider the entropy
stabilized. The CO phase is not predicted by conventionatontribution to the free energy. However, for a given tem-
DE but does appear in more recent theories incorporatingerature one can expand the falfree energy around thed
Mn-Mn 25Cou|omb repulsioff or orbital degrees of density and an expression like E42) is still valid with an
freedom® , _ effective temperature dependaht

Close toy=0 andy=0.5 the metallic ferromagnetic  The CO state can be modeled as a doped incompressible

phase around the inverse specific volurrge The free en-

3 ergy atT=0 can be put as
25 Eq
5| fo(ne)= 5 Ine—ngl +eg(ng—ng) + 5. (14

fg measures the difference in free energy per hole between
the CO state and the FM state yt0.5 (n=ng) and e,
controls the difference in chemical potentials of the two
phasesEg is the gap in the charge-ordered state, i.e., the

6t/(-f5)
Tn

0.5 difference between the energies to create defects with one
AF+V added hole and one removed hole without destroying the CO
0 ' ' ' ' state.(It should be of the order of the activation energy in the

0 0.2 04 0.6 0.8 1 transport properties of a pure CO staf€he dip in the free
v energy an= ng will become rounded with temperature. For

FIG. 8. Phase diagram for the largé limit of the 3D t-J simplicity we will neglect.th?s effect. For temperat.ures much
model without LRC @=0) and with a small LRC ¢=0.5). The ~ Smaller than the gap, this is a good approximation. Even if
high-density part has to be taken with care since the density of'® temperature gets comparable to the gap, a small rounding
electrons can be large in the metal so that short-range interactior® the CO free energy close tg;= ng will not affect signifi-
within the metallic phase cannot be neglected anymore, and alséantly the results close to the density at which drops first
drops of AF lose sense. appear Q).
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FIG. 9. Free energy normalized to the incompressible phase free 1. 10. \olume fraction vy for CO drops in a FM host and

energy aty=0.5 with a bandwidthW=15fg|/ng. We show the  parameters as in Fig. 9. The lower branch closg/400.4 is un-
FM free energy {4), the CO free energy with a large negative physical.

value of u~, and the FM- CO free energy fow=0 (MC) and for
a=3. The cross indicates the value witk 0 of the FM+ CO drop

: ca parabolic k,'=k'=Wa% and the CO free energy can be
solution. The arrow indicates the same for the M@G)(

considered as thkg— 0 limit of a parabola. The two cou-

. . L ling constants are related b
The chemical potential of the CO stateTat 0 is given Ping y

by 223
A= —— (17)
p*=egtEg2, ng>ng, (15) 3 (w)e
Specifically A =0.64 for =3 and W’'=15. Notice, how-
n =e—Eg4l2, ng<ng. (16)  ever, that hereas in the previous sectipnve can introduce

) ) o ) two dimensionless parameters. Onexigor alternatively\)
By construcnon.the discontinuity ang is equal to the gap as and the other iV'. The latter plays the same role &3 in
it should be..™ is the energy to create a Mh defect in the  the previous section. In particular it fixes the MC densities as
CO state; i.e., it is the energy to remove a hole in the CGgjiows. In the absence of LRC interactiona<0) and for
state. This single-particle energy is measured_from the samgy’ < 4 the f, parabola is too flat and PS between the FM
reference energy as the one used forAhghase in Eq(13).  ang CO states is not possible. One gets PS between the CO
This fixes the value og,. _ state and vacuurtthis is similar to the AF-V PS considered

In Fig. 9 we have plotted, fg as a function ofy. We iy sec. 111 B). ForW’>4 the Maxwell construction gives PS

constructed the free energies for the uniform phases phenoanyveen FM and CO with the critical doping given by
enologically by relying on the metallic and insulating char-

acter of each phase and on the fact that due to the different 1 1

magnetic symmetries they cannot be joined with continuity y0=§— \/:,

but a level crossing should occur as a functionyofit is W

interesting to note that a recent microscopic model givesgy Fig. 9 the value ofy, is indicated by an arrow.

praqtlcgély the same energy scheme as a function of | the presence of LRC interactions the range of coexist-

doplng: ence contracts with respect to the Maxwell construction case.
In Fig. 9 we report also the MC and the free energy fortpe transition from the FM to the drop solution is quite

(18)

the drop solution forr=3 andW’=Wng/(— 5) =15 (thick
line). The coupling constan is defined in Eq.(10). W’
measures the effective bandwidth in units eff().

abrupt aty,;;=0.38 (for «=3) with a substantial jump of
the volume fraction from zero to a finite valug;;=0.17
(see Fig. 10

For the sake of simplicity we assume that the slopé&gof In Fig. 11 we show the local density inside the metallic
for nB<ng (i.e., n7) is so large thaffz never crosses the region. Fory<y,;; the stable phase is uniform FM and the
drop solution. Under these simplifying conditions one of thetotal density coincides with the nominal density=y/a®.
phases involved in phase separation is always the defect-fréer y>y,;; the drop solution is stable and the density in the
CO state ay=0.5. In this situatiorE, ande, do not enter metallic region decreases with increasing nominal density.
into the problem and a precise descriptionfgfng) is not  As discussed in paper I, in deriving this effect it is important
needed. For example we have neglected the kinetic energy tiiat the density dependence of the surface energy can be
the defects which will give some curvature fg(ng) but  neglected. The strongest dependence of the surface energy is
will not change the present picture. expected to arise from the kinetic energy of the metal. How-

Alternatively to « we could use the coupling constant  ever, this dependence is important closeytel andy~0
defined in Sec. Il of paper | since the FM free energy isand can be safely neglected closeyte 0.5.
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FIG. 11. Density in the metallic host vs dopigdor parameters FIG. 12. T, of the FM host minug(0) normalized tat;(0.5)
as in Fig. 9. —1.(0) as a function of doping. Parameters are as in Fig. 9. We

show T, in the uniform solution and in the drop solution.

The decrease of the local density with the increase of the
global density can explain the nonmonotonous dependencaing the theoretical curve to be compared with the experi-
of the Curie temperatur&,. ony. Since the ferromagnetic mental data we fix the values af andW’ in the following
interaction between the core Mn spins is mediated by thevay. We associate the experimental maximuni jrwith the
conduction electrons through the double-exchange mechdifurcation point, i.e., the doping at which the uniform solu-
nism, one expects the Curie temperature to be a monotonoti®n switches to the drop solution. This gives us an experi-
increasing function of the local metallic densi‘(x(<ng) of  mental value of the bifurcation dopingy;;~0.38. From the
the FM phase. We associate the region in which the Curiexperimental data we also obtain the depression of the Curie
temperature increases with doping, i.e., the “normal” regiontemperature[ T,(0.5)—1t,(0)]/[t.(0.5)—t.(0)]~0.66. With
(roughly 0.}y<0.33 for L _,CaMnQO;), with a uniform  these two dimensionless numbers we obtain the dimension-
FM phase and the “anomalous” regions in which the Curieless parameters of our theory and find=3 andW’=15,
temperature decreases with doping with a drop state. In thiee., the values that we have been using in the present section.
latter staten, decreases with doping and this gives theA rough microscopic estimate of these parameters is given in
anomalous behavior of . as a function of doping. the Appendix to show that indeed the above values are rea-
To be more specific we assume the following simple formsonable for the manganites.
for the dependence of the Curie temperature on the local FM A similar behavior as the one discussed hereyfei0.5 is
density: observed close tg~0. We speculate that this is due to the
same general phenomena involving inhomogeneous phase
t(a®ny) —t.(0) 3 3 separation between the insulatoryat0 and the ferromag-
1,005 —t,(0) _Hlmamaram,. (19 netic metal.

We are using a lowercaséor the local Curie temperature of
the FM phase to distinguish it from the true Curie tempera-
ture of the system which is a function of the overall doping, |n this work we have applied the ideas developed in | to
Te(y). A similar form to Eq.(19) with t.(0)=0 was derived  three different physical systems. First we analyzed well-
by Varma for a uniform FM phas€. More sophisticated known apparent instabilities in the low-density limit of the
treatments also give a form roughly parabolic wiff0)  jellium model. The usual instability criteria like a negative
>0.2° compressibility are formulated for a neutral system and
For a uniform FM phasg=n,a®, T.(y)=t(y). This fits  should be taken with care in a charged system with a com-
correctly the experimental data in the normal region. We camensating background. In a charged system an instability of
use this fit to fix the parameters in Eq19). For the kind implied by a MC analysis is a necessary but not
La; ,CaMnO; one obtains t,(0)~80 K and t,(0.5) sufficient condition for mesoscopic phase separation. In fact
~300 K. Close toy=0.5 we have the anomalous behavior we have seen that for the Wigner crystal of electrons the
and the measured, differs considerably fron (0.5), the  Coulomb strength and the surface energy balance in such a
Curie temperature of a hypothetically uniform phase. Fomway that large drops are not possible. This is basically due to
example, experimentally.(0.5)~225 K. the fact that the energy gain from the MC and the energy cost
From the knowm(y) (Fig. 11 and Eq.(19) we compute  due to the LRC interaction and surface energy have all the
T.(y)=tJana(y)]. This curve(which is quite similar to same electrostatic origin. This prevents the mixing energy
the experimental onés shown in Fig. 12. Indeed we see that from being small compared to the MC energy as required in
the drop solution combined with the uniform solution for | to have mesoscopic PS. We mention that in the 2D electron
<Ypis gives a nonmonotonous behavior Bi(y). In evalu-  gas(not considered heyehere is evidence for both a density

V. CONCLUSIONS
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region of negative compressibilities and at lower densities a 9w\ V3 428 e2 \13
phase separatidh'! For the latter, however, the effect of A= (?) 7 oW (A1)
disorder not considered by us may be crucial. (0.5-yg)*"\ €02

The study of thet-J model illustrates the importance of . .
- : s : For the bandwidth we can take an estimate based on Mat-
the mixing energy in determining the phase diagram. Th heiss's local density approximatiofsee Ref. 28 W

LRC interaction tends to stabilize the nonseparated unifor 105 eV For a cubic arrav of Mn with a Mn-Mn distance
phases in the presence of a rigid background. Apart from this_f4' A ) t02/a=3.4 Vyf the bare Coulomb st h
intuitive effect the LRC interaction can also favor one mixed® \ We geterra=o.4 eV ior the bare Loulomb Strengtn.

state over another. In fact we showed that the LRC interac"Serting the numerical values in the above equation we have

tion can transform the clusters of AF electrons in vacuum

2\ 1/3
into clusters of AF electrons in equilibrium with its vap@r A~21 7_) )
dilute electron gas a phenomenon which we referred to as €0
“evaporation.”

eé)ne obtains\ ~0.64, the value we have used in Sec. IV, by
htgking €9~100 andy~0.05. These are reasonable param-
ters considering thaté, should be understood as a static

In paper | of this series we showed that the local densiti
of the two phases tend to have an anomalous behavior in t
mixed state. Both of them tend to decrease when the globaj. ) 0~ . !
density increases. This nonlinear effect can affect the prop_|electr|c constant taking into account conventional dielec-

erties of the system which are sensitive to the local densit)}riC screening plus Thomas-Fermi screening eff¢Sec. IV

as we have illustrated for the Curie temperature in the manf Paper ) and yW should be a small fraction of the band-

ganites. We have thus provided an explanation to anomalie¥'dth. _ h . | back di
that occur in the phase diagram, i.e. a decreasing Curie ter% We mention that since a real background is never per-

perature when the CO state is approached by varying th ctly rigid, a volume relaxation will also occur inside the
doping. rop phase. In general the positive background will contract

in the electron-rich phase and expand in the electron-poor
phase to reduce the mismatch between the ionic positive den-
sity and the electronic density. This is in agreement with the
situation in Pg-Ca MnO; where the electron-poor CO

In Sec. IV we find that the parametexs=0.64 andw’ phase has a larger volume than the electron-rich FM pHase.
=15 give a curveT(y) similar to the experimental one. To Clearly this effect has to be included in the effective defini-
decide if these parameters are reasonable one needs a mictien of €.

APPENDIX MICROSCOPIC ESTIMATE OF PARAMETERS
IN THE MANGANITES

scopic computation. The drop radius reads
To evaluateW’ which appears in Eq.18) we refer to a
recent zero-temperature microscopic computation which 32Y3ya
takes into account double exchange and orbital ordéring. Rg (A2)

= 3\2 a 4o 1/3 1/3°
Their Fig. 2 showing the free energwithout LRC) is quite A[(6a%)%(0.5-y0)"(2—3x"+X)]

similar to oura=0 curves i,” Fig. 9. From there we take gjng the above parameters we can estimate the radius at the
Yo~ 0.24 which determine®/’ ~15[Eq. (18)] in agreement  5qet &,;;=0.17) to be of the order of
with the value we used to fif. . N is more difficult to obtain

because it requires a microscopic computation of surface en- Ry~ 10a.

ergies and screening effects. We parametrize the surface en-

ergy by a dimensionless quantity defined byo=yW/a®>.  Correspondingly the cell radius &= Ry /X3~ 18a. We see
Putting 8= (0.5—y,)/a® and k;1= kr;1=Wa3 in Eq. (25)  that these scales are much larger than the lattice constant and
of paper | we get our approximations apply.
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