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Phase separation frustrated by the long-range Coulomb interaction. I. Theory
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We analyze the combined effect of the long-range Couldhf®C) interaction and of surface energy on
first-order density-driven phase transitions between two phases in the presence of a compensating rigid back-
ground. In the coexistence region we study mixed states formed by regions of one phase surrounded by the
other in the case in which the scale of the inhomogeneities is much larger than the interparticle distance. Two
geometries are studied in detail: spherical drops of one phase into the other and a layered structure of one phase
alternating with the other. In the latter case we find the optimum density profile in an approximation in which
the free energy is a function of the local dendilycal density approximatiofLDA)]. It is shown that an
approximation in which the density is assumed to be unifpuniform density approximatiofiUDA)] within
each phase region gives results very similar to those of the more involved LDA approach. Within the UDA we
derive the general equations for the chemical potential and the pressures of each phase which generalize the
Maxwell construction to this situation. The equations are valid for a rather arbitrary geometry. We find that the
transition to the mixed state is quite abrupt; i.e., inhomogeneities of the first phase appear with a finite value
of the radius and of the phase volume fraction. The maximum size of the inhomogeneities is found to be on the
scale of a few electric field screening lengths. Contrary to the ordinary Maxwell construction, the inverse
specific volume of each phase depends here on the global density in the coexistence region and can decrease
as the global density increases. The range of densities in which coexistence is observed shrinks as the LRC
interaction increases until it reduces to a singular point. We argue that close to this singular point the system
undergoes a lattice instability as long as the inverse lattice compressibility is finite.
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I. INTRODUCTION scale inhomogeneous state the specific mechanism producing
phase separatiofi*S in the absence of LRC forces is rather
The complex phase diagrams of hole-doped cuprates arghessential. Of course specific short-range interactions in
manganites have rekindled the study of mixed states in modsach physical system will lead to differeAtand B phases
eling these systents® Indeed strongly correlated systems (which will also depend on the doping regions one consid-
with narrow bandwidth and short-range interactions show #r9, giving rise to different physical situations. However, in
generic tendency to phase separate into hole-rich and hol&e same spirit as the Maxwell construction, one can perform
poor regions. When long-range CoulorltRC) forces are @ general analysis of the phenomena due to the tendency
taken into account this instability with macroscopic separatowards PS in the presence of a Coulomb interaction irre-
tion is frustrated due to the electrostatic energy cost and thispectively of the microscopic mechanisms of PS itself.
can lead to charge inhomogeneous states of various We consider two charged phasksndB with a compen-
nature>~® where domains of various forms of one ph&Bg  sating rigid background and we study the formation of inho-
are embedded in the other phage ( mogeneous states in a density-driven first-order phase tran-
In the inhomogeneous state the charge is segregated Igition betweerA andB. By definition A andB have different
cally over some characteristic distance but the overall dendensities; one of the phases is undercompensated and the
sity (averaged over much larger distancissa fixed constant  other is overcompensated by the background. It follows that
in order to guarantee large-scale neutrality and avoid théhe inhomogeneities are charged and they repel each other.
large Coulomb cost. Such a segregation has been consider&ince the inhomogeneities are formed by many particles,
at a scale comparable to the interparticle distance to explaiiuantum effects are negligible and they crystalfizéhe
the origin of striped states in cuprate®. drops arrange in a Wigner crystal whereas the layers form a
In this work we will consider the opposite case in which periodic structure. We restrict to three-dimensio(&) tex-
the scale of the inhomogeneities is much larger than the intures. A large number of small inhomogeneities minimize the
terparticle distance. We consider in particular two differentCoulomb energy but they cost too much surface energy. The
kinds of inhomogeneities: spherical drops of one phase intglistance between the inhomogeneities and their size are
the other phase and alternating layers of each phase. The fifeund by minimizing a free energy which takes into account
case has been pioneered by Nagaev and collaborators in theth these effect3?
context of doped magnetic semiconductors in general and of In ordinary PS the Maxwell constructidMC) is invoked
manganites in particul@® Related ideas have been recentlyto find the range of densitpga<<n<n$ in which a system
presented in Refs. 3 and 9. prepared with the overall densityseparates into two regions
We believe that for the general understanding of the largewith densitiesn3 and n3, respectively. We generalize here
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the MC and derive the equations that should be satisfied in R,
the mesoscopically inhomogeneous coexistence region by ng

the chemical potential and the pressure of each plfase.

II). To this end we use an approximation in which the density B

within each phase is assumed to be constant which we name

uniform density approximatiofUDA). We solve the equa- =
tions for the drop geometry in the simpldgut general 'z
enough case in which the free energy of both tAeand B A
phases can be approximated by a paral8kc. IlI).

We define a coupling constant given by the ratio be-

tween the the energy cost due to surface energy plus the LRC
interaction and the energy gain in MC PS. Only below a R
critical value\ . PS is possible. Above . the system is uni- ¢

form A (B) phase below(above a critical density with a FIG. 1. Schematic view of a cell density profile in the UDA with
lattice instability close to the critical density. a drop(layen of B phase in the hog. The origin is at the center of
The characteristic size of the inhomogeinites is shown tqne cell. The full cell diametefwidth) is 2R, for drops(layers. The
be of ordery\lg with I an electric field screening length. dashed region of the background compensatesAthiensity and
Since\ is bounded byA. (of order 1, it follows that the part of theB density.
inhomogeneities are of the order of or less than
For small volume fraction the drop geometry is morethe total surface energy and electrostatic endopmputed
stable than the layers as expected from general surface ebelow). We work at a fixed total volum& and number of
ergy arguments. On the other hand, the layered geometnyarticles,N. At a given temperature the total free energy is
being simpler serves as a ground test for approximations. I8 =Fg(Vg,Ng) + Fa(Va,Np) +E,,. We have to minimize
order to validate the UDA we solve the layered geometry inthis respect td/g and Ng subject to the condition¥g+V,
the UDA and in the more general case in which the density=V, Ng+N,=N. The volume fraction of thé phase isx
profile can spatially vary within each phase. In this last case=Vg/V. We can work with the free energies per unit vol-
the density profile is allowed to adjust minimizing a free ume, f=F/V, e,=E,,/V, fg=Fg(Vg,Ng)/Vg, and work
energy which is an approximate functional of the local den-with the densitiesiz=Ng/Vg, etc., so the function to mini-
sity [local density approximatiofLDA)]. Both the UDAand mize is
LDA are shown to give very similar results for averaged

ny | (drop)

A (host)

quantities(Sec. IV A). f=(1—x)fa(np)+xfg(ng)+ey. (D)
To illustrate the generality of theses ideas we consider
some applications in paper Il of this series. The constraint in the number of particles is written ras

=xng+(1—X)n, and the constraint in the volume is satis-

Il FREE ENERGY AND COEXISTENCE EQUATIONS- fied by puttingV,/V=1-x. It is convenient to defineS
' THE UNIFORM DENSITY APPROXIMSTION ' =ng—h, and to use the constraint in the number of particles
to eliminateng andny in favor of n and §.

We consider a density-driven first-order phase transition In order to compute the mixing energy we first consider
in the presence of the LRC interaction and surface energghe drop geometry. We assume that the drops are spheres of
We look for the formation of a mixed state by increasing theradiusRy . This will be a good approximation as longags
density from the uniformA phase. We use two different ge- small and the crystal field is also approximately spherical.
ometries for the mixed stat¢i) The drop geometry consist This is true for fcc, bee, and hep latticgd! To compute the
of a Wigner crystal of drops d& phase in the host phage  €lectrostatic  energy ~we use the  Wigner-Seitz
(i) The layered geometry is made of a periodic array ofapproximatior?****We divide the system in slightly over-
alternating layers oA andB phases. lapping spherical cells each one with the volumeRE/3

For both geometries the electronic density within each=V/Ny whereNy is the number of drops arf. is the radius
single phase region is taken as unifofdDA) and in general of the cell. Figure 1 shows a schematic view of the cell
it will result different from the compensating background density profile.
density. This is of course an approximation since both den- Next we compute the electrostatic energy. The cells are
sities will tend to adjust within each phase also to make theglobally neutral(by construction and only the charge inside
total electrochemical potential constant. The UDA will be the cell contributes to the electric field in the cell.
relaxed in Sec. IV for the layered geometry by minimizing a The charge density of pha&is ng (actually —eng but
free-energy functional on a simple LDA. We anticipate herewe drop the charge of the particlese for simplicity). The
that both the UDA and LDA give very similar results thus dashed background charge density in Fig—Ini) compen-
justifying our extensive use of the UDA here and in paper ll.sates theA charge densityi, and a slice of height, of the

We start by computing the total free energy. In the sameB charge density. For the purpose of computing the electro-
spirit of the MC we assume that the free energies of hypostatic energy these charge densities can be eliminated and
thetically homogeneous bulk phases are known and given bgne is left with the densitpg—na(= 8) inside the drop and
F, andFg. We define the mixing energy,,, as the sum of —(n—n,) for the background. We will call the former “drop
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contribution” and the latter the “background contribution.”  The surface energy is parametrized by a quantityith
There is no “host” contribution due to the above cancella-dimensions of energy per unit surface. In generalill be a
tion. function of the densities,, ng. The total surface energy

Another assumption is that the charge is spread uniformlyper unit volume is
and that microscopic discreteness effects can be neglected.
One can see that corrections to the electrostatic energies due
to discreetness are of ordaf/R5 (Appendix A wherea is
the characteristic length of the microscopic structioe ex- o o )
ample a lattice constantTherefore they are negligible in our ~ These two contributions add to the mixing energy per unit
analysis which consideR;>a. volumeep=e.t+e,.

With the above approximations the total electric field in- Due to the constraint, we have three parameters to deter-
side the cell is written aE=E,+Eq4 whereb (d) refers to  Mine (6,x,R¢). The mixing energy is the only contribution
the backgrounddrop) contribution. Integrating the square of Which depends explicitly on the geometry. We can therefore
the electric field we obtain three contributions to the electro€liminateR; in favor of § andx by minimizing e, respect to

Ng 3ox??
vV R

®

e,,=47TO'R§

static energye= €4+ €+ €4_p,, With the cell radius to get
. 150€, 13
€q= f d3rE? 2) Re= 13 22| - ©
8meg ! 4X(2—3X"+Xx)e‘s

with € the static dielectric constant and a similar equation Now we co.nsider the layered geometry. The cell g:onsists
for the background. The interaction energy is of a layer of width R... The center of the cell is occupied by

a layer of width R, of B phase and the rest is occupied by

1 A phase. Figure 1 serves as a schematic plot of the density

€q_p= f d3rE,-Eq. (3)  profile also in this case.is a coordinate perpendicular to the
4meg layers with the origin at the center of tBdayer. The volume

o , ) N fraction now is given bx=Ry/R.. By following analogous
The use of the static dielectric constant is well justified be'arguments as for the drops we obtain

cause we are assuming a static superstructure which certainly
will produce relaxation of the ions which in turn will screen me? P 5

the electric field. We are assuming by symmetry that the ee:3_605 Rex“(1—x)%, (10
electric displacement is parallel to the electric field. The
fields can be easily evaluated with Gauss theorem. One ob-

tai -7 11
ains SR, (11
3 13
€=Q°r——-, (4) 30€q
5¢0R R.= ) (12)
o 4mrx?(1—x)%e?6?
_ 3 5 OnceR. has been eliminated for both geometries the mix-
=R, ® i b
ofe g energy can be put as
5 5 0'28252 1/3
L% 1 Rg ©) em= u(x), (13)
a=b €0 2R, lORg ’

where all the geometric information is storedux):

where Q= —eduvq is the effective charge inside the drop. 13

The volume of a drop is;d=47rR§/3 and the number of u(x)=35’3(1> x(2—3x¥3+x)13  (drops, (14
drops is given byNy=Vg/vyg=xV/vy. We also have that 10

X= Rgle. Finally the total electrostatic energy per unit vol-

1/3
ume can be put as u(x)= g) [3x(1-x)]2% (layers. (15)
2me? 5 -
ee=7T—R§x5’3(2—3x1’3+ ). (7 InFig. 2 we plotu(x).

5€q The free energy should remain invariant respect to an ex-
change of the kind\«< B andx« 1—x. We will term this as
Setting one of the densities iA to zero one recovers the “phase exchange symmetry.” Figure 2 shows that this sym-
expressions obtained by Nagaev and collaborators for theetry is only approximately realized by thgx) for drops.
particular case of a mixed state composed of an antiferrofhe deviation is due to the fact that the surface energy is
magnetic insulating phase and a ferromagnetic metallieninimized when the minority phase inhomogeneities are

phase>® spherical. Our drop solution imposes this at salut vio-
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1.2

 2(e0)®u(x)
. He A 308 x(1—x)
08 | SO 2(e8)%u(x) (1 o ﬁa) 16
- © 3e8,  Ixony, 1-xoang)’
3 osf 3ep 0 A B
AN 2 2¢2\1/3
L /7 - AN e‘o°o ,
1 oA — Ps—Pa= (g — AN+ 8(1-2x)]+| — ) u’'(x)
oa | u(1-x) Drops -~ N\ 0
25°%?Pu(x) [ oo aa) an
0 i 1 1 1 1 - = - - .
0 02 04 0.6 08 1 (o)™ 1dNa  dng

* Here pa=—fao+ uana, (ua=dfaldn,), etc., are the “in-

FIG. 2. The functioru(x) that parametrizes the mixing energy trinsic” pressures(chemical potentiajsof each phase. The
for the layer geometry and the drop geometry. word “intrinsic” stands for the values of these quantities in
the presence of a fictitious fully compensating background;
in other words, they refer to a uniform single-phase situation.
Equations(16) and(17) determine the jump in these quanti-

; ) fies at the interface in order to have thermodynamic equilib-
tween the spherical drops. In practice, however, our approxisiym when long range Coulomb forces and surface energy
mations can be meaningful even at intermediate and k&rge gre present. These equations are valid for a general geometry
because the presenfx) is approximately symmetric around Jescribed by the function(x). Notice that as long as(x)
x=1/2. This is due to the fact that the electrostatic energypreserves the phase exchange symmetry the equations also
Eq. (7), correctly cancels in this limit driving the total mix- preserve this symmetry.

ing energy to zero. To analyze the effect of the long-range forces and of the

A better treatment should allow at>1/2 for a switch  surface energy in the jumps let us neglect for simplicity the
from the unoptimized interstitial geometry to a spherical ge-density dependence of the surface energyo/@na
ometry with an energy gain given by the reflectgk) at  =da/dng=0) and concentrate on the drop geometry. Due to
small x in u(1—x) as shown in Fig. 2. A comparison be- the different charge distributions, the electrostatic potential
tween the reflected curve and the origingk) shows that energy—e¢ of an electron inside and outside the drops is
this geometry optimization compared with an apparentlydifferent. In equilibrium this jump in the electrostatic poten-
very bad geometry gives rise to a modest lowering of theial should be compensated by a jump of the intrinsic chemi-
energy. The same happens when we switch from the layef@! potenuals[Eq. (16)] to make the electrochemical poten-
geometry to the spherical drop geometry as shown in Fig. 2@l constant in the whole system. F6r-0 the drop repels
We can conclude that the dependence on geometry is weaRIECrons so the electrostatic potential energy will be lower

The spheric drop geometry has lower energy than the lay2UtSide the drop, i.e5 e¢a< —egg . The intrinsic chemical
ered geometry as expected from general arguments on SLF}Qtentlal ogt5|d_e will have to be larger than inside as the sign
face tension. The exception is close xe=1/2 where our n Eq. (16)_|mplles. . S L

; o . . Regarding the pressure, in equilibrium the intrinsic pres-
spherical drop solution is not adequate in any case. In fact in =
. . . : sure inside the drofg, should equal the pressure exerted
this region drops and the crystal potential will be far from

: . . by the host,p,, plus the pressure exerted by the mixing
spherical. The problem of establish the optimum geomemforces. For6>0 the electrostatic energy induces a negative

close tox=1/2 is beyond the scope of this work however WE contribution to the pressure since an increase in the drop

expect minor corrections to thermodynamic quantities due 1Qqyme at constant particle number decreases the difference
the small sensibility oti(x) to dramatic changes in the ge- i, gensities between the interior and exterior of the drop and
ometry as illustrated above. hence the Coulomb cost. This effect is given by the first term

Although the |ayel’ Solution haS hlghel‘ energy due to |tSn Eq (17) The Second term proportiona' w(x) is a geo_
simplicity it is an excellent test ground for checking the ap-metric contribution. Both terms are discussed in more detail
proximations. We take advantage of this fact to test the UDAp, 3 specific example in Appendix B.
approximation in Sec. Il A. In addition the layer geometry | the limit e—0 one getsug=ua=p andpa=ps=p,
has the extra advantage that, by construction, respects the wd=fg—f, which are the conditions for the MC.
phase exchange symmetry.

Anyway sinceu(x) depends weakly on geometry our re-
sults for macroscopic thermodynamic quantities will be
largely independent of the geometry itself. When possible we
present our results in a geometry independent way by leaving In this section we set up the basic ideas for inhomoge-
the functionu(x) unspecified in our expressions. neous solutions. For simplicity we model each phase free

Minimizing the free energy respect tbandx one obtains  energy with a parabola and we assume that the surface ten-

lates this in the opposite case »f>1 where the minority

IIl. GENERAL ANALYSIS OF THE MIXED STATE IN THE
UNIFORM DENSITY APPROXIMATION
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sion is density independent. Without loss of generality wes3/k,,. The latter is essentially the difference between the
write the parabolas as a quadratic expansion around the M@Gniform parabolic free energy and the MC free energy at the
densities: characteristic density.

Now we define two important reference lengths scales in
the theory. The characteristic size of an inhomogeneity for
which the Coulomb energy balance the surface energy is
given by theR. of previous section with the geometric fac-

0. o 0 1 0v2 tors dropped and the density evaluated at the MC value. This
fg(ng)=fg+u (ng—ng)+ Z_kB(nB_”B) - (18 defines the scale

1
fa(na)=fa+uo(Na—nR)+ 5—(Na—n2)?,
2Kn

The quantities with the “0” superscrigior subscript below s
satisfy the MC in the absence of LRC forces, i f3 o€
=u’8yands,=n3—n?. The linear slopg.° is the same for la= 0252
the two phases due to the MC condition. The MC density 0
and the volume fraction are related lmyg=n2+ 6pX. The o ) _
constantsk,, kg are essentially the compressibilities of the The other length is given b= eo/(4me?ky,). By relaxing
two phaseg? the UDA we will show in Sec. Il thalt is a screening length.
For noninteracting electrons @t=0 the compressibility In other words, if the reference pha@be one withky) is -
coincide with the density of states. For the 3D free-electrorinterpreted as a metalg is the characteristic distance in
gas we have which the electric field penetrates.
The theory has two dimensionless parameters. One is the
313mpiB3 ratio kg /k, . The other measures the strength of the mixing
free . . .
Tﬁz' (19 energy energy effects in units of the characteristic PS energy
™ 83/ky, and is given by

(21)

free™

with m the electronic mass.
Another useful realization is a nondegenerate gas where
e o g g km(97rezégoz) 1/3_ 1( 9 )1/3( Id)z o)

AN=2— —
5 5¢p 2\ 572

ls

n
kgaS:Kg—;s. (20)

The characteristic mixing energy is given by the factor with

Our aim in the following is to obtain the equations which the power 1/3 in the middle expressigsee Eq.(13)]. The
control the deviation from MC behavior in the presence ofconstant\ characterizes the competition of the mixing en-

the mixing energy. ergy cost and the MC like energy gain due to phase separa-
We define a dimensionless global density tion. The coupling constant goes to zero &s0 with o
finite. This correspond to the usual PS. The case0 with
n'=(n—n3)/ 8, finite e corresponds to an infinite number of drdjos layers

] ) o of zero radius. In this maximum intermixing situation the
which measures the distance from the point in wiBgbhase  charges of the two phases spatially coincide and the Cou-
appears in the absence of Coulomb forces. In the MC thgmp cost goes also to zero so that the MC is again valid.
coexistence region is given by<n’<1. _ Notice, however, that this last idealized situation cannot be

Equations(16) and (17) determines and x for a fixed  yeached in practice because at some point for small drop
density where nowta, ug, Pa, andpg can be expressed in radius the continuous approximation will fail.
terms of the parameters appearing in H4S). Inserting the explicit expressiofigqgs.(18)] of f, andfg

~ In practice it is much easier to solve the equations byin Eqs.(16) and(17) we obtain the following equations for
fixing the volume fractiorx and solving fors, andn; i.e., we  the density deviations:

find which density one should put in the system to obtain a
mixed state with a given volume fraction. This is because the
solutions happen to be multivalued functionsrofvhereas .{1 1) .[1-x X
they are single-valued functions ®f(see below. "N k) o e T
. . . . . B A B A
For a fixed volume fraction we define the dimensionless
density deviations from the MC values=(n—n,)/ 8, and

5= (8- 80)!5,. The density deviatiom measures the shift ( 5 )1/3 AU(X)

in the global density needed to have the same volume frac- 9 N1/ v

tion of a system without LRC interaction. 97 Bkn(1+6)"x(1-x)
To fix the energy units it is convenient to choose one of

the two compressibilities as a reference, for example the -

largest. We defin&,,= maxKa ,kg). Energies per unit volume n +

will be measured in units of the characteristic PS energy Ka

. n2
N3(1=%)+

11
ke ka
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32[1— "+ 2ul[3(1-x)] drops -
_|_5_ ﬂ + g +(i _ i) NG A ;’+ 217/[.2(9-)?] 1§Iyoe€:
- A 2 /(3x) drops ~mw-ermeeree 4
21 ke ka ks Ka £ :2:/((3;3) layers ——— |
N 59
[ 5N+ | . 2u(x) 03 £
“lon 2k 31w 3 g
O
Equationg23) can be solved numerically for general val-
ues of the parameters. For small i.e., for small mixing . . . . i
energy, we can linearize the equations neglecting higher- 0 0.2 04 0.6 0.8 1
order terms ind andn. We will refer to this as the linearized ¥
UDA. We get FIG. 3. The dimensionless functions that determine the change
13 in ny (upper curveps and ng (lower curve$ for small A vs. the
A i_ i +3 1-x + i _ i Au(x) volume fractionx for the layered and the drop geomefsee Eq.
kB kA kB kA 97 3|(mX(l—X) ’ (26)]
(24)
o y inhomogeneity. In equilibrium the intrinsic pressure Bf
x6—n_ [5 3L o)+ 2u(x) 25 phase pg) should compensate this “mixing pressuredg
Ka - o\or 2K, u’(x) 3(1—x) | (25) =pm)- The latter is shown in Appendix B to be given by
For the sake of simplicity in the following we will consider 5
the linearized solution. We checked that for all the physical p :%_ ﬁ_ (27)
properties the difference between the linearized and exact moax o 3x
solutions is quite small in the range af where the drop
solution is stable. On the other hand, a change in the external pressure corre-

The linearized solution takes a simple form and is explic-sponds to a change in the; density according to th&
ity symmetric respect to an exchange of phases when writphase equation of state. This follows directly from our defi-

ten in the original variables: nition of compressibility:?
1/15\%3 2u(x)
— O+_ - _A 2 4 AnB
L I T k6= 3 pg’
113
nB=ng+ 5(1_5) E)\ Sol U (X) — 2u() (26) Where we have replaced a derivative by a finite-difference
617/ Kk 3X ratio. We can obtain the second linearized expression in Eq.

(26) directly from this definition using that the MC density

In the case of\ =0, according to the MC, the system sepa- > He
correspond to zero intrinsic pressure and E8) and(27):

rates into two phases with densitieﬂ, ng, respectively,
independently of the volume fraction. For nonzeroand

small x the B phase divides into drops or layers and the 0 Pg o 2u(x)

density in each phase depends on the volume fractio® of Ng—Ng=kg—5 *Kgng| U'(X) — 3x

phase. The deviation of each density from the MC prediction Ng

is proportional tax and to the compressibility of each phase.

Notice that the density of an incompressible phase:() The mixing pressure can be negative as explained in Ap-
does not depend on the volume fraction even in the presengeendix B. This implies that the density is less than the MC
of LRC forces. density. From the lower cures in Fig. 3 we see that for drops

In Fig. 3 we show the behavior of the two functions which the pressure is positive for smalland then becomes nega-
determine the dependence of the densities on the voluntése whereas for layers the pressure is negative fok.all
fraction. In the drop geometry and for smalbothn, andng Remarkably in both cases the mixing pressure is a de-
tend to be larger than in the MC case whereas in the layerecreasing function ok. Since in generak is an increasing
geometry onlyn, is larger. This gives rise to minor qualita- function ofn’, we can anticipate thatg will decrease as’
tive differences in the behavior of drops and layers. Aparincrease(see below Notice that for smallx we havepg
from this the overall behavior is similar. ~u’(x)/3, so a decreasing mixing pressure can be directly

The equation for the density of one phd&el. (26)] has a  related to the negative curvature wfx) (Fig. 2).
transparent interpretation in the limit in which the other Coming back to the general solution in EQ6) we are
phase, say, is incompressiblel{y=0). This case is solved interested in the dependence of these quantities as a function
in detail in Appendix B. Assume thad phase is the vacuum of the global density\’, our true control variable, rather than
and so exerts no pressure and has zero density. We can cas a function of the volume fraction. Hence we need the
sider that the mixing forces due to the electrostatic and survolume fraction as a function of the global dengity, From
face energies exert an “external” pressure on Bi@hase the solution of the linearized equations we find
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o

;g ___________ -
08 -x: 0.15 }jf:o +
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| = <01
04t = =
0.05 1
02t \
0 0 s ey e N s e
0 1 02 0 02 04 06 08 1 12
v
L FIG. 5. f,—f°, f3—f° andf—f° in the drop solution for
08 laz =0.1,0.2,0.3,0.4,0.5from bottom to top andkg=k, vs n’. Here
) = f9 is the MC free energy fok =0 (a straight liné. The cross indi-
06| = cates the value with=0 of the drop solution for eack. The black
" = dot indicates the bifurcation point in which the drop solution first
04t = appears when density increases.
02 case. Remarkably both the volume fraction at the bifurcation

point and the bifurcation density,;; are almost the same for
kg=k, and forkg=0. They depend only ok as can be seen
by comparing the two panels in Fig. 4.

FIG. 4. Top panel: volume fraction w8 for (from left to right In the cas&kg=0 the constraint between the volume frac-
at the bottom A =0,0.1,0.2,0.3,0.4,0.5 arlgg=k, . ForA=0.4we tion and the densities together with the fact thatBraensity
indicate with a vertical line the discontinuity in the volume fraction is fixed make all the curves to converge to the MC case when
to go from the uniform solution to the drop solution by increasingx— 1 as shown in Fig. 4. The same happens wkea0 and
the density. Bottom panel: same feg=0. The approximations x_—(Q.
done are rigorously valid only for smatl To decide the stability of the solution we have to compare
the drop solution with the single-phase solution. In Fig. 5 we

, 15\ Y3\ [ka(1=%)[ | 2u(x) showf,(n’), fg(n’) and the total free energy witkg=Kkp
A = (X)+3(1—x) for various \. The MC line fo(n")=f3+n’(f3—f2) has
been subtracted. The energy also is a multivalued function of
L <eX U’ (x)— 2u(x) ) (289 N'-As the density increases the drop solution appeangat
K 3x (indicated in Fig. 5 by a black dptwith two different

granches. In the uppdunstableé branchx decreases with
ensity until the poink=0, highlighted with a cross in Fig.
r5. For the lower branch one finds the expected behavior; i.e.;
X increases with density. The upper branch is almost degen-
erate with the bulkf 5(n) free energy. Near the bifurcation
the three solutionshomogeneous, drop stable, and drop un-
stablg are very close in energy. Approximation in the solu-

Now we consider the drop geometry and we analyze irtion of the Eq.(23) can lead to wrong conclusions about the
detail the two cases(i) the compressibilities of the two relative stability. In this case one has to refer to the nonlin-
phases are equakg=ka=k,,) and(ii) one of the compress- earized solution. For the latténot shown we find that the
ibilities is zero. bifurcation densityn,;; is lower than the density, at which

In Fig. 4 we plot the volume fraction as a function of the energy of the lower-energy drop solution crosses the en-
global density from Eq(28) for the drop solution. The vol- ergy of the uniform phasé,(n’). However, the difference
ume fraction is a multivalued function of and in the case betweenn, and n,;; is negligible for all practical proposes
kg=ka has a lower branch close to=0, an intermediate except for the largest. In this case there is a small region
branch, and an upper branch closetel. The intermediate (\.=0.49<\<0.57) in which the lower-energy drop solu-
branch is the physical solution. This will be shown below bytion still exists but is less stable than the homogeneous solu-
looking at the free energy. The physical solution has the intion. If we neglect this small effect, the phase diagram of the
tuitive property that the volume fraction increases as globatirop solution is given by, vs A as shown in Fig. 6. The

Since all physical quantities depend on the densities, thi
completes the solution of the problem.

Specific results will be presented in the next section fo
the drop geometry and in Sec. Il A for the layered geometry

Results of the UDA for the drop geometry

density increases. uniform-drop boundary line is determined by the condition
We see that the bifurcation density;; at which the phase dn'/dx=0 (see Fig. 4.
separated solution appears for finkeis larger than in the For A\>\. the homogeneous solution is stable for any

MC. On the other hand, thB phase appears with a finite global density. The unifor-B boundary line is determined
volume fraction and its growing rate is larger than in the MCby the crossings of the parabolas in Fig. 5.
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4t
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04 | 3
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02t
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0 : . : . 0
0 02 04 06 08 1 0 1
v
FIG. 6. Locus of the existence of the low-energy drop solution 3
in the\-n’ plane forky,=Kkg . This almost coincides with the phase 4t
digram in the sense that when the drop solution exist it is more
stable than the uniform solution except closexte 0.5 and in a L3t
very narrow region around the drop-uniform boundary lisee =
text). 2t
I 1r
When one of the compressibilities goes to zero, &gy,
the crossing moves to the right in Fig. 5 and the unif@m 0
region shrinks until the boundary line for the uniforB 0 02 04 06 08 1
phase approaches the MC value:(ng). At the same time "
¢ increases. Analogous results are obtain Kgrgoing to FIG. 8. R, and Ry in units of the screening length defined
Zero. above Eq.(22) vs n’ for kg=k,. We show the curves fok

In the upper panel of Fig. 7 we show the density of each=0.1,0.2,0.3,0.4,0.5 which increases from bottom to top in the top
panel and from right to left at the top in the lower panel. In the top

1.2 . . - . . - (bottom) panel for each curve the lowénppe) branch is the stable
1t S one.
- 08 A0 — ] phase as a function of the global densities Kge=k, . In-
£ 6l f((;% e — creasing the global density the transition occurs from the
s e 0.25 ¢ s uniform A phase, with density higher that the MC one, to the
; 0.4 015 | o drop state. In the MC case the densityfophase is continu-
= o2l = ous at the transition and remains constant in the coexistence
ol region. For nonzera the A density has a discontinuity when
the drops occutsee inset Remarkably both local densities
0.2 : : : : : ' decrease as the global density increases. This is due to the
02 0 02 04 ,0'6 08 112 behavior of the mixing pressure as explained above and in
" Appendix B. In the cas&,=0 (lower panel the regions
with ng>n3 (ng<n$) can be directly associated with posi-
tive (negative mixing pressures.
Compared to the upper panel the lower curves rigr
gc’ shrink to the MC case and the upper curvesrigrremain
°= very similar(even quantitativelyexcept close tm’—0. We
'3; mention that in the cadgs=0 (not shown a similar effect is
= seen exchanging with B.
In Fig. 8 we show the cell radius and drop radius in units
0 ] of the screening length as a function of density fqf
0.2 . . . . : =k, . Both the cell and the drop radius are typically on the
002 04 06 08 1 12 scale of a few screening lengthsfor not too smallx and
n

have a finite size at the appearance of the mixed state. The
FIG. 7. Normalized densities of each phase as a function oFe" radius decreases as the density goes away from the bi-

normalized global density’ for different). The upper panel is for furcation value to reach a mi,nimuml close 6= 1/2. The
ks=k, and the lower panel is fot,=0. For each panel the lower Minimum would be exactly at’=1/2 in an exact computa-

curves correspond t8 phase and the upper curvesBgphase. In  tion due to phase exchange symmetry. This is show below in
the coexistence region multivalued densities appear. The longhe layered solution.

branch is the physical one and the short branches are unphysical. The (B phasé drop radius instead is intrinsically asym-
The inset shows an enlargement of tAedensity to resolve the metric and increase monotonously with the density reflecting
discontinuities. the transformation of the cell frorA phase toB phase.
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For A—0 the cell radius and the drop radius behave asill also depend on external parameters like magnetic field,
R~ W\l ~[oeg/(80e)?]*3. As stated in Sec. Il they diverge temperature, pressure, etc. In other words, a crystal can be
ase—0 indicating that the MC can be realized with a singledflven. from a single phase to a _two-phase. situation by
large drop of theB phase inA. changing external parameters. This is very reminiscent of the

Another peculiarity of the curves in Fig. 5 is that the free Situation in some manganites where one finds that a single-
energy of the drop solution has the “wrong” curvature; that Phase crystal breaks into a multidomain crystal by lowering
is, the compressibility(defined froma?f/#?n) is negative. the temperature. The multidomain system shows lattice mis-
This does not necessarily imply an instability since the usua'lﬁnatCh and large stress at the interfates,

In Sec. IV A analogous results are presented for the lay-

stability condition of positive compressibility is formulated .
o . ered geometry case and compared with a more elaborate
for a neutral system—that is, including the background com- . .
omputation which relax the UDA. In paper Il we apply to

pre55|b|llt)_/. _Smce we are assuming th.e nverse l_)ackgroungiﬁerem physical systems the ideas developed in this sec-
compressibility to be an infinite positive numbén our tion

analysis the background density has a fixed homogeneous

value), it follows that the total compressibility is positive and

from this point of view the system is in a stable mixed state.

Of course this does not guarantee stability against more com- In this section we generalize our results to take into ac-

plicated solutions than the simple crystal of drops. count the full spatial dependence of the density. The basic
The situation is more severe far>\. where the drop assumption is that we can write the free energy of each phase

solution, if it exists, is not stable. In this case, the systenS the spatial integral of a free-energy density which is a

remains a|WayS Sing|e phase and the free energy is given HylnctIOIj of the local denS|ty; l.e., we are using a local denSlty

the branches of the parabola with the smaller energy in FigdPProximation. The free energy reads

5. It changes suddenly from tiephase to thé® phase at the

densityn/ for which fA(n;)=fg(n.). (For our parameters F:f d3rfA[n(r)]+f d3rfg[n(r)]

n.=0.5) The problem is now that the energy has a cusp reA reB

pointing upwards an; which implies an infinite negative 1

inverse compressibility. This will compete with the infinite + 8—f d3rE2+ Spgo. (29

positive inverse compressibility of the background. Clearly m

one should consider in this case the background compressterer € A indicates that the integral is restricted to the re-

ibility (e.g., the lattice compressibilitsince the beginning. gions of phaseA and S,g is the total interface surface be-

As a first step we can add to the above electronic free energyveen A and B and we assume for simplicitgo=1. One

a background free-energy  contributionf,(n)=(n  should be careful not to double count insurface energy

—n¢)%/2ky, . Avery rigid (but not infinitely rigid background  costs that are due to the spatial variation of the charge since

is described by a very smak,>0 which correspond to a this will be explicitly taken into account in the first three

very narrow parabola for the background free energy. Theerms. On the other hand, one can includeinther effects,

total free energy, background plus cusp, will have a cuspike magnetism, which would not be included otherwise. For

pointing up with two local minima nearby. Since now the simplicity we will assumes to be density independent.

total free energy corresponds to a truly neutral system one The electric field is related to the total charge density

can make a MC between the two local minima. One obtaingelectronic plus backgroundhrough the Poisson equation

a phase separation betwe@nand B with the background

adjusting its density in each region to the density of each V-E=4mp, (30

pha_lse to ma_\ke it neutral. The same argument applles_at t%th total charge density

critical density where the drop solution crosses the uniform

solution, although the negative dip is much less pronounced

in that case. Usually the electronic system is a crystal where

the background is provided by the ionic lattice. If one traysHeren is the global density of the previous section and the

to prepare the crystal with an electronic density close to th@verbar distinguishes it from the spatially varying density

critical one, the system can break into two pieces, each ong(r) Notice thaten is the charge density of the background.

Wlth a different lattice constant. Typically the crystal is not at The condition of neutrality is written as:

a fixed volume but at a fixed external pressire(We use

capital P to distinguish the pressure exerted on the crystal as _ 1 5 1 5

a whole from the electronic pressures of the phaseand =V rEAd mn+g rEBd rn(r). (32)

pg.) In this situation the MC determines the equilibrium

pressureP, for phase coexistencd?, will depend on the Usingn(r)=n, for r e A andn(r)=ng for r € B one recov-

global doping, so above ., P, vs doping determines a ers the UDA.

phase boundary line which will cut ambient pressure at some Instead of minimizing the functional with respect to the

critical doping. density, it is convenient to use Eq80) and(31) to express
Since the electronic free energies depend on external paghe density as a function of the electric figld=n(V-E)]

rameters, a remarkable implication is that the critical dopingand minimize the functional with respect to the electric field

IV. LOCAL DENSITY APPROXIMATION

p=—e[n(r)—n]. (31)
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profile. We look for periodic solutionglayer, crystal, etg. The charge density is given by
and restrict the computation to one cell.

Minimizing the free energyEq. (29)] respect to the elec- _ Ep coshi(r—Re)/1A]
tric field one obtains PA= 271 5 SN (Ry—R)/1 ]’

1 _ofy Eo cosKkr/lg)
==V (NYVE 59 Pe~ 2Ty SINARa/Tg) 37

where X=A or B whenreA or reB, respectively. This The electric field at theA-B boundary can be related to
differential equation together with the boundary conditionihe jump in the density at the interface:
determines the field profile. The boundary condition at the
cell boundary and at the internal boundary will be discuss in —4me[ng(Ry) —Na(Ry)]
the example below. Once the electric field profile is known  Eg= — -
for a given geometry, the density profile is given by the [Istanf(Ry/lg)] " +{latanf (Re—Rq)/1 AT}
Poisson equation. As a final step one should optimize the (38)
geometry. It plays the same role as the parameién Sec. Il so that we

Introducing the parabolic expressiofigs. (18)] to pa-  can find the optimum charge distribution betweeandB by
rametrize the free-energy densities in E8Q3) one obtains minimizing the free energy with respect i,
After replacing Eqs(37) and (38) in the expression for

E=I{VV-E, (349 the free energyEq. (29)] and minimizing respect t&, we
with 12=(4me’ky) 1. Clearlyly is the screening length as find
anticipated in Sec. lll. If we use the compressibility of a 47-re50[I§(n’—1)—I,§n’]
free-electron gas foky [Eq. 19 and reintroduce the dielec- Eo= , (39
tric constant)x corresponds to the Thomas-Fermi screening g /tanf(xRc/lg) +1a/tanti(1-x)/lg]
length: where 5, andn’ are defined as in Sec. Ill ariRy has been
eliminated in favor of the volume fraction witR;=XxR;.
IZ_(W)”?’ eofi? 35 At this point the total free energy per unit volunfe
XT3 ' = :
3 4e2m(n§)()1’3 F/V takes the form:

We reach Thomas-Fermi theory which is the simplest version

of the LDA used for electronic structure computations. If we

use the nondegenerate gas compressilily. (20)], I is )

the Debye-Hukel screening length. +2me? S[IZ(n")2(1—x) +1gx(1-n")?]

- 2mws3e’[—13(1—n’)—13n"]?
R{lg/tanixR./lg) +1a/tani (1= x)R. /1 a1}

o
fzfg‘f' (Sol.Lon,‘f' E
C

Solution for the layered geometry

In the layered geometry the differential E@4) reduces
to a one-dimensional problem and can be readily solved. The (40
geometry is identical as in the UDA approximatidfig. 1).  The first two terms are the MC free energy, the third term is
The centralB layer has width Ry and the cell has width the surface energy, and the last two terms are both contribu-
2R;. Ther coordinate is perpendicular to the layers and tions due to the shift from the MC densities and due to the
=0 corresponds to the center of tBelayer. By symmetry electrostatic energy.
the field is zero at =0 andr =R.. In this case the boundary =~ The last step is to minimize this free energy with respect
condition E, =0 for the electric field perpendicular to the to the volume fraction andR.. This gives two equations
surface at the cell boundary automatically warrants the neuwhich can be solved numerically fét, andx. As in Sec. llI
trality condition[Eq. (32)] due to Gauss theorem. it is easier to fixx and solve forR. andn’.

Apart from the cell boundary the cell itself has an internal  In the following we present results for the casg=Kkn
boundary that divides andB phases. We calt, the electric  and compare with the linearized UDA of Sec. Il for the
field at theA-B boundary. The value d&, is also optimized layered geometry.

and this provides an additional boundary condition. In Fig. 9 we plot the volume fraction as a function of

The solution is of the form global density in the LDA and UDA. Clearly the results are

_ very similar even quantitatively. In the UDA there is a jump

E (1 —E sint{(r —Rc)/1a] on the volume fraction form zero to a finite value. In the

A1) OsinH (Ry—R)/1A]" LDA the volume fraction is not discontinuous but grows very
rapidly at the threshold for the appearance of the inhomoge-
sinh(r/lg) neous state. Another important difference is that the solutions

EB(f):EoW, (36 are not any more multivalued in the LDA.
da’’e In Fig. 10 we showfs(n’), fg(n’) and the total free
whereEA(r)=E(r) for r e A, etc. energy withkg=Kk, for various\. The MC Iinefo(n’)=f2
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FIG. 9. Volume fraction vsn’ for (from left to right at the FIG. 11. Normalized spatially averaged densities of each phase
bottom A =0,0.1,0.2,0.3,0.4,0.5 arkg =K, in the LDA (thick line) as a function of normalized global density for different X, kg
and the UDA(thin line). Only the lower left corner of the plot is —Ka. @nd the linearized UDAthin lines and the LDA (thick
shown since the upper right corner is symmetric by phase exchanglife9. The lower curves correspond to thephase and the upper

For the UDA approximation the lower branch is unphysical like in CUrves to theB phase. In the coexistence region multivalued densi-
Sec. Il A. ties appear in the linearized UDA. The long branch is the physical

one.

+n'(f5—f9) has been subtracted. The behavior of the layered , _ _ _ _
solution in the UDA is similar to the one found for drops in actly atn’=0.5. The discontinuous jump at the threshold in
Sec. Il A and coincides with it at small. In the LDA mul-  the UDA becomes a divergence in the LDA. For the same
tivaluation disappears. The relaxation of the UDA producedP@rameters the cell width are smaller in the UDA than in the
obviously a gain in energy since the functional that we ard-DA- This can be understood by Joticing that in the UDA
minimizing is the same in LDA and UDA but in the UDAwe the widths are of ordeis=[ o/(5o€)“] ™. Roughly speaking
are imposing an extra constrain on the densities. The gain if€ can say that the effect of the LDA {8 to increase the
energy, however, is quite small. The phase diagrams in thaurface energy due to the bending of the charge distributions
UDA and LDA (not shown are both very similar(even at the surface andi) to screen the electric fields which can

quantitatively to the one for drops of Sec. Il A except that P& Schematized as an effective reduction of the charge
they are fully symmetric. The critical above which the Both effects tend to increase the with of the layers as found.

inhomogeneous solution is never stable is givenkipe k For smallx, Fig. 12 shows that the LDA and UDA radii
by A.=(9/5)%2~0.61 in the LDA and byr.~0.70 in the
UDA. 8
In Fig. 11 we show the densities in each phase in the 71
UDA. This is compared with the densities of each phase in 61
the LDA averaged spatially over the space spanned by each Lo
phase. Again the behavior is remarkably similar and the den- = 40
sity discontinuities of the UDA become very steep changes 3¢
with LDA. 2}
Finally in Fig. 12 we show the behavior of the dimensions 1+t
of the cell and of thdB layer as a function of global density. 0

Due to perfect phase exchange symmetry, the cell witkh 2 0
as a function ofn’ is symmetric and has the minimum ex-

8
0.2 Tr
6 [
0.15 5t
g -~ I
S < 4
=01 3t
= ) |
0.05 1 1}
s S // 0
e T— /
Ly e ) X \\ L 0 1
02 0 02 04 06 08 1 12 n

n

FIG. 12. R, and Ry in units of the screening length defined
FIG. 10. fo—f°, f5—f°, andf—f in the layered solution for above Eq.22) vsn’ in the linearized UDA(thin lines and LDA
A=0.1,0.2,0.3,0.4,0.8rom bottom to top andkg=k, vsn’ in the (thick lines. We show the curves fokh =0.1,0.3,0.5 which in-
LDA (thick line) and the UDA(thin line). Here f° is the MC free  creases from bottom to top in the top panel and from right to left at
energy forh=0 (a straight ling. the top in the lower panel.
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VT w0353, a0 — (iii ) the singular behavior which results in a lattice instability
g'g LN w=0446, x=04 —— ] when frustration dominates.

_ 07 | k=, A=0.3 ] We used a UDA and a more involved LDA approach.
£ o6t : Both are shown to give very similar results thus justifying in
F 05y ] general the use of the much simpler UDA. For the LDA we
z g';‘ : ] have approximated the energy functional in the case of a

o2 | \ metal with the the simplest LDA functional, i.e., the Thomas-
0.1t : Fermi approximation. Our formulation however is general

0

and allows for more sophisticated functionals.
As it is intuitively expected, the LRC interaction tends to
stabilize the nonseparated uniform phases in the presence of
FIG. 13. Density profile fol. =0.3 and different values of the a rigid background. This has been illustrated in the general
global density. The region close te=0 corresponds to thB phase  analysis of two generic phases described by parabolic free
and the rest is thé phase. The structure repeats periodically in theenergies. We have shown that the region of phase separation
r direction. The horizontal lines signal the global density. contracts when the LRC and surface energy effects are
switched on and disappears above a critical value of a dimen-
coincide just as the full solution. This is becalge VAl  sionless parametex. This parameter plays the role of an
<l [cf. Egs.(21) and (22)] so that the density is almost effective coupling and characterizes the competition between
constant inside the layer even in the LDA and the solutionghe energy cost due to the surface and Culombic energy and
are virtually the same. In this case the Thomas-Fermi apthe energy gain in the MC; i.e., it controls the degree of
proximation is ineffective to generate a surface energy sincé&ustration. The balance between these energies determine
all surface energy effects other that the ones explicitly inwhether the phase separated state exists or not.
cluded ino are due to density variations. In other words, if  When\ is small A <\.) a mixed state arises. We have
one setso =0, the system prefers to make small drops tomodeled this situation by considering a Wigner crystal of
avoid both the Thomas-Fermi, induced surface energy effearops of one phase hosted by the other phase and a layered
and the Coulomb cost. This, however, is a drawback of thgeometry which behaves as one-dimensional analog of the
Thomas-Fermi approximation since small drops will cer-Wigner crystal. We believe that our general conclusions
tainly have a large surface energy due to the confinement afluding the existence of a critical) are not sensitive to the
the electron gas. It is well known that Thomas-Fermi theorygeometry of the mixed state as long as the two length scales
is a poor approximation to model surfacés. R. and Ry are present and both are much larger than the
If one increasea , inhomogeneities are possible until the interparticle distance. The former lendttell size character-
point at whichl4~1g and\=\.. It is not possible to have izes a periodic structure and the latfbubble siz¢ how this
inhomogeneities of dimensioly>1, because in the region periodic structure is divided to host the two phases. An indi-
far from the surface screening makes the local density t@ation that the geometry is not very important comes from
coincide with the global density and this inhibits any PSthe fact that the plots of the physical quantities in Sec. Ill for
energy gain. It is then convenient for the system to avoid ank,=Kkg are quite symmetric to an exchange of the two
surface and remain single phase. phases, each one having a different shape. This means that
In Fig. 13 we show the density profile far=0.3 and for  the behavior of the drops is not much different from the
two different values of the global density. One is close to thebehavior of their counterpart, the interstitial regions. The
threshold for the appearance of tBgphase (i’ =0.353). In  same happens when comparing the behavior of drops and
this case theA density is close to the density of the back- layers.
ground and bends down close to the interface to screeB the In the mixed state novel nonlinear effects appear which
layer charge. Well within the bulk of th& phase, where the are not present in the unfrustrated MC. Within the UDA the
charge density coincides with the density of the backgroundyolume fraction and the drop radius of the minority phase do
we haveE~0 as expected for a metal. When the globalnot start from zero but from a finite value and the transition
density increases the local densities decrease according to titiethe drops state is abrupt. In the LDA physical quantities
behavior discussed before for the average dengfigs 11). are not discontinuous but grow very steep at the threshold
The layers become of the order of the screening length anthimicking the discontinuous behavior.

-2 0 2 4 6 8 10 12

the electric field is never completely screened. A further nonlinear effect in the drop state is that the local
densities of each phase have an anomalous behavior decreas-
V. CONCLUSIONS ing as the global density increases. This can affect properties

of the system which are sensitive to the local density and will

In this work we have generalized the Maxwell construc-be illustrated in paper Il with the Curie temperature of the
tion to a situation that appears often in strongly correlatednanganites. We emphasize that also local probes like NMR,
electronic systems, i.e., phase separation frustrated by theore spectroscopy, etc., should be sensitive to this effect and

LRC interaction. may be used to detect Coulomb-frustrated phase separation
We discussedi) the stabilization of the uniform phases as in real systems.
the frustrating forces are increaséid) the anomalous behav- In the case of a strong Coulomb interaction and large

ior of the frustrated phase separated mesoscopic state, asdrface energy N\>\.) a transition between two uniform
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phases occurs. We have shown that in this case the compresseally non-uniform. What is the correction to the E@)?
ibility is singular and a lattice instability will take place if the In the host phase we neglected the interaction between the
ionic background is not fully rigid. The systefboth elec- neutral A Wigner crystal of electrons and a background of
trons and ionscan separate in two neutral phases with dif-charge densityr{—n,)e (see Fig. 1 The fluctuation of the
ferent specific volumes. charge inside the crystalline Wigner-Seitz cell can make this
In principle also at the transition point to the drop state ainteraction nonzero. Also for the phase forming the drop we
lattice instability can arise for the same reasons discussed imve to consider the interaction between the neuBal
thex> )\, case, although the instability is now much weaker.Wigner crystal and a background of charge density
When do we expect such a mesoscopic phase separati¢n—ng)e.

to prevail against microscopic phase separatigike The electrostatic contribution per drop is
stripeg? In order to have mesoscopic phase separation we
need that the interparticle distance 6~ ) be smaller than S 3eda
the inhomogeneous length which should be smaller than ATDT 10, A
the screening length,. This implies with
. 1/3 € 1/2 4
-1/3 0 0 T 4
n~ < < . =—rx(N—na)e
e25g) (4we2km) =3 TaN =)

We see that large dielectric constants favor both large dropnd & similar expressions for ti phase. Here (#/3)r3
and inhomogeneous states, so polar materials which have1/na andN, is the number of electrons of tthephase in a
typically large static dielectric constantgqf~10—100) are drop:

ideal candidates. Smadl, or largeo favors large drops but a 1

too small§, or a too larges can inhibit phasg separation a_t NA:nAUd(__1>,

all. Small values of5, can occurs in manganites where typi- X

cally a variety of different ground states with close densities

compete with each otheisee paper Il for a specific ex- Ng=ngvg.

ample. This suggests either large drops or total frustrationrne total contribution per unit volume to the electrostatic
with lattice instabilities close to the transition from one phaseenergy is

to the other. We mention that these lattice instabilities, which

also involve volume variations, are reminiscent of the mac- 2me?

roscopic phase separation observed in some manganites. Aee=—¢ [(Ng—n)Ngrgx+ (Na—MNara(1—x)1.
Finally small compressibilities favor the PS states. This (A1)

suggests that these effects can be important for bad metals or

close to metal-insulator transitions. Clearly [cf. Eq. (7)] the correctionAe/e, is of order

We believe that to some extent at least some of the effectes 5/R3, SO it is negligible unless the volume of the drop is
found here can survive also in the microscopic frustratecdf the order of the volume per particle, in which case the
phase separation. In fact, for example, the corrections to thehole computation makes no sense.
electrostatic energy due to the discreteness of the charge
which are computed in Appendix A for the very unfavorable  APPENDIX B: “METALLIC” DROPS IN “VACUUM”
case of a classical Wigner crystal can be irrelevant for small

metallic inhomogeneities due to quantum blurring. In this !N this appendix we discuss in detail the case of a com-
case, however, one should take into account the structure Gf€SSible phaseB) growing in an incompressible phasie(

the underling atomic potential. Of course, if quantum blur-=0)- This simplifies the physics because thedensity is
ring effects are too strong, one should be concerned with thixed So that there is no interchange of particles andBhe

stability of the whole superstructure against quantum fluctuadensity is not anymore bivaluated for small densities as
tions. shown in the lower panel of Fig. 7. We present an alternative

treatment of the frustrated phase separation phenomena
which enlightens the underlying physics and discuss the
pressure exerted by the mixing forces in detail.

To fix ideas we call theB phase a “metal” and theéA

In order to compute the electrostatic energy in the UDAPhase the “vacuum.” Accordingly we put,=n3=0 and
[Eq.(7)] we assume that the charge within one drop is spreafia=0. These last conditions do not change the solution but
uniformly. Variations of density can arise because of screenmake the interpretation more transparent.
ing effects as discussed in Sec. IV A and because of intrinsic  Since in this case the number of particles in each phase is
charge inhomogeneities internal to the particular phase. Heréxed (zero for the vacuum we can minimize the energy per

APPENDIX A: CORRECTION DUE
TO THE DISCRETENESS OF THE CHARGE

we discuss the latter effect. particle E=f/n, given by

Let us now consider an extreme limit and assume that
both phasesA and B are two classical Wigner crystals of E— f_BJr €m(X,Ng) (B1)
electrons as a prototypical case in which the charge is intrin- Ng n '
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This has to be minimized respect to the volume fraction tak- 0.5
ing into account that the density is also a function of the 045 ¢
volume fraction given by the constraing=n/x. By putting 04 r
the derivative respect ta of Eq. (B1) equal to zero we L 9T
obtain £ 03
ﬁé 025 +
Eq'- 02
den, 2eq 0.15 |
Pe=Tx 3% ©2) o1y =
0.05 + . _]?rop i /
The left-hand side originates in the first term in 1) and 0 L= e A
0 02 04 06 08 1 12 14

is the intrinsic pressure of the metal, i.e., the pressure that the
metal exerts on the surface. The right-hand side is the pres-
sure that the mixing forces, considered as “external” to the  F|G. 14. Normalized energy per particle as a functiomgfn
inhomogeneity, exert on the metal. We call this the mixingfor A =0.3. The thick line correspond the uniform phase and the
pressure [6,). In equilibrium both pressures balance thin lines to the drop state with’ changing from zerdgtop) to one
(Pe=Pm)- (bottom) in steps of 0.1. The crosses indicate the drop solution and
The mixing pressure has two terms, the fiisght-hand  the uniform solution.

side of Eq.(B2)] comes from the explicit dependence of the
mixing energy on the volume fraction at constagtand is
proportional tou’(x). For an ideally symmetriai(x) (see
Fig. 2) this term is positive foxx<<0 and is negative fox

4
nglng

be done because for the drops the surface is not any more
negligible respect to the volume. In fact the optimum drop

~0. We can say that this term tends to “compress” the meta atio can be seen as thg length scale at' Which .successively
in alless than half-filled cell whereas it tends to “stretch” the . reaking large drops supject o the negative mixing pressure
metal(negative pressuyén the opposite case. This is just the Is not any more conve_nlent due to the SL_Irface energy 9°St'
expected tendency of the mixing energy to favor the closest In thg following we |Ilust_ra_\te_ the_ behavior of the solution,
uniform phaseX=1 orx=0). The second term is due to the performing a graphical m|n|m|zz_it|on of the energy for the
dependence of the mixing energy on the volume fractiorfOP 9eometry and the parabolic free energy, 8. In-
throughng at constant particle number. An expansion of theStéad of minimizing with respect to the volume fraction, we
drop at constant particle number produces a decreasg on US€ the constraint to eliminate thg volume fract!on in favor of
which reduces the mixing energq. (13)]. This produces a Ne (X=n/ng). The energy per unit particle is given by
negative-pressure contribution proportionaHai(x)/x. The
net contribution is given by’ (x) —2u(x)/(3x) [Eq. (B2)].
It follows that for more that half-filled cells the metal is
subject to a net negative pressure and for less than half-filled E_ 0
cells the metal is subject to negative or positive pressures M Km
depending on the geometry and the volume fractsee Fig.
3). For drops the mixing pressure is positive for smadind
then becomes negative whereas for layers the mixing pres- X
sure is negative for alt.

The appearance of negative pressures indicates that the
metal can be stable at densities which in the absence of LRC o - _ iy
forces would be unstable, so it is an indication of the stabi-! "€ fo term has been eliminated with the MC condition. The
lization effect of the LRC forces. In Fig. 14 we shd{ng) f!rst term in th_e _curly brackets is the bl_JIk energy contribu-
for a parabolic free energy in the absence of LRC forcedion. The mixing energy per particle isey/(Xng)
(thick line). The intrinsic pressures{dE/dng) is negative ~U(X)/(xng*) and contributes to the last term in the curly
for ng< ng and is positive fong> nCB’. We will show below  brackets. The geometric factafx)/x gives the term in the

that stable solutions can be found in the regiog<n§  Square brackets. o o
which are inaccessiblainstablé according to the MC. _The equilibrium density is found by minimizing EB3)

The following example clarifies the physical mining of With respect tang . In Fig. 14 we shovwE— " as a function
the negative pressures. Consider a neutral liquid with shor@f Ng for A=0.3 and different values af’. The thick line is
range attractive forces. At negative pressure molecules wilihe energy of the uniform metgthe first term in the brackets
be at distances larger than the equilibrium distance and thi§ Ed. (B3)] and is minimized at the MC density; .
implies an energy cost proportional to the volume. The sys- For very smalin (or x) the geometric factor is constant
tem can relax by creating a surface and relaxing all moland the mixing energy contribution goes asgff. This shifts
ecules to the equilibrium distance. The energy cost proporthe minimum to values of the density larger thafias can
tional to the surface is much less than the energy gaife seen from the upper curves of Fig. 14 . This is due to the
proportional to the volume and this produce the MC instabil-positive pressure exerted by the mixing energy of drops at

ity. In the presence of mesoscopic frustrated PS this canna@mall volume fraction and explains the behavior of the

Ng

_Ng|(ng—np)* 3 (n_%)l’s
2ngng 243
1/3

: (B3)

n\%
2-3|—| +—
Ng Ng
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density in the limitn’—0 (Fig. 7). As the density increases coexistence region @n’<1), showing the uniform solu-
the density dependence of the geometric factor tends to rdion stabilization effect.
duce the minimum to lower densities. It is important to remark that the whole behavior can
As a by-product this computation illustrates the stabiliza-change if the surface energy had a strong density depen-
tion of a uniform solution by the long-range interaction anddence. For this reason the interpretation of Bhphase as a
the first-order-like nature of the transition. Abové~0.6  metal should be taken with caution since in general in a
the uniform solution becomes suddenly more favorgbée  metal the surface energy will depend strongly on density.
also Fig. 7. Notice that this density is well inside the MC Specific examples will be treated in paper II.
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