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Phase separation frustrated by the long-range Coulomb interaction. I. Theory
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We analyze the combined effect of the long-range Coulomb~LRC! interaction and of surface energy on
first-order density-driven phase transitions between two phases in the presence of a compensating rigid back-
ground. In the coexistence region we study mixed states formed by regions of one phase surrounded by the
other in the case in which the scale of the inhomogeneities is much larger than the interparticle distance. Two
geometries are studied in detail: spherical drops of one phase into the other and a layered structure of one phase
alternating with the other. In the latter case we find the optimum density profile in an approximation in which
the free energy is a function of the local density@local density approximation~LDA !#. It is shown that an
approximation in which the density is assumed to be uniform@uniform density approximation~UDA!# within
each phase region gives results very similar to those of the more involved LDA approach. Within the UDA we
derive the general equations for the chemical potential and the pressures of each phase which generalize the
Maxwell construction to this situation. The equations are valid for a rather arbitrary geometry. We find that the
transition to the mixed state is quite abrupt; i.e., inhomogeneities of the first phase appear with a finite value
of the radius and of the phase volume fraction. The maximum size of the inhomogeneities is found to be on the
scale of a few electric field screening lengths. Contrary to the ordinary Maxwell construction, the inverse
specific volume of each phase depends here on the global density in the coexistence region and can decrease
as the global density increases. The range of densities in which coexistence is observed shrinks as the LRC
interaction increases until it reduces to a singular point. We argue that close to this singular point the system
undergoes a lattice instability as long as the inverse lattice compressibility is finite.

DOI: 10.1103/PhysRevB.64.235127 PACS number~s!: 71.10.Hf, 64.75.1g, 71.10.Ca, 75.30.Vn
a
o
s

o

ra
th
io

d
e

th
e
la

ch
i
n

in
fi

n
d
tly

g

cing
er

in

id-
in
rm
ncy

rre-

o-
ran-

the
hat
ther.
les,

m a

the
The
are
nt

s
e

I. INTRODUCTION

The complex phase diagrams of hole-doped cuprates
manganites have rekindled the study of mixed states in m
eling these systems.1–3 Indeed strongly correlated system
with narrow bandwidth and short-range interactions show
generic tendency to phase separate into hole-rich and h
poor regions. When long-range Coulomb~LRC! forces are
taken into account this instability with macroscopic sepa
tion is frustrated due to the electrostatic energy cost and
can lead to charge inhomogeneous states of var
nature,5–8 where domains of various forms of one phase~B!
are embedded in the other phase (A).

In the inhomogeneous state the charge is segregate
cally over some characteristic distance but the overall d
sity ~averaged over much larger distances! is a fixed constant
in order to guarantee large-scale neutrality and avoid
large Coulomb cost. Such a segregation has been consid
at a scale comparable to the interparticle distance to exp
the origin of striped states in cuprates.7,8

In this work we will consider the opposite case in whi
the scale of the inhomogeneities is much larger than the
terparticle distance. We consider in particular two differe
kinds of inhomogeneities: spherical drops of one phase
the other phase and alternating layers of each phase. The
case has been pioneered by Nagaev and collaborators i
context of doped magnetic semiconductors in general an
manganites in particular.5,6 Related ideas have been recen
presented in Refs. 3 and 9.

We believe that for the general understanding of the lar
0163-1829/2001/64~23!/235127~15!/$20.00 64 2351
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scale inhomogeneous state the specific mechanism produ
phase separation~PS! in the absence of LRC forces is rath
unessential. Of course specific short-range interactions
each physical system will lead to differentA and B phases
~which will also depend on the doping regions one cons
ers!, giving rise to different physical situations. However,
the same spirit as the Maxwell construction, one can perfo
a general analysis of the phenomena due to the tende
towards PS in the presence of a Coulomb interaction i
spectively of the microscopic mechanisms of PS itself.

We consider two charged phasesA andB with a compen-
sating rigid background and we study the formation of inh
mogeneous states in a density-driven first-order phase t
sition betweenA andB. By definitionA andB have different
densities; one of the phases is undercompensated and
other is overcompensated by the background. It follows t
the inhomogeneities are charged and they repel each o
Since the inhomogeneities are formed by many partic
quantum effects are negligible and they crystallize.4 The
drops arrange in a Wigner crystal whereas the layers for
periodic structure. We restrict to three-dimensional~3D! tex-
tures. A large number of small inhomogeneities minimize
Coulomb energy but they cost too much surface energy.
distance between the inhomogeneities and their size
found by minimizing a free energy which takes into accou
both these effects.5,6

In ordinary PS the Maxwell construction~MC! is invoked
to find the range of densitynA

0,n,nB
0 in which a system

prepared with the overall densityn separates into two region
with densitiesnA

0 and nB
0 , respectively. We generalize her
©2001 The American Physical Society27-1
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J. LORENZANA, C. CASTELLANI, AND C. Di CASTRO PHYSICAL REVIEW B64 235127
the MC and derive the equations that should be satisfie
the mesoscopically inhomogeneous coexistence region
the chemical potential and the pressure of each phase~Sec.
II !. To this end we use an approximation in which the dens
within each phase is assumed to be constant which we n
uniform density approximation~UDA!. We solve the equa
tions for the drop geometry in the simple~but general
enough! case in which the free energy of both theA and B
phases can be approximated by a parabola~Sec. III!.

We define a coupling constantl given by the ratio be-
tween the the energy cost due to surface energy plus the
interaction and the energy gain in MC PS. Only below
critical valuelc PS is possible. Abovelc the system is uni-
form A ~B! phase below~above! a critical density with a
lattice instability close to the critical density.

The characteristic size of the inhomogeinites is shown
be of orderAl l s with l s an electric field screening length
Sincel is bounded bylc ~of order 1!, it follows that the
inhomogeneities are of the order of or less thanl s .

For small volume fraction the drop geometry is mo
stable than the layers as expected from general surface
ergy arguments. On the other hand, the layered geom
being simpler serves as a ground test for approximations
order to validate the UDA we solve the layered geometry
the UDA and in the more general case in which the den
profile can spatially vary within each phase. In this last c
the density profile is allowed to adjust minimizing a fre
energy which is an approximate functional of the local de
sity @local density approximation~LDA !#. Both the UDA and
LDA are shown to give very similar results for averag
quantities~Sec. IV A!.

To illustrate the generality of theses ideas we consi
some applications in paper II of this series.

II. FREE ENERGY AND COEXISTENCE EQUATIONS:
THE UNIFORM DENSITY APPROXIMATION

We consider a density-driven first-order phase transit
in the presence of the LRC interaction and surface ene
We look for the formation of a mixed state by increasing t
density from the uniformA phase. We use two different ge
ometries for the mixed state.~i! The drop geometry consis
of a Wigner crystal of drops ofB phase in the host phaseA.
~ii ! The layered geometry is made of a periodic array
alternating layers ofA andB phases.

For both geometries the electronic density within ea
single phase region is taken as uniform~UDA! and in general
it will result different from the compensating backgroun
density. This is of course an approximation since both d
sities will tend to adjust within each phase also to make
total electrochemical potential constant. The UDA will b
relaxed in Sec. IV for the layered geometry by minimizing
free-energy functional on a simple LDA. We anticipate he
that both the UDA and LDA give very similar results thu
justifying our extensive use of the UDA here and in paper

We start by computing the total free energy. In the sa
spirit of the MC we assume that the free energies of hy
thetically homogeneous bulk phases are known and give
FA andFB . We define the mixing energyEm as the sum of
23512
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the total surface energy and electrostatic energy~computed
below!. We work at a fixed total volumeV and number of
particles,N. At a given temperature the total free energy
F5FB(VB ,NB)1FA(VA ,NA)1Em . We have to minimize
this respect toVB andNB subject to the conditionsVB1VA
5V, NB1NA5N. The volume fraction of theB phase isx
[VB /V. We can work with the free energies per unit vo
ume, f [F/V, em[Em /V, f B[FB(VB ,NB)/VB , and work
with the densitiesnB[NB /VB , etc., so the function to mini-
mize is

f 5~12x! f A~nA!1x fB~nB!1em . ~1!

The constraint in the number of particles is written asn
5xnB1(12x)nA and the constraint in the volume is sati
fied by puttingVA /V512x. It is convenient to defined
[nB2nA and to use the constraint in the number of partic
to eliminatenB andnA in favor of n andd.

In order to compute the mixing energy we first consid
the drop geometry. We assume that the drops are spher
radiusRd . This will be a good approximation as long asx is
small and the crystal field is also approximately spheric
This is true for fcc, bcc, and hcp lattices.10,11To compute the
electrostatic energy we use the Wigner-Se
approximation.5,10,11 We divide the system in slightly over
lapping spherical cells each one with the volume 4pRc

3/3
5V/Nd whereNd is the number of drops andRc is the radius
of the cell. Figure 1 shows a schematic view of the c
density profile.

Next we compute the electrostatic energy. The cells
globally neutral~by construction! and only the charge inside
the cell contributes to the electric field in the cell.

The charge density of phaseB is nB ~actually 2enB but
we drop the charge of the particles2e for simplicity!. The
dashed background charge density in Fig. 1 (2nA) compen-
sates theA charge densitynA and a slice of heightnA of the
B charge density. For the purpose of computing the elec
static energy these charge densities can be eliminated
one is left with the densitynB2nA(5d) inside the drop and
2(n2nA) for the background. We will call the former ‘‘drop

FIG. 1. Schematic view of a cell density profile in the UDA wit
a drop~layer! of B phase in the hostA. The origin is at the center o
the cell. The full cell diameter~width! is 2Rc for drops~layers!. The
dashed region of the background compensates theA density and
part of theB density.
7-2



.’’
la

m
ct

d

r

in-

f
ro

io

e
ai
n
th
he
o

p.
f
t
l-

e
th

rr
ll

nit

ter-
n
ore

ists
y
y
sity
e

ix-

ex-

m-

is
are

PHASE SEPARATION FRUSTRATED . . . . I. . . . PHYSICAL REVIEW B64 235127
contribution’’ and the latter the ‘‘background contribution
There is no ‘‘host’’ contribution due to the above cancel
tion.

Another assumption is that the charge is spread unifor
and that microscopic discreteness effects can be negle
One can see that corrections to the electrostatic energies
to discreetness are of ordera2/Rd

2 ~Appendix A! wherea is
the characteristic length of the microscopic structure~for ex-
ample a lattice constant!. Therefore they are negligible in ou
analysis which considersRd@a.

With the above approximations the total electric field
side the cell is written asE5Eb1Ed whereb ~d! refers to
the background~drop! contribution. Integrating the square o
the electric field we obtain three contributions to the elect
static energy,e5ed1eb1ed2b , with

ed5
1

8pe0
E d3rEd

2 , ~2!

with e0 the static dielectric constant and a similar equat
for the background. The interaction energy is

ed2b5
1

4pe0
E d3rEb•Ed . ~3!

The use of the static dielectric constant is well justified b
cause we are assuming a static superstructure which cert
will produce relaxation of the ions which in turn will scree
the electric field. We are assuming by symmetry that
electric displacement is parallel to the electric field. T
fields can be easily evaluated with Gauss theorem. One
tains

ed5Q2
3

5e0Rd
, ~4!

eb5Q2
3

5e0Rc
, ~5!

ed2b5
3Q2

e0
S 2

1

2Rc
1

Rd
2

10Rc
3D , ~6!

where Q[2edvd is the effective charge inside the dro
The volume of a drop isvd54pRd

3/3 and the number o
drops is given byNd5VB /vd5xV/vd . We also have tha
x5Rd

3/Rc
3 . Finally the total electrostatic energy per unit vo

ume can be put as

ee5
2pe2d2

5e0
Rc

2x5/3~223x1/31x!. ~7!

Setting one of the densities ind to zero one recovers th
expressions obtained by Nagaev and collaborators for
particular case of a mixed state composed of an antife
magnetic insulating phase and a ferromagnetic meta
phase.5,6
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The surface energy is parametrized by a quantitys with
dimensions of energy per unit surface. In generals will be a
function of the densitiesnA , nB . The total surface energy
per unit volume is

es54psRd
2 Nd

V
5

3sx2/3

Rc
. ~8!

These two contributions add to the mixing energy per u
volumeem5ee1es .

Due to the constraint, we have three parameters to de
mine (d,x,Rc). The mixing energy is the only contributio
which depends explicitly on the geometry. We can theref
eliminateRc in favor of d andx by minimizingem respect to
the cell radius to get

Rc5S 15se0

4px~223x1/31x!e2d2D 1/3

. ~9!

Now we consider the layered geometry. The cell cons
of a layer of width 2Rc . The center of the cell is occupied b
a layer of width 2Rd of B phase and the rest is occupied b
A phase. Figure 1 serves as a schematic plot of the den
profile also in this case.r is a coordinate perpendicular to th
layers with the origin at the center of theB layer. The volume
fraction now is given byx5Rd /Rc . By following analogous
arguments as for the drops we obtain

ee5
2pe2

3e0
d2Rc

2x2~12x!2, ~10!

es5
s

Rc
, ~11!

Rc5S 3se0

4px2~12x!2e2d2D 1/3

. ~12!

OnceRc has been eliminated for both geometries the m
ing energy can be put as

em5Fs2e2d2

e0
G1/3

u~x!, ~13!

where all the geometric information is stored inu(x):

u~x!535/3S p

10D
1/3

x~223x1/31x!1/3 ~drops!, ~14!

u~x!5S p

2 D 1/3

@3x~12x!#2/3 ~ layers!. ~15!

In Fig. 2 we plotu(x).
The free energy should remain invariant respect to an

change of the kindA↔B andx↔12x. We will term this as
‘‘phase exchange symmetry.’’ Figure 2 shows that this sy
metry is only approximately realized by theu(x) for drops.
The deviation is due to the fact that the surface energy
minimized when the minority phase inhomogeneities
spherical. Our drop solution imposes this at smallx but vio-
7-3
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J. LORENZANA, C. CASTELLANI, AND C. Di CASTRO PHYSICAL REVIEW B64 235127
lates this in the opposite case ofx→1 where the minority
phase inhomogeneities have the complicated geometry
tween the spherical drops. In practice, however, our appr
mations can be meaningful even at intermediate and larx
because the presentu(x) is approximately symmetric aroun
x51/2. This is due to the fact that the electrostatic ener
Eq. ~7!, correctly cancels in this limit driving the total mix
ing energy to zero.

A better treatment should allow atx.1/2 for a switch
from the unoptimized interstitial geometry to a spherical g
ometry with an energy gain given by the reflectedu(x) at
small x in u(12x) as shown in Fig. 2. A comparison be
tween the reflected curve and the originalu(x) shows that
this geometry optimization compared with an apparen
very bad geometry gives rise to a modest lowering of
energy. The same happens when we switch from the la
geometry to the spherical drop geometry as shown in Fig
We can conclude that the dependence on geometry is w

The spheric drop geometry has lower energy than the
ered geometry as expected from general arguments on
face tension. The exception is close tox51/2 where our
spherical drop solution is not adequate in any case. In fac
this region drops and the crystal potential will be far fro
spherical. The problem of establish the optimum geome
close tox51/2 is beyond the scope of this work however w
expect minor corrections to thermodynamic quantities du
the small sensibility ofu(x) to dramatic changes in the ge
ometry as illustrated above.

Although the layer solution has higher energy due to
simplicity it is an excellent test ground for checking the a
proximations. We take advantage of this fact to test the U
approximation in Sec. II A. In addition the layer geomet
has the extra advantage that, by construction, respects
phase exchange symmetry.

Anyway sinceu(x) depends weakly on geometry our r
sults for macroscopic thermodynamic quantities will
largely independent of the geometry itself. When possible
present our results in a geometry independent way by lea
the functionu(x) unspecified in our expressions.

Minimizing the free energy respect tod andx one obtains

FIG. 2. The functionu(x) that parametrizes the mixing energ
for the layer geometry and the drop geometry.
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mB2mA52
2~es!2/3u~x!

3~e0d!1/3x~12x!

1
2~ed!2/3u~x!

3e0
1/3s

S 1

x

]s

]nA
2

1

12x

]s

]nB
D , ~16!

pB2pA5~mB2mA!@n1d~122x!#1S e2s2d2

e0
D 1/3

u8~x!

2
2d5/3e2/3u~x!

3~e0s!1/3 S ]s

]nA
1

]s

]nB
D . ~17!

Here pA52 f A1mAnA , (mA5] f A /]nA), etc., are the ‘‘in-
trinsic’’ pressures~chemical potentials! of each phase. The
word ‘‘intrinsic’’ stands for the values of these quantities
the presence of a fictitious fully compensating backgrou
in other words, they refer to a uniform single-phase situati
Equations~16! and~17! determine the jump in these quant
ties at the interface in order to have thermodynamic equi
rium when long range Coulomb forces and surface ene
are present. These equations are valid for a general geom
described by the functionu(x). Notice that as long asu(x)
preserves the phase exchange symmetry the equations
preserve this symmetry.

To analyze the effect of the long-range forces and of
surface energy in the jumps let us neglect for simplicity t
density dependence of the surface energy (]s/]nA
5]s/]nB50) and concentrate on the drop geometry. Due
the different charge distributions, the electrostatic poten
energy2ef of an electron inside and outside the drops
different. In equilibrium this jump in the electrostatic pote
tial should be compensated by a jump of the intrinsic che
cal potentials@Eq. ~16!# to make the electrochemical poten
tial constant in the whole system. Ford.0 the drop repels
electrons so the electrostatic potential energy will be low
outside the drop, i.e.,2efA,2efB . The intrinsic chemical
potential outside will have to be larger than inside as the s
in Eq. ~16! implies.

Regarding the pressure, in equilibrium the intrinsic pre
sure inside the drop,pB , should equal the pressure exert
by the host,pA , plus the pressure exerted by the mixin
forces. Ford.0 the electrostatic energy induces a negat
contribution to the pressure since an increase in the d
volume at constant particle number decreases the differe
in densities between the interior and exterior of the drop a
hence the Coulomb cost. This effect is given by the first te
in Eq. ~17!. The second term proportional tou8(x) is a geo-
metric contribution. Both terms are discussed in more de
in a specific example in Appendix B.

In the limit e→0 one getsmB5mA5m and pA5pB5p,
i.e., md5 f B2 f A , which are the conditions for the MC.

III. GENERAL ANALYSIS OF THE MIXED STATE IN THE
UNIFORM DENSITY APPROXIMATION

In this section we set up the basic ideas for inhomo
neous solutions. For simplicity we model each phase f
energy with a parabola and we assume that the surface
7-4
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PHASE SEPARATION FRUSTRATED . . . . I. . . . PHYSICAL REVIEW B64 235127
sion is density independent. Without loss of generality
write the parabolas as a quadratic expansion around the
densities:

f A~nA!5 f A
01m0~nA2nA

0 !1
1

2kA
~nA2nA

0 !2,

f B~nB!5 f B
01m0~nB2nB

0 !1
1

2kB
~nB2nB

0 !2. ~18!

The quantities with the ‘‘0’’ superscript~or subscript below!
satisfy the MC in the absence of LRC forces, i.e.,f B

02 f A
0

5m0d0 andd05nB
02nA

0 . The linear slopem0 is the same for
the two phases due to the MC condition. The MC densityn0

and the volume fraction are related byn05nA
01d0x. The

constantskA , kB are essentially the compressibilities of th
two phases.12

For noninteracting electrons atT50 the compressibility
coincide with the density of states. For the 3D free-elect
gas we have

kf ree5
31/3mnf ree

1/3

p4/3\2
, ~19!

with m the electronic mass.
Another useful realization is a nondegenerate gas wh

we have

kgas5
ngas

KT
. ~20!

Our aim in the following is to obtain the equations whic
control the deviation from MC behavior in the presence
the mixing energy.

We define a dimensionless global density

n8[~n2nA
0 !/d0 ,

which measures the distance from the point in whichB phase
appears in the absence of Coulomb forces. In the MC
coexistence region is given by 0,n8,1.

Equations~16! and ~17! determined and x for a fixed
density where nowmA , mB , pA , andpB can be expressed i
terms of the parameters appearing in Eqs.~18!.

In practice it is much easier to solve the equations
fixing the volume fractionx and solving ford, andn; i.e., we
find which density one should put in the system to obtai
mixed state with a given volume fraction. This is because
solutions happen to be multivalued functions ofn whereas
they are single-valued functions ofx ~see below!.

For a fixed volume fractionx we define the dimensionles
density deviations from the MC values:n̂5(n2n0)/d0 and
d̂5(d2d0)/d0. The density deviationn̂ measures the shif
in the global density needed to have the same volume f
tion of a system without LRC interaction.

To fix the energy units it is convenient to choose one
the two compressibilities as a reference, for example
largest. We definekm5max(kA ,kB). Energies per unit volume
will be measured in units of the characteristic PS ene
23512
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d0
2/km . The latter is essentially the difference between

uniform parabolic free energy and the MC free energy at
characteristic densityd0.

Now we define two important reference lengths scales
the theory. The characteristic size of an inhomogeneity
which the Coulomb energy balance the surface energ
given by theRc of previous section with the geometric fac
tors dropped and the density evaluated at the MC value. T
defines the scale

l d5S se0

e2d0
2D 1/3

. ~21!

The other length is given byl s
25e0 /(4pe2km). By relaxing

the UDA we will show in Sec. II thatl s is a screening length
In other words, if the reference phase~the one withkm) is
interpreted as a metal,l s is the characteristic distance i
which the electric field penetrates.

The theory has two dimensionless parameters. One is
ratio kB /kA . The other measures the strength of the mixi
energy energy effects in units of the characteristic PS ene
d0

2/km and is given by

l52
km

d0
2 S 9pe2d0

2s2

5e0
D 1/3

5
1

2 S 9

5p2D 1/3S l d

l s
D 2

. ~22!

The characteristic mixing energy is given by the factor w
the power 1/3 in the middle expression@see Eq.~13!#. The
constantl characterizes the competition of the mixing e
ergy cost and the MC like energy gain due to phase sep
tion. The coupling constant goes to zero ase→0 with s
finite. This correspond to the usual PS. The cases→0 with
finite e corresponds to an infinite number of drops~or layers!
of zero radius. In this maximum intermixing situation th
charges of the two phases spatially coincide and the C
lomb cost goes also to zero so that the MC is again va
Notice, however, that this last idealized situation cannot
reached in practice because at some point for small d
radius the continuous approximation will fail.

Inserting the explicit expressions@Eqs.~18!# of f A and f B
in Eqs. ~16! and ~17! we obtain the following equations fo
the density deviations:

n̂S 1

kB
2

1

kA
D1 d̂S 12x

kB
1

x

kA
D

5S 5

9p D 1/3 lu~x!

3km~11 d̂ !1/3x~12x!
,

xd̂2n̂

kA
1F n̂d̂~12x!1

n̂2

2
G S 1

kB
2

1

kA
D

7-5
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1
d̂2

2 F122x

kB
1

2x

kA
1S 1

kB
2

1

kA
D x2G

5S 5

9p D 1/3l~11 d̂ !2/3

2km
Fu8~x!1

2u~x!

3~12x!G . ~23!

Equations~23! can be solved numerically for general va
ues of the parameters. For smalll, i.e., for small mixing
energy, we can linearize the equations neglecting hig
order terms ind̂ andn̂. We will refer to this as the linearized
UDA. We get

n̂S 1

kB
2

1

kA
D1 d̂S 12x

kB
1

x

kA
D5S 5

9p D 1/3 lu~x!

3kmx~12x!
,

~24!

xd̂2n̂

kA
52S 5

9p D 1/3 l

2km
Fu8~x!1

2u~x!

3~12x!G . ~25!

For the sake of simplicity in the following we will conside
the linearized solution. We checked that for all the physi
properties the difference between the linearized and e
solutions is quite small in the range ofl where the drop
solution is stable.

The linearized solution takes a simple form and is exp
itly symmetric respect to an exchange of phases when w
ten in the original variables:

nA5nA
01

1

6 S 15

p D 1/3kA

km
ld0Fu8~x!1

2u~x!

3~12x!G ,
nB5nB

01
1

6 S 15

p D 1/3kB

km
ld0Fu8~x!2

2u~x!

3x G . ~26!

In the case ofl50, according to the MC, the system sep
rates into two phases with densitiesnA

0 , nB
0 , respectively,

independently of the volume fraction. For nonzerol and
small x the B phase divides into drops or layers and t
density in each phase depends on the volume fraction oB
phase. The deviation of each density from the MC predict
is proportional tol and to the compressibility of each phas
Notice that the density of an incompressible phase (k→0)
does not depend on the volume fraction even in the prese
of LRC forces.

In Fig. 3 we show the behavior of the two functions whi
determine the dependence of the densities on the vol
fraction. In the drop geometry and for smallx bothnA andnB
tend to be larger than in the MC case whereas in the laye
geometry onlynA is larger. This gives rise to minor qualita
tive differences in the behavior of drops and layers. Ap
from this the overall behavior is similar.

The equation for the density of one phase@Eq. ~26!# has a
transparent interpretation in the limit in which the oth
phase, say,A, is incompressible (kA50). This case is solved
in detail in Appendix B. Assume thatA phase is the vacuum
and so exerts no pressure and has zero density. We can
sider that the mixing forces due to the electrostatic and
face energies exert an ‘‘external’’ pressure on theB phase
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inhomogeneity. In equilibrium the intrinsic pressure ofB
phase (pB) should compensate this ‘‘mixing pressure’’ (pB
5pm). The latter is shown in Appendix B to be given by

pm5
]em

]x
2

2em

3x
. ~27!

On the other hand, a change in the external pressure co
sponds to a change in thenB density according to theB
phase equation of state. This follows directly from our de
nition of compressibility:12

kB[nB
0 DnB

DpB
,

where we have replaced a derivative by a finite-differen
ratio. We can obtain the second linearized expression in
~26! directly from this definition using that the MC densit
correspond to zero intrinsic pressure and Eqs.~13! and~27!:

nB2nB
05kB

pB

nB
0

}kBnB
0Fu8~x!2

2u~x!

3x G .
The mixing pressure can be negative as explained in

pendix B. This implies that the density is less than the M
density. From the lower cures in Fig. 3 we see that for dro
the pressure is positive for smallx and then becomes nega
tive whereas for layers the pressure is negative for allx.

Remarkably in both cases the mixing pressure is a
creasing function ofx. Since in generalx is an increasing
function ofn8, we can anticipate thatnB will decrease asn8
increase~see below!. Notice that for smallx we havepB
;u8(x)/3, so a decreasing mixing pressure can be dire
related to the negative curvature ofu(x) ~Fig. 2!.

Coming back to the general solution in Eq.~26! we are
interested in the dependence of these quantities as a fun
of the global densityn8, our true control variable, rather tha
as a function of the volume fraction. Hence we need
volume fraction as a function of the global densityn8. From
the solution of the linearized equations we find

FIG. 3. The dimensionless functions that determine the cha
in nA ~upper curves! and nB ~lower curves! for small l vs. the
volume fractionx for the layered and the drop geometry@see Eq.
~26!#.
7-6
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n85x1S 15

p D 1/3l

6 S kA~12x!

km
Fu8~x!1

2u~x!

3~12x!G
1

kBx

km
Fu8~x!2

2u~x!

3x G D . ~28!

Since all physical quantities depend on the densities,
completes the solution of the problem.

Specific results will be presented in the next section
the drop geometry and in Sec. II A for the layered geome

Results of the UDA for the drop geometry

Now we consider the drop geometry and we analyze
detail the two cases:~i! the compressibilities of the two
phases are equal (kB5kA5km) and~ii ! one of the compress
ibilities is zero.

In Fig. 4 we plot the volume fraction as a function
global density from Eq.~28! for the drop solution. The vol-
ume fraction is a multivalued function ofn8 and in the case
kB5kA has a lower branch close tox50, an intermediate
branch, and an upper branch close tox51. The intermediate
branch is the physical solution. This will be shown below
looking at the free energy. The physical solution has the
tuitive property that the volume fraction increases as glo
density increases.

We see that the bifurcation densitynbi f8 at which the phase
separated solution appears for finitel is larger than in the
MC. On the other hand, theB phase appears with a finit
volume fraction and its growing rate is larger than in the M

FIG. 4. Top panel: volume fraction vsn8 for ~from left to right
at the bottom! l50,0.1,0.2,0.3,0.4,0.5 andkB5kA . For l50.4 we
indicate with a vertical line the discontinuity in the volume fractio
to go from the uniform solution to the drop solution by increasi
the density. Bottom panel: same forkB50. The approximations
done are rigorously valid only for smallx.
23512
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case. Remarkably both the volume fraction at the bifurcat
point and the bifurcation densitynbi f8 are almost the same fo
kB5kA and forkB50. They depend only onl as can be seen
by comparing the two panels in Fig. 4.

In the casekB50 the constraint between the volume fra
tion and the densities together with the fact that theB density
is fixed make all the curves to converge to the MC case w
x→1 as shown in Fig. 4. The same happens whenkA50 and
x→0.

To decide the stability of the solution we have to compa
the drop solution with the single-phase solution. In Fig. 5
show f A(n8), f B(n8) and the total free energy withkB5kA

for various l. The MC line f 0(n8)5 f A
01n8( f B

02 f A
0) has

been subtracted. The energy also is a multivalued functio
n8. As the density increases the drop solution appears atnbi f8
~indicated in Fig. 5 by a black dot! with two different
branches. In the upper~unstable! branchx decreases with
density until the pointx50, highlighted with a cross in Fig
5. For the lower branch one finds the expected behavior;
x increases with density. The upper branch is almost deg
erate with the bulkf A(n) free energy. Near the bifurcatio
the three solutions~homogeneous, drop stable, and drop u
stable! are very close in energy. Approximation in the sol
tion of the Eq.~23! can lead to wrong conclusions about th
relative stability. In this case one has to refer to the non
earized solution. For the latter~not shown! we find that the
bifurcation densitynbi f is lower than the densitync at which
the energy of the lower-energy drop solution crosses the
ergy of the uniform phasef A(n8). However, the difference
betweennc and nbi f is negligible for all practical propose
except for the largestl. In this case there is a small regio
(lc50.49,l,0.57) in which the lower-energy drop solu
tion still exists but is less stable than the homogeneous s
tion. If we neglect this small effect, the phase diagram of
drop solution is given bynbi f vs l as shown in Fig. 6. The
uniform-drop boundary line is determined by the conditi
]n8/]x50 ~see Fig. 4!.

For l.lc the homogeneous solution is stable for a
global density. The uniformA-B boundary line is determined
by the crossings of the parabolas in Fig. 5.

FIG. 5. f A2 f 0, f B2 f 0, and f 2 f 0 in the drop solution forl
50.1,0.2,0.3,0.4,0.5~from bottom to top! andkB5kA vs n8. Here
f 0 is the MC free energy forl50 ~a straight line!. The cross indi-
cates the value withx50 of the drop solution for eachl. The black
dot indicates the bifurcation point in which the drop solution fi
appears when density increases.
7-7
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When one of the compressibilities goes to zero, say,kB ,
the crossing moves to the right in Fig. 5 and the uniformB
region shrinks until the boundary line for the uniformB
phase approaches the MC value (n5nB

0). At the same time
lc increases. Analogous results are obtain forkA going to
zero.

In the upper panel of Fig. 7 we show the density of ea

FIG. 6. Locus of the existence of the low-energy drop solut
in thel-n8 plane forkA5kB . This almost coincides with the phas
digram in the sense that when the drop solution exist it is m
stable than the uniform solution except close tol50.5 and in a
very narrow region around the drop-uniform boundary line~see
text!.

FIG. 7. Normalized densities of each phase as a function
normalized global densityn8 for differentl. The upper panel is for
kB5kA and the lower panel is forkA50. For each panel the lowe
curves correspond toA phase and the upper curves toB phase. In
the coexistence region multivalued densities appear. The
branch is the physical one and the short branches are unphy
The inset shows an enlargement of theA density to resolve the
discontinuities.
23512
h

phase as a function of the global densities forkB5kA . In-
creasing the global density the transition occurs from
uniform A phase, with density higher that the MC one, to t
drop state. In the MC case the density ofA phase is continu-
ous at the transition and remains constant in the coexiste
region. For nonzerol theA density has a discontinuity whe
the drops occur~see inset!. Remarkably both local densitie
decrease as the global density increases. This is due to
behavior of the mixing pressure as explained above an
Appendix B. In the casekA50 ~lower panel! the regions
with nB.nB

0 (nB,nB
0) can be directly associated with pos

tive ~negative! mixing pressures.
Compared to the upper panel the lower curves fornA

shrink to the MC case and the upper curves fornB remain
very similar~even quantitatively! except close ton8→0. We
mention that in the casekB50 ~not shown! a similar effect is
seen exchangingA with B.

In Fig. 8 we show the cell radius and drop radius in un
of the screening length as a function of density forkB
5kA . Both the cell and the drop radius are typically on t
scale of a few screening lengthsl s for not too smalll and
have a finite size at the appearance of the mixed state.
cell radius decreases as the density goes away from the
furcation value to reach a minimum close ton851/2. The
minimum would be exactly atn851/2 in an exact computa
tion due to phase exchange symmetry. This is show below
the layered solution.

The (B phase! drop radius instead is intrinsically asym
metric and increase monotonously with the density reflect
the transformation of the cell fromA phase toB phase.

e

f

g
al.

FIG. 8. Rc and Rd in units of the screening lengthl s defined
above Eq.~22! vs n8 for kB5kA . We show the curves forl
50.1,0.2,0.3,0.4,0.5 which increases from bottom to top in the
panel and from right to left at the top in the lower panel. In the t
~bottom! panel for each curve the lower~upper! branch is the stable
one.
7-8
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For l→0 the cell radius and the drop radius behave
R;Al l s;@se0 /(d0e)2#1/3. As stated in Sec. II they diverg
ase→0 indicating that the MC can be realized with a sing
large drop of theB phase inA.

Another peculiarity of the curves in Fig. 5 is that the fr
energy of the drop solution has the ‘‘wrong’’ curvature; th
is, the compressibility~defined from]2f /]2n) is negative.
This does not necessarily imply an instability since the us
stability condition of positive compressibility is formulate
for a neutral system—that is, including the background co
pressibility. Since we are assuming the inverse backgro
compressibility to be an infinite positive number~in our
analysis the background density has a fixed homogene
value!, it follows that the total compressibility is positive an
from this point of view the system is in a stable mixed sta
Of course this does not guarantee stability against more c
plicated solutions than the simple crystal of drops.

The situation is more severe forl.lc where the drop
solution, if it exists, is not stable. In this case, the syst
remains always single phase and the free energy is give
the branches of the parabola with the smaller energy in
5. It changes suddenly from theA phase to theB phase at the
density nc8 for which f A(nc8)5 f B(nc8). ~For our parameters
nc850.5.! The problem is now that the energy has a cu
pointing upwards atnc8 which implies an infinite negative
inverse compressibility. This will compete with the infini
positive inverse compressibility of the background. Clea
one should consider in this case the background compr
ibility ~e.g., the lattice compressibility! since the beginning
As a first step we can add to the above electronic free en
a background free-energy contribution f b(n)5(n
2nc)

2/2kb . A very rigid ~but not infinitely rigid! background
is described by a very smallkb.0 which correspond to a
very narrow parabola for the background free energy. T
total free energy, background plus cusp, will have a c
pointing up with two local minima nearby. Since now th
total free energy corresponds to a truly neutral system
can make a MC between the two local minima. One obta
a phase separation betweenA and B with the background
adjusting its density in each region to the density of ea
phase to make it neutral. The same argument applies a
critical density where the drop solution crosses the unifo
solution, although the negative dip is much less pronoun
in that case. Usually the electronic system is a crystal wh
the background is provided by the ionic lattice. If one tra
to prepare the crystal with an electronic density close to
critical one, the system can break into two pieces, each
with a different lattice constant. Typically the crystal is not
a fixed volume but at a fixed external pressureP. ~We use
capitalP to distinguish the pressure exerted on the crysta
a whole from the electronic pressures of the phasespA and
pB .) In this situation the MC determines the equilibriu
pressureP0 for phase coexistence.P0 will depend on the
global doping, so abovelc , P0 vs doping determines a
phase boundary line which will cut ambient pressure at so
critical doping.

Since the electronic free energies depend on externa
rameters, a remarkable implication is that the critical dop
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will also depend on external parameters like magnetic fie
temperature, pressure, etc. In other words, a crystal ca
driven from a single phase to a two-phase situation
changing external parameters. This is very reminiscent of
situation in some manganites where one finds that a sin
phase crystal breaks into a multidomain crystal by lower
the temperature. The multidomain system shows lattice m
match and large stress at the interfaces.13,14

In Sec. IV A analogous results are presented for the l
ered geometry case and compared with a more elabo
computation which relax the UDA. In paper II we apply
different physical systems the ideas developed in this s
tion.

IV. LOCAL DENSITY APPROXIMATION

In this section we generalize our results to take into
count the full spatial dependence of the density. The ba
assumption is that we can write the free energy of each ph
as the spatial integral of a free-energy density which i
function of the local density; i.e., we are using a local dens
approximation. The free energy reads

F5E
rPA

d3r f A@n~r !#1E
rPB

d3r f B@n~r !#

1
1

8pE d3rE21SABs. ~29!

Here rPA indicates that the integral is restricted to the r
gions of phaseA and SAB is the total interface surface be
tween A and B and we assume for simplicitye051. One
should be careful not to double count ins surface energy
costs that are due to the spatial variation of the charge s
this will be explicitly taken into account in the first thre
terms. On the other hand, one can include ins other effects,
like magnetism, which would not be included otherwise. F
simplicity we will assumes to be density independent.

The electric field is related to the total charge dens
~electronic plus background! through the Poisson equation

“•E54pr, ~30!

with total charge density

r52e@n~r !2n̄#. ~31!

Here n̄ is the global density of the previous section and t
overbar distinguishes it from the spatially varying dens
n(r ). Notice thaten̄ is the charge density of the backgroun
The condition of neutrality is written as:

n̄5
1

VErPA
d3rn~r !1

1

VErPB
d3rn~r !. ~32!

Usingn(r )5nA for rPA andn(r )5nB for rPB one recov-
ers the UDA.

Instead of minimizing the functional with respect to th
density, it is convenient to use Eqs.~30! and~31! to express
the density as a function of the electric field@n5n(“•E)#
and minimize the functional with respect to the electric fie
7-9
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profile. We look for periodic solutions~layer, crystal, etc.!
and restrict the computation to one cell.

Minimizing the free energy@Eq. ~29!# respect to the elec
tric field one obtains

E52
1

e
“

] f X

]n
@n~“•E!#, ~33!

where X5A or B when rPA or rPB, respectively. This
differential equation together with the boundary conditi
determines the field profile. The boundary condition at
cell boundary and at the internal boundary will be discuss
the example below. Once the electric field profile is kno
for a given geometry, the density profile is given by t
Poisson equation. As a final step one should optimize
geometry.

Introducing the parabolic expressions@Eqs. ~18!# to pa-
rametrize the free-energy densities in Eq.~33! one obtains

E5 l X
2
““•E, ~34!

with l X
25(4pe2kX)21. Clearly l X is the screening length a

anticipated in Sec. III. If we use the compressibility of
free-electron gas forkX @Eq. 19# and reintroduce the dielec
tric constant,l X corresponds to the Thomas-Fermi screen
length:

l X
25S p

3 D 1/3 e0\2

4e2m~nX
0 !1/3

. ~35!

We reach Thomas-Fermi theory which is the simplest vers
of the LDA used for electronic structure computations. If w
use the nondegenerate gas compressibility@Eq. ~20!#, l X is
the Debye-Hu¨ckel screening length.

Solution for the layered geometry

In the layered geometry the differential Eq.~34! reduces
to a one-dimensional problem and can be readily solved.
geometry is identical as in the UDA approximation~Fig. 1!.
The centralB layer has width 2Rd and the cell has width
2Rc . The r coordinate is perpendicular to the layers andr
50 corresponds to the center of theB layer. By symmetry
the field is zero atr 50 andr 5Rc . In this case the boundar
condition E'50 for the electric field perpendicular to th
surface at the cell boundary automatically warrants the n
trality condition @Eq. ~32!# due to Gauss theorem.

Apart from the cell boundary the cell itself has an intern
boundary that dividesA andB phases. We callE0 the electric
field at theA-B boundary. The value ofE0 is also optimized
and this provides an additional boundary condition.

The solution is of the form

EA~r !5E0

sinh@~r 2Rc!/ l A#

sinh@~Rd2Rc!/ l A#
,

EB~r !5E0

sinh~r / l B!

sinh~Rd / l B!
, ~36!

whereEA(r )[E(r ) for r PA, etc.
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The charge density is given by

rA5
E0

4p l A

cosh@~r 2Rc!/ l A#

sinh@~Rd2Rc!/ l A#
,

rB5
E0

4p l B

cosh~r / l B!

sinh~Rd / l B!
. ~37!

The electric field at theA-B boundary can be related t
the jump in the density at the interface:

E05
24pe@nB~Rd!2nA~Rd!#

@ l Btanh~Rd / l B!#211$ l Atanh@~Rc2Rd!/ l A#%21
.

~38!

It plays the same role as the parameterd in Sec. II so that we
can find the optimum charge distribution betweenA andB by
minimizing the free energy with respect toE0.

After replacing Eqs.~37! and ~38! in the expression for
the free energy@Eq. ~29!# and minimizing respect toE0 we
find

E05
4ped0@ l B

2~n821!2 l A
2n8#

l B /tanh~xRc / l B!1 l A /tanh@~12x!/ l B#
, ~39!

whered0 andn8 are defined as in Sec. III andRd has been
eliminated in favor of the volume fraction withRd5xRc .

At this point the total free energy per unit volumef
[F/V takes the form:

f 5 f A
01d0m0n81

s

Rc

12pe2d0
2@ l A

2~n8!2~12x!1 l B
2x~12n8!2#

2
2pd0

2e2@2 l B
2~12n8!2 l A

2n8#2

Rc$ l B /tanh~xRc / l B!1 l A /tanh@~12x!Rc / l A#%
.

~40!

The first two terms are the MC free energy, the third term
the surface energy, and the last two terms are both contr
tions due to the shift from the MC densities and due to
electrostatic energy.

The last step is to minimize this free energy with resp
to the volume fraction andRc . This gives two equations
which can be solved numerically forRc andx. As in Sec. III
it is easier to fixx and solve forRc andn8.

In the following we present results for the casekB5kA
and compare with the linearized UDA of Sec. III for th
layered geometry.

In Fig. 9 we plot the volume fraction as a function o
global density in the LDA and UDA. Clearly the results a
very similar even quantitatively. In the UDA there is a jum
on the volume fraction form zero to a finite value. In th
LDA the volume fraction is not discontinuous but grows ve
rapidly at the threshold for the appearance of the inhomo
neous state. Another important difference is that the soluti
are not any more multivalued in the LDA.

In Fig. 10 we showf A(n8), f B(n8) and the total free
energy withkB5kA for variousl. The MC line f 0(n8)5 f A

0

7-10
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1n8(fB
02fA

0) has been subtracted. The behavior of the laye
solution in the UDA is similar to the one found for drops
Sec. III A and coincides with it at smalll. In the LDA mul-
tivaluation disappears. The relaxation of the UDA produc
obviously a gain in energy since the functional that we
minimizing is the same in LDA and UDA but in the UDA w
are imposing an extra constrain on the densities. The ga
energy, however, is quite small. The phase diagrams in
UDA and LDA ~not shown! are both very similar~even
quantitatively! to the one for drops of Sec. III A except tha
they are fully symmetric. The criticall above which the
inhomogeneous solution is never stable is given forkB5kA
by lc5(9/5)1/3/2;0.61 in the LDA and bylc;0.70 in the
UDA.

In Fig. 11 we show the densities in each phase in
UDA. This is compared with the densities of each phase
the LDA averaged spatially over the space spanned by e
phase. Again the behavior is remarkably similar and the d
sity discontinuities of the UDA become very steep chan
with LDA.

Finally in Fig. 12 we show the behavior of the dimensio
of the cell and of theB layer as a function of global density
Due to perfect phase exchange symmetry, the cell widthRc
as a function ofn8 is symmetric and has the minimum e

FIG. 9. Volume fraction vsn8 for ~from left to right at the
bottom! l50,0.1,0.2,0.3,0.4,0.5 andkB5kA in the LDA ~thick line!
and the UDA~thin line!. Only the lower left corner of the plot is
shown since the upper right corner is symmetric by phase excha
For the UDA approximation the lower branch is unphysical like
Sec. III A.

FIG. 10. f A2 f 0, f B2 f 0, and f 2 f 0 in the layered solution for
l50.1,0.2,0.3,0.4,0.5~from bottom to top! andkB5kA vs n8 in the
LDA ~thick line! and the UDA~thin line!. Here f 0 is the MC free
energy forl50 ~a straight line!.
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actly atn850.5. The discontinuous jump at the threshold
the UDA becomes a divergence in the LDA. For the sa
parameters the cell width are smaller in the UDA than in
LDA. This can be understood by noticing that in the UD
the widths are of orderl s5@s/(d0e)2#1/3. Roughly speaking
we can say that the effect of the LDA is~i! to increase the
surface energy due to the bending of the charge distribut
at the surface and~ii ! to screen the electric fields which ca
be schematized as an effective reduction of the charge.
Both effects tend to increase the with of the layers as fou

For smalll, Fig. 12 shows that the LDA and UDA rad

e.

FIG. 11. Normalized spatially averaged densities of each ph
as a function of normalized global densityn8 for different l, kB

5kA , and the linearized UDA~thin lines! and the LDA ~thick
lines!. The lower curves correspond to theA phase and the uppe
curves to theB phase. In the coexistence region multivalued den
ties appear in the linearized UDA. The long branch is the phys
one.

FIG. 12. Rc and Rd in units of the screening lengthl s defined
above Eq.~22! vs n8 in the linearized UDA~thin lines! and LDA
~thick lines!. We show the curves forl50.1,0.3,0.5 which in-
creases from bottom to top in the top panel and from right to lef
the top in the lower panel.
7-11
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coincide just as the full solution. This is becausel d;Al l s
! l s @cf. Eqs. ~21! and ~22!# so that the density is almos
constant inside the layer even in the LDA and the solutio
are virtually the same. In this case the Thomas-Fermi
proximation is ineffective to generate a surface energy si
all surface energy effects other that the ones explicitly
cluded ins are due to density variations. In other words,
one setss50, the system prefers to make small drops
avoid both the Thomas-Fermi, induced surface energy ef
and the Coulomb cost. This, however, is a drawback of
Thomas-Fermi approximation since small drops will c
tainly have a large surface energy due to the confinemen
the electron gas. It is well known that Thomas-Fermi the
is a poor approximation to model surfaces.15

If one increasesl, inhomogeneities are possible until th
point at whichl d; l s and l5lc . It is not possible to have
inhomogeneities of dimensionl d@ l s because in the region
far from the surface screening makes the local density
coincide with the global density and this inhibits any P
energy gain. It is then convenient for the system to avoid
surface and remain single phase.

In Fig. 13 we show the density profile forl50.3 and for
two different values of the global density. One is close to
threshold for the appearance of theB phase (n850.353). In
this case theA density is close to the density of the bac
ground and bends down close to the interface to screen tB
layer charge. Well within the bulk of theA phase, where the
charge density coincides with the density of the backgrou
we haveE;0 as expected for a metal. When the glob
density increases the local densities decrease according t
behavior discussed before for the average densities~Fig. 11!.
The layers become of the order of the screening length
the electric field is never completely screened.

V. CONCLUSIONS

In this work we have generalized the Maxwell constru
tion to a situation that appears often in strongly correla
electronic systems, i.e., phase separation frustrated by
LRC interaction.

We discussed~i! the stabilization of the uniform phases
the frustrating forces are increased,~ii ! the anomalous behav
ior of the frustrated phase separated mesoscopic state

FIG. 13. Density profile forl50.3 and different values of the
global density. The region close tor 50 corresponds to theB phase
and the rest is theA phase. The structure repeats periodically in t
r direction. The horizontal lines signal the global density.
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~iii ! the singular behavior which results in a lattice instabil
when frustration dominates.

We used a UDA and a more involved LDA approac
Both are shown to give very similar results thus justifying
general the use of the much simpler UDA. For the LDA w
have approximated the energy functional in the case o
metal with the the simplest LDA functional, i.e., the Thoma
Fermi approximation. Our formulation however is gene
and allows for more sophisticated functionals.

As it is intuitively expected, the LRC interaction tends
stabilize the nonseparated uniform phases in the presenc
a rigid background. This has been illustrated in the gene
analysis of two generic phases described by parabolic
energies. We have shown that the region of phase separ
contracts when the LRC and surface energy effects
switched on and disappears above a critical value of a dim
sionless parameterl. This parameter plays the role of a
effective coupling and characterizes the competition betw
the energy cost due to the surface and Culombic energy
the energy gain in the MC; i.e., it controls the degree
frustration. The balance between these energies determ
whether the phase separated state exists or not.

When l is small (l,lc) a mixed state arises. We hav
modeled this situation by considering a Wigner crystal
drops of one phase hosted by the other phase and a lay
geometry which behaves as one-dimensional analog of
Wigner crystal. We believe that our general conclusions~in-
cluding the existence of a criticall) are not sensitive to the
geometry of the mixed state as long as the two length sc
Rc and Rd are present and both are much larger than
interparticle distance. The former length~cell size! character-
izes a periodic structure and the latter~bubble size! how this
periodic structure is divided to host the two phases. An in
cation that the geometry is not very important comes fr
the fact that the plots of the physical quantities in Sec. III
kA5kB are quite symmetric to an exchange of the tw
phases, each one having a different shape. This means
the behavior of the drops is not much different from t
behavior of their counterpart, the interstitial regions. T
same happens when comparing the behavior of drops
layers.

In the mixed state novel nonlinear effects appear wh
are not present in the unfrustrated MC. Within the UDA t
volume fraction and the drop radius of the minority phase
not start from zero but from a finite value and the transiti
to the drops state is abrupt. In the LDA physical quantit
are not discontinuous but grow very steep at the thresh
mimicking the discontinuous behavior.

A further nonlinear effect in the drop state is that the loc
densities of each phase have an anomalous behavior dec
ing as the global density increases. This can affect prope
of the system which are sensitive to the local density and
be illustrated in paper II with the Curie temperature of t
manganites. We emphasize that also local probes like NM
core spectroscopy, etc., should be sensitive to this effect
may be used to detect Coulomb-frustrated phase separ
in real systems.

In the case of a strong Coulomb interaction and la
surface energy (l.lc) a transition between two uniform
7-12
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phases occurs. We have shown that in this case the comp
ibility is singular and a lattice instability will take place if th
ionic background is not fully rigid. The system~both elec-
trons and ions! can separate in two neutral phases with d
ferent specific volumes.

In principle also at the transition point to the drop state
lattice instability can arise for the same reasons discusse
thel.lc case, although the instability is now much weak

When do we expect such a mesoscopic phase separ
to prevail against microscopic phase separation~like
stripes!? In order to have mesoscopic phase separation
need that the interparticle distance (;n21/3) be smaller than
the inhomogeneous lengthl d which should be smaller tha
the screening lengthl s . This implies

n21/3,S se0

e2d0
2D 1/3

,S e0

4pe2km
D 1/2

.

We see that large dielectric constants favor both large dr
and inhomogeneous states, so polar materials which h
typically large static dielectric constants (e0;10–100) are
ideal candidates. Smalld0 or larges favors large drops but a
too smalld0 or a too larges can inhibit phase separation
all. Small values ofd0 can occurs in manganites where typ
cally a variety of different ground states with close densit
compete with each other~see paper II for a specific ex
ample!. This suggests either large drops or total frustrat
with lattice instabilities close to the transition from one pha
to the other. We mention that these lattice instabilities, wh
also involve volume variations, are reminiscent of the m
roscopic phase separation observed in some manganite13

Finally small compressibilities favor the PS states. T
suggests that these effects can be important for bad meta
close to metal-insulator transitions.

We believe that to some extent at least some of the eff
found here can survive also in the microscopic frustra
phase separation. In fact, for example, the corrections to
electrostatic energy due to the discreteness of the ch
which are computed in Appendix A for the very unfavorab
case of a classical Wigner crystal can be irrelevant for sm
metallic inhomogeneities due to quantum blurring. In th
case, however, one should take into account the structur
the underling atomic potential. Of course, if quantum bl
ring effects are too strong, one should be concerned with
stability of the whole superstructure against quantum fluct
tions.

APPENDIX A: CORRECTION DUE
TO THE DISCRETENESS OF THE CHARGE

In order to compute the electrostatic energy in the UD
@Eq. ~7!# we assume that the charge within one drop is spr
uniformly. Variations of density can arise because of scre
ing effects as discussed in Sec. IV A and because of intrin
charge inhomogeneities internal to the particular phase. H
we discuss the latter effect.

Let us now consider an extreme limit and assume t
both phasesA and B are two classical Wigner crystals o
electrons as a prototypical case in which the charge is int
23512
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sically non-uniform. What is the correction to the Eq.~7!?
In the host phase we neglected the interaction between

neutralA Wigner crystal of electrons and a background
charge density (n2nA)e ~see Fig. 1!. The fluctuation of the
charge inside the crystalline Wigner-Seitz cell can make
interaction nonzero. Also for the phase forming the drop
have to consider the interaction between the neutraB
Wigner crystal and a background of charge dens
(n2nB)e.

The electrostatic contribution per drop is

eA2b52
3eqA

10r A
NA ,

with

qA5
4p

3
r A

3~n2nA!e

and a similar expressions for theB phase. Here (4p/3)r A
3

51/nA andNA is the number of electrons of theA phase in a
drop:

NA5nAvdS 1

x
21D ,

NB5nBvd .

The total contribution per unit volume to the electrosta
energy is

Dee5
2pe2

5
@~nB2n!nBr B

2x1~nA2n!nAr A
2~12x!#.

~A1!

Clearly @cf. Eq. ~7!# the correctionDee /ee is of order
r A,B

2 /Rd
2 , so it is negligible unless the volume of the drop

of the order of the volume per particle, in which case t
whole computation makes no sense.

APPENDIX B: ‘‘METALLIC’’ DROPS IN ‘‘VACUUM’’

In this appendix we discuss in detail the case of a co
pressible phase~B! growing in an incompressible phase (kA
50). This simplifies the physics because theA density is
fixed so that there is no interchange of particles and thB
density is not anymore bivaluated for small densities
shown in the lower panel of Fig. 7. We present an alterna
treatment of the frustrated phase separation phenom
which enlightens the underlying physics and discuss
pressure exerted by the mixing forces in detail.

To fix ideas we call theB phase a ‘‘metal’’ and theA
phase the ‘‘vacuum.’’ Accordingly we putnA5nA

050 and
f A50. These last conditions do not change the solution
make the interpretation more transparent.

Since in this case the number of particles in each phas
fixed ~zero for the vacuum!, we can minimize the energy pe
particleE[ f /n, given by

E5
f B

nB
1

em~x,nB!

n
. ~B1!
7-13
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This has to be minimized respect to the volume fraction t
ing into account that the densitynB is also a function of the
volume fraction given by the constraintnB5n/x. By putting
the derivative respect tox of Eq. ~B1! equal to zero we
obtain

pB5
]em

]x
2

2

3

em

x
. ~B2!

The left-hand side originates in the first term in Eq.~B1! and
is the intrinsic pressure of the metal, i.e., the pressure tha
metal exerts on the surface. The right-hand side is the p
sure that the mixing forces, considered as ‘‘external’’ to t
inhomogeneity, exert on the metal. We call this the mixi
pressure (pm). In equilibrium both pressures balanc
(pB5pm).

The mixing pressure has two terms, the first@right-hand
side of Eq.~B2!# comes from the explicit dependence of t
mixing energy on the volume fraction at constantnB and is
proportional tou8(x). For an ideally symmetricu(x) ~see
Fig. 2! this term is positive forx,0 and is negative forx
.0. We can say that this term tends to ‘‘compress’’ the me
in a less than half-filled cell whereas it tends to ‘‘stretch’’ t
metal~negative pressure! in the opposite case. This is just th
expected tendency of the mixing energy to favor the clos
uniform phase (x51 or x50). The second term is due to th
dependence of the mixing energy on the volume fract
throughnB at constant particle number. An expansion of t
drop at constant particle number produces a decrease onB
which reduces the mixing energy@Eq. ~13!#. This produces a
negative-pressure contribution proportional to2u(x)/x. The
net contribution is given byu8(x)22u(x)/(3x) @Eq. ~B2!#.
It follows that for more that half-filled cells the metal
subject to a net negative pressure and for less than half-fi
cells the metal is subject to negative or positive pressu
depending on the geometry and the volume fraction~see Fig.
3!. For drops the mixing pressure is positive for smallx and
then becomes negative whereas for layers the mixing p
sure is negative for allx.

The appearance of negative pressures indicates tha
metal can be stable at densities which in the absence of L
forces would be unstable, so it is an indication of the sta
lization effect of the LRC forces. In Fig. 14 we showE(nB)
for a parabolic free energy in the absence of LRC for
~thick line!. The intrinsic pressure (}dE/dnB) is negative
for nB,nB

0 and is positive fornB.nB
0 . We will show below

that stable solutions can be found in the regionnB,nB
0

which are inaccessible~unstable! according to the MC.
The following example clarifies the physical mining

the negative pressures. Consider a neutral liquid with sh
range attractive forces. At negative pressure molecules
be at distances larger than the equilibrium distance and
implies an energy cost proportional to the volume. The s
tem can relax by creating a surface and relaxing all m
ecules to the equilibrium distance. The energy cost prop
tional to the surface is much less than the energy g
proportional to the volume and this produce the MC insta
ity. In the presence of mesoscopic frustrated PS this can
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be done because for the drops the surface is not any m
negligible respect to the volume. In fact the optimum dr
ratio can be seen as the length scale at which success
breaking large drops subject to the negative mixing press
is not any more convenient due to the surface energy co

In the following we illustrate the behavior of the solutio
performing a graphical minimization of the energy for th
drop geometry and the parabolic free energy, Eq.~18!. In-
stead of minimizing with respect to the volume fraction, w
use the constraint to eliminate the volume fraction in favor
nB (x5n/nB). The energy per unit particle is given by

E2m05
n0

B

km
H ~nB2nB

0 !2

2nBnB
0

1
3

24/3
lS nB

0

nB
D 1/3

3F223S n

nB
D 1/3

1
n

nB
G1/3J . ~B3!

The f 0
B term has been eliminated with the MC condition. T

first term in the curly brackets is the bulk energy contrib
tion. The mixing energy per particle isem /(xnB)
;u(x)/(xnB

1/3) and contributes to the last term in the cur
brackets. The geometric factoru(x)/x gives the term in the
square brackets.

The equilibrium density is found by minimizing Eq.~B3!
with respect tonB . In Fig. 14 we showE2m0 as a function
of nB for l50.3 and different values ofn8. The thick line is
the energy of the uniform metal@the first term in the brackets
in Eq. ~B3!# and is minimized at the MC densityn0

B .
For very smalln ~or x) the geometric factor is constan

and the mixing energy contribution goes as 1/nB
1/3. This shifts

the minimum to values of the density larger thann0
B as can

be seen from the upper curves of Fig. 14 . This is due to
positive pressure exerted by the mixing energy of drops
small volume fraction and explains the behavior of thenB

FIG. 14. Normalized energy per particle as a function ofnB /nB
0

for l50.3. The thick line correspond the uniform phase and
thin lines to the drop state withn8 changing from zero~top! to one
~bottom! in steps of 0.1. The crosses indicate the drop solution
the uniform solution.
7-14
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density in the limitn8→0 ~Fig. 7!. As the density increase
the density dependence of the geometric factor tends to
duce the minimum to lower densities.

As a by-product this computation illustrates the stabiliz
tion of a uniform solution by the long-range interaction a
the first-order-like nature of the transition. Aboven8;0.6
the uniform solution becomes suddenly more favorable~see
also Fig. 7!. Notice that this density is well inside the MC
o
s
o

s.

v

23512
e-

-

coexistence region (0,n8,1), showing the uniform solu-
tion stabilization effect.

It is important to remark that the whole behavior c
change if the surface energys had a strong density depen
dence. For this reason the interpretation of theB phase as a
metal should be taken with caution since in general in
metal the surface energy will depend strongly on dens
Specific examples will be treated in paper II.
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