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Relativistic spin-density-functional theory: Robust solution of single-particle equations
for open-subshell atoms
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We present an approach to the solution of the collinear form of the single-particle equations of relativistic
spin-density-functional theory. It is based on the use of appropriate boundary conditians @gr and the
identification of “spin-up” and “spin-down” solutions by a node quantum number. A comparison with previ-
ous results and a complete set of reference data for atomic ground states is provided.
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. INTRODUCTION as m=(0,0m,), represents the standard approach in DFT-
o _ . _ based calculations for magnetic materi@se, e.g., Ref.)9
A relativistic spin-density-functional theofRSDFT) for With the assumption of collinearity, the single-particle

magnetic systems was introduced by MacDonald and \)bskoequations of RSDFT read
and Ramana and Rajagopahore than 20 years ago. The

basic variables of this formalism are the charge dens(ty [—ica - V+(B—1)Mc?+v+ B Byc] dy= e, (1)
and the magnetization densitp(r) (we will nevertheless
often use the term “spin,” rather than “magnetization,” in
spite of the fact that the notion of spin is no longer well V(N =VexdN) Fou(r) +v,(r), 2)
defined. RSDFT can be derived from the more general,
QED-based four current version of relativistic density-

where the effective potentials are given by

n(r’
functional theory* by neglecting the coupling between the UH(f):ezf d3r'L, 3)
orbital part of the spatial currefjtand the external vector [r=r'|
potentialVgyq;
b ()= OExn,m,] @
XC T SAlrY
ef . , on(r)
—c d°r j-Veyx— | d°r m-Bgy;.
OExn,m,]
z

On the other hand, for systems not subject to external mag-
netic fields, one can give RSDFT a rigorous foundation byThe charge and magnetization densities are evaluated as
considering the actual physical Hamiltonian wigh,;=0 as
one element of a mathematically well-defined general set of
Hamiltonians with the coupling/d3 m-B,,;. The basic n(r)=2k Obi(r) i), ©®)
density-functional variables resulting from this type of
Hamiltonian aren(r) andm(r). As the Hamiltonian of inter-
est is obtained in the limiB— 0 from the more general my(r)=—ug2 Ordi(n B3, ¢(r), (7)
Hamiltonian,n(r) andm(r) are also legitimate variables in .
the case of the actual physical system, irrespective of the fact
that for nonzeroB,,; the underlying Hamiltonian differs
from the correct QED HamiltoniatFor a more detailed dis- 0,=11 for —mC?< e =<ef (8)
cussion and a comparison of the various versions of relativ- 0 for
istic density functional theory, see Ref. 5

In general, the direction ah can vary with position. Cor- where, as usual, the no-pair approximation has been applied.
responding ground states for which the directiomoéither  E[n,m,] is the exchange-correlatidrc) energy functional
changes from site to site(interatomic noncollinear of RSDFT, which, in principle, contains all effects of the
magnetism—see, e.g., Ref) 6r even on the atomic scale transverse(retarded Breijt interaction, including the trans-
(intraatomic noncollinear magnetiémwere found for a Vverse Hartree enerdd.In practice, however, the latter is con-
number of solids. However, the structure of the single-sistently neglected, and we follow this standard.
particle equations with fully noncollineam is rather in- The magnetization dependence of the relativistic
volved, so that only a limited number of corresponding ap-Ex n,m,] was only investigated for the exchange contribu-
plications is available to date? In addition, noncollinearity tion to the relativistic extensiofRLDA) of the local-density
turned out to be not very important for open-subshell atbms,approximation(LDA), ER-P'n,m,] (Refs. 2 and 11-13
i.e., the single-site problem. For this reason the collineafthroughout this contribution the abbreviation LDA is also
form of RSDFT, in which the oriention af is globally fixed  used for the spin-dependent functional, which is often termed

0 for e=-—mgC?

er<é€y,
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the LSDA in the literature Moreover, whileER-P n,m,] is The scheme is discussed in detail in Sec. II, with empha-
known analytically in the case of unpolarized systéfiisit sis on the role of appropriate boundary conditions. A number
is only available in tabulated form for polarized systems.of illustrative results and a comparison with the data in the
Only the weakly relativistic limit ofER-P'n,m,] (to first  literature are given in Sec. I, with a focus on transition-
order in 1¢?) was evaluated analytically by Xet all® (this metal elements, lanthanides and actinides as cases of particu-
functional is abbreviated by XRR in the followingNothing lar interest. In addition, we provide a complete set of atomic

is known about then, dependence dEX-PA n,m,]. For this ground-state energies obtained with three frequently used xc
reason Eqs(1)—(8) are usually applied in conjunction with functionals which can serve as atomic reference data for the

nonrelativistic spin-density functionalg,[n; ,n,], which evaluation of cohesive and dissociation energies in future

are adapted with the aid of applications of RSDFT. We summarize our results in Sec. IV.
n.(r)= } n(r)_im (n 9) II. SOLUTION OF SINGLE-PARTICLE EQUATIONS
=2 R FOR OPEN-SUBSHELL ATOMS

The starting point for the discussion of open-subshell at-
Vyo(M) = E[ OBxd N+ N + OBxd N ,n]] (100 ©Oms in the framework of RSDFT is a suitable ansatz for the
xe 2 on () on_(r) ’ RSDFT spinors. The exact solution of E() can be ex-
panded in the forms

_1[SEdn ] SEdn.n ] |
D=0 "oy en | 1 (aL'm(r) Q1 m(0,¢)

M= T ib)™(r) Qo 1.m(0,0)

e , (12

Besides nonrelativistic LDA functionals, the more advanced
generalized gradient approximatidiGGA)'® can be em-
ployed. Equation$9)—(11) also provide the basis for a semi- 1
relativistic approach, in which the relativistic LDA or GGA Qjn= > 2 (|m|53
(Ref. 16 exchange for unpolarized systems is combined with M=l em 1

the spin dependence of the nonrelativistic exchange func-

tional (as the application of completely nonrelativistic xc i.e., in terms of basis functions which have the form of the
. _app Lo pietely standard eigenfunctions of closed-subshell atoms. Assuming
functionals, this scheme implies errors of the order of)L/

The solution of Eqs(1)—(8) tums out to be far from spherical potentials, which implies a spherical averaging of

. , . the Hartree and xc componentsugand ofB,., one imme-
simple even for open-subshell atoms. A f|rst_algor|thm Wasdiately finds thatn is a good quantum number. One can also
presented by Cortonet al,'” and applied to triply charged '

positive ions of the lanthanide series. An alternative schem show that the coupling of states with differdns weak, ' so

originally designed for the treatment of core states in ban(éhatl can alsq serve as a "good” guantum nymber, and.only

. States with differenf (but the samem) remain coupled in
structure calculations, was suggested by EBeRecently, . .

; ..18°  expansion(12). In the final ansatz fory, one thus has to
two further algorithms were presented by Yamagairal. : . : - L

20 A ; differentiate between states withr@| =2l+1 (which in-
and Forstreuteet al=” As in the procedures by Cortore al. )
o . cludess states, which have the standard form of closed-

and Ebert, the scheme of Yamagagnial. is based on finite- subshell spinors with=1+ X
difference methods. The approach of Forstreweal, on P 2
the other hand, relies on a basis set expansion.

The variety of algorithms suggested and the limited num- B 1
ber of atomic results available in the literature reflects the brim(1) = r
intricate structure of Eq1), the main problem being a clear
technical (and conceptual distinction of “spin-up” and  and states with |+ 21+ 1, for which a superposition of
“spin-down” solutions. In this paper we suggest a robustj=|+1 with j=1—1 spinors is used’
algorithm for the solution of Eqg(1), which is based on the

jm)Y|m|(®1¢)XSI (13)

(14

Anim(N) Qi @2)im )
ibnim(r) Qip @) i+1m/’

identification of an unambigous node quantum number for 1 as (1) Q
the distinction of spin-up and -down states. The scheme re- b (== nimo sy (15)
lies on finite-difference methods, so that any desired accu- nime rs==1 \ibyme(r) Q)4 (si2) 1 +sm

racy can be achieved by a suitable choice of the radial grid.

It can be directly implemented in standard band structurén Egs.(14) and (15), n represents the standard node quan-
codes(for the calculation of core statesDue to its high tum number. In addition, we have introduced a quantum
stability and the very general nature of the boundary condinumbero whose precise nature remains to be clarified. For
tions used, the algorithm allows calculations for any neutratlosed-subshell atoms is equivalent tgj, i.e., o can take
atom, both on the level of the LDA as well as the numeri-two values only.

cally more critical GGA, employing either a point nucleus or  Insertion of Eqs(14) and (15) into Eq. (1) leads to two

an extended nuclear charge distribution. Taking the lienit sets of coupled radial equations for the individual compo-
—c0 in a numerical fashion, the usual nonrelativistic spin-nents. For states with|&|=2l+1, this set is similar to the
density-functional results are reproduced with high accuracycase of closed subshellg=£nIm):
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I+1 2m
cl| d; _T ag= 2meC +mBXC bkv
(16)
[+1 2m
C (9r+T bk: — €t 2|+1B ay . (17)

For states with fm|+ 2l + 1 one obtains’ (k=nImo)

[+1) ) 2m N
cld,— T a = 2meC —| g™ €T mBXC bk )
(18)
I+1) | 2m + -
C ﬁr—i- — bk = 6k+ 21+ 1 XC ak +C|mecak y
(19
I ; 2m :
cld,+ F Q =|2MC — | vg— €— mBXC b, .
(20)

al: + CImecaI-: '
(21

[ 2m
c ar_F by = Us_ek_mec

(21+1)2—(2m)?]"2
= 2l+1 = 22
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noble-metal atomgcompare Sec. IJl The smalle behavior

of the four components ap, can then be extracted by inser-
tion of Egs.(23) and(24) into Egs.(18)—(21). One finds two
independent sets of coupled solutions for the components
with one free coefficient in each of the sets. The first set is
given by

at(r)y=r%g+---, (25)
b*(r)= clg+l+1 rag +-- -, (26)
b‘(r)=[% Bo r9tlag+-- -, (29
9= \/(|+1)2—(%)2, (29)

where a; has been chosen as free coefficient in order to
ensure the stability of the algorithm in the limits (;/c)
—0 and By/c)—0 (For brevity the quantum numbé&rhas
been dropped In the limit B,.=0 this solution goes over
into aj=1+1/2 state.

The second possible solution, for whitly is the most

Equations(16) and (17) can be solved with the standard appropriate choice for the free coefficient, has the forms
techniques used for closed-subshell atoms, so that we focus
on the solution of Eqs(18)—(21) in the following.

For this solution we proceed in the standard fasHion:
Starting from suitable boundary conditions at the origin the
differential equation$18)—(21) are integrated outward for a {

Cim B

at(r)= { - r'*lpg +- (30

f+1p—
trial value fore (via some finite-difference scheméor the T & o r' g +---, (3D

samee, an inward integration is performed, starting from a
sufficiently large radius .. The mismatch of the outward
and inward integrated solutions at some intermediate radius
R (typically the classical turning pointietermines a correc-
tion for the eigenvalue. The three steps are then repeated b-(r)=r'by
until convergence is obtained.

(32

(33

The first step of the solution of Eq&l8)—(21) is thus an >
analysis of the smali- regime, which fixes the boundary f= |2_(E) )
conditions for the outward integration. For this purpose one

has to specify the behavior of the potentials in the vicinity ofthis solution corresponds to ja=1— 1/2 state forB,.=0.

(39

the nucleus: Equations(25)—(29) and (30)—(34) can be used directly as
coupled boundary conditions for the outward integraffon.
U_1 . . .
vy(r)= —+Uo+vlr+vzf2+ - (23) These boundary conditions differ from those suggested in
r Refs. 17-19 by a coupling of the and — components via
Byo(r)=Bg+Bir +Bor+---. (24) Bo-

In the next step one has to analyze E(s3)—(21) for
The power serie$Egs. (23) and (24)] are exact for finite larger. In this limit the potentials behave as
nuclei (with v _;=0), and an excellent approximation for

point nuclei: While the LDA and GGA xc potentials diverge

at the origin in the case of point nuclei, this divergence is (r)— -+ r_+ - tooe Y, (39
weak compared to the divergence of the nuclear potential, so

that it can be absorbed intg andB (for GGA's the leading —

contribution may alternatively be includedin ;). Note that Byo(r)= B, +. o+ Boe 7. (36)
By does not vanish in general, as is easily seen for alkali- or r2
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v_, reflects a possible ionic charge and, in the case of thE0T the second solutiorr and — have to be interchanged.
exact exchange functional, the self-interaction correction fofrduations(41)—(44) can be used as boundary conditions for

the most weakly bound orbitaf.In LDA or GGA calcula-
tions for neutral atoms, one has ;=0. The quantities _,
andB _, vanish in the case of the LDA and for most GGA's,

so thatv; andB, . decay exponentially for neutral atoms. On
the other hand, 1f contributions are present for the Becke

GGA Z?*|nsertion of Eqs(35) and(36) into Eqgs.(18)—(21)
shows that asymptotically™ andb™ are decoupled frora™
andb™:

a*(r)=agre ™, (37)
b*(r)=|—|acrhe (39
cal| 0 ’
a=[—e(2mg+ €e/c?) ]2, (39
v mgc2+
. & C (40)

C [—e(2mc?+e)]¥?

the inward integration for all Kohn-ShafKS) states.

The complete solution of Eq$18)—(21) is then obtained
by a linear combination of the two independent solutions
from the outward and inward integrations:

as(r)= ai,out(r) + ag,out(r) = ai,in(r)—i_ a;,in(r)v (46)

bs(r): bi,out(r) + b;,out(r) = i,in(r) + b;,in(r)' (47)

The outward and inward integrated solutions have to be
matched pairwise at some radiRs Use of three equations
from the set of equation@6) and(47) at the matching point,
together with the overall normalization of the spinor,

1:f°°dr2 [a5(r)2+ bS(r)2], (48)
0 s=%

allows a determination of the four free coefficienss §,. .

byoutor A1inor A2in0 IN the boundary conditions. The re-
maining mismatch of the fourth equation then provides a
first-order correction for the eigenvalue,

One thus also finds two independent sets of boundary condi-

tions with one free constant in each of the sets. For the first

solution one chooses, as a free coefficient, and sed§

equal to zero. For the second solution the role of the two

coefficients is interchanged.
The decay ofB,, for large values of is determined by

the eigenvalues of the most weakly bound orbitals. Thus,

in the case of core stateB, is not yet sufficiently small
for typical starting points ., for the inward integration.
In addition, one has eithefta® (rmad|<|a™ (rmay| OF

[a"(rmad|>]a (rmay|, a@s the core states are close to

spinors with goodj. Consequently, at .., the B,. term
which couples the dominant componeat® to the much
smaller componerd*® can be larger than the asymptotically
leading contribution on the right-hand sides of E4®) and
(21), |CimByca™ % >|ea™®|. The asymptotic independence of
a', b* froma~, b~ is thus lost in many practical situations.
Fortunately, an inclusion of the asymptotically leadiBg.
contribution in the boundary conditions is possikéee the
Appendix. For the first asymptotic solution this leads to

a*(r)=agrhe ", (41)
€ |—
b*(r)z{a agrihe o, (42)
_ aCp, — _
a (r)={ Fe I(r)|agrhe a, (43
b‘(r)=[(;—l(r;<l(r)— BX;(r)) agrihe (44)
I(r):frdr’BXC(r’). (45)

56=CS:2+ {bS (R)[aS,(R)—as,(R)]—aS,(R)[bS,(R)

R
o3RI [ dr S (a3, 07+ b3

0 -1
+f dr >, [aﬁn(r)2+b$n(r)2]} , (49
R s==+

+

whereag = a; o+ a5 00 €tC.

An important consequence of Eqgglé) and (47) is the
fact that the individual outward integrated solutions are not
eigenstates of the RSDFT Hamiltonian. They thus must di-
verge exponentially for large as Eqs(18)—(21) only allow
exponentially decaying and exponentially increasing solu-
tions. In view of Egs.(46) and (47), the asymptotic diver-
gencies must cancel betwead,, anda3,  as well as be-
tweenb$ ., andb3, . This is demonstrated in Fig. 1 for the
first of the two 31— , 3o-type solutions of copper, for which
a~ is the dominant component. A corresponding plot for the
dominant componenta(") of the second 8,,— , 3»-type so-
lution of copper is given in Fig. 2. In both casa$,, and
a5, Start to diverge beyond the classical turning point,
while their sum decays exponentially. There is, however, one
important difference between the two solutions: The compo-
nents of the energetically higher solution exhibit an addi-
tional node in the classically forbidden regime. This node
allows an unambigous classification and a numerical distinc-
tion of the two states, which suggests an identification of the
guantum numbew in Eqg. (15) with the presence or absence
of this feature. We will call the more weakly bound level the
o= state, and the level without any nodes in the classically
forbidden regime ther=1 state. In the example chosen the
eigenvalues obtained with the nonrelativistic LDA for
Exdn,,n_] (Ref. 25 are —198.4 mH for the 8),__ 45
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1

0.8

0.6

a- 0.4

[Bohr‘l/z] 0.2
0
-0.2

-0.4

FIG. 1. Dominant componenta() of the 3d', 5, state of Cu:
Individual outward integrated solutions from boundary conditions

r [Bohr]

(25—(29) (a;) and(30—(34) (a;) vs completea.

state and—190.5 mH for the 8,_ . 5, State. In the shoot-
ing procedure for the solution of Egel8)—(21) the node in
the classically forbidden regime can be used to obtain an
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1 e

0.8 |-
0.6

+ 04

a

[Bohr~%/%] 02 |
0

-0.2

-0.4

FIG. 3. &' ,,, orbital of Mn.

2m
m(1)== 552 Ol 5y qla (D2 (1)7]

2m

2m
+ o133 0k (2= 5= b (n)?

upper or lower bound for the eigenvalue, analogous to the
nodes in the classically allowed regime.

For a first illustration of the node quantum numlemwe
have chosen orbitals of a closed subshell. In this case o
term in expansiori15) is highly dominant and very close to
the corresponding spinor of the unpolarized approach. As
example for an open subshell we show, in Fig. 3, the?
3d] _ . ,,, state of manganese. In this case éheand thea™
component contribute comparably to the total norm.

Once the radial equatior{$8)—(21) are solved for all rel-
evant single-particle states, it only remains to implement this
solution in the KS self-consistency cycle. The relevant points

+2C|ma,f(r)ak(r)J (51

r‘[‘iz(nlma) for states with 2m|# 2l + 1 andk=(nIm) for
aflml=21+1; a =b, =0 in the latter case Equations(50)

nd (51) automatically lead to spherical potentialg and
B,.. The spherically averaged densities are also used for the
evaluation of the total energy.

Ill. RESULTS

In this section we present a number of illustrative results

are the construction of the spherically averaged potentialg,g 5 set of reference data, obtained with the procedure de-

and the evaluation of the total energy. Following previou

algorithms?’~1°

! Sscribed in Sec. Il. The physical aspects behind the solutions
we have chosen to perform the spherical av-o¢ £qs. (18)—(21) were extensively discussed in the litera-

erage for the charge and magnetization densities, rather thafyre to which we refer the interested readsee, in particu-
for the potentials themselves:

1
n(N=g2 2 Ok 2 [an?+byn? (50

1

08 |-

0.6

. 04

a

[Bohr™ g0 L

0

-0.2

-0.4

FIG. 2. Dominant componena(') of the &', 5, state of Cu.

r [Bohr]

lar, Ref. 19.

We first compare our results with the older data in the
literature, using the same xc functional in our calculations as
the functional applied in the corresponding reference. Our
results for the eigenvalues of the lanthanide ions
ce"—Gd" agree very well with those given by Cortona
et al:” They are essentially identical for the lighter ele-
ments, for which C&' is given as an examplaee Table)l
and differ by less than 1 mH even for the heaviest ion. The
corresponding ground state energies are also reasonably
close, as can be seen from Table Il for the case of'GA
similar degree of agreement is not found for the eigenvalues
of the lanthanide and actinide ions of Yamagaetiall®
Table | shows that the differences are of the order of 25 mH.

Ground state energies of neutral atoms have only been
published by Eschrig and Serveditn these calculations the
RLDA for the exchange energy of an unpolarized sysfem
has been combined with the spin-dependence of the nonrel-
ativistic exchange functionalE,[n, ,n_]=(ER-P42n,]
+ER*PA2n_1)/2. In Table Il we compare the correspond-
ing results for Sn. Again, excellent agreement is fotfhd.
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TABLE I. 4f eigenvalues of G¢ [XRR (Ref. 13; vBH (Ref. 29; pw, present work

m o Oy — € (Hartreg
pw Ref. 17 pw Ref. 19
X: XRR; c.— X: LDA; c: vBH

+5/2 T 1 1.0239 1.0239 1.0981 1.1231
+3/2 T 0 1.0225 1.0225 1.0968 1.1203
+1/2 T 0 1.0210 1.0210 1.0954 1.1204
—-1/2 T 0 1.0194 1.0194 1.0938 1.1189
-3/2 T 0 1.0175 1.0175 1.0920 1.1170
—5/2 T 0 1.0154 1.0153 1.0898 1.1148
—712 0 1.0125 1.0125 1.0866 1.1117
—5/2 l 0 0.9954 0.9954 1.0736 1.0987
—-3/2 1 0 0.9932 0.9932 1.0713 1.0965
—1/2 1 0 0.9914 0.9914 1.0695 1.0947
+1/2 1 0 0.9897 0.9898 1.0680 1.0931
+3/2 1 0 0.9883 0.9883 1.0665 1.0917
+5/2 1 0 0.9869 0.9869 1.0653 1.0904
+712 0 0.9857 0.9857 1.0641 1.0892

As an illustration of the possibilites of the new method, The accuracy which can be achieved with the algorithm
Fig. 4 shows the xc-magnetic field obtained for neutral goldallows a detailed investigation of the interplay between rela-
with the LDA. The form ofB,. directly reflects the orbital tivistic, spin, and nonlocal xc effects. As examples, in Table
density of the uncompensated 6lectron. In addition, Fig. 4 1l we list the ground-state energies of vanadium and iron.
clearly exhibits the fact that the leading coefficid®¢ of = The data for iron show that the stability of the spin-polarized
expansion(24) does not vanish, as incorporated into bound-ground state relative to the unpolarized state is somewhat
ary conditions(25—(34). The absolute size dB, is even lower in the relativistic case than in the nonrelativistic limit
larger in the case of GGAs. The corresponding ground-staté122 versus 130 mH for thed$ 4s? configuration and the
energy of gold is included in Table IlI. It differs from the LDA). In consistency with this observation, Fig. 5 demon-
energy obtained with an unpolarized calculation by 0.15 eVstrates that the relativistic treatment leads to somewhat
a correction, which is definitively not negligible for the smaller errors for the g—3d transfer energies than the cor-
evaluation of dissociation or cohesive energies. responding nonrelativistic calculations, in particular for the

TABLE Il. Ground-state energies of some prototype atoms: Spin-dependent vs unpolarized LDA and
PW91-GGA(Ref. 15 values. NR undef indicates a strictly nonrelativistic calculatipdWN (Ref. 25; PZ
(Ref. 30; RLDA (Refs. 14 and &t —XRR (Ref. 13; all energies are in Hartreps

Atom Ts Mode E, E. Occupation —Eiot
\Y R pol. LDA VWN 3d%4s? 947.14566
R pol. LDA VWN 3d%4st 947.18279
R pol. PW91 PW91 83%4s? 949.36423
R pol. PW91 PW91 8%4st 949.40562
Fe NR unpol. LDA VWN 316452 1261.09305
NR pol. LDA VWN 3d%4s? 1261.22329
R unpol. LDA VWN 3d%4s? 1270.23386
R pol. LDA VWN 3d%4s? 1270.35642
Sn R pol. RLDA PZ 65°6p> 6165.27109
Refs. 8 and 26 R pol. RLDA PZ 65°6p? 6165.27113
Gd* R pol. XRR — 47 11239.25673
Ref. 17 R pol. XRR — 47 11239.248
Au R unpol. LDA VWN 6s* 19037.57102
R pol. LDA VWN 6s? 19037.57646
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0.002 TABLE IIl. Dependence of atomic ground-state energies
0 (—Eip) on the treatment of spin: Comparison of the correct
-0.002 magnetization-dependent form 01_‘ the weakly rela_ltivistic LDA
[XRR (Ref. 13] and the combination of the unpolarized, weakly
-0.004 relativistic LDA functional with the spin-dependence of the nonrel-
B.. -0.006 ativistic E, (all energies are in Hartrees
[Hartree] -0.008
-0.01 Atom XRR Nonrel. spin
-0.012 Cr 1045.94224 1045.94204
-0.014 Fe 1267.11644 1267.11618
-0.016 Eu 10814.45737 10814.45613
0.001 0.01 0.1 1 10 W 16101.78182 16101.78179
v [Bohr] Au 21599.62664 21599.62664
FIG. 4. Exchange-correlation magnetic potential: Au. v 27925.39595 27925.39590
Am 30335.91140 30335.91099

upper half of the 8 serie§compare Ref. 27—as experimen-
tal reference values the {2 1)-weighted interconfigura-
tional energies of Ref. 28 have been utilife@n the other  clearly supports the combination of relativistic exchange
hand, the energy gain obtained by transferring an electrofunctionals for unpolarized systerfias, e.g., the relativistic
from the minority spin 4 to the majority spin 8 level in-  GGA (Ref. 18] with the spin dependence of the nonrelativ-
creases when gradient corrections are includemin 37 to  istic exchange in applications to polarized systems.
44 mH in the case of vanadium and ttRerdew-Wang 91 As an additional demonstration of the general applicabil-
GGA (Ref. 15]. As a consequence the deviations from theity of the scheme for the solution of E¢4.8)—(21), in Fig. 6
experimentak-d transfer energies are slightly larger for the we plot the percentage deviation of the resulting first ioniza-
GGA (see Fig. 5. This result indicates the limitations of tion potentials(IP’s) from experiment for the complete peri-
these semilocal functionals. odic table. In Fig. 6 the nonrelativistic LDARef. 25 has
The relevance of a magnetization-dependent treatment dfeen usedthe IP’s have been evaluated as ground-state en-
spin in relativistic approximations foE,. is illustrated in  ergy differences, utilizing the experimental ground-state con-
Table 1ll. We list some prototype ground state energies obfiguration. The spin-dependent approach is compared with
tained by dealing with the spin dependence of the weaklan unpolarized treatment. It is obvious that the spin-
relativistic LDA for E, (correct to order 1?) in two differ- dependent scheme yields much more accurate IP’s, in par-
ent ways: On the one hand, the correct magnetizationticular for light atoms and lanthanides. On the other hand,
dependent form given by Xet al*®is used via Eqs(4) and  only minor differences are observed for the 2lements.
(5). On the other hand, the form of this functional for unpo- Similar results are found in the case of the PW91-GGH#y.

larized systems is combined with the spin dependence of thg). This is consistent with the results for ttsed transfer
nonrelativistic exchange, energies.

1 r—unpol ool In Table IV we list the ground state energies of all neutral

Ex(n. n_]1=3{E""°[2n, ]+ E;""°[2n_]}, atoms up toZ=102 obtained with the LDA and two fre-
relying on Eqgs.(9)—(11). Table Il indicates that the differ- quently applied GGAS, on the basis of the experimental
ences between the energies obtained with the two approachgeound state configuration. These numbers can serve as
are rather small, in particular for heavy elements. This resulatomic reference energies in the calculation of dissociation or

cohesive energies.

0.1 T T T T T T T T T
[ ]
25 T T T T T T T T
005 @ % - ok v unpolarized ]
[ L] :'l spin-dependent )\
{ I
AE ° 2 o . i B |“ -
[Hartree] ¥ 8 10 :",l ! ]
5 * % | i N
- . @ Expt. & i 5 N /
0.05 O GGA, rel. + @ v
X LDA, rel. E 0 i
+ LDA, nonrel. t 1
0.1 1 1 1 ] ] ] 1 1 5 i
S¢ Ti V Cr Mn Fe Co Ni Cu 10 L

FIG. 5. 4s23d"—4s'3d"*! transfer energies of @transition- 60 70 80 90

metal elements: RSDFT results on the basis of the L(BAf. 25
and PW91-GGA datéRef. 19 as well as nonrelativistic LDA data
versus experimenffor the latter the (2+ 1)-weighted intercon-
figurational energies of Ref. 28 have been utilized

0 10 20 30 40 50
Y/

FIG. 6. lonization potentials of neutral atoms: Percentage devia-
tion of spin-dependent and unpolarized LDA results from experi-
ment (Ref. 33.
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APPENDIX: SOLUTION OF ASYMPTOTIC EQUATIONS
INCLUDING B,

In order to find the asymptotic solutions of E¢$8)—(21)
for nonvanishingB, . one first of all separates the asymptoti-
cally dominant factors im™ andb™ from the remainders:

-10 1 | 1 1 1 | 1 1 1

0 10 20 30 40 50 60 70 80 90 a“(ry=a“(r)rhe ", (A1)
zZ
FIG. 7. lonization potentials of neutral atoms: Percentage devia- b*(r)=b=(r)r"e " (A2)
tion of spin-dependent PW91-GGA results from experimgtef. L . . .
33) vs LDA data. Restricting the discussion to Eq4.8) and(19), as differen-

tial equations fom™ andb*, one obtains
IV. SUMMARY

_ At — 2 Bt
An algorithm for a solution of the single-particle equa- c(dr—a)a’(r)=(2mec+ e)b™(r), (A3)

tions of RSDFT for open-subshell atoms, introduced in Sec. 5 5 _

I, is found to be both very robust and generally applicable. c(d,—a)bt(r)=—ea*(r)+CpBy(r)a (r). (A4)
The first property results from the identification of an addi-

tional node quantum number for the distinction betweerPifferentiation of Eq.(A3) and subsequent insertion of Eq.
spin-up and spin-down states, which allows the use of théA4) leads to

standard numerical shooting strategy to obtain convergence
for a given state. In fact, this scheme is sufficiently stable to
treat all core and valence states on equal footing. The general
applicability is due to the use of extended boundary condi-
tions, which also account for nonvanishing magnetic xcThe general solution of EGA5) is obtained as a superposi-
fields at the nuclear site. The scheme can thus be used dion of the general solution of the corresponding homoge-

2
(3 =20)33" (1) == “—CinBy3 (1), (A5)

rectly in standard band structure codes. neous equation,
On the basis of this algorithm we have shown that RSDFT
yields more accurate-d transfer energies for thed3ele- a*(r)=aj +age*, (AB)

ments than nonrelativistic spin-density-functional theory,

without, however, really resolving the basic difficulties t0 yith 3/ =0 for normalizablea*(r), and a special solution
reproduce these quantities with LDA or GGA functionls. of the inhomogeneous equation:

A case in point is vanadium, for which the RSDFT incor-

rectly predicts a 8*4s! ground state for both types of xc o2 ;

functionals. Nevertheless, spin-polarized relativistic GGA ar5+(r)=——c,mj dr'e?*( =B, (r')ya (r').
calculations currently represent the optimum DFT approach € *

to magnetic systems. For this reason we have provided a (A7)

complete set of atomic ground-state energies for future rEquuation(AY) can be simplified by using the fact that the

erence. ... r’-dependence of the integrand is dominated by the decay of
We have also analyzed the relevance of a magnetization-_, " . ) ~
« as neitheB,.(r') nora (r’) change much over the

dependent treatment of the spin degree of freedom in thE _
relativisticE,... For the only functional for which the correct 1€Ngth scale of 1/(2):
magnetization-dependent form is knothe weakly relativ-
istic LDA exchangg exact results have been compared with =+ « g
. - - . 1% ~—C,B A8
those of an approximate scheme, in which the form of this ra () e Im xe(1)a"(1) (A8)
functional for unpolarized system is combined with the spin o _ _
dependence of the nonrelativistic exchange. It has beelfecall that theB, -contribution to(AS) is only relevant if
found that the two approaches yield almost identical groundBxc decays much more slowly than]. The complete solu-
state energies, thus supporting the use of the nonrelativistiéon is thus given by
spin dependence d&,. in RSDFT calculations.
~ — _ o% r
a*(r)=a5+a*(r)2—C|mf dr'By(r'),  (A9)
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TABLE IV. Ground-state energies—E,;y;) of neutral atoms:
LDA (Ref. 25 vs PW91- GGA(Ref. 15 and PBE-GGA(Ref. 31
[all energies are in HartreéRef. 32].

LDA PW91-GGA PBE-GGA
H 0.47868 0.50156 0.49999
He 2.83497 2.90014 2.89307
Li 7.34475 7.47500 7.46300
Be 14.45004 14.65087 14.63287
B 24.36107 24.63755 24.61302
C 37.48636 37.84328 37.81035
N 54.16817 54.61073 54.56773
O 74.58346 75.11146 75.05801
F 99.20716 99.82614 99.76010
Ne 128.37846 129.09377 129.01350
Na 161.66714 162.48730 162.39503
Mg 199.46049 200.38494 200.27996
Al 241.77643 242.81025 242.69215
Si 288.85159 289.99857 289.86682
P 340.85376 342.11738 341.97145
S 397.86736 399.24050 399.07912
Cl 460.13334 461.62158 461.44434
Ar 527.81780 529.42559 529.23208
K 600.57406 602.30432 602.09557
Ca 678.70298 680.55420 680.32969
Sc 762.33992 764.31159 764.06930
Ti 851.76816 853.86228 853.60145
\% 947.14566 949.36423 949.08436
Cr 1048.69333 1051.04365 1050.74317
Mn 1156.36439 1158.83785 1158.51875
Fe 1270.35642 1272.95358 1272.61349
Co 1390.90098 1393.62421 1393.26234
Ni 1518.15298 1521.00469 1520.62057
Cu 1652.33534 1655.31827 1654.91020
Zn 1793.39780 1796.51371 1796.08415
Ga 1941.22253 1944.47824 1944.02698
Ge 2096.03717 2099.43590 2098.96262
As 2257.94100 2261.48607 2260.99085
Se 2426.97940 2430.66225 2430.14385
Br 2603.31988 2607.14578 2606.60400
Kr 2787.07159 2791.04474 2790.47968
Rb 2977.92162 2982.04501 2981.45770
Sr 3176.13524 3180.40759 3179.79760
Y 3381.76966 3386.19325 3385.55955
Zr 3595.05989 3599.63803 3598.98045
Nb 3816.16323 3820.90858 3820.22692
Mo 4045.16896 4050.07748 4049.37223
Tc 4282.09325 4287.15629 4286.42569
Ru 4527.15444 4532.37491 4531.61960
Rh 4780.47262 4785.85447 4785.07400
Pd 5042.19949 5047.74658 5046.94089
Ag 5312.36353 5318.07889 5317.24754
Cd 5591.01008 5596.89224 5596.03521
In 5878.05292 5884.10790 5883.22493
Sn 6173.71182 6179.94237 6179.03293

TABLE IV. (Continued.

PHYSICAL REVIEW B 64 235126

LDA PW91-GGA PBE-GGA

Sb 6478.07839 6484.48848 6483.55270
Te 6791.22030 6797.80216 6796.83904

I 7113.27454 7120.03361 7119.04288
Xe 7444.34787 7451.28831 7450.27004
Cs 7784.19997 7791.32503 7790.28008
Ba 8133.08937 8140.39877 8139.32674
La 8491.11732 8498.61478 8497.51480
Ce 8858.67009 8866.35196 8865.22203
Pr 9235.96003 9243.83192 9242.67267
Nd 9623.10563 9631.17032 9629.98155
Pm 10020.24734 10028.50776 10027.28928
Sm 10427.52656 10435.98572 10434.73736
Eu 10845.08611 10853.74713 10852.46873
Gd 11272.90664 11281.77201 11280.46305
Tb 11711.33988 11720.40251 11719.05982
Dy 12160.47426 12169.74299 12168.36791
Ho 12620.48353 12629.96208 12628.55449
Er 13091.52321 13101.21543 13099.77518
m 13573.75221 13583.66203 13582.18898
Yb 14067.33441 14077.46585 14075.95984
Lu 14572.27872 14582.63729 14581.09829
Hf 15088.69894 15099.28911 15097.71671
Ta 15616.73835 15627.56546 15625.95971
w 16156.54607 16167.61583 16165.97690
Re 16708.27579 16719.59438 16717.92247
Os 17272.03067 17283.59291 17281.88622
Ir 17848.04336 17859.85619 17858.11445
Pt 18436.49930 18448.57231 18446.79565
Au 19037.57646 19049.91433 19048.10318
Hg 19651.39495 19664.00068 19662.15449
T 20277.88468 20290.76681 20288.88542
Pb 20917.38869 20930.55076 20928.63387
Bi 21570.04178 21583.49471 21581.54167
Po 22236.06385 22249.80929 22247.82018
At 22915.66136 22929.70595 22927.68004
Rn 23609.05606 23623.40775 23621.34477
Fr 24316.18975 24330.85713 24328.75773
Ra 25037.42229 25052.41055 25050.27425
Ac 25772.94915 25788.26797 25786.09365
Th 26523.10816 26538.76726 26536.55478
Pa 27288.31317 27304.31708 27302.06588
U 28068.89946 28085.26058 28082.97067
Np 28865.16067 28881.88969 28879.56085
Pu 29677.47069 29694.58126 29692.21410
Am 30506.07047 30523.57335 30521.16694
Cm 31351.22918 31369.13313 31366.68599
Bk 32213.48367 32231.79236 32229.30296
Cf 33093.11914 33111.85208 33109.32091
Es 33990.56885 34009.74129 34007.16811
Fm 34906.25722 34925.88515 34923.26963
Md 35840.63401 35860.73433 35858.07611
No 36794.17732 36814.76807 36812.06676
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