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Relativistic spin-density-functional theory: Robust solution of single-particle equations
for open-subshell atoms
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We present an approach to the solution of the collinear form of the single-particle equations of relativistic
spin-density-functional theory. It is based on the use of appropriate boundary conditions forr→0,̀ and the
identification of ‘‘spin-up’’ and ‘‘spin-down’’ solutions by a node quantum number. A comparison with previ-
ous results and a complete set of reference data for atomic ground states is provided.
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I. INTRODUCTION

A relativistic spin-density-functional theory~RSDFT! for
magnetic systems was introduced by MacDonald and Vos1

and Ramana and Rajagopal2 more than 20 years ago. Th
basic variables of this formalism are the charge densityn(r)
and the magnetization densitym(r) ~we will nevertheless
often use the term ‘‘spin,’’ rather than ‘‘magnetization,’’ i
spite of the fact that the notion of spin is no longer w
defined!. RSDFT can be derived from the more gener
QED-based four current version of relativistic densi
functional theory3,4 by neglecting the coupling between th
orbital part of the spatial currentj and the external vecto
potentialVext ;

2
e

cE d3r j•Vext→E d3r m•Bext .

On the other hand, for systems not subject to external m
netic fields, one can give RSDFT a rigorous foundation
considering the actual physical Hamiltonian withBext50 as
one element of a mathematically well-defined general se
Hamiltonians with the coupling*d3r m•Bext . The basic
density-functional variables resulting from this type
Hamiltonian aren(r) andm(r). As the Hamiltonian of inter-
est is obtained in the limitBext→0 from the more genera
Hamiltonian,n(r) andm(r) are also legitimate variables i
the case of the actual physical system, irrespective of the
that for nonzeroBext the underlying Hamiltonian differs
from the correct QED Hamiltonian~For a more detailed dis
cussion and a comparison of the various versions of rela
istic density functional theory, see Ref. 5!.

In general, the direction ofm can vary with position. Cor-
responding ground states for which the direction ofm either
changes from site to site~interatomic noncollinear
magnetism—see, e.g., Ref. 6! or even on the atomic scal
~intraatomic noncollinear magnetism7! were found for a
number of solids. However, the structure of the sing
particle equations with fully noncollinearm is rather in-
volved, so that only a limited number of corresponding a
plications is available to date.7,8 In addition, noncollinearity
turned out to be not very important for open-subshell atom8

i.e., the single-site problem. For this reason the collin
form of RSDFT, in which the oriention ofm is globally fixed
0163-1829/2001/64~23!/235126~10!/$20.00 64 2351
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as m5(0,0,mz), represents the standard approach in DF
based calculations for magnetic materials~see, e.g., Ref. 9!.

With the assumption of collinearity, the single-partic
equations of RSDFT read2

@2 ica•“1~b21!mec
21vs1bSzBxc#fk5ekfk , ~1!

where the effective potentials are given by

vs~r!5vext~r!1vH~r!1vxc~r!, ~2!

vH~r!5e2E d3r 8
n~r8!

ur2r8u
, ~3!

vxc~r!5
dExc@n,mz#

dn~r!
~4!

Bxc~r!52mB

dExc@n,mz#

dmz~r!
. ~5!

The charge and magnetization densities are evaluated a

n~r!5(
k

Qkfk
†~r!fk~r!, ~6!

mz~r!52mB(
k

Qkfk
†~r!bSzfk~r!, ~7!

Qk5H 0 for ek<2mec
2

1 for 2mec
2,ek<eF

0 for eF,ek ,

~8!

where, as usual, the no-pair approximation has been app
Exc@n,mz# is the exchange-correlation~xc! energy functional
of RSDFT, which, in principle, contains all effects of th
transverse~retarded Breit! interaction, including the trans
verse Hartree energy.10 In practice, however, the latter is con
sistently neglected, and we follow this standard.

The magnetization dependence of the relativis
Exc@n,mz# was only investigated for the exchange contrib
tion to the relativistic extension~RLDA! of the local-density
approximation~LDA !, Ex

RLDA@n,mz# ~Refs. 2 and 11–13!
~throughout this contribution the abbreviation LDA is als
used for the spin-dependent functional, which is often term
©2001 The American Physical Society26-1
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the LSDA in the literature!. Moreover, whileEx
RLDA@n,mz# is

known analytically in the case of unpolarized systems,14,1 it
is only available in tabulated form for polarized system
Only the weakly relativistic limit ofEx

RLDA@n,mz# ~to first
order in 1/c2) was evaluated analytically by Xuet al.13 ~this
functional is abbreviated by XRR in the following!. Nothing
is known about themz dependence ofEc

RLDA@n,mz#. For this
reason Eqs.~1!–~8! are usually applied in conjunction wit
nonrelativistic spin-density functionalsExc@n↑ ,n↓#, which
are adapted with the aid of

n6~r!5
1

2Fn~r!7
1

mB
mz~r!G ~9!

vxc~r!5
1

2 H dExc@n1 ,n2#

dn1~r!
1

dExc@n1 ,n2#

dn2~r! J , ~10!

Bxc~r!5
1

2H dExc@n1 ,n2#

dn1~r!
2

dExc@n1 ,n2#

dn2~r! J . ~11!

Besides nonrelativistic LDA functionals, the more advanc
generalized gradient approximation~GGA!15 can be em-
ployed. Equations~9!–~11! also provide the basis for a sem
relativistic approach, in which the relativistic LDA or GG
~Ref. 16! exchange for unpolarized systems is combined w
the spin dependence of the nonrelativistic exchange fu
tional ~as the application of completely nonrelativistic x
functionals, this scheme implies errors of the order of 1/c2).

The solution of Eqs.~1!–~8! turns out to be far from
simple even for open-subshell atoms. A first algorithm w
presented by Cortonaet al.,17 and applied to triply charged
positive ions of the lanthanide series. An alternative sche
originally designed for the treatment of core states in ba
structure calculations, was suggested by Ebert.18 Recently,
two further algorithms were presented by Yamagamiet al.19

and Forstreuteret al.20 As in the procedures by Cortonaet al.
and Ebert, the scheme of Yamagamiet al. is based on finite-
difference methods. The approach of Forstreuteret al., on
the other hand, relies on a basis set expansion.

The variety of algorithms suggested and the limited nu
ber of atomic results available in the literature reflects
intricate structure of Eq.~1!, the main problem being a clea
technical ~and conceptual! distinction of ‘‘spin-up’’ and
‘‘spin-down’’ solutions. In this paper we suggest a robu
algorithm for the solution of Eq.~1!, which is based on the
identification of an unambigous node quantum number
the distinction of spin-up and -down states. The scheme
lies on finite-difference methods, so that any desired ac
racy can be achieved by a suitable choice of the radial g
It can be directly implemented in standard band struct
codes~for the calculation of core states!. Due to its high
stability and the very general nature of the boundary con
tions used, the algorithm allows calculations for any neu
atom, both on the level of the LDA as well as the nume
cally more critical GGA, employing either a point nucleus
an extended nuclear charge distribution. Taking the limic
→` in a numerical fashion, the usual nonrelativistic sp
density-functional results are reproduced with high accura
23512
.
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The scheme is discussed in detail in Sec. II, with emp
sis on the role of appropriate boundary conditions. A num
of illustrative results and a comparison with the data in
literature are given in Sec. III, with a focus on transitio
metal elements, lanthanides and actinides as cases of pa
lar interest. In addition, we provide a complete set of atom
ground-state energies obtained with three frequently use
functionals which can serve as atomic reference data for
evaluation of cohesive and dissociation energies in fut
applications of RSDFT. We summarize our results in Sec.

II. SOLUTION OF SINGLE-PARTICLE EQUATIONS
FOR OPEN-SUBSHELL ATOMS

The starting point for the discussion of open-subshell
oms in the framework of RSDFT is a suitable ansatz for
RSDFT spinors. The exact solution of Eq.~1! can be ex-
panded in the forms

fk~r!5
1

r (l jm S ak
l jm~r ! V j ,l ,m~Q,w!

ibk
l jm~r ! V j ,2j 2 l ,m~Q,w!

D , ~12!

V j lm5 (
ml52 l

l

(
s561/2

S lml

1

2
sU jmDYlml

~Q,w!xs , ~13!

i.e., in terms of basis functions which have the form of t
standard eigenfunctions of closed-subshell atoms. Assum
spherical potentials, which implies a spherical averaging
the Hartree and xc components invs and ofBxc , one imme-
diately finds thatm is a good quantum number. One can al
show that the coupling of states with differentl is weak,17 so
that l can also serve as a ‘‘good’’ quantum number, and o
states with differentj ~but the samem! remain coupled in
expansion~12!. In the final ansatz forfk one thus has to
differentiate between states with 2umu52l 11 ~which in-
cludess states!, which have the standard form of close
subshell spinors withj 5 l 1 1

2 ,

fnlm~r!5
1

r S anlm~r ! V l 1(1/2),l ,m

ibnlm~r ! V l 1(1/2),l 11,m
D , ~14!

and states with 2umuÞ2l 11, for which a superposition o
j 5 l 1 1

2 with j 5 l 2 1
2 spinors is used:17

fnlms~r!5
1

r (
s561

S anlms
s ~r ! V l 1(s/2),l ,m

ibnlms
s ~r ! V l 1(s/2),l 1s,m

D . ~15!

In Eqs. ~14! and ~15!, n represents the standard node qua
tum number. In addition, we have introduced a quant
numbers whose precise nature remains to be clarified. F
closed-subshell atomss is equivalent toj, i.e., s can take
two values only.

Insertion of Eqs.~14! and ~15! into Eq. ~1! leads to two
sets of coupled radial equations for the individual comp
nents. For states with 2umu52l 11, this set is similar to the
case of closed subshells (k[nlm):
6-2
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cS ] r2
l 11

r Dak5F2mec
22S vs2ek1

2m

2l 13
BxcD Gbk ,

~16!

cS ] r1
l 11

r Dbk5S vs2ek1
2m

2l 11
BxcDak . ~17!

For states with 2umuÞ2l 11 one obtains17 (k[nlms)

cS ] r2
l 11

r Dak
15F2mec

22S vs2ek1
2m

2l 13
BxcD Gbk

1 ,

~18!

cS ] r1
l 11

r Dbk
15S vs2ek1

2m

2l 11
BxcDak

11ClmBxcak
2 ,

~19!

cS ] r1
l

r Dak
25F2mec

22S vs2ek2
2m

2l 21
BxcD Gbk

2 ,

~20!

cS ] r2
l

r Dbk
25S vs2ek2

2m

2l 11
BxcDak

21ClmBxcak
1 ,

~21!

Clm52
@~2l 11!22~2m!2#1/2

2l 11
. ~22!

Equations~16! and ~17! can be solved with the standar
techniques used for closed-subshell atoms, so that we f
on the solution of Eqs.~18!–~21! in the following.

For this solution we proceed in the standard fashion21

Starting from suitable boundary conditions at the origin
differential equations~18!–~21! are integrated outward for
trial value forek ~via some finite-difference scheme!. For the
sameek an inward integration is performed, starting from
sufficiently large radiusr max. The mismatch of the outward
and inward integrated solutions at some intermediate ra
R ~typically the classical turning point! determines a correc
tion for the eigenvalue. The three steps are then repe
until convergence is obtained.

The first step of the solution of Eqs.~18!–~21! is thus an
analysis of the small-r regime, which fixes the boundar
conditions for the outward integration. For this purpose o
has to specify the behavior of the potentials in the vicinity
the nucleus:

vs~r !5
v21

r
1v01v1r 1v2r 21•••, ~23!

Bxc~r !5B01B1r 1B2r 21•••. ~24!

The power series@Eqs. ~23! and ~24!# are exact for finite
nuclei ~with v2150), and an excellent approximation fo
point nuclei: While the LDA and GGA xc potentials diverg
at the origin in the case of point nuclei, this divergence
weak compared to the divergence of the nuclear potentia
that it can be absorbed intov0 andB0 ~for GGA’s the leading
contribution may alternatively be included inv21). Note that
B0 does not vanish in general, as is easily seen for alkali
23512
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noble-metal atoms~compare Sec. III!. The small-r behavior
of the four components offk can then be extracted by inse
tion of Eqs.~23! and~24! into Eqs.~18!–~21!. One finds two
independent sets of coupled solutions for the compone
with one free coefficient in each of the sets. The first se
given by

a1~r !5r ga0
11•••, ~25!

b1~r !5Fv21

c

1

g1 l 11G r ga0
11•••, ~26!

a2~r !5F2
Clm

2

B0

c

v21

c

1

g1 l 11G r g11a0
11•••, ~27!

b2~r !5FClm

2

B0

c G r g11a0
11•••, ~28!

g5A~ l 11!22S v21

c D 2

, ~29!

where a0
1 has been chosen as free coefficient in order

ensure the stability of the algorithm in the limits (v21 /c)
→0 and (B0 /c)→0 ~For brevity the quantum numberk has
been dropped!. In the limit Bxc50 this solution goes ove
into a j 5 l 11/2 state.

The second possible solution, for whichb0
2 is the most

appropriate choice for the free coefficient, has the forms

a1~r !5F2
Clm

2

B0

c G r f 11b0
21•••, ~30!

b1~r !5F2
Clm

2

B0

c

v21

c

1

f 1 l G r f 11b0
21•••, ~31!

a2~r !5F2
v21

c

1

f 1 l G r fb0
21•••, ~32!

b2~r !5r fb0
21•••, ~33!

f 5Al 22S v21

c D 2

. ~34!

This solution corresponds to aj 5 l 21/2 state forBxc50.
Equations~25!–~29! and ~30!–~34! can be used directly a
coupled boundary conditions for the outward integration22

These boundary conditions differ from those suggested
Refs. 17–19 by a coupling of the1 and2 components via
B0.

In the next step one has to analyze Eqs.~18!–~21! for
large r. In this limit the potentials behave as

vs~r !5
v̄21

r
1

v̄22

r 2
1•••1 v̄0e2g1r , ~35!

Bxc~r !5
B̄22

r 2
1•••1B̄0e2g2r . ~36!
6-3
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v̄21 reflects a possible ionic charge and, in the case of
exact exchange functional, the self-interaction correction
the most weakly bound orbital.10 In LDA or GGA calcula-
tions for neutral atoms, one hasv̄2150. The quantitiesv̄22

andB̄22 vanish in the case of the LDA and for most GGA’
so thatvs andBxc decay exponentially for neutral atoms. O
the other hand, 1/r 2 contributions are present for the Beck
GGA.23,24Insertion of Eqs.~35! and~36! into Eqs.~18!–~21!
shows that asymptoticallya1 andb1 are decoupled froma2

andb2:

a6~r !5ā0
6r he2ar , ~37!

b6~r !5F e

caG ā0
6r he2ar , ~38!

a5@2e~2me1e/c2!#1/2, ~39!

h52
v̄21

c

mec
21e

@2e~2mec
21e!#1/2

. ~40!

One thus also finds two independent sets of boundary co
tions with one free constant in each of the sets. For the
solution one choosesā0

1 as a free coefficient, and setsā0
2

equal to zero. For the second solution the role of the t
coefficients is interchanged.

The decay ofBxc for large values ofr is determined by
the eigenvalues of the most weakly bound orbitals. Th
in the case of core states,Bxc is not yet sufficiently small
for typical starting pointsr max for the inward integration.
In addition, one has eitherua1(r max)u!ua2(r max)u or
ua1(r max)u@ua2(r max)u, as the core states are close
spinors with goodj. Consequently, atr max the Bxc term
which couples the dominant componenta2s to the much
smaller componenta1s can be larger than the asymptotical
leading contribution on the right-hand sides of Eqs.~19! and
~21!, uClmBxca

2su.uea1su. The asymptotic independence
a1, b1 from a2, b2 is thus lost in many practical situation
Fortunately, an inclusion of the asymptotically leadingBxc
contribution in the boundary conditions is possible~see the
Appendix!. For the first asymptotic solution this leads to

a1~r !5ā0
1r he2ar , ~41!

b1~r !5F e

caG ā0
1r he2ar , ~42!

a2~r !5FaClm

2e
I ~r !G ā0

1r he2ar , ~43!

b2~r !5FClm

2c S I ~r !2
Bxc~r !

a D G ā0
1r he2ar , ~44!

I ~r !5 È r

dr8Bxc~r 8!. ~45!
23512
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r
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For the second solution1 and 2 have to be interchanged
Equations~41!–~44! can be used as boundary conditions f
the inward integration for all Kohn-Sham~KS! states.

The complete solution of Eqs.~18!–~21! is then obtained
by a linear combination of the two independent solutio
from the outward and inward integrations:

as~r !5a1,out
s ~r !1a2,out

s ~r !5a1,in
s ~r !1a2,in

s ~r !, ~46!

bs~r !5b1,out
s ~r !1b2,out

s ~r !5b1,in
s ~r !1b2,in

s ~r !. ~47!

The outward and inward integrated solutions have to
matched pairwise at some radiusR. Use of three equations
from the set of equations~46! and~47! at the matching point,
together with the overall normalization of the spinor,

15E
0

`

dr (
s56

@as~r !21bs~r !2#, ~48!

allows a determination of the four free coefficients (a1,out,0
1 ,

b2,out,0
2 , ā1,in,0

1 , ā2,in,0
2 ) in the boundary conditions. The re

maining mismatch of the fourth equation then provides
first-order correction for the eigenvalue,

de5c (
s56

$bout
s ~R!@aout

s ~R!2ain
s ~R!#2aout

s ~R!@bout
s ~R!

2bin
s ~R!#%F E

0

R

dr (
s56

@aout
s ~r !21bout

s ~r !2#

1E
R

`

dr (
s56

@ain
s ~r !21bin

s ~r !2#G21

, ~49!

whereaout
1 5a1,out

1 1a2,out
1 etc.

An important consequence of Eqs.~46! and ~47! is the
fact that the individual outward integrated solutions are
eigenstates of the RSDFT Hamiltonian. They thus must
verge exponentially for larger, as Eqs.~18!–~21! only allow
exponentially decaying and exponentially increasing so
tions. In view of Eqs.~46! and ~47!, the asymptotic diver-
gencies must cancel betweena1,out

s anda2,out
s as well as be-

tweenb1,out
s andb2,out

s . This is demonstrated in Fig. 1 for th
first of the two 3dm513/2-type solutions of copper, for which
a2 is the dominant component. A corresponding plot for t
dominant component (a1) of the second 3dm513/2-type so-
lution of copper is given in Fig. 2. In both casesa1,out

s and
a2,out

s start to diverge beyond the classical turning poi
while their sum decays exponentially. There is, however, o
important difference between the two solutions: The com
nents of the energetically higher solution exhibit an ad
tional node in the classically forbidden regime. This no
allows an unambigous classification and a numerical dist
tion of the two states, which suggests an identification of
quantum numbers in Eq. ~15! with the presence or absenc
of this feature. We will call the more weakly bound level th
s5↓ state, and the level without any nodes in the classica
forbidden regime thes5↑ state. In the example chosen th
eigenvalues obtained with the nonrelativistic LDA fo
Exc@n1 ,n2# ~Ref. 25! are 2198.4 mH for the 3dm513/2

↑

6-4
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state and2190.5 mH for the 3dm513/2
↓ state. In the shoot-

ing procedure for the solution of Eqs.~18!–~21! the node in
the classically forbidden regime can be used to obtain
upper or lower bound for the eigenvalue, analogous to
nodes in the classically allowed regime.

For a first illustration of the node quantum numbers we
have chosen orbitals of a closed subshell. In this case
term in expansion~15! is highly dominant and very close t
the corresponding spinor of the unpolarized approach. As
example for an open subshell we show, in Fig. 3,
3dm511/2

↑ state of manganese. In this case thea1 and thea2

component contribute comparably to the total norm.
Once the radial equations~18!–~21! are solved for all rel-

evant single-particle states, it only remains to implement
solution in the KS self-consistency cycle. The relevant poi
are the construction of the spherically averaged poten
and the evaluation of the total energy. Following previo
algorithms,17–19we have chosen to perform the spherical a
erage for the charge and magnetization densities, rather
for the potentials themselves:

n~r !5
1

4pr 2 (
k

Qk (
s56

@ak
s~r !21bk

s~r !2# ~50!

FIG. 1. Dominant component (a2) of the 3d13/2
↑ state of Cu:

Individual outward integrated solutions from boundary conditio
~25!–~29! (a1

2) and ~30!–~34! (a2
2) vs completea2.

FIG. 2. Dominant component (a1) of the 3d13/2
↓ state of Cu.
23512
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mz~r !52
mB

4pr 2(
k

QkH 2m

2l 11
@ak

1~r !22ak
2~r !2#

1
2m

2l 13
bk

1~r !22
2m

2l 21
bk

2~r !2

12Clmak
1~r !ak

2~r !J ~51!

@k[(nlms) for states with 2umuÞ2l 11 andk[(nlm) for
2umu52l 11; ak

25bk
250 in the latter case#. Equations~50!

and ~51! automatically lead to spherical potentialsvs and
Bxc . The spherically averaged densities are also used for
evaluation of the total energy.

III. RESULTS

In this section we present a number of illustrative resu
and a set of reference data, obtained with the procedure
scribed in Sec. II. The physical aspects behind the soluti
of Eqs. ~18!–~21! were extensively discussed in the liter
ture, to which we refer the interested reader~see, in particu-
lar, Ref. 19!.

We first compare our results with the older data in t
literature, using the same xc functional in our calculations
the functional applied in the corresponding reference. O
results for the eigenvalues of the lanthanide io
Ce31 –Gd31 agree very well with those given by Corton
et al.:17 They are essentially identical for the lighter el
ments, for which Ce31 is given as an example~see Table I!,
and differ by less than 1 mH even for the heaviest ion. T
corresponding ground state energies are also reason
close, as can be seen from Table II for the case of Gd31. A
similar degree of agreement is not found for the eigenval
of the lanthanide and actinide ions of Yamagamiet al.19

Table I shows that the differences are of the order of 25 m
Ground state energies of neutral atoms have only b

published by Eschrig and Servedio.8 In these calculations the
RLDA for the exchange energy of an unpolarized system14,1

has been combined with the spin-dependence of the non
ativistic exchange functional,Ex@n1 ,n2#5(Ex

RLDA@2n1#
1Ex

RLDA@2n2#)/2. In Table II we compare the correspon
ing results for Sn. Again, excellent agreement is found.26

s
FIG. 3. 3d11/2

↑ orbital of Mn.
6-5
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TABLE I. 4 f eigenvalues of Ce31 @XRR ~Ref. 13!; vBH ~Ref. 29!; pw, present work#.

m s Qk 2ek ~Hartree!
pw Ref. 17 pw Ref. 19

x: XRR; c:— x: LDA; c: vBH

15/2 ↑ 1 1.0239 1.0239 1.0981 1.1231
13/2 ↑ 0 1.0225 1.0225 1.0968 1.1203
11/2 ↑ 0 1.0210 1.0210 1.0954 1.1204
21/2 ↑ 0 1.0194 1.0194 1.0938 1.1189
23/2 ↑ 0 1.0175 1.0175 1.0920 1.1170
25/2 ↑ 0 1.0154 1.0153 1.0898 1.1148
27/2 0 1.0125 1.0125 1.0866 1.1117
25/2 ↓ 0 0.9954 0.9954 1.0736 1.0987
23/2 ↓ 0 0.9932 0.9932 1.0713 1.0965
21/2 ↓ 0 0.9914 0.9914 1.0695 1.0947
11/2 ↓ 0 0.9897 0.9898 1.0680 1.0931
13/2 ↓ 0 0.9883 0.9883 1.0665 1.0917
15/2 ↓ 0 0.9869 0.9869 1.0653 1.0904
17/2 0 0.9857 0.9857 1.0641 1.0892
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As an illustration of the possibilites of the new metho
Fig. 4 shows the xc-magnetic field obtained for neutral g
with the LDA. The form ofBxc directly reflects the orbita
density of the uncompensated 6s electron. In addition, Fig. 4
clearly exhibits the fact that the leading coefficientB0 of
expansion~24! does not vanish, as incorporated into boun
ary conditions~25!–~34!. The absolute size ofB0 is even
larger in the case of GGA’s. The corresponding ground-s
energy of gold is included in Table II. It differs from th
energy obtained with an unpolarized calculation by 0.15
a correction, which is definitively not negligible for th
evaluation of dissociation or cohesive energies.
23512
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-

te

,

The accuracy which can be achieved with the algorit
allows a detailed investigation of the interplay between re
tivistic, spin, and nonlocal xc effects. As examples, in Ta
II we list the ground-state energies of vanadium and ir
The data for iron show that the stability of the spin-polariz
ground state relative to the unpolarized state is somew
lower in the relativistic case than in the nonrelativistic lim
~122 versus 130 mH for the 3d6 4s2 configuration and the
LDA !. In consistency with this observation, Fig. 5 demo
strates that the relativistic treatment leads to somew
smaller errors for the 4s→3d transfer energies than the co
responding nonrelativistic calculations, in particular for t
A and
TABLE II. Ground-state energies of some prototype atoms: Spin-dependent vs unpolarized LD
PW91-GGA~Ref. 15! values. NR underTs indicates a strictly nonrelativistic calculation@VWN ~Ref. 25!; PZ
~Ref. 30!; RLDA ~Refs. 14 and 1!; —XRR ~Ref. 13!; all energies are in Hartrees#.

Atom Ts Mode Ex Ec Occupation 2Etot

V R pol. LDA VWN 3d34s2 947.14566
R pol. LDA VWN 3d44s1 947.18279
R pol. PW91 PW91 3d34s2 949.36423
R pol. PW91 PW91 3d44s1 949.40562

Fe NR unpol. LDA VWN 3d64s2 1261.09305
NR pol. LDA VWN 3d64s2 1261.22329

R unpol. LDA VWN 3d64s2 1270.23386
R pol. LDA VWN 3d64s2 1270.35642

Sn R pol. RLDA PZ 6s26p2 6165.27109
Refs. 8 and 26 R pol. RLDA PZ 6s26p2 6165.27113

Gd31 R pol. XRR — 4f 7 11239.25673
Ref. 17 R pol. XRR — 4f 7 11239.248

Au R unpol. LDA VWN 6s1 19037.57102
R pol. LDA VWN 6s1 19037.57646
6-6
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upper half of the 3d series@compare Ref. 27—as experimen
tal reference values the (2J11)-weighted interconfigura
tional energies of Ref. 28 have been utilized#. On the other
hand, the energy gain obtained by transferring an elec
from the minority spin 4s to the majority spin 3d level in-
creases when gradient corrections are included@from 37 to
44 mH in the case of vanadium and the~Perdew-Wang 91!
GGA ~Ref. 15!#. As a consequence the deviations from t
experimentals-d transfer energies are slightly larger for th
GGA ~see Fig. 5!. This result indicates the limitations o
these semilocal functionals.

The relevance of a magnetization-dependent treatmen
spin in relativistic approximations forExc is illustrated in
Table III. We list some prototype ground state energies
tained by dealing with the spin dependence of the wea
relativistic LDA for Ex ~correct to order 1/c2) in two differ-
ent ways: On the one hand, the correct magnetizat
dependent form given by Xuet al.13 is used via Eqs.~4! and
~5!. On the other hand, the form of this functional for unp
larized systems is combined with the spin dependence o
nonrelativistic exchange,

Ex@n1 ,n2#5 1
2 $Ex

unpol@2n1#1Ex
unpol@2n2#%,

relying on Eqs.~9!–~11!. Table III indicates that the differ-
ences between the energies obtained with the two approa
are rather small, in particular for heavy elements. This re

FIG. 4. Exchange-correlation magnetic potential: Au.

FIG. 5. 4s23dn→4s13dn11 transfer energies of 3d transition-
metal elements: RSDFT results on the basis of the LDA~Ref. 25!
and PW91-GGA data~Ref. 15! as well as nonrelativistic LDA data
versus experiment@for the latter the (2J11)-weighted intercon-
figurational energies of Ref. 28 have been utilized#.
23512
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clearly supports the combination of relativistic exchan
functionals for unpolarized systems@as, e.g., the relativistic
GGA ~Ref. 16!# with the spin dependence of the nonrelati
istic exchange in applications to polarized systems.

As an additional demonstration of the general applica
ity of the scheme for the solution of Eqs.~18!–~21!, in Fig. 6
we plot the percentage deviation of the resulting first ioni
tion potentials~IP’s! from experiment for the complete per
odic table. In Fig. 6 the nonrelativistic LDA~Ref. 25! has
been used~the IP’s have been evaluated as ground-state
ergy differences, utilizing the experimental ground-state c
figuration!. The spin-dependent approach is compared w
an unpolarized treatment. It is obvious that the sp
dependent scheme yields much more accurate IP’s, in
ticular for light atoms and lanthanides. On the other ha
only minor differences are observed for the 3d elements.
Similar results are found in the case of the PW91-GGA~Fig.
7!. This is consistent with the results for thes-d transfer
energies.

In Table IV we list the ground state energies of all neut
atoms up toZ5102 obtained with the LDA and two fre
quently applied GGA’s, on the basis of the experimen
ground state configuration. These numbers can serve
atomic reference energies in the calculation of dissociation
cohesive energies.

TABLE III. Dependence of atomic ground-state energie
(2Etot) on the treatment of spin: Comparison of the corre
magnetization-dependent form of the weakly relativistic LD
@XRR ~Ref. 13!# and the combination of the unpolarized, weak
relativistic LDA functional with the spin-dependence of the nonr
ativistic Ex ~all energies are in Hartrees!.

Atom XRR Nonrel. spin

Cr 1045.94224 1045.94204
Fe 1267.11644 1267.11618
Eu 10814.45737 10814.45613
W 16101.78182 16101.78179
Au 21599.62664 21599.62664
U 27925.39595 27925.39590
Am 30335.91140 30335.91099

FIG. 6. Ionization potentials of neutral atoms: Percentage de
tion of spin-dependent and unpolarized LDA results from expe
ment ~Ref. 33!.
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IV. SUMMARY

An algorithm for a solution of the single-particle equ
tions of RSDFT for open-subshell atoms, introduced in S
II, is found to be both very robust and generally applicab
The first property results from the identification of an ad
tional node quantum number for the distinction betwe
spin-up and spin-down states, which allows the use of
standard numerical shooting strategy to obtain converge
for a given state. In fact, this scheme is sufficiently stable
treat all core and valence states on equal footing. The gen
applicability is due to the use of extended boundary con
tions, which also account for nonvanishing magnetic
fields at the nuclear site. The scheme can thus be use
rectly in standard band structure codes.

On the basis of this algorithm we have shown that RSD
yields more accurates-d transfer energies for the 3d ele-
ments than nonrelativistic spin-density-functional theo
without, however, really resolving the basic difficulties
reproduce these quantities with LDA or GGA functionals27

A case in point is vanadium, for which the RSDFT inco
rectly predicts a 3d4 4s1 ground state for both types of x
functionals. Nevertheless, spin-polarized relativistic GG
calculations currently represent the optimum DFT appro
to magnetic systems. For this reason we have provide
complete set of atomic ground-state energies for future
erence.

We have also analyzed the relevance of a magnetizat
dependent treatment of the spin degree of freedom in
relativisticExc . For the only functional for which the correc
magnetization-dependent form is known~the weakly relativ-
istic LDA exchange!, exact results have been compared w
those of an approximate scheme, in which the form of t
functional for unpolarized system is combined with the s
dependence of the nonrelativistic exchange. It has b
found that the two approaches yield almost identical grou
state energies, thus supporting the use of the nonrelativ
spin dependence ofExc in RSDFT calculations.
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APPENDIX: SOLUTION OF ASYMPTOTIC EQUATIONS
INCLUDING Bxc

In order to find the asymptotic solutions of Eqs.~18!–~21!
for nonvanishingBxc one first of all separates the asympto
cally dominant factors ina6 andb6 from the remainders:

a6~r !5ã6~r !r he2ar , ~A1!

b6~r !5b̃6~r !r he2ar . ~A2!

Restricting the discussion to Eqs.~18! and ~19!, as differen-
tial equations forã1 and b̃1, one obtains

c~] r2a!ã1~r !5~2mec
21e!b̃1~r !, ~A3!

c~] r2a!b̃1~r !52eã1~r !1ClmBxc~r !ã2~r !. ~A4!

Differentiation of Eq.~A3! and subsequent insertion of Eq
~A4! leads to

~] r22a!] r ã
1~r !52

a2

e
ClmBxc~r !ã2~r !. ~A5!

The general solution of Eq.~A5! is obtained as a superpos
tion of the general solution of the corresponding homo
neous equation,

ã1~r !5ā0
11ã0

1e2ar , ~A6!

with ã0
150 for normalizablea1(r ), and a special solution

of the inhomogeneous equation:

] r ã
1~r !52

a2

e
Clm È r

dr8e2a(r 2r 8)Bxc~r 8!ã2~r 8!.

~A7!

Equation~A7! can be simplified by using the fact that th
r 8-dependence of the integrand is dominated by the deca
e22ar 8, as neitherBxc(r 8) nor ã2(r 8) change much over the
length scale of 1/(2a):

] r ã
1~r !'

a

2e
ClmBxc~r !ã2~r ! ~A8!

@recall that theBxc-contribution to~A5! is only relevant if
Bxc decays much more slowly thana6]. The complete solu-
tion is thus given by

ã1~r !5ā0
11ã2~r !

a

2e
Clm È r

dr8Bxc~r 8!, ~A9!

where again terms suppressed by 1/r or e2r have been ne-
glected.

a-
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TABLE IV. Ground-state energies (2Etot) of neutral atoms:
LDA ~Ref. 25! vs PW91- GGA~Ref. 15! and PBE-GGA~Ref. 31!
@all energies are in Hartrees~Ref. 32!#.

LDA PW91-GGA PBE-GGA

H 0.47868 0.50156 0.49999
He 2.83497 2.90014 2.89307
Li 7.34475 7.47500 7.46300
Be 14.45004 14.65087 14.63287
B 24.36107 24.63755 24.61302
C 37.48636 37.84328 37.81035
N 54.16817 54.61073 54.56773
O 74.58346 75.11146 75.05801
F 99.20716 99.82614 99.76010
Ne 128.37846 129.09377 129.01350
Na 161.66714 162.48730 162.39503
Mg 199.46049 200.38494 200.27996
Al 241.77643 242.81025 242.69215
Si 288.85159 289.99857 289.86682
P 340.85376 342.11738 341.97145
S 397.86736 399.24050 399.07912
Cl 460.13334 461.62158 461.44434
Ar 527.81780 529.42559 529.23208
K 600.57406 602.30432 602.09557
Ca 678.70298 680.55420 680.32969
Sc 762.33992 764.31159 764.06930
Ti 851.76816 853.86228 853.60145
V 947.14566 949.36423 949.08436
Cr 1048.69333 1051.04365 1050.74317
Mn 1156.36439 1158.83785 1158.51875
Fe 1270.35642 1272.95358 1272.61349
Co 1390.90098 1393.62421 1393.26234
Ni 1518.15298 1521.00469 1520.62057
Cu 1652.33534 1655.31827 1654.91020
Zn 1793.39780 1796.51371 1796.08415
Ga 1941.22253 1944.47824 1944.02698
Ge 2096.03717 2099.43590 2098.96262
As 2257.94100 2261.48607 2260.99085
Se 2426.97940 2430.66225 2430.14385
Br 2603.31988 2607.14578 2606.60400
Kr 2787.07159 2791.04474 2790.47968
Rb 2977.92162 2982.04501 2981.45770
Sr 3176.13524 3180.40759 3179.79760
Y 3381.76966 3386.19325 3385.55955
Zr 3595.05989 3599.63803 3598.98045
Nb 3816.16323 3820.90858 3820.22692
Mo 4045.16896 4050.07748 4049.37223
Tc 4282.09325 4287.15629 4286.42569
Ru 4527.15444 4532.37491 4531.61960
Rh 4780.47262 4785.85447 4785.07400
Pd 5042.19949 5047.74658 5046.94089
Ag 5312.36353 5318.07889 5317.24754
Cd 5591.01008 5596.89224 5596.03521
In 5878.05292 5884.10790 5883.22493
Sn 6173.71182 6179.94237 6179.03293
23512
TABLE IV. ~Continued!.

LDA PW91-GGA PBE-GGA

Sb 6478.07839 6484.48848 6483.5527
Te 6791.22030 6797.80216 6796.8390
I 7113.27454 7120.03361 7119.0428
Xe 7444.34787 7451.28831 7450.2700
Cs 7784.19997 7791.32503 7790.2800
Ba 8133.08937 8140.39877 8139.3267
La 8491.11732 8498.61478 8497.5148
Ce 8858.67009 8866.35196 8865.2220
Pr 9235.96003 9243.83192 9242.6726
Nd 9623.10563 9631.17032 9629.9815
Pm 10020.24734 10028.50776 10027.289
Sm 10427.52656 10435.98572 10434.737
Eu 10845.08611 10853.74713 10852.468
Gd 11272.90664 11281.77201 11280.463
Tb 11711.33988 11720.40251 11719.059
Dy 12160.47426 12169.74299 12168.367
Ho 12620.48353 12629.96208 12628.554
Er 13091.52321 13101.21543 13099.775
Tm 13573.75221 13583.66203 13582.188
Yb 14067.33441 14077.46585 14075.959
Lu 14572.27872 14582.63729 14581.098
Hf 15088.69894 15099.28911 15097.7167
Ta 15616.73835 15627.56546 15625.959
W 16156.54607 16167.61583 16165.976
Re 16708.27579 16719.59438 16717.922
Os 17272.03067 17283.59291 17281.886
Ir 17848.04336 17859.85619 17858.1144
Pt 18436.49930 18448.57231 18446.795
Au 19037.57646 19049.91433 19048.103
Hg 19651.39495 19664.00068 19662.154
Tl 20277.88468 20290.76681 20288.8854
Pb 20917.38869 20930.55076 20928.633
Bi 21570.04178 21583.49471 21581.5416
Po 22236.06385 22249.80929 22247.820
At 22915.66136 22929.70595 22927.6800
Rn 23609.05606 23623.40775 23621.344
Fr 24316.18975 24330.85713 24328.757
Ra 25037.42229 25052.41055 25050.274
Ac 25772.94915 25788.26797 25786.093
Th 26523.10816 26538.76726 26536.554
Pa 27288.31317 27304.31708 27302.065
U 28068.89946 28085.26058 28082.970
Np 28865.16067 28881.88969 28879.560
Pu 29677.47069 29694.58126 29692.214
Am 30506.07047 30523.57335 30521.166
Cm 31351.22918 31369.13313 31366.685
Bk 32213.48367 32231.79236 32229.302
Cf 33093.11914 33111.85208 33109.320
Es 33990.56885 34009.74129 34007.168
Fm 34906.25722 34925.88515 34923.269
Md 35840.63401 35860.73433 35858.076
No 36794.17732 36814.76807 36812.066
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