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Multiparticle ring exchange in the Wigner glass and its possible relevance to strongly interacting
two-dimensional electron systems in the presence of disorder
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We consider a two-dimensional electron or hole system at zero temperature and low carrier densities, where
the long-range Coulomb interactions dominate over the kinetic energy. In this limit the clean system will form
a Wigner crystal. Nontrivial quantum-mechanical corrections to the classical ground state lead to multiparticle
exchange processes that can be expressed as an effective spin Hamiltonian involving competing interactions.
Disorder will destroy the Wigner crystal on large length scales, and the resulting state is called a Wigner glass.
The notion of multiparticle-exchange processes is still applicable in the Wigner glass, but the exchange
frequencies now follow a random distribution. We compute the exchange frequencies for a large number of
relevant exchange processes in the Wigner crystal, and the frequency distributions for some important pro-
cesses in the Wigner glass. The resulting effective low-energy spin Hamiltonian should be the starting point of
an analysis of the possible ground-state phases and quantum phase transitions between them. We find that
disorder plays a crucial role and speculate on a possible zero-temperature phase diagram.

DOI: 10.1103/PhysRevB.64.235125 PACS number~s!: 71.30.1h, 75.10.Jm, 71.23.2k
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I. INTRODUCTION

In recent years two-dimensional~2D! electron or hole sys-
tems with very low densities have been intensively studie1

Such systems can be generated at the interface of gal
arsenide heterostructures or silicon metal-oxid
semiconductor field-effect transistors, and more recently a
in organic C60 and polyacene films.2 These materials provide
an excellent environment to study the effects of stro
electron-electron interactions and disorder. One exampl
the unexpected metal-insulator transition.1

We consider two-dimensional electron or hole system
zero temperature and zero magnetic field. In the absenc
disorder, it is known that the system will form a Wign
crystal in the limit of very low densities, where the nontrivi
correlations can be described in terms of multipartic
exchange processes.3,4 The exchange frequencies then det
mine the magnetic Hamiltonian. A calculation of the e
change frequencies of a pure two-dimensional Wigner cry
was pioneered by Roger.5

Although conceptually important, the pure Wigner crys
cannot be realized in the systems mentioned above du
disorder.6 A measure of disorder is the Drude conductance
an intermediate temperature scale at which the resistivit
relatively flat as a function of temperature, and the domin
contribution is from impurity scattering. At low densities, th
measured Drude conductances are of ordere2/\, indicating
the importance of disorder. We consider this intermedia
temperature conductance as a tuning parameter for the q
tum phase transitions to be discussed, not the asymp
low-temperature conductance. This characterization of
tuning parameter is important because, even for a pure
tem, the conductance at a 2D quantum critical point can
of ordere2/\.7

It is also known that even an arbitrarily small amount
0163-1829/2001/64~23!/235125~15!/$20.00 64 2351
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disorder will destroy the long-range order of the Wign
lattice.8 On short length scales, however, the lattice will r
main unaffected by weak disorder, so that the notion of
multiparticle exchange is still valid. Strong disorder w
compromise the crystalline order even on length scales c
parable to the lattice spacing. Nonetheless, the multiparti
exchange picture depends only on the existence of a r
ground state in the classical limit~that is, in the low-density
limit !, which can be assumed to hold for any disord
strength. The exchange frequencies will, of course, follow
random distribution in the presence of disorder.

In a previous paper9 on the metal-insulator transition, w
calculated a set of relevant exchange frequencies for
clean Wigner crystal within the many-dimensional WK
approximation.10 This allowed us to conjecture a possib
phase diagram in the ground state. The purpose of
present paper is to extend this calculation to the rand
distribution of exchange frequencies, necessarily caused
disorder in realistic situations. The resulting random a
competing magnetic Hamiltonian should be an important
gredient in determining the phase diagram of this correla
complex system. A recent numerical calculation of exchan
constants in a clean Wigner crystal is also available.11

A. Wigner crystal and Wigner glass

A two-dimensional electron system with carrier densityns
is characterized by the dimensionless parameter

r s
215aB~pns!

1/2, ~1!

which is a measure of quantum fluctuations; largerr s implies
smaller quantum fluctuations. HereaB5\2e/m* e2 is the ef-
fective Bohr radius;m* is the effective mass, ande is the
background dielectric constant. Thus,r s is the mean spacing
between the carriers in units of the Bohr radius. In a dilu
©2001 The American Physical Society25-1
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system, wherer s is large, we expect the ground state to
determined by the electrostatic repulsion between the e
trons. In the absence of disorder, the classical ground s
that minimizes the potential energy is a triangular lattice,
Wigner crystal.

The crystalline state can be approximately described
terms of single-particle wave functions that locally resem
harmonic-oscillator wave functions. The spatial extent
these wave functions,Dr , depends on the oscillator fre
quency asDr;v0

21/2, wherev0
2 is determined by the sec

ond spatial derivative of the electrostatic potential. A dime
sional analysis yieldsv0;r s

23/2, so thatDr /r s;r s
21/4, and

the system becomes increasingly classical asr s→` (ns
→0). At low densities, we can therefore systematically e
pand around the classical limit.

As the density increases, orr s decreases, the Wigner crys
tal will melt at zero temperature. The melting transition
(d11) dimensions, whered.1, is likely to be discontinu-
ous from the Landau theory formulated in terms of t
ground-state energy, which must be a unique functio
E@r(r )#, of the densityr(r ) of the electron gas.12 For a
crystalline state, we can write

^r~r !&5r01 (
GÞ0

rGeiG•r, ~2!

wherer0 is the average density andG’s are the reciprocal-
lattice vectors of the crystal. In mean-field theory, we c
consider the ground-state energy to be simply a function
the order parametersrG . Thus, the energy can be expand
as

E5E@r0#1 1
2 (

G
aGurGu2

1u3 (
G1 ,G2 ,G3

rG ,rG2
rG3

dG11G21G3,0

1u4 (
G1 ,G2 ,G3 ,G4

rG1
rG2

rG3
rG4

dG11G21G31G4,0
1¯ .

~3!

The quadratic term is chosen to be

aG5a~r s
c2r s!1a8~G22k0

2!2, ~4!

wherea anda8 are positive constants andk0 fixes the length
of the reciprocal-lattice vectors of the crystal. For simplici
u3 and u4 were chosen to be momentum independent,
functions of r s . On a triangular lattice, the cubic term
allowed by symmetry, hence the transition to the crystall
state is discontinuous in the order parameter, or ‘‘first orde

Consider now the regime of the phase diagram forr s

.r s
c and weak disorder. We can prove that no matter h

weak the disorder is, the crystal falls apart at the mac
scopic scale. It is sufficient to consider the limitr s@1, be-
cause quantum fluctuations can only destabilize the cry
further. We can now apply the famous Imry-Ma-Larkin8 ar-
gument. The gain in the pinning energy due to disorde
23512
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proportional toLd/2, whereas the cost in the elastic energy
the crystal isLd22, whereL is the linear dimension of the
sample andd is the space dimensionality. Thus, ford,4, the
pinning energy wins, and the crystal is destroyed for ar
trarily small disorder. Even if the crystal is disordered in t
conventional sense, it still leaves open the possibility o
power-law-ordered state,13 but this is now proven not to be
possible ind52.14 The density-density correlation functio
falls off exponentially with a correlation length,jD , given
by15

jD.Ra exp@cAln~Ra /a!#, ~5!

where Ra is the length at which the displacement of th
lattice becomes of the order of the lattice spacinga. Precise
calculations of the positive constantc,Ra , or the prefactor
are not known for the Wigner crystal. Nonetheless,jD is
likely to be a large length in the limit of weak disorder, an
it is safe to assume that short-range crystalline correlati
will survive.

In d52, the lack of crystalline order, or even a power-la
crystalline order, in the presence of disorder, does not al
us to argue for a distinct state of matter distinguished by
special features with respect to the translational degree
freedom. From this perspective, one can continuously c
nect the liquid state and the amorphous crystalline state
moving into the disorder plane. Thus, ind52, the global
symmetries that can be truly broken in the presence of
order are the spin-rotational invarianceS the time-reversal
invarianceT, and the gauge invarianceU(1). These symme-
tries can still label many distinct states of matter. For a
lated perspective on the problem of a pinned Wigner cry
in a magnetic field, see Ref. 16. We note that ind53 a
power-law-ordered Wigner glass can exist as a distinct s
of matter.

B. Magnetism: Pure system

In discussing the magnetism of the insulating Wign
crystal, we shall ignore anharmonicities of the zero-po
phonon degrees of freedom, which may merely renorma
the exchange constants. The low-lying magnetic Hamilton
is due to tunneling of electrons between the lattice sites
can be expressed in terms of thep-particle cyclic permutaion
operatorsP1¯p . Thus,

~6!

The sums are over the permutations shown in this equat
There is a theorem due to Herring and Thouless that
changes involving even number of fermions are antifer
5-2
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magnetic, and those involving odd number of particles
ferromagnetic.4 We shall follow the convention that theJ’s
are all positive.

A tractable method for calculating the exchange consta
J2 ,J3 ,... is theinstanton~or the many-dimensional WKB!
method. It will be shown thatJp is

Jp5Ap\v0S Sp

2p\ D 1/2

e2Sp /\, ~7!

where Sp is the value of the Euclidean action along t
minimal-action path that exchangesp electrons. The quantity
v0 is the characteristic-attempt frequency, which can be
timated from the phonon spectrum of the lattice. The pref
tor Ap is of order unity, and Eq.~7! holds as long asSp /\
@1.

The cyclic permutation operators can be expressed
terms of the spin operators using the Dirac identityP125

1
2

12S1•S2 and the spin Hamiltonian is

H5Jnn(
nn

Si•Sj1Jnnn(
nnn

Si•Sj1¯ . ~8!

The first term in Eq.~8! is a sum over distinct nearest neig
bors, the second is over distinct next-nearest neighbors,
so on. Here,Jnn54J215J424J31¯ and Jnnn5J41¯ .
In general, this is a highly competing magnetic Hamiltonia
On a regular triangular lattice a model containing exchan
upto J5 has been studied by various approximate analyt
and numerical finite-size~maximum of 36 sites! diagonaliza-
tion methods.17,18 The picture that has emerged is rath
complex containing a number of broken-symmetry state
ferromagnetic, a three-sublattice Ne´el, a four-sublattice Ne´el,
and a long-wavelength spiral state. In addition, on the b
of numerical work, it has been argued that a sizeable reg
of the phase diagram consists of a spin-liquid state, w
short-ranged correlations, spin gap, and no broken tran
tional and spin-rotational symmetries.

C. Magnetism: Disordered system

In the presence of disorder, the picture should change
stantially. The system is no longer described by a regu
triangular lattice and will instead distort into a random la
tice, with the sites dominantly determined by the pinni
defects. Those properties of the pure system that are spe
to a triangular lattice will no longer hold. For example, no
of the antiferromagnetic states, which depend delicately
the regular lattice structure can be the true ground sta
More fundamentally, there is no longer an argument t
three-particle exchange is larger than the two-particle
change, rather the opposite could hold, as we shall see
explore the effect of disorder, we calculate the multipartic
exchange processes in a disordered system whose
energy magnetic Hamiltonian can be formulated as in
pure system but with a random distribution of exchange c
stants.

Leaving aside the gauge symmetry, the symmetries
are allowed to be broken in a disordered system are the s
rotational invarianceS and the time-reversal invarianceT.
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The phases that are potentially important are aT-broken
metal, aT-broken insulator, anS- andT-broken spin glass, a
disordered ferromagnet, and a disordered antiferromag
Since a disordered system does not respect translationa
variance, no further subclassification according to brok
translational symmetry is possible. It is clear, however, t
the regime close to the crystalline phase of the pure sys
will be marked by strong short-ranged crystalline order. G
nerically, disorder necessarily renders all quantum ph
transitions between these states continuous, and thus
phase diagram is rife with quantum critical points and lin

D. The model

The systems of experimental interest differ considerab
but they can be schematized as shown in Fig. 1. The car
themselves are confined to an inversion layer or a quan
well with a width of the order of; 100 Å. A buffer of
several hundred angstroms separates the carrier plane
the doping layer, which contains impurities in the form
oppositely charged ions that provide the carriers. We will u
the language appropriate to the electron-doped case for
sake of clarity; the hole-doped case can be treated identic

Let us denote the coordinates of theN electrons byr i ,
and those of theNimp positively charged impurities byr j

imp .
We will treat the carriers as being exactly confined to thexy
plane, so thatr i5(xi ,yi ,0), which means that we neglect th
finite spread of the wave function in the direction perpe
dicular to the plane. This spread leads to a softening of
Coulomb potential at distances comparable with or sma
than the effective Bohr radiusaB . In the dilute limit consider
here,r s@1, the many-particle wave function will be neglig
bly small in those regions of coordinate space where two
more electrons come close enough to each other to ‘‘fe
this softer potential.

We assume the only source of disorder is provided by
impurity ions in the doping layer, which is separated by
distanced from the carriers. We will consider the following
model for the impurity distribution: the thickness of the im
purity layer is taken to be zero, so that the impurities a
exactly confined to the planez5d. We have also considere
a second model in which we assumed the impurity layer
have a finite thickness, taken to be equal to the separatid
from the electron gas. Since the results are very similar,
shall not report them here.

Within the doping layer the impurities are randomly di
tributed. The Hamiltonian is

FIG. 1. Schematic setup of the system in which a tw
dimensional electron or hole gas is generated.
5-3
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H5(
i 51

N H pi
2

2m*
1(

j 51

i 21

v~r i2r j !2 (
j 51

Nimp

v~r i2r j
imp!J , ~9!

where

v~r !5
e2

e

1

ur u
~10!

is the effective Coulomb potential,e being the dielectic con-
stant of the environment, andm* the effective mass of the
carriers.

II. THE MULTIPARTICLE-EXCHANGE PICTURE

It is useful to define the collective spatial and spin co
dinates

R5~r1 ,r2 ,...,rN!, sI 5~s1 ,s2 ,...,sN!. ~11!

Formally we can viewR as the coordinate of a single partic
moving in a 2N-dimensional space in the potentialV(R);
see Eq.~9!.

For Fermions, the partition function of the system is th

Z5 (
PPSN

~21!P(
sI

E dRG~R,sI ;PR,PsI ;b!, ~12!

where the first sum is over allN! permutationsPR of the
electron coordinates, and (21)P is the sign of the permuta
tion. The propagator is defined as

G~R1 ,sI ;R2 ,sI 2 ;t!5dsI 1sI 2
^R1 ,sI 1ue2tHuR2 ,sI 2&. ~13!

HeredsI 1sI 2
is a product ofN Kronecker-delta symbols. Not

that this definition of the propagator treats the electrons
distinguishable Boltzmann particles. Fermi statistics ha
been taken into account in the sum over boundary condit
in the partition function~12!.

A. The semiclassical approximation

The instanton method that we shall follow has been
egantly discussed by Coleman.19 The imaginary-time path
integral for the propagator is~Tt here denotes imaginar
time!

G~R1 ,sI 1 ;R2 ,sI 2 ;Tt!5dsI 1sI 2
E

R~0!5R1

R~Tt!5R2
DRe2~1/m!SuRu,

~14!

where the Euclidean action is

S@R#5E
0

Tt
dtH m*

2 S dR

dt D 2

1V~R!2V0J . ~15!

The equilibrium potential energyV05minR V(R) has been
subtracted out for later convenience. The stationary path
isfies

dS@Rc#

dR~t!
52m*

d2Rc

dt2 1¹W V~Rc!50, ~16!
23512
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and the action for this path is

S@Rc#5E
Ri

Rf
dRA2m* @V~R!2V0#. ~17!

The Planck constant enters the action in this form o
through the parameterr s;1/\2. Therefore, the semiclassica
caluclations described here are accurate in the low-den
limit, r s→`.

The Gaussian quantum fluctuations around the station
path are taken into account by defining the fluctuation co
dinatesu(t)[R(t)2Rc(t), in terms of which we expand
the action to second order

E DR e2~1/\!S@R#5F@Rc#e
~21/\!S@Rc#, ~18!

where

F@Rc#5E Du expH 2
1

2\ E
0

Tt
dt u~t!•A~t!u~t!J

5@detA#21/2, ~19!

and we have assumed that the stationary path is unique
cases where more than one stationary path exists, their
tributions have to be summed. The differential operatorA is
given for each path by

Amn~t!52dmnm*
d2

dt2 1
]2V~R!

]Rm]Rn
U

R5Rc~t!

. ~20!

The determinant is defined in terms of the eigenvaluesl
n

of

A, subject to the boundary conditionsu(0)5u(T)50, as
detA5Pn ln .

B. Exchange processes and the instanton approximation

We will assume that there exists a definite configurationR̄
of the N electrons that minimizes the electrostatic poten
V(R). It is clear that this classical minimum isN!-fold de-
generate, since the potential energy is invariant under
permutation of the electron coordinates. In the semiclass
limit, configurations whereR is in the vicinity of one of
these minima will contribute dominantly to the partitio
function. We will therefore construct stationary paths th
begin and end at one of those minima. In particular, we
fine the instanton pathRinst(t) between the two minima a
R̄1 and R̄2 such that

Rinst~2`!5R̄1 and Rinst~1`!5R̄2 , ~21!

and the equation of motion~16! is satisfied. In the simples
case, that ofR̄15R̄2 , the instanton path is given b
Rinst(t)[R̄1 . In generalR̄1 and R̄2 differ by a permutation
of the electron coordinatesr i , so that the instanton path de
scribes a multiparticle-exchange process.

In the vicinity of a minimum,R̄,

R~t!2R̄;e6tV̂~R̄!u0 , ~22!
5-4
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whereu0 is some constant vector, andV̂ is defined as the
square root of the Hessian matrix evaluated atR̄,

Vmn
2 ~R̄!5

1

m*
]2V~R!

]Rm]Rn
U

R5R̄

. ~23!

Hence any deviations from the classical equilibrium config
ration are localized on the imaginary-time axis on a sc
dt;1/va , whereva

2 is some eigenvalue~not necessarily the

smallest! of V̂(R̄). In this sense, the instanton path will b
localized around the location of the instanton,t inst in imagi-
nary time. On a coarse-grained time scale, the exchange
cesses will therefore appear as instantaneous, indepen
events.

The instanton path will be unique in most cases. An
ception is the two-particle exchange, where the electrons
take two equivalent paths corresponding to clockwise
counterclockwise exchange. This merely results in a facto
2 for the exchange frequency.

The instanton formalism rests on the assumption, oc
sionally referred to as the dilute-gas approximation, that
average distanceDt on the imaginary-time axis between e
change processes within the same region of space exc
the instanton durationdt by several orders of magnitude.
we consider the propagator on a time scaleTt that satisfies

dt!Tt!Dt, ~24!

we can make the following two crucial assumptions.
~1! Each time slice contains at most one instanton ev

Processes with two or more instanton events in a single t
slice are of second order inTt /Dt and therefore negligible

~2! Instantons do not occur within a few instanton leng
of a time-slice boundary. Again, processes that violate
assumption are of order (Tt /Dt)(dt/Tt)5dt/Dt and there-
fore negligible.
Let us now evaluate the propagator within these approxi
tions. Since the Hamiltonian is independent of spin we w
suppress the spin indices in our notation for the moment.
also define a fluctuation coordinateu5R2R̄, whereR̄ is by
definition the particular minimum ofV(R) that is closest to
R. Thus we want to evaluate

G~R̄11u1 ;R̄21u2 ;Tt!5E
R~0!5R̄11u1

R~t1!5R̄21u2DRe2~1/\!S@R#,

~25!

where the deviations.u1 andu2 are by assumption~2! in the
quadratic regime, so that we can expand the equation of
tion to linear order inu. In other words, we are allowed t
approximate

V̂~R̄1u!.V̂~R̄!. ~26!

An approximate solution of the equation of motion~16!
that satisfies the boundary conditions

Rc~0!5R̄11u1 and Rc~Tt!5R̄21u2 ~27!

is then
23512
-
e

ro-
ent

-
an
d

of

a-
e

eds

t.
e

s
is

a-
l
e

o-

Rc~t!5etV1
1/2

u11e~t2Tt!V2
1/2

u21Rinst~t2t0!, ~28!

wheret0 is an arbitrary reference point between 0 andt1 .
The time derivative of each term is localized on a time sc
dt!Tt , and by assumption~2! above the overlap betwee
the three terms is exponentially small. Hence the correcti
arising from the nonlinearity of the equation of motion a
negligible. For the same reason the action associated
this path splits into three parts, which we write in an obvio
notation as

S@Rc#5S@u1#1S@u2#1Sinst. ~29!

With the results of the previous section the propagato
then

G~R̄11u1 ;R̄21u2 ;Tt!

5F@Rinst#expH 2
1

\
~S@u1#1S@u2#1Sinst!J ,

~30!

where we have already incorporated the fact that with
approximation~26!, the prefactor~19! is independent of the
ui . Let us from now on writeRinst5RP andSinst5SP , where
PPSN labels the particular permutation that takesR̄2 into
R̄1 , i.e., R̄15PR̄2 . For later use we define the quantityGP
as the ratio between the propagator for a given instanton
and the corresponding propagator for the trivial pa
Rinst(t)[R̄, which hasSinst50. That is,

Gpª
G~R̄1u1 ;PR̄1Pu2 ;Tt!

G~R̄1u1 ;R̄1u2 ;Tt!
5

F@RP#

F@R̄#
e2~1/\!SP.

~31!

Within the instanton approximation,GP is independent of
the fluctuation coordinates. Due to permutation symmetry
terms inGP are also independent of the particular choice
the minimumR̄.

C. The prefactor

To evaluate the prefactor~19! we would have to find a
complete set of eigenfunctionsun(t) that satisfy

@2m* dmn]t
21Vmn~t!#unn~t!5lnunm~t!5lnunm~t!

~32!

with the boundary conditionsun(0)5un(Tt)50. Here we
used the shorthand notations]t

25d2/dt2 and Vmn(t)
5]2V@RP(t)#/]Rm]Rn . If we expand

u~t!5 (
n50

`

cnun~t!, ~33!

the path integral overu is transformed into

E Du→)
n50

` E dcn

A2p\
. ~34!
5-5
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We still have to account for the possibility that one of t
eigenvalues of Eq.~20! is less than or equal to zero. While
is easy to show by direct calculation that this is not the c
for F@R̄#, a zero eigenvalue indeed exists forF@RP#. As an
eigenfunction we consider the time derivative of the inst
ton path itself,

u0~t!ªa0
21 d

dt
RP~t2t0!, ~35!

where the normalization constant is given by

a0
25E

0

Tt
dtF d

dt
RP~t2t0!G2

5
SP

m*
. ~36!

The last identity follows from the equation of motio
~16!, which can be integrated to give

m*

2 S dRc

dt D 2

5V~Rc!2V0 , ~37!

which is just the Euclidean version of energy conservation
is straightforward to verify thatu0(t) satisfies the eigenvalu
equation~32! with eigenvaluel050. The boundary condi-
tions u(0)5u(Tt)50 are satisfied within our approxima
tions sinceu0 is exponentially localized. This function jus
describes the change inRc due to a change in the instanto
position t0 , which is arbitrary within the limits 0,t0
,Tt . Hence a shift in the instanton position corresponds
a zero mode. This is the Goldstone mode associated
broken time-translation symmetry in the presence of an
stanton. The change in the pathR(t)5RP(t)1u(t) due to a
change in the expansion coefficientc0 can be related to a
change int0 as follows:

dR~t!

dc0
5u0~t!, ~38!

by Eq. ~33!, while

dR~t!

dt0
52

dRP~t2t0!

dt
52a0u0~t! ~39!

by the definition ofu0 , so that we have to replace the int
gration overc0 by

E dc0

A2p\
→a0E

0

Tt dt0

A2p\
5TtS SP

2p\m* D 1/2

~40!

l0 is the lowest eigenvalue, since the correspond
eigenfunction is free of nodes. Hence all other eigenval
must be positive. We now have

F@RP#5TtS SP

2p\m* D 1/2

$det@2m* ]t
21Vmn~t!#%21/2,

~41!

where the prime indicates that the zero eigenvalue has t
omitted in the determinant. To summarize, the prefacto
given by
23512
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F@RP#

F@R̄#
5TtS SP

2p\m*
D 1/2H det@2m* ]t

21Vmn~0!#

det@2m* ]t
21Vmn~t!#

J 1/2

.

~42!

Let us assume that we scale all eigenmodes of the po
tial by the same factorg and simultaneously rescale th
imaginary-time variable by a factorg21. The factors ofg in
the determinants cancel in the numerator and in the deno
nator for each eigenvalue separately, and we know that
ratio of determinants cannot depend on the lengthTt of the
time interval, except for exponentially small correction
Hence the prefactor depends linearly on a characteristic
quency scale ofV(R), and the ratio of determinants depen
only on the relative values of the eigenfrequencies. We su
marize these findings by writingGP , defined in Eq.~31!, as

GP5TtAPv0S Sp

2p\ D 1/2

e2~1/\!SP, ~43!

where, as stated above,v0 is a characteristic frequency, an
the dimensionless factorAP depends on the relative values
the eigenfrequencies during the exchange process. It se
reasonable to assume thatAP is roughly of order one. Al-
though the prefactor is not expected to cause any dra
changes in our results, it is still interesting to determine
change in characteristic frequency with disorder. It is co
ceivable, for example, that disorder would bring about a
duction in the phonon spectrum, and this mechanism co
lead to a suppression of exchange processes.

D. The exchange Hamiltonian

Our goal in this section is a Hamiltonian description
the system in terms of multiparticle-exchange operators
the previous sections we calculated the imaginary-ti
propagator on an intermediate time scaleTt defined by the
relation~24!. To apply this result, we split the partition func
tion ~12! into M imaginary time slices, whereM satisfiesb
5MTt . This requires us to sum overM21 intermediate
configurations, so that the partition function reads

Z5(
P

~21!P(
sI 1

¯(
sI M

E dR1¯E dRM

3G~R1 ,sI 1 ;R2 ,sI 2 ;Tt!¯G~RM ,sI M ;PR1 ,PsI 1 ;Tt!.

~44!

We want to make use of the quantities

GP5
G~R̄1u1 ;PR̄1Pu2 ;Tt!

G~R̄1u1 ;R̄1u2 ;Tt!
~45!

defined in Sec. II B, which only depend on the permutat
P, and are independent of the fluctuation coordinatesui and
the particular choice of the minimumR̄. To this end, we
write the integration variablesRi in the form

Ri5Pi~R̄1ui !, ~46!
5-6
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whereR̄ is some minimum ofV(R), and the permutationPi

is chosen such as to minimize the distanceuRi2PiR̄u. The
integrals then have to be replaced with

E dRi→(
Pi

E dui , ~47!

where the sum is over all permutations, so thatPiR̄ covers
all minima of V(R), and the integration overui is by con-
struction restricted to the vicinity ofui50. The partition
function then reads~dropping spin in the notation for now!

Z5(
P

~21!P(
P1

¯(
PM

E du1¯E duM

1G„P1~R̄1u1!;P2~R̄1u2!;Tt…¯G„PM~R̄1uM !;

PP1~R̄1u1!;Tt…. ~48!

Let us now introduce the transfer matrixT̂, defined by the
relation

G@Pi~R̄1ui !,sI i ;Pj~R̄1uj !,sI j ;Tt#

5^ i ,sI i uT̂u j ,sI j&G~R̄1ui ;R̄1uj ;Tt!. ~49!

Comparing this definition to Eq.~45! we can easily deduce

^ i ,sI i uT̂u j ,sI j&5dsI 1sI 2
GPi j

5(
P

GP^ i ,sI i uP̂8u j ,sI j&,

~50!

where Pi j 5Pi
21Pj , the permutation operatorsP̂8 are de-

fined to act only on the indexi as P̂8u i ,sI &5upi ,sI &, and we
made use of the orthogonality relation̂ i ,sI i u j ,sI j&
5d i j dsI 1sI 2

. Thus the transfer matrix is

T̂5(
P

GPP̂8. ~51!

Inserting Eq.~49! into the partition function~48!, the lat-
ter will factorize into a fluctuation part and a tunneling pa

Z5Z0(
P

~21!P(
i 1

¯(
i M

(
sI 1

¯(
sI M

3^ i 1 ,sI 1uT̂u i 2 ,sI 2&¯^ i M ,sI MuT̂P̂u i 1 ,sI 1&

5Z0(
P

~21!P(
isI

^ i ,sI uT̂MP̂u i ,sI &,

where the permutation operatorP̂ acts on bothi and sI i as
P̂u i ,sI &5upi ,PsI &, and

Z05E du1¯E duM

3G~R̄1u1 ;R̄1u2 ;Tt!¯G~R̄1uM ;R̄1u1 ;Tt!

~52!

is the partition function for a 2N-dimensional harmonic os
cillator.
23512
,

The GP are proportional to the length of a time sliceTt
5b/M , see Eq.~43!, with the exception of the identica
permutationP51, for whichG151. We therefore define the
exchange energiesJP5(M /b)GP , which allows us to write

T̂M5F11
b

M (
PÞ1

JPP̂8GM

5expH b (
PÞ1

JPP̂8J ~53!

in the zero-temperature limit, in whichM5b/Tt→`. The
partition function now reads

Z5Z0(
P

~21!P(
isI

^ i ,sI uexpH b (
P8Þ1

JP8P̂8J P̂u i ,sI &.

~54!

This is the desired representation in terms of permuta
operators. The exchange energies are given by Eq.~43! as

JP5AP\vaS SP

2p\ D 1/2

e2~1/\!SP. ~55!

If we expand the exponential in a power series, the
thogonality condition̂ i ,sI u j ,sI &5d i j implies that all permu-
tation operatorsP̂8 in this expansion have to combine withP

to the identical permutation:P̂18P̂28¯ P̂n8P̂u i ,sI &5u i ,PsI & or
P5(Pn8)

21
¯(P18)

21 as far as their action oni is concerned.
We can thus eliminate the sum overP and absorb the spin
permutations and the sign factor into the exponential. Th
the sum overi is redundant due to permutation symmet
and the partition function becomes

Z5N!Z0(
sI

^sI uexpH 2b (
PÞ1

~21!P11JPP̂sJ usI &,

~56!

whereP̂s acts on the spin variables asP̂susI &5uPsI &. This is
the partition function for a pure spin Hamiltonian

Hs5(
P

~21!P11JPP̂s. ~57!

E. Generalized Heisenberg model

The spin permutation operators appearing in Eq.~57! can
be rewritten in terms of Pauli-spin operators. For example
we denote byP̂12

s the permutation operator that interchang
s1 ands2 ,

P̂12
s 5ŝ1

1ŝ2
21ŝ1

2ŝ2
11 1

2 ~ ŝ1
zŝ2

z11!52S1•S21 1
2 ~58!

leading to a Heisenberg term, as one can easily check
direct calculation of the matrix elements. Any permutati
can be written as a combination of elementary transpositio
and hence as a product of spin operators. In general th
products can be reduced using operator identities such a17

P̂123
s 1 P̂321

s 5 P̂12
s 1 P̂23

s 1 P̂31
s 21,

P̂1234
s 1 P̂4321

s 5 P̂12
s P̂34

s 1 P̂14
s P̂23

s 2 P̂13
s P̂24

s 1 P̂13
s 1 P̂24

s 21,
~59!
5-7
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etc. Keeping only the dominant two-, three-, and fo
particle exchange processes, the spin Hamiltonian becom

H5~2J224J312J4!(̂
i j &

NN

Si•Sj12J4 (̂
i j &

NNN

Si•Sj

14J4(
^ jkl &

L

~Gi jkl 1Gil jk 2Gik jl !, ~60!

whereNN indicates a sum over nearest-neighbor pairs,NNN
a sum over next-nearest neighbors, andL is a sum over the
whole rhombi.Gi jkl 5(Si•Sj )(Sk•Sl), where the vertices o
the rhombus are labeled clockwise by the four indices. T
Hamiltonian has been discussed in Secs. I B and I C.

III. NUMERICAL TECHNIQUES

A. Calculation of the action

The action~17!,

SP5E
R̄

PR̄
dRA2m* @V~RP!2V0# ~61!

depends only on a single length scale, which can be facto
out. We define a dimensionless coordinateX5(1/a)R,
wherea is the lattice constant of the ordered Wigner cryst
The unit cell of the triangular lattice is of areaA
5()/2)a2, so that the density is

ns5
1

A
5

2

)
a22, ~62!

which we use as a definition fora in the presence of disorde
The parameterr s , defined in Sec. I A, can be expressed
terms ofa as

r s5
31/4

A2p

a

aB
.0.525

a

aB
. ~63!

We define the dimensionless actionS̃P by (1/\)SP

5r s
1/2S̃P . Then

S̃P5hE
X̄

PX̄
dXAṼ~XP!2Ṽ0, ~64!

where

Ṽ~X!5(
i 51

N H (
j 51

i 21
1

uxi2xj u
2 (

j 51

Nimp 1

uxi2xj
impuJ ~65!

is the dimensionless potential,Ṽ0 is its minimum value, and
h is a numerical factor,

h5&S 2p

)
D 1/4

.1.952. ~66!

The classical path that minimizes the action has to
found numerically. Therefore we discretize the integral
Eq. ~64! using the trapezoidal rule, which leads to
23512
-
s

is

ed

l.

e

S̃.
h

2 (
i 50

M21

uX i 112X i u$AṼ~X i !2Ṽ01AṼ~X i 11!2Ṽ0%.

~67!

The displacement of the participating electrons from th
equilibrium positions creates dipole perturbations, which
screened out after a distance of a few lattice spacings, e
in the absence of conventional screening. We can there
restrict the number of moving particles to a relatively sm
valueNmobile and hold all other particle coordinates fixed
their equilibrium values. Details on the errors due to t
finite values ofM andNmobile can be found in Appendix A.
Since these errors are of opposite sign, we believe that
total error for the action is no larger than 0.3% in the cle
system. In order to keep the distancesuX i 112X i u approxi-
mately constant during the minimization process, the
lowed variations inX i are restricted to those satisfyingdX i

•(PX̄2X̄)50, thereby reducing the number of independe
variables per time slice by one. Since initial (i 50) and final
( i 5M ) conditions are held fixed, the action is a function
(2N21)(M21) independent variables in its discretize
form. For calculations on the clean system we tookM516
andNmobile.80, depending on the particular exchange un
consideration. The minimization thus involves around 24
variables. We used a variable metric~quasi-Newton!
algorithm.20 Due to the long-range nature of the Coulom
potential, the sum in the expression~65! for the potential
energy converges very slowly, and is in fact only conditio
ally convergent. We therefore use the Ewald-summat
technique, in which the summation over the long-range p
of the Coulomb potential is carried out in Fourier space.
improve the speed of the computation, we tabulated
Ewald summation formulas on a 50350 grid and calculated
in-between values using bicubic interpolation. We explici
checked that the interpolation procedure does not gene
any errors comparable to the stated accuracy of the result
this way a single minimization could be carried out in le
than 10 min CPU time on a 400-MHz Pentium II process

B. The prefactor

We now turn to the numerical evaluation of the prefac
~19!, which we write in the form

F@Rc#5E Du e2S@u#, ~68!

S@u#5
m*

2\ E
0

Tt
dt@ u̇~t!21u~t!•H~t!u~t!#,

where

Hmn~t!5
1

m*
]2V~R!

]Rm]Rn
U

R5Rc~t!

~69!

is the Hessian matrix of the potential for the configuration
time t. We split the imaginary time axis intoM intervals, so
that
5-8
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Tt5s0.s1.¯.sM21.M50, ~70!

and approximateH(t) by a constant matrixHi within a
given time intervalsi.t.si 11 ,

Hmn~t!.~Hi !mn5
1

m*
]2V~R!

]Rm]Rn
U

R5Ri

, ~71!

where Ri5aX i are the points of the discretized instant
path determined in Sec. III A. The corresponding timessi
can be calculated by inverting the equation of motion,

si 112si5E dRF 2

m* $V~R!2V0%G21/2

.S m*

8 D 1/2 uRi 112Ri u1uRi2Ri 21u

AV~Ri !2V0

. ~72!

We can then write the prefactor in the form

F@Rc#.E du1G1~0,u1 ;Tt2s1!E du2G2

3~u1 ,u2 ;s12s2!¯GM~uM21,0;sM21!, ~73!

where

Gi~ui ,ui 11 ;s!5E Du expH 2
m*

2\

3E
0

s

dtFdu2

dt
1u~t!•Hiu~t!G J ~74!

is simply the propagator of a multidimensional harmonic
cillator and can easily be calculated. We define orthonor
eigenvectorsên

i and eigenvaluesv in
2 satisfying

Hi ên
i 5v in

2 ên
i ~75!

~note thatv in can be imaginary!, in terms of which

Gi~u1 ,u2 ;s!5F)
n

Bin~s!G1/2

expH 2(
n

Bin~s!

3@ 1
2 ~un1

2 1un2
2 !coshvns2un1un2#J ,

~76!

whereun1,25ên
i
•u1,2 and

Bin~s!5
m* v in

\ sinhv ins
. ~77!

The prefactor is then

F@Rc#5F)
in

Bin~si2si 21!G21/2

~detM !21/2, ~78!

where the matrixM is defined as

Mmn
i j 5d i , j~Amn

i 1Amn
i 21!2~d i , j 11Bmn

i 1d i , j 21Bmn
j !,
23512
-
al

Amn
2 5(

l
elm

i eln
i m* v il

tanhv il~si2si 21!
,

Bmn
i 5(

l
elm

i eln
i m* v il

sinhv il~si2si 21!
. ~79!

Numerical evaluation of the determinant is now straig
forward. The eigenvalue that corresponds to the zero m
of Sec. I C has to be omitted from the result~this eigenvalue
will not be exactly zero here, due to the finite number of tim
slices!. To this end, we replaceH(t) by H(t)2l in Eq.
~68!, and numerically search for the smallest value ofl that
satisfies 1/F(l)50. We then divide the determinant by th
value. The method outlined here has been tested on the p
lem of tunneling in a quartic potential in one dimensio
which can be treated analytically; details can be found
Appendix B.

C. The disordered system

For the disordered system we have to sample over a la
number of impurity distributions. After placing the impur
ties onto random locations in systems with 48–280 partic
and periodic boundary conditions, we first minimize the p
tential energy of the classical electron configuration.
tabulation of the Ewald-summation formulas was used in t
minimization, since the classical equilibrium configuration
very sensitive to numerical errors. We cannot exclude
possibility that the minimization procedure gets trapped i
metastable configuration in the presence of strong disor
On average, however, the properties of such a metast
state should be sufficiently similar to those of the true eq
librium state so that our results will not be affected. F
strong disorder, when the triangular lattice structure is co
promised even on short length scales, we are also faced
the problem of identifying proper sets of nearest neighbor
participate in the exchange. This task is solved by a D
launay triangulation of the electrons’ equilibrium coord
nates. For the subsequent minimization of the discretized
tion, only the Nmobile532– 34 particles closest to thos
participating in the exchange were allowed to move, with
remaining particles held fixed at their equilibrium position
The number of time slices was reduced toM58, so that we
have to minimize over approximately 500 independent va
ables. The minimization converges significantly slower th
in the clean system, since the dependence of the action
the independent variables is less smooth. In the presenc
strong disorder each minimization takes several minutes
carry out. Typically we generated around 250 impurity co
figurations, for each of which eight exchange processes w
chosen at random between sets of nearest neighbors
where on the lattice. We thus arrive at about 2000 sam
values per data point.

IV. RESULTS

A. The clean system

Here we present results for a large number of excha
processes in the absence of disorder, including all those
5-9
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are relevant at low densities. The exchange paths are sh
schematically in Fig. 2, and the corresponding values of
dimensionless actionS̃n are listed in Table I. Roughly speak
ing, the action depends both on the number of particles
volved and on the smoothness of the exchange paths. K
in the path are penalized, since they lead to intermed
configurations with high potential energy. This is also t
reason for the relatively high value ofS̃2 . For the smoothes
exchange paths withn>8 the action increases roughly lin
early with n ~see Fig. 3!. We have, approximately,

S̃n.0.4410.22n ~n>8!. ~80!

We did not consider processes where a particle tunne
a location other than a nearest-neighbor site, since the ac
for such processes will be considerably higher. The excha
frequency depends exponentially on the action, so that e
a relatively small increase inS̃ can suppressJ quite substan-
tially.

We define the dimensionless prefactorÃn by writing

Jn

Ry
5Ãnr s

25/4S Sn

2p D 1/2

e2r s
1/2S̃n, ~81!

where Ry5e2/2eaB is the effective Rydberg constant. I
contrast to the classical action, the prefactor shows a str
dependence on the system size, as can be seen in Fig. 4

FIG. 2. The most important exchange paths~and some less im-
portant ones!. The paths forn512, 14, and 16 can be found b
adding a ring of particles around then56, 8, and 12 diagrams, in
the same way as then58, 9, 10, and 11 diagrams can be deriv
from n52, 3, 4, and 6.

TABLE I. The dimensionless actionS̃n for various exchange
processes, see Fig. 2.

n S̃n
n S̃n

n S̃n
n S̃n

2 1.644 6b 2.134 8b 2.764 14 3.514
3 1.526 6c 2.526 9 2.410 16 3.934
4 1.662 6d 2.294 10 2.623
5 1.911 7 2.220 11 2.862
6 1.783 8 2.188 12 3.095
23512
wn
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N dependence fits well to a scaling form

Ãn~N!5a`2
a1

N
2

a2

N2 , ~82!

from which we can extract the values for the infinite syste
Ã252.60,21 Ã352.19, Ã452.48, Ã553.15, andÃ652.90.

B. Results in the presence of disorder

Although the technique outlined in Sec. III B allows us,
principle, to calculate the prefactor in the presence of im
rities as well, we maintain the viewpoint that all qualitative
important changes in the exchange frequencies will
caused by variations of the classical action with disorder,
that the prefactorAn depends only weakly on disorder. Th
is by no means guaranteed, and, in particular, the depend
of the typical phonon frequencies on the disorder has to
investigated further. Note also that close to the melting tr
sition, anharmonicities that are not accounted for in the
stanton approximation may soften the phonon modes sig
cantly. We assume, however, that the disorder dependenc

FIG. 3. The classical action for the first ten ring-exchan
processes.

FIG. 4. Scaling of the prefactor for two- to six-particle rin
exchanges with inverse system size.N is the number of particles
that are allowed to move.
5-10
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the exchange frequencies is dominated by the expone
factor. A small change in either the action or the prefac
causes a relative change

dJn

Jn

5
dÃn

Ãn

1S 1

2
2r s

1/2S̃nD dS̃n

S̃n

~83!

in the exchange frequency. For moderately large values or s
the last term will give the dominant contribution.

To be explicit, we define the ‘‘reduced’’-exchange co
stants

KnªAS̃ne2r s
1/2S̃n ~84!

and study their dependence on disorder. Figures 5–7 s
the disorder averages ofKn for n52, 3, and 4, normalized by
their valuesKn

(0) for the clean system. Hered/a is the dis-
tance to the impurity layer in units of the lattice constant
the clean Wigner crystal. The impurity concentration is tak
to bex5 1

8 impurity ions per electron. The system size us
for determining the equilibrium configuration isN548.

While the impurities are practically of no effect ford/a
*1, in each case we see an enhancement of the ave

FIG. 5. Two-particle exchange frequency relative to its value
the clean system as a function of impurity-layer distance.

FIG. 6. Three-particle exchange frequency relative to its va
for the clean system as a function of impurity-layer distance.
23512
ial
r
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ge

exchange frequency by up to a factor of 3~at r s530; at
lower carrier densities the enhancement will be considera
larger! at d/a.0.5. For smaller values ofd/a three- and
four-particle exchange frequencies decline again, and
d/a→0K3 even falls below its original value. In the follow
ing we give an interpretation of these results; more details
the frequency distribution can be found in Appendix C.

In Fig. 8 we show the deviation of the electrons’ equili
rium configuration from the ordered lattice, due to disord
The average~static! root-mean-square displacement show
sharp increase around the same valued/a.0.5 at which the
exchange frequencies peak. We claim that both signature
due to a structural crossover that will be investigated in m
detail in the following section. In the crossover region flu
tuation effects are amplified, which results in a softening
the potential barriers and an increase in the variance of
action of a instanton process. The increase in variance le
to an increase of the average exchange frequency due to
positive curvature ofJn(S̃).

While three- and four-particle exchange frequencies
off as we decreased/a below 0.5,K2 remains enhanced by
factor of about 2.5 with respect to the clean system. Henc

r

e

FIG. 7. Four-particle exchange frequency relative to its value
the clean system as a function of impurity-layer distance.

FIG. 8. Root-mean-square displacement of the electrons f
their equilibrium positions due to disorder. The three curves are
different system sizes.
5-11
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the distance to the impurity layer becomes very small,
two-particle exchange will dominate the magnetic proper
and enhance antiferromagnetic correlations. Of course a
ferromagnetic order can be realized only locally. Nevert
less, this raises the possibility of a magnetic-crossover
nature that can, in principle, be picked up experimentally

Presumably this enhancement of the two-particle
change frequency is due to impurities mediating spin-sin
correlations between the electrons of the Wigner glass~see
also the next section!. If an electron is trapped by an impu
rity charge, its repulsive interaction with neighboring ele
trons will be greatly reduced by the impurity potentia
Therefore, exchange paths in which a second electron m
very close will not be suppressed as much in the partit
function. Unless the impurity concentration is very highx
.1), this mechanism will not apply ton.2 exchange pro-
cesses.

V. THE STRUCTURAL CROSSOVER

For larged/a the influence of the impurities is weak, an
on a local scale the lattice will be only slightly distorted~Fig.
9!. In the opposite limit (d/a→0), some electrons will be
trapped in the potential wells created by impurity charg
These electrons are effectively removed from the lattice. T
electron-impurity pairs now appear as dipoles with a dip
strength proportional tod, and therefore the effective diso
der strength decreases asd becomes smaller. The remainin
electrons will rearrange themselves to form alocal Wigner
lattice with an electron density less than that of the cle
system~Fig. 10!. In the classical limit, and ford exactly
equal to zero, the remaining electrons again form a per
Wigner crystal, but with its electron density reduced by
factor 12x, wherex is the impurity concentration.

The two limitsd/a5` andd/a50 therefore correspond
to two distinct structural phases of the system, with differ
translational symmetries. However, no phase transition
volving these symmetries can occur at any finite value
d/a. It has been known for a long time that disorder destro
any spatial long-range order in two-dimensional system8

and more recently it has been shown that quasi-long-ra

FIG. 9. Snapshot of the classical equilibrium electron confi
ration atd/a50.7. The filled circles show the electron position
while the checked squares indicate the locations of the impurit
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order, such as in a Bragg glass, cannot survive either.14 To
confirm the absence of long-range order we show in Fig.
the dependence of the rms deviations on the system size
weak disorder. The deviations increase linearly with the p
ticle number and hence quadratically in linear dimension

Locally, however, we can observe a sharp crossover
tween the two structural ‘‘phases.’’ The correlation leng
will be strongly enhanced in the crossover region, but w
remain finite due to a long-distance cutoff imposed by dis
der. This enhancement of the correlation length will give r
to similar effects as are usually connected with phase tra
tions, such as the softening of phonon modes and enha
ment of fluctuations. Of course these effects can only
observed locally.

VI. CONCLUSIONS

We have attempted to characterize the effective lo
energy spin Hamiltonian for a disordered Wigner crystal o
Wigner glass and have shown that disorder can make a q
tative difference. In particular, disorder can cause an
hancement of the two-particle exchange frequency relativ
the other exchange frequencies, thereby making a poss

-

.

FIG. 10. Snapshot of the classical equilibrium electron confi
ration atd/a50.1. The filled circles show the electron position
while the checked squares indicate the locations of the impurit

FIG. 11. Rms deviation of electron coordinates from their eq
librium positions due to disorder, atd/a52, for various system
sizes. The dotted line is a least-squares fit.
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ferromagnetically ordered state less likely and a spin-liq
phase more likely. The solution of such a complex, comp
ing multiparticle spin Hamiltonian including disorder is
formidable many-body problem. Nonetheless, it would
surprising if this Hamiltonian did not exhibit a multiplicity o
competing phases in the ground state. We now prese
speculative phase diagram in ther s vs disorder plane~see
Fig. 12!, based primarily on symmetry considerations th
can provide some guidance in the future.

Let us first focus on the zero-disorder axis: In the limit
very low densites (r s→`), three-particle exchange will b
most relevant, leading to a state with ferromagnetic lo
range order.3 Upon increasing the density, two-and fou
particle exchange will frustrate the ferromagnet, until fer
magnetic order disappears at a critical densitytF . Within a
mean-field approximation, the~truncated! effective spin
Hamiltonian can exhibit a variety of multisublattice antife
romagnetic phases~MSAF!.17 There is also the possibility o
a spin-liquid phase.18 For even higher densities, the Wign
crystal will quantum melt atr s5r c .

While the ferromagnet with disorder-averaged order
rameter^Si&Þ0 can survive in the presence of weak diso
der, the various MSAF states are tied to the existence
translational symmetry. As noted earlier, crystalline ord
will be destroyed on long length scales by any amount
disorder in two dimensions. Hence, no multisublattice a
ferromagnetic phases can exist in the disordered sys
Similarly, various dimerized broken-symmetry states can
be distinct states of matter either.22 We expect a crossove
region, with short-range antiferromagnetic correlations, t
spin-glass phase atT50, although there may not be a finite
temperature spin-glass transition ind52. ~In fact, numerical
finite-size diagonalizations in simpler randomly frustrat
spin-12 nearest-neighbor Heisenberg models have been ar

FIG. 12. Speculative phase diagram in ther s-disorder plane.
The various phases are Anderson insulator~A1!, paramagnetic
~Efros-Shklovskii! insulator~PI!, spin glass~SG!, spin liquid ~SL!,
various multisublattice antiferromagnetic states~MSAF!, ferromag-
net ~FM!, and a metallic state with broken time-reversal symme
~M!. The diagonally shaded area is a crossover region w
intermediate-range MSAF correlations.S and T indicate broken
spin-rotational and time-reversal symmetries, respectively. Not
cluded is a possible superconducting state with brokenU(1) sym-
metry.
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to exhibit spin-glass behavior in the ground state.23! The
complexity of this problem can be visualized by the fact th
quenched disorder in such a frustrated multipartic
exchange Hamiltonian atT50 appears as infinitely long
ranged correlated disorder in the imaginary-time direction
the field-theoretical description. In any case, the spin-gl
phase should be characterized by a nonvanishing Edwa
Anderson order parameter, that is, the disorder average^Si&

2

is nonzero, but̂ Si&50.
It is also interesting to construct a chiral order parame

Let R1 , R2 , andR3 be the vertices of a triangular plaquet
and defineF(R)5^S(R1)•S(R2)3S(R3)&, whereR is the
center of the triangle. In the spin-glass phase,F(R)50, but
parasiticallyF2(R)Þ0. This suggests a transition to an a
jacent phase in which the Edwards-Anderson order par
eter is zero, butF2(R)Þ0. This is a state of matter with
broken time-reversal symmetry, which we shall label to
the random-flux state. It is interesting to ask what a prototy
model could be. It is tempting to speculate that this is
variant of the random-flux model. Although there is som
evidence of a metal-insulator transition in the random-fl
model, separating aT-broken metallic state from aT-broken
insulating state, the evidence to the contrary also exist24

The resolution of this controversy should be an import
advance.

Next, we look at the strong-disorder, low-density regio
Since the exchange frequencies decrease exponentially
r s

1/2, the characteristic energy scale of disorder will be t
largest energy scale, so that the carriers are independe
trapped in some minima of the disorder potential. The res
ing state will be a paramagnetic~Efros-Shklovskii! insulator.
Since no symmetries are broken in this state, it can be c
tinuously connected to the noninteracting disordered-elec
system, which is an Anderson insulator.

A superconducting state with brokenU(1) symmetry25 is
possible, in principle. It is not clear to us, however, where
the phase diagram such a superconducting state should o
therefore it is not included in the phase diagram shown
Fig. 12. We certainly do not imply that such a phase is i
possible.

In none of the phases involving brokenT andS, the im-
purity potential can couple to the order parameter as a ‘‘r
dom field.’’ Rather, the effect of the potential scattering d
to impurities is to randomize the exchange constants. Sim
to rigorous results known in classical statistical mechanic26

we can argue that these broken-symmetry transitions in
ground state are necessarily continuous.27 Thus, scaling must
hold at these quantum phase transitions, and the signatu
quantum criticality should be observable at finite, but lo
temperatures. In contrast, the Wigner-crystal transition o
pure system is a first-order transition at which scaling co
not possibly hold.
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APPENDIX A: ACCURACY ISSUES

In Table II we see how the classical action depends on
number of time slicesM used in the discretized form~67!.
We use the three-particle exchange, with 27 mobile partic
as an example. The errors for other exchange processe
comparable. Extrapolating toM5` yields S̃3.1.5848. Er-
rors are given with respect to this value.

Table III shows the dependence on the number of parti
allowed to move in the exchange. HereL is the number of
layers added around the interchanging particles. The num
of time slices isM512. Extrapolation toL5` yields S̃3
.1.5558. Since the errors introduced by finiteM and finite
Nmobile are of opposite sign, the choicesM516 andNmobile
.80 for the clean system should yield accurate results
within ;0.2%. For the disordered system, where we u
M58 andNmobile.32, we expect the systematic errors to
of the order of 1%.

APPENDIX B: PREFACTOR IN ONE DIMENSION

Here we apply the method introduced in Sec. III B f
numerical calculation of the prefactor to tunneling in
double-well potential in one dimension, which can be solv
exactly. This serves as a useful test for the validity of
technique. The double-well potential is given by

TABLE II. Dependence of the classical action on the number
time slices used in the calculation.

M S̃3
Error

2 1.1924 225%
4 1.4919 25.9%
6 1.5455 22.5%
8 1.5638 21.3%

12 1.5763 20.54%
16 1.5804 20.28%
32 1.5840 20.05%

TABLE III. Dependence of the classical action on the number
electrons allowed to move.

Nmobile L S̃3
Error

3 0 1.933 34 24%
12 1 1.659 10 6.6%
27 2 1.576 27 1.3%
46 3 1.561 66 0.38%
69 4 1.557 62 0.11%
96 5 1.556 28 0.03%
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V~x!5~x221!2 ~B1!

and the mass of the particle is set tom51. According to Ref.
19, a general expression for the prefactorP in one dimension
is

P225
2

L0
e2v0Tt, ~B2!

whereTt is the length of the time slice~we setTt→` at the
end of the calculation! andv05Ad2V/dx2ux51 is the attempt
frequency.L0 is the lowest eigenvalue of the equation

@2]t
21V„x~t!…#u~t!5Lu~t!, ~B3!

which is given by19

L05
4v0

Sinst
L2c2v0T, ~B4!

whereSinst5*dxA2V(x) is the action along the classical tra
jectory andA is the prefactor for the asymptotic form of th
first time derivative of the classical trajectory,

ẋc~t!.Ae2v0utu as t→6`. ~B5!

Integrating the equation of motion~16! yields

xc~t!5tanh&t. ~B6!

From Eqs.~B2!, ~B4!, and~B6! we immediately get

P54A6.9.798. ~B7!

Table IV shows results of a numerical computation us

TABLE V. Dependence of mean and standard deviation of
dimensionless action on disorder strength.

d/a S̄2
s2 S̄3

s3 S̄4
s4

2.0 1.631 0.025 1.521 0.016 1.662 0.023
1.5 1.633 0.043 1.519 0.031 1.659 0.042
1.0 1.627 0.089 1.514 0.066 1.649 0.083
0.7 1.621 0.144 1.501 0.120 1.626 0.138
0.6 1.614 0.171 1.490 0.153 1.600 0.177
0.5 1.587 0.210 1.487 0.185 1.588 0.231
0.4 1.586 0.227 1.513 0.184 1.627 0.258
0.3 1.572 0.234 1.533 0.189 1.678 0.290
0.2 1.598 0.254 1.569 0.189 1.725 0.297

f

f

TABLE IV. Prefactor in the double-well problem for differen
numbers of time slices.

M 4 8 16 32 64 128
A 10.25 9.970 9.859 9.819 9.804 9.799
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M time slices. We see that the technique reproduces the e
result within 1% accuracy forM>16.

APPENDIX C:
DISTRIBUTION OF EXCHANGE FREQUENCIES

The dimensionless actionŠn that enters the expressio
~84! for the exchange frequencies depends on the partic
realization of disorder, and can therefore be viewed as a
dom variable. In most regions of parameter space the ran
distribution turns out to be well described by a normal d
tribution
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P~S̃n!.
1

A2psn

expF2
~S̃n2Sn!2

2sn
2 G ~C1!

In this approximation, the frequency distribution ofS̃n ,
and thereby ofKn , can be reconstructed from two param
eters, the mean actionS̃n and the standard deviationsn ,
which are listed in Table V for various disorder strengths

For d/a&0.1 the random distribution acquires a signi
cant non-Gaussian component, hence the corresponding
ues are not listed.
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