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We consider a two-dimensional electron or hole system at zero temperature and low carrier densities, where
the long-range Coulomb interactions dominate over the kinetic energy. In this limit the clean system will form
a Wigner crystal. Nontrivial quantum-mechanical corrections to the classical ground state lead to multiparticle
exchange processes that can be expressed as an effective spin Hamiltonian involving competing interactions.
Disorder will destroy the Wigner crystal on large length scales, and the resulting state is called a Wigner glass.
The notion of multiparticle-exchange processes is still applicable in the Wigner glass, but the exchange
frequencies now follow a random distribution. We compute the exchange frequencies for a large number of
relevant exchange processes in the Wigner crystal, and the frequency distributions for some important pro-
cesses in the Wigner glass. The resulting effective low-energy spin Hamiltonian should be the starting point of
an analysis of the possible ground-state phases and quantum phase transitions between them. We find that
disorder plays a crucial role and speculate on a possible zero-temperature phase diagram.
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[. INTRODUCTION disorder will destroy the long-range order of the Wigner
lattice® On short length scales, however, the lattice will re-

In recent years two-dimension@D) electron or hole sys- main unaffected by weak disorder, so that the notion of the
tems with very low densities have been intensively studied.multiparticle exchange is still valid. Strong disorder will
Such systems can be generated at the interface of galliuepmpromise the crystalline order even on length scales com-
arsenide  heterostructures or  silicon  metal-oxide{parable to the lattice spacing. Nonetheless, the multiparticle-
semiconductor field-effect transistors, and more recently alsexchange picture depends only on the existence of a rigid
in organic G, and polyacene fim$These materials provide ground state in the classical linfthat is, in the low-density
an excellent environment to study the effects of strondimit), which can be assumed to hold for any disorder
electron-electron interactions and disorder. One example istrength. The exchange frequencies will, of course, follow a
the unexpected metal-insulator transitfon. random distribution in the presence of disorder.

We consider two-dimensional electron or hole systems at In a previous papéron the metal-insulator transition, we
zero temperature and zero magnetic field. In the absence oflculated a set of relevant exchange frequencies for the
disorder, it is known that the system will form a Wigner clean Wigner crystal within the many-dimensional WKB
crystal in the limit of very low densities, where the nontrivial approximationt® This allowed us to conjecture a possible
correlations can be described in terms of multiparticle-phase diagram in the ground state. The purpose of the
exchange process&8 The exchange frequencies then deter-present paper is to extend this calculation to the random
mine the magnetic Hamiltonian. A calculation of the ex-distribution of exchange frequencies, necessarily caused by
change frequencies of a pure two-dimensional Wigner crystalisorder in realistic situations. The resulting random and
was pioneered by Roger. competing magnetic Hamiltonian should be an important in-

Although conceptually important, the pure Wigner crystalgredient in determining the phase diagram of this correlated
cannot be realized in the systems mentioned above due twmplex system. A recent numerical calculation of exchange
disorder® A measure of disorder is the Drude conductance atonstants in a clean Wigner crystal is also availdble.
an intermediate temperature scale at which the resistivity is
relatively flat as a function of temperature, and the dominant A. Wigner crystal and Wigner glass
contribution is from impurity scattering. At low densities, the . : . . :

o A two-dimensional electron system with carrier densify
measured Drude conductances are of oeféh, indicating . : X ;
; : . o ._.Is characterized by the dimensionless parameter

the importance of disorder. We consider this intermediate-
temperature conductance as a tuning parameter for the quan- rglzaB(wns) 2 (1)
tum phase transitions to be discussed, not the asymptotic
low-temperature conductance. This characterization of thavhich is a measure of quantum fluctuations; langgmplies
tuning parameter is important because, even for a pure sysmaller quantum fluctuations. Heag=72e/m* € is the ef-
tem, the conductance at a 2D quantum critical point can béective Bohr radiusm* is the effective mass, aneis the
of ordere?/#.” background dielectric constant. Thug,is the mean spacing

It is also known that even an arbitrarily small amount of between the carriers in units of the Bohr radius. In a dilute
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system, where is large, we expect the ground state to beproportional to %2, whereas the cost in the elastic energy of
determined by the electrostatic repulsion between the eledhe crystal isL9"2, wherelL is the linear dimension of the
trons. In the absence of disorder, the classical ground statample andl is the space dimensionality. Thus, fix<4, the
that minimizes the potential energy is a triangular lattice, thepinning energy wins, and the crystal is destroyed for arbi-
Wigner crystal. trarily small disorder. Even if the crystal is disordered in the
The crystalline state can be approximately described itonventional sense, it still leaves open the possibility of a
terms of single-particle wave functions that locally resemblepower-law-ordered staté, but this is now proven not to be
harmonic-oscillator wave functions. The spatial extent ofpossible ind=21* The density-density correlation function
these wave functionsAr, depends on the oscillator fre- falls off exponentially with a correlation lengtliy, given
quency asAr~ w, 2, where w3 is determined by the sec- by'®
ond spatial derivative of the electrostatic potential. A dimen-
sional analysis yieldssy~r 2, so thatAr/rg~r_**, and ép>RaexpcyIn(R,/a)], (5
the system becomes increasingly classicalras:o (ng
—0). At low densities, we can therefore systematically ex-Where R, is the length at which the displacement of the
pand around the classical limit. lattice becomes of the order of the lattice spacdngrecise
As the density increases, oy decreases, the Wigner crys- calculations of the positive constaatR,, or the prefactor
tal will melt at zero temperature. The melting transition inare not known for the Wigner crystal. Nonethelegs, is
(d+1) dimensions, wherd>1, is ||ke|y to be discontinu- ||k9|y to be a Iarge Iength in the limit of weak disorder, and
ous from the Landau theory formulated in terms of theit is safe to assume that short-range crystalline correlations
ground-state energy, which must be a unique functionalwill survive.
E[p(r)], of the densityp(r) of the electron ga¥ For a In d=2, the lack of crystalline order, or even a power-law
crystalline state, we can write crystalline order, in the presence of disorder, does not allow
us to argue for a distinct state of matter distinguished by its
ciG.r special features with respect to the translational degrees of
<P(r)>:Po+(§0 pG ' ) freedom. From this perspective, one can continuously con-
nect the liquid state and the amorphous crystalline state by
wherep, is the average density ar@'s are the reciprocal- moving into the disorder plane. Thus, @2, the global
lattice vectors of the crystal. In mean-field theory, we cansymmetries that can be truly broken in the presence of dis-
consider the ground-state energy to be simply a function obrder are the spin-rotational invarianGethe time-reversal
the order parametes; . Thus, the energy can be expandedinvarianceZ, and the gauge invariant#(1). These symme-
as tries can still label many distinct states of matter. For a re-
lated perspective on the problem of a pinned Wigner crystal
- N ) in a magnetic field, see Ref. 16. We note thatdin3 a
E=Elpol+ 5% aclpgl power-law-ordered Wigner glass can exist as a distinct state
of matter.

tus X po 1PG,PG40G,+Gy+ G40

G1,G,,G3 B. Magnetism: Pure system

In discussing the magnetism of the insulating Wigner

U > PG,PGPGPG,0G,+G,y+G+G, 0T " crystal, we shall ignore anharmonicities of the zero-point
©1:62:C3:C4 ' phonon degrees of freedom, which may merely renormalize

(3)  the exchange constants. The low-lying magnetic Hamiltonian
is due to tunneling of electrons between the lattice sites and

The quadratic term is chosen to be can be expressed in terms of gh@article cyclic permutaion

aG=a(r§—rs)+a’(G2—k§)2, @ operatorsP;...,. Thus,

-~ -1 —1
wherea anda’ are positive constants arkg fixes the length He=k Z (Pl’z +P ) /s Z (P1,2,3 +P )
of the reciprocal-lattice vectors of the crystal. For simplicity, o A
u; and u, were chosen to be momentum independent, but +Ji Y (Pl...4 +P'1) -Js Y (Pl...s + P-’)
functions ofrg. On a triangular lattice, the cubic term is .(:7 z:&
allowed by symmetry, hence the transition to the crystalline
state is discontinuous in the order parameter, or “first order.” + Js Z (Px---e + P'l) + -

Consider now the regime of the phase diagram rfpr
>r$ and weak disorder. We can prove that no matter how {Z}

weak the disorder is, the crystal falls apart at the macro- ©)
scopic scale. It is sufficient to consider the limi>1, be-

cause quantum fluctuations can only destabilize the crystalhe sums are over the permutations shown in this equation.
further. We can now apply the famous Imry-Ma-Lafkar-  There is a theorem due to Herring and Thouless that ex-
gument. The gain in the pinning energy due to disorder ichanges involving even number of fermions are antiferro-
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magnetic, and those involving odd number of particles are
ferromagnetié. We shall follow the convention that this
are all positive.

PHYSICAL REVIEW B 64 235125

oV

A tractable method for calculating the exchange constants EI:IZtroansor clean layer
J5,J3,... is theinstanton(or the many-dimensional WKB gas
method. It will be shown thal, is clean layer
s
Jp:Aph wO( i) 1/2(_:78p Ih (7) /://///Z}/;///////%///}/%% %
2wh '

substrate
where S; is the value of the Euclidean action along the i _ _
minimal-action path that exchangpelectrons. The quantity ~_F'G- 1. Schematic setup of the system in which a two-
wq Is the characteristic-attempt frequency, which can be egdimensional electron or hole gas is generated.
timated from the phonon spectrum of the lattice. The prefacThe phases that are potentially important are&=hroken
tor A, is of order unity, and Eq(7) holds as long asS,/  metal, aZ-broken insulator, ais- and Z-broken spin glass, a
>1. disordered ferromagnet, and a disordered antiferromagnet.
The cyclic permutation operators can be expressed iince a disordered system does not respect translational in-
terms of the spin operators using the Dirac idenBtyy=3  variance, no further subclassification according to broken
+2S,;- S, and the spin Hamiltonian is translational symmetry is possible. It is clear, however, that
the regime close to the crystalline phase of the pure system
will be marked by strong short-ranged crystalline order. Ge-
nerically, disorder necessarily renders all quantum phase
transitions between these states continuous, and thus the

The first term in E_q(8) isa sum over distinct nearf?St neigh- phase diagram is rife with quantum critical points and lines.
bors, the second is over distinct next-nearest neighbors, and

so on. HereJ,,=4J,+5J,—4J3+--- and J,,n=J4+"".

In general, this is a highly competing magnetic Hamiltonian.
On a regular triangular lattice a model containing exchange
upto Js has been studied by various approximate analyticaF
and numerical finite-sizémaximum of 36 sitesdiagonaliza-
tion methods.*® The picture that has emerged is rather
complex containing a number of broken-symmetry states:
ferromagnetic, a three-sublattice &lga four-sublattice RN,
and a long-wavelength spiral state. In addition, on the basi
8; ?ﬁg‘%ﬁgiwgi;kérggai Obnes?sntsargfuid stgi?lt-lﬁqzzée:gfe,rev%:toﬁake of clarity; the hoIe—doped case can be treated identically.
short-ranged correlations, spin gap, and no broken transla- Let us denote the co.o_rdlnates of thpelect_rgns b),/nrr',
tional and spin-rotational symmetries. and those of th&N,, posmvely gharged |mpur|t|_es bg/j .

We will treat the carriers as being exactly confined tosthie
plane, so that;=(x;,y;,0), which means that we neglect the
finite spread of the wave function in the direction perpen-

In the presence of disorder, the picture should change suldlicular to the plane. This spread leads to a softening of the
stantially. The system is no longer described by a regulaCoulomb potential at distances comparable with or smaller
triangular lattice and will instead distort into a random lat- than the effective Bohr radiiess . In the dilute limit consider
tice, with the sites dominantly determined by the pinninghere,r > 1, the many-particle wave function will be negligi-
defects. Those properties of the pure system that are specifidy small in those regions of coordinate space where two or
to a triangular lattice will no longer hold. For example, nonemore electrons come close enough to each other to “feel”
of the antiferromagnetic states, which depend delicately othis softer potential.
the regular lattice structure can be the true ground states. We assume the only source of disorder is provided by the
More fundamentally, there is no longer an argument thaimpurity ions in the doping layer, which is separated by a
three-particle exchange is larger than the two-particle exelistanced from the carriers. We will consider the following
change, rather the opposite could hold, as we shall see. Tmodel for the impurity distribution: the thickness of the im-
explore the effect of disorder, we calculate the multiparticlepurity layer is taken to be zero, so that the impurities are
exchange processes in a disordered system whose lowxactly confined to the plare=d. We have also considered
energy magnetic Hamiltonian can be formulated as in the second model in which we assumed the impurity layer to
pure system but with a random distribution of exchange conhave a finite thickness, taken to be equal to the separdtion
stants. from the electron gas. Since the results are very similar, we

Leaving aside the gauge symmetry, the symmetries thaghall not report them here.
are allowed to be broken in a disordered system are the spin- Within the doping layer the impurities are randomly dis-
rotational invarianceS and the time-reversal invariance tributed. The Hamiltonian is

H=Jn2 S-S+ S-S+ ®)
nn nnn

D. The model

The systems of experimental interest differ considerably,
ut they can be schematized as shown in Fig. 1. The carriers
hemselves are confined to an inversion layer or a quantum
well with a width of the order of~ 100 A. A buffer of
everal hundred angstroms separates the carrier plane from
e doping layer, which contains impurities in the form of
ppositely charged ions that provide the carriers. We will use
e language appropriate to the electron-doped case for the

C. Magnetism: Disordered system
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N p? i-1 Nimp and the action for this path is

H=2 | oni © 2 v(rimr)= 2 o(ri=r™ 1, 9 .
' S[R.]= f "dRV2m* [V(R)— Vg l. 17)
R

i=1 i=1
where i

The Planck constant enters the action in this form only
(10)  through the parameteg~1/42. Therefore, the semiclassical
caluclations described here are accurate in the low-density

is the effective Coulomb potentiat,being the dielectic con- limit, re—o. _ _
stant of the environment, ani* the effective mass of the ~ The Gaussian quantum fluctuations around the stationary
carriers. path are taken into account by defining the fluctuation coor-

dinatesu(7)=R(7) —R.(7), in terms of which we expand
the action to second order

e’ 1

e Irf

v(r)y=

Il. THE MULTIPARTICLE-EXCHANGE PICTURE

dinI;ltiessuseful to define the collective spatial and spin coor- f DR e~ (MWSIRIZ F[R Je(~ 1M SR, (18)
R=(r1,r2,...,rN), (_T=(0'1,0'2,...,0'N). (11) Where
Formally we can viewR as the coordinate of a single particle _ j 1 JTT
moving in a N-dimensional space in the potentid(R); FIRc]= | Duex 2k Jo dru(r)-A(nu(r)
see Eq(9). i
For Fermions, the partition function of the system is then =[detA]™ "%, (19

and we have assumed that the stationary path is unique. In
z=> (-1 f dRG(R,c;PR,Pg;3), (120  cases where more than one stationary path exists, their con-
PeSy a tributions have to be summed. The differential operdtas

where the first sum is over all! permutationsPR of the ~ 9iven for each path by

electron coordinates, and-(1)" is the sign of the permuta- d? V(R
tion. The propagator is defined as =— * + = .
Propad Aud 7)== O dr IRLIR R (5 20

G(R1,0:R2,02;7)=8,,4(R1,1le” "Ry, 02). (13) o .
o The determinant is defined in terms of the elgenvabuveef
Here 6, ,, is a product ofN Kronecker-delta symbols. Note A subject to the boundary conditiong0)=u(T)=0, as
that this definition of the propagator treats the electrons adetA=II, \,.
distinguishable Boltzmann particles. Fermi statistics have
been taken into account in the sum over boundary conditions B, Exchange processes and the instanton approximation

in the partition function(12). _
We will assume that there exists a definite configuralkon

of the N electrons that minimizes the electrostatic potential
] V(R). It is clear that this classical minimum N!-fold de-

The instanton method that we shall follow has been elyenerate, since the potential energy is invariant under any
egantly discussed by ColemahThe imaginary-time path permutation of the electron coordinates. In the semiclassical
integral for the propagator i§T. here denotes imaginary |imit, configurations whereR is in the vicinity of one of

A. The semiclassical approximation

time) these minima will contribute dominantly to the partition
function. We will therefore construct stationary paths that
ROD=Re | oo begin and end at f th inima. In particul d
G(Ry,01:Ry,05:T)=6, ., DRe~ (VSR egin and end at one of those minima. In particular, we de-
“122 JR(0)=R, fine the instanton patR;,s(7) between the two minima at

(14 ﬁl and Ez such that

where the Euclidean action is — —
) Rins —®)=R; and Rj(+*)=Ry, (21
+V(R)—Vo]. (15  and the equation of motio(iL6) is satisfied. In the simplest

T, [(m* [dR
sRi= [ ol | =
0 T case, that ofR;=R,, the instanton path is given by
The equilibrium potential energy,=ming V(R) has been Rins{7)=R:. In generalR; andR; differ by a permutation

subtracted out for later convenience. The stationary path saf the electron coordinates, so that the instanton path de-
isfies scribes a multiparticle-exchange process.

In the vicinity of a minimum,R,

S R.] d’R,
5R(T°) =—m*— > +VV(Ry)=0, (16)

R(r)—R~e*™ Ry, 22)
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whereu, is some constant vector, adl is defined as the Ry(m) =e™1 U+ e 1% 0, + Ry (7— 7o), (28)

square root of the Hessian matrix evaluatedRat . . .
q A where 7y is an arbitrary reference point between 0 and

, — 1 V(R The time derivative of each term is localized on a time scale
Q’“’(R):W&R—aRV = (23)  67<T,, and by_assumpno(fZ) above the overlap betwee_n
2 R=R the three terms is exponentially small. Hence the corrections

Hence any deviations from the classical equilibrium configu-arising from the nonlinearity of the equation of motion are
ration are localized on the imaginary-time axis on a scald'egligible. For the same reason the action associated with

Sr~1lw,, wherewg is some eigenvalugot necessarily the this path splits into three parts, which we write in an obvious

smallest of (R). In this sense, the instanton path will be "C'21°" @S

localized around the location of the instantef in imagi- SR ]=Su;]+ S Uy]+ Syer- (29)
nary time. On a coarse-grained time scale, the exchange pro-
cesses will therefore appear as instantaneous, independentWith the results of the previous section the propagator is
events. then

The instanton path will be unique in most cases. An ex- o o
ception is the two-particle exchange, where the electrons can G(Ry+ug;Ry+uy;T))
take two equivalent paths corresponding to clockwise and 1
counterclockwise exchange. This merely results in a factor of _ =t
2 for the exchange frequency. B F[Ri”ST]eXp{ (LUl + S ]+ Snsd

The instanton formalism rests on the assumption, occa- (30)
sionally referred to as the dilute-gas approximation, that the
average distancAr on the imaginary-time axis between ex- where we have already incorporated the fact that with the
change processes within the same region of space exceeggproximation(26), the prefacto19) is independent of the
the instanton duratiodr by several orders of magnitude. If u;. Let us from now on writdRj,—= Rp andS;,g— Sp , where
we consider the propagator on a time schlethat satisfies P e Sy labels the particular permutation that takRs into

R;, i.e.,R;=PR,. For later use we define the quant®

as the ratio between the propagator for a given instanton path

we can make the following two crucial assumptions. and the corresponding propagator for the trivial path
(1) Each time slice contains at most one instanton eventR, (7)=R, which hasS,,s=0. That is,

Processes with two or more instanton events in a single time

OT<T _ <Ar, (24

slice are of second order if,/A 7 and therefore negligible. G(R+U. PR+ PuU,:T FIR
(2) Instantons do not occur within a few instanton lengths G, := ( B SIS ) = [ _P] e (Wh)Sp,
of a time-slice boundary. Again, processes that violate this G(R+u;R+u,;T)) FIR]
assumption are of ordef (/A7) (67/T,)= 67/A 7 and there- (3D

fore negligible. . ) o o
Let us now evaluate the propagator within these approxima- Within the instanton approximatiop is independent of
tions. Since the Hamiltonian is independent of spin we willthe fluctuation coordinates. Due to permutation symmetry all

suppress the spin indices in our notation for the moment. W&MS inGp are also independent of the particular choice of

also define a fluctuation coordinate R—R, whereR is by ~ the minimumR.
definition the particular minimum o¥(R) that is closest to

R. Thus we want to evaluate C. The prefactor
_ To evaluate the prefactdil9) we would have to find a
G(Ry+Uy iRyt Uy T,) = IR”l)iRZ“JZDRe—(llh)S[R]' complete set of eigenfunctions,(7) that satisfy
R(0)=R;+u;
(25) [—M* 8,024V (1) JUn,(7) = N pUn,(7) = XU, (7)

where the deviationsl; andu, are by assumptio(®) in the (32)
guadratic regime, so that we can expand the equation of mavith the boundary conditionsi,(0)=u,(T,)=0. Here we
tion to linear order inu. In other words, we are allowed to used the shorthand notations?=d?/d7*> and V,,(7)

approximate =(92V[RP(T)]/(9RMaR,,. If we expand
QAR+u)=Q(R). (26) -
u(7)= 2 Calin(7), (33)
An approximate solution of the equation of moti¢hb) n=0
that satisfies the boundary conditions the path integral oven is transformed into
Ro(0)=Ri+u; and Ry(T)=Rp+u,  (27) © 0 de,
. f Du—[] f . (34)
is then n=0J \27h
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We still have to account for the possibility that one of the FIRp] S 12 def —m* a2+ V, (0)] 172
eigenvalues of Eq20) is less than or equal to zero. While it i T( P [ U _
is easy to show by direct calculation that this is not the case F[R] 2mwhm* def —m* 2+ V,,,(7)]
for F[R], a zero eigenvalue indeed exists ffRp]. As an (42
eigenfunction we consider the time derivative of the instan-
ton path itself,

Let us assume that we scale all eigenmodes of the poten-
tial by the same factog and simultaneously rescale the
imaginary-time variable by a factgy *. The factors ofy in

Ug(7) :zagldi Rp(7—79), (35 the determinants cancel in the numerator and in the denomi-
T nator for each eigenvalue separately, and we know that the
where the normalization constant is given by ratio of determinants cannot depend on the lenigtlof the
time interval, except for exponentially small corrections.
, (T-,|d 2 5 Hence the prefactor depends linearly on a characteristic fre-
a= fo d7 ERP(T— 7o) mr (36) guency scale o¥(R), and the ratio of determinants depends

only on the relative values of the eigenfrequencies. We sum-

The last identity follows from the equation of motion Marize these findings by writinGp, defined in Eq(31), as
(16), which can be integrated to give

Sp
2 Gp=T,Apwg Py
=V(R;) — Vg, (37

1/2
ef(llﬁ)Sp, (43)

m* (dRc
2\ dr where, as stated aboveg is a characteristic frequency, and
which is just the Euclidean version of energy conservation. Ithe dimensionless factdy, depends on the relative values of

is straightforward to verify that,(7) satisfies the eigenvalue the eigenfrequencies during the exchange process. It seems
equation(32) with eigenvaluex,=0. The boundary condi- reasonable to assume th@ is roughly of order one. Al-
tions u(0)=u(T,)=0 are satisfied within our approxima- though the prefactor is not expected to cause any drastic
tions sinceu, is exponentially localized. This function just changes in our results, it is still interesting to determine the
describes the change Ry due to a change in the instanton change in characteristic frequency with disorder. It is con-
position 7o, which is arbitrary within the limits &, celvable_, for example, that disorder Wou_ld bring apout are-
<T,. Hence a shift in the instanton position corresponds tgluction in the phonon spectrum, and this mechanism could
a zero mode. This is the Goldstone mode associated witlfad to a suppression of exchange processes.

broken time-translation symmetry in the presence of an in-

stanton. The change in the p&ii7) = Rp(7) +u(7) due to a D. The exchange Hamiltonian

change in the expansion coefficiety can be related to a
change inry as follows:

Our goal in this section is a Hamiltonian description of
the system in terms of multiparticle-exchange operators. In

dR(7) the previous sections we calculated the imaginary-time

Uo(7), (38)  Propagator on an intermediate time scd@ledefined by the
dco relation(24). To apply this result, we split the partition func-
by Eq. (33), while tion (12 intp M im{:\ginary time slices, whernfl satisfie;ﬁ
=MT,. This requires us to sum oveM —1 intermediate
dR(7) dRp(7— 7o) configurations, so that the partition function reads
dTO = dr == aOUO( 7-) (39)

z=§P) (—1)?} ; de---f dRy,

XG(Ry,01;R2,02,T,)--*G(Ry ,om PRy, Pay;T)).

f dey (T do _T< Sp )1’2 40 (44)

0 -7 *
V2mh 0 \2mh 2mhm iy
m m We want to make use of the quantities

N\ is the lowest eigenvalue, since the corresponding o o
eigenfunction is free of nodes. Hence all other eigenvalues _ G(R+up;PR+Pu,;T))

by the definition ofu,, so that we have to replace the inte-
gration overc, by

must be positive. We now have Gp — (45)
G(R+uy;R+uy;T))
1/2
FIRp]=T (i) (def —m* 2+ V,, (1)}~ 12 defined in Sec. II B, which only depend on the permutation
"\ 2mhim* T ' P, and are independent of the fluctuation coordinateand

(42) the particular choice of the minimurR. To this end, we
where the prime indicates that the zero eigenvalue has to Barite the integration variableR; in the form
omitted in the determinant. To summarize, the prefactor is .
given by Ri=Pi(R+u), (46)
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whereR is some minimum oV(R), and the permutatioR;

is chosen such as to minimize the distafi@e— P;R|. The
integrals then have to be replaced with

deﬁ; Jdui,

where the sum is over all permutations, so tRaR covers
all minima of V(R), and the integration ovay; is by con-
struction restricted to the vicinity ofi,=0. The partition
function then readgdropping spin in the notation for ngw

-3 -3 Y [ auy [ auy
P P, Pu

+G(P(R+Up);Po(R+U,);T,) - G(Py(R+Uy);

(47)

PP, (R+uy);T,). (48

Let us now introduce the transfer matfix defined by the
relation

G[Pl(ﬁ‘i‘ Ui),gi ,Pj(ﬁ‘i‘ UJ),Q'J ,TT]
=(i,ailTlj,e)G(R+u ;R+U;T,). (49
Comparing this definition to Eq45) we can easily deduce

<i!gi|-’|\—|j!gj>:50' o3 GP,.:Z GP<i!Q-i|IS,|j1gj>'
Z1%2 ] P

(50

where P”-=Pi_1Pj, the permutation operatorfé’ are de-

fined to act only on the indekasP’|i,g)=|p;,o), and we
made use of the orthogonality relatiodi,oilj,o;)
=06ij 00,0, Thus the transfer matrix is

?=; GpP’. (51)

Inserting Eq.(49) into the partition functior(48), the lat-

ter will factorize into a fluctuation part and a tunneling part,

Z=Zo; (_1)Pizl 2 E 2

'm 1 IM

X(i1,1|Tliz.@2) (in.am|TPli1, o)
-3, (17 (el TPli0),

where the permutation operat@r acts on both andg; as
Pli.g)=|p;,Pg), and

ZOZ J dul' f duM

><G(§+ u1;§+ uz;TT)'-'G(ﬁvL Um ‘R+ ug;T,)
(52)

is the partition function for a R-dimensional harmonic os-
cillator.
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The Gp are proportional to the length of a time slide
=BIM, see Eq.(43), with the exception of the identical
permutationP= 1, for whichG;= 1. We therefore define the
exchange energiek=(M/B)Gp, which allows us to write

M
=exp{ﬁ'2 Jpﬁ"] (53
P£1

in the zero-temperature limit, in whicM = /T _—~. The
partition function now reads

142 > JpP’

Fi—
M 71

Z=20> (-1 <i,g|ex;{ﬁ2 Jpﬁ'Jﬁli,g»
P ig P/#1
(54)

This is the desired representation in terms of permutation
operators. The exchange energies are given by(43).as
Sp

1/2
Jp:Aphﬁ)a(_> e*(l/ﬁ)Sp.

2mh (55)

If we expand the exponential in a power series, the or-
thogonality condition(i,o|j,o)= &; implies that all permu-
tation operator$’ in this expansion have to combine wigh
to the identical permutatior®; P} --P/Pli,o)=|i,Pg) or
P=(P;) %--(P}) ! as far as their action oinis concerned.
We can thus eliminate the sum overand absorb the spin
permutations and the sign factor into the exponential. Then
the sum oveli is redundant due to permutation symmetry
and the partition function becomes

Z=NIZo2, <g|exp[—ﬁgl (—1)PH P g),
‘ (56)

whereP? acts on the spin variables B§|g)=|Pg). This is
the partition function for a pure spin Hamiltonian

Ha=; (—1)P+13pPe. (57)

E. Generalized Heisenberg model
The spin permutation operators appearing in &) can
be rewritten in terms of Pauli-spin operators. For example, if

we denote b)f?‘l’z the permutation operator that interchanges
(o] and Oy,

Pl,=01 6, +6, 05 +3(5765+1)=2S,-S,+3 (58)

leading to a Heisenberg term, as one can easily check by
direct calculation of the matrix elements. Any permutation
can be written as a combination of elementary transpositions,
and hence as a product of spin operators. In general these
products can be reduced using operator identities such as

Plogt P3p= P+ P+ Pg—1,

Pl2sat Piao= P1oP3st P1P23— P1sPo,+ Pia+ Poy— (1&_;9)
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etc. Keeping only the dominant two-, three-, and four-
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M-1

particle exchange processes, the spin Hamiltonian becomes S~ > S X 1= X VYOG = Vo + VWX 4 1) — Vb
i=0

NN

H=(2J,-4J5+23,) >,
{m

NNN
3.sj+2J4% S-S
ij

o
+4J4<_§k%> (Gijki + Giljk = Gikji)» (60)

j
whereNN indicates a sum over nearest-neighbor pailsN
a sum over next-nearest neighbors, ands a sum over the
whole rhombi.Gjji; =(S- §)(Sc- §), where the vertices of

(67)

The displacement of the participating electrons from their
equilibrium positions creates dipole perturbations, which are
screened out after a distance of a few lattice spacings, even
in the absence of conventional screening. We can therefore
restrict the number of moving particles to a relatively small
value Nqpiie @nd hold all other particle coordinates fixed at
their equilibrium values. Details on the errors due to the

the rhombus are labeled clockwise by the four indices. Thidinite values ofM and Niyqpie can be found in Appendix A.

Hamiltonian has been discussed in Secs. IB and | C.

IIl. NUMERICAL TECHNIQUES

A. Calculation of the action
The action(17),

Sp= f;EdRJZm*MRp)—VO] 61)

f
depends only on a single length scale, which can be factore

out. We define a dimensionless coordinate=(1/a)R,

wherea is the lattice constant of the ordered Wigner crystal.

The unit cell of the triangular lattice is of are&
=(v3/2)a?, so that the density is

ng=—=—a 2 (62)

Since these errors are of opposite sign, we believe that the
total error for the action is no larger than 0.3% in the clean
system. In order to keep the distand®s, ;—X;| approxi-
mately constant during the minimization process, the al-
lowed variations inX; are restricted to those satisfyir¥;

-(PX—X)=0, thereby reducing the number of independent
variables per time slice by one. Since initiaH0) and final
(i=M) conditions are held fixed, the action is a function of
(2N—-1)(M—1) independent variables in its discretized
orm. For calculations on the clean system we tdok 16
thd Nmobile=80, depending on the particular exchange under
consideration. The minimization thus involves around 2400
variables. We used a variable metriguasi-Newtoh
algorithm?® Due to the long-range nature of the Coulomb
potential, the sum in the expressig85) for the potential
energy converges very slowly, and is in fact only condition-
ally convergent. We therefore use the Ewald-summation
technique, in which the summation over the long-range part
of the Coulomb potential is carried out in Fourier space. To

which we use as a definition farin the presence of disorder. improve the speed of the computation, we tabulated the
The parameter, defined in Sec. A, can be expressed ingya1d summation formulas on a 50 grid and calculated

terms ofa as

31/4 a a
—=0.525—.

V2 as ag

We define the dimensionless actid® by (1#)Sp
=r%,. Then

(63

rs=

B= nJ;de V(Xp)— Vo, (64)

where

i
— 2 T —mpy (65)

=i 1= [xi—x™]
is the dimensionless potentidl, is its minimum value, and

7 is a numerical factor,

20 1/4
”Z‘Q(E) ~1.952, (66)

in-between values using bicubic interpolation. We explicitly
checked that the interpolation procedure does not generate
any errors comparable to the stated accuracy of the results. In
this way a single minimization could be carried out in less
than 10 min CPU time on a 400-MHz Pentium Il processor.

B. The prefactor

We now turn to the numerical evaluation of the prefactor
(19), which we write in the form

F[Rc]:f Due 4], (68)
m* (T, 5
S[u]:ﬁfo dru(r)*+u(r)-H(mu(7)],
where
1 V(R
H’“’(T)_Wm (69)

R=R/(7)

The classical path that minimizes the action has to bés the Hessian matrix of the potential for the configuration at
found numerically. Therefore we discretize the integral intime 7. We split the imaginary time axis intd¥l intervals, so

Eq. (64) using the trapezoidal rule, which leads to

that
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MULTIPARTICLE RING EXCHANGE IN THE WIGNER . ..

TT:SO>51>"‘>SM_1>M:0, (70)
and approximateH(7) by a constant matriXd; within a
given time intervals,>r>s;, ¢,

1 #°V(R)
Hud =)= 1w R R,
o

4

: (71)
R=R,
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P m* wi,
A2 _ e @ '
- ; MM anho;, (s —Si-1)

*
m Wi\

oi\(Si—Si-1)

[ i i
B,uv_; e)\pe)\vsinh (79)

Numerical evaluation of the determinant is now straight-

where R;=aX; are the points of the discretized instanton forward. The eigenvalue that corresponds to the zero mode
path determined in Sec. llIA. The corresponding tinses ©Of Sec. I C has to be omitted from the resittis eigenvalue

can be calculated by inverting the equation of motion,

—1/2

2
—{V(R)~Vo}

Si+1_si:f dR

2<m_*)l/2|Ri+1_Ri|+|Ri_Ri1| 72

8 W(R)—V,
We can then write the prefactor in the form
F[RC]ZJ du]_G]_(O,ul;TT_Sl)J dU2G2

X (Ug,Uz;81—Sp) " Gy(Uy-1,0;8m-1), (73

where
m*
Gi(UianH;S):jDUEX o7
s [du?
Xf d7| —— +u(7)-Hu(7) ] (74)
0 dT

will not be exactly zero here, due to the finite number of time
slices. To this end, we replacél(7) by H(7)—\ in Eq.

(68), and numerically search for the smallest value\dhat
satisfies ¥ (\)=0. We then divide the determinant by this
value. The method outlined here has been tested on the prob-
lem of tunneling in a quartic potential in one dimension,
which can be treated analytically; details can be found in
Appendix B.

C. The disordered system

For the disordered system we have to sample over a large
number of impurity distributions. After placing the impuri-
ties onto random locations in systems with 48—280 particles
and periodic boundary conditions, we first minimize the po-
tential energy of the classical electron configuration. No
tabulation of the Ewald-summation formulas was used in this
minimization, since the classical equilibrium configuration is
very sensitive to numerical errors. We cannot exclude the
possibility that the minimization procedure gets trapped in a
metastable configuration in the presence of strong disorder.
On average, however, the properties of such a metastable
state should be sufficiently similar to those of the true equi-

is simply the propagator of a multidimensional harmonic 0S4iprium state so that our results will not be affected. For
cillator and can easily be calculated. We define orthonormadirong disorder, when the triangular lattice structure is com-

eigenvector€, and eigenvaluea)iz,, satisfying

H& =w?d (75)

lv=v

(note thatw,;, can be imaginary in terms of which

1/2
exp{ —2 Bi,(9)

Gi(up,uy;8)=

II Bi.(s)

2 2
X[%(uvl—’_UVZ)COSthS_uvlLIVZ]J ’

(76)

whereu,; ,=&,-u; , and

B . m* Wi, 7

S = sinhay s’ 77

The prefactor is then

—172
FIRJI=|II Bi(si=si-1)| (detv)™™2  (78)
v

where the matrixM is defined as

M, =8 (A, +AL D= (8 j+1BL,+ & j_1BL,),

promised even on short length scales, we are also faced with
the problem of identifying proper sets of nearest neighbors to
participate in the exchange. This task is solved by a De-
launay triangulation of the electrons’ equilibrium coordi-
nates. For the subsequent minimization of the discretized ac-
tion, only the Nppie=32—34 particles closest to those
participating in the exchange were allowed to move, with the
remaining particles held fixed at their equilibrium positions.
The number of time slices was reducedMc= 8, so that we
have to minimize over approximately 500 independent vari-
ables. The minimization converges significantly slower than
in the clean system, since the dependence of the action on
the independent variables is less smooth. In the presence of
strong disorder each minimization takes several minutes to
carry out. Typically we generated around 250 impurity con-
figurations, for each of which eight exchange processes were
chosen at random between sets of nearest neighbors any-
where on the lattice. We thus arrive at about 2000 sample
values per data point.

IV. RESULTS

A. The clean system

Here we present results for a large number of exchange
processes in the absence of disorder, including all those that
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Q <:3 47 ~
. 1.8} oy
: ® :
0 T : 1'40 é “1 é é 1l0 12
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FIG. 2. The most important exchange pataad some less im- FIG. 3. The classical action for the first ten ring-exchange

portant ones The paths fom=12, 14, and 16 can be found by processes.
adding a ring of particles around time=6, 8, and 12 diagrams, in

the same way as the=8, 9, 10, and 11 diagrams can be derived | dependence fits well to a scaling form
fromn=2, 3, 4, and 6.

are relevant at low densities. The exchange paths are shown A(N)=a,— &1 a_22'
schematically in Fig. 2, and the corresponding values of the N N

dimensionless actio8, are listed in Table I. Roughly speak- from which we can extract the values for the infinite system:
ing, the action depends both on the number of particles |n — 2,602 A,=2.19 A, 2.48 A.—3.15, andh.—=2.90.
3 47 57 6~

volved and on the smoothness of the exchange paths. Kmks
in the path are penalized, since they lead to intermediate . .
configurations with high potential energy. This is also the B. Results in the presence of disorder

reason for the relatively high value 8. For the smoothest Although the technique outlined in Sec. Il B allows us, in
exchange paths with=8 the action increases roughly lin- principle, to calculate the prefactor in the presence of impu-

(82

early withn (see Fig. 3. We have, approximately, rities as well, we maintain the viewpoint that all qualitatively
5 important changes in the exchange frequencies will be
S,=0.44+0.2h (n=8). (80)  caused by variations of the classical action with disorder, and

that the prefactoA,, depends only weakly on disorder. This
We did not consider processes where a particle tunnels tig by no means guaranteed, and, in particular, the dependence
a location other than a nearest-neighbor site, since the actiasf the typical phonon frequencies on the disorder has to be
for such processes will be considerably higher. The exchang@vestigated further. Note also that close to the melting tran-
frequency depends exponentially on the action, so that evegition, anharmonicities that are not accounted for in the in-
a relatively small increase i can suppres3 quite substan- ~ stanton approximation may soften the phonon modes signifi-
tially. cantly. We assume, however, that the disorder dependence of

We define the dimensionless prefacyr by writing

3.5¢ 5
B n=
J, -~ vz ¢ n=3
—”=Anrs5"‘<i e a5, (81) . o n-4
Ry 2m 3} m. o n=5
) ) RPN * n=6
where Ry=e?/2eag is the effective Rydberg constant. In **\\ o
contrast to the classical action, the prefactor shows a strong  s5f ® a5 %
dependence on the system size, as can be seen in Fig. 4. The _ | *®e_ '*:\\ a
T e, T
TABLE I. The dimensionless actiofs,, for various exchange 2r “\\:\:\. B
processes, see Fig. 2. " o .
~ ~ ~ ~ 1.5+ \\ *
n Sh n Sh n Sh n Sh ) R
2 1.644 6b 2134 8 2764 14 3514 ; : , i : ,
3 1.526 6¢ 2.526 9 2.410 16 3.934 0 0.02 0.04 N 0.06 0.08 0.1
4 1.662 6d 2.294 10 2.623
5 1.911 7 2.220 11 2.862 FIG. 4. Scaling of the prefactor for two- to six-particle ring
6 1.783 8 2.188 12 3.095 exchanges with inverse system sideis the number of particles

that are allowed to move.
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FIG. 5. Two-particle exchange frequency relative to its value for
the clean system as a function of impurity-layer distance.

FIG. 7. Four-particle exchange frequency relative to its value for
the clean system as a function of impurity-layer distance.

the exchange frequencies is dominated by the exponent%lxchange frequency by up to a factor of(@ r.=30; at

factor. A small change in either the action or the prefactor, . - . )
causes a relative change lower carrier densities the enhancement will be considerably
largep at d/a=0.5. For smaller values ofi/a three- and
four-particle exchange frequencies decline again, and for
d/a—0Kj even falls below its original value. In the follow-
ing we give an interpretation of these results; more details on
the frequency distribution can be found in Appendix C.
in the exchange frequency. For moderately large valueg of  |n Fig. 8 we show the deviation of the electrons’ equilib-
the last term will give the dominant contribution. rium configuration from the ordered lattice, due to disorder.
To be explicit, we define the “reduced”-exchange con- The averagéstatid root-mean-square displacement shows a
stants sharp increase around the same vall@e=0.5 at which the
Kpi=\Gre ' (84

A,

83, A, .

%— rl’zén> 5 (83

exchange frequencies peak. We claim that both signatures are
due to a structural crossover that will be investigated in more
and study their dependence on disorder. Figures 5-7 showet"’.IiI in the following S‘?‘?“O”- In_ the crossover region. fluc-
the disorder averages Kf, for n=2, 3, and 4, normalized by tuation effgcts are amplified, Wh'Ch resglts In-a s.oftenmg of
their valuesk® for the clean system. Hemd/a is the dis- the potential barriers and an increase in the variance of the
N . : ; . action of a instanton process. The increase in variance leads
tance to the_ impurity layer in _unlts Qf the lattice (_:onstant Ofto an increase of the average exchange frequency due to the
the clean Wigner crystal. The impurity concentration is taken = ~
to bex= 1% impurity ions per electron. The system size usedPOSitive curvature 08,(S). ,
for determining the equilibrium configuration fé= 48. While three- and four-particle exchange frequencies fall
While the impurities are practically of no effect fdra off as we decreas‘**f"% below 0.5K, remains enhanced by a .
=1, in each case we see an enhancement of the averaEfeCtor of about 2.5 with respect to the clean system. Hence, if

: : : 04 | | |
L r =30
=8 Y o s o N-48
ﬁ = H 3 * N=80
03¢ %; A N=120|
2 3 N 2
% : : g
> 3 ozt . .
[Ze)
X 15 : v &
v 1 * s
¢ "L 01} ® f -
=
® .l : ‘ ‘ 4
e B .
‘ = 0 1 1 | *
: ‘ 0 05 1 15 2
0 0.5 15 d/a

for the clean system as a function of impurity-layer distance.

,
d/a

FIG. 8. Root-mean-square displacement of the electrons from
FIG. 6. Three-particle exchange frequency relative to its valuetheir equilibrium positions due to disorder. The three curves are for
different system sizes.
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FIG. 9. Snapshot of the classical equilibrium electron configu- FIG. 10. Snapshot of the classical equilibrium electron configu-
ration atd/a=0.7. The filled circles show the electron positions, ration atd/a=0.1. The filled circles show the electron positions,
while the checked squares indicate the locations of the impuritieswhile the checked squares indicate the locations of the impurities.

the distance to the impurity layer becomes very small, therder, such as in a Bragg glass, cannot survive etthéo
two-particle exchange will dominate the magnetic propertiesonfirm the absence of long-range order we show in Fig. 11
and enhance antiferromagnetic correlations. Of course antthe dependence of the rms deviations on the system size for
ferromagnetic order can be realized only locally. Nevertheweak disorder. The deviations increase linearly with the par-
less, this raises the possibility of a magnetic-crossover sigtcle number and hence quadratically in linear dimensions.
nature that can, in principle, be picked up experimentally. Locally, however, we can observe a sharp crossover be-

Presumably this enhancement of the two-particle exiween the two structural “phases.” The correlation length
change frequency is due to impurities mediating spin-singlewill be strongly enhanced in the crossover region, but will
correlations between the electrons of the Wigner glase remain finite due to a long-distance cutoff imposed by disor-
also the next sectignlf an electron is trapped by an impu- der. This enhancement of the correlation length will give rise
rity charge, its repulsive interaction with neighboring elec-to similar effects as are usually connected with phase transi-
trons will be greatly reduced by the impurity potential. tions, such as the softening of phonon modes and enhance-
Therefore, exchange paths in which a second electron movesent of fluctuations. Of course these effects can only be
very close will not be suppressed as much in the partitiorobserved locally.
function. Unless the impurity concentration is very high (
=1), this mechanism will not apply to>2 exchange pro- VI. CONCLUSIONS
cesses.

We have attempted to characterize the effective low-
energy spin Hamiltonian for a disordered Wigner crystal or a
Wigner glass and have shown that disorder can make a quali-

For larged/a the influence of the impurities is weak, and tative difference. In particular, disorder can cause an en-
on a local scale the lattice will be only slightly distortdelg.  hancement of the two-particle exchange frequency relative to
9). In the opposite limit ¢/a—0), some electrons will be the other exchange frequencies, thereby making a possible
trapped in the potential wells created by impurity charges.

These electrons are effectively removed from the lattice. The e i )

V. THE STRUCTURAL CROSSOVER

electron-impurity pairs now appear as dipoles with a dipole 0.08
strength proportional td, and therefore the effective disor-
der strength decreases @becomes smaller. The remaining
electrons will rearrange themselves to forntoaal Wigner 0.061 { ]
lattice with an electron density less than that of the clean A
system(Fig. 10. In the classical limit, and fod exactly oS 0.04
equal to zero, the remaining electrons again form a perfect Vv

2 1/2

Wigner crystal, but with its electron density reduced by a

factor 1—x, wherex is the impurity concentration. 002 e 7]
The two limitsd/a= andd/a=0 therefore correspond

to two distinct structural phases of the system, with different ol oy

translational symmetries. However, no phase transition in- 0 5 100 150 200 250 300

volving these symmetries can occur at any finite value of N

d/a. It has been known for a long time that disorder destroys FIG. 11. Rms deviation of electron coordinates from their equi-

any spatial long-range order in two-dimensional syst&ms,librium positions due to disorder, at/a=2, for various system
and more recently it has been shown that quasi-long-rangsizes. The dotted line is a least-squares fit.
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disorder to exhibit spin-glass behavior in the ground staeThe
complexity of this problem can be visualized by the fact that
quenched disorder in such a frustrated multiparticle-
exchange Hamiltonian af=0 appears as infinitely long-
ranged correlated disorder in the imaginary-time direction in
the field-theoretical description. In any case, the spin-glass
phase should be characterized by a nonvanishing Edwards-
Anderson order parameter, that is, the disorder ave(ggé

is nonzero, butS)=0.

It is also interesting to construct a chiral order parameter.
Let Ry, R,, andR; be the vertices of a triangular plaquette
and defined (R) =(S(R;) - S(R,) X S(R3)), whereR is the
center of the triangle. In the spin-glass phabéR) =0, but
. ) ) ) parasitically®?(R) #0. This suggests a transition to an ad-
Thgla;\riti's Sppheg;zt";?epgizzrg'oangr;r:u;;m'ﬁd'zzg‘;:ag's;?& jacent phase in which the Edwards-Anderson order param-

, . > o .
(Eros Shilovsk) msulator(PY, spin dlasssa, spm igua(SL, & & G0 U0 GNE TGS SR S O TRV

various multisublattice antiferromagnetic statBksSAF), ferromag- h d fl tate. Itis int ting t k what tot
net (FM), and a metallic state with broken time-reversal symmetry € random-fiux state. 1t 1S interesting to ask what a prototype
odel could be. It is tempting to speculate that this is a

(M). The diagonally shaded area is a crossover region witH" ; ;
intermediate-range MSAF correlations. and 7 indicate broken variant of the random-flux model. Although there is some

spin-rotational and time-reversal symmetries, respectively. Not in€vidence of a metal-insulator transition in the random-flux
cluded is a possible superconducting state with bra¢h) sym- ~ Model, separating @broken metallic state from @broken

Al

metry. insulating state, the evidence to the contrary also edsts.
The resolution of this controversy should be an important
, . Lo Gadvance.
ferromagnetically ordered state less likely and a spin-liqui

hase more likelv. The solution of such a complex. compet Next, we look at the strong-disorder, low-density region.
P ore nikely. 1 R . PieX, COMPEl5ince the exchange frequencies decrease exponentially with
ing multiparticle spin Hamiltonian including disorder is a 12 the characteristic enerav scale of disorder will be the
formidable many-body problem. Nonetheless, it would be s gy

surprising if this Hamiltonian did not exhibit a multiplicity of |2/9€st energy scale, so that the carriers are independently

competing phases in the ground state. We now present ftéappte(tj n _slingwe minima of theg]:sordserrﬂzotenkt!ql. Tr|1etresult-
speculative phase diagram in thg vs disorder plandsee ing state will be a paramagne(gfros- ovski) insulator.

Fig. 12, based primarily on symmetry considerations that,[sir'lnce nlo syrr?nmettrlgi at'f bnrorlﬁi?]r: Irn t?ilr? sctj?te,rét ::ag ble i?nr;
can provide some guidance in the future. uously connected to the noninteracting disordered-electro

Let us first focus on the zero-disorder axis: In the limit of syspt\em, Wh'Chd'S ?n Antdetrsontrllnsuliltor.l trg® i
very low densites ;—»), three-particle exchange will be superconducting state with broken(1) symmetry” is

most relevant, leading to a state with ferromagnetic Iongpossmle, |n_pr|nC|pIe. It is not clear to us, however, where in
range orde?. Upon increasing the density, two-and four- tEe p?ase_dl_agram_sulchdajqpe[]coniuctm%_state sho#ld oceur,
particle exchange will frustrate the ferromagnet, until ferro-'::.erelgrev\'/t IS not 'PC(;J edin t Ie ph ase ﬁ\grarl: shown 1n
magnetic order disappears at a critical densjty Within a Ig. 12. We certainly do not imply that such a phase s im-
mean-field approximation, thdtruncated effective spin possible. . . .
Hamiltonian can exhibit a variety of multisublattice antifer- In none of the phases involving brokénand s, the im-

: : o urity potential can couple to the order parameter as a “ran-
romagnetic phase®1SAF).Y There is also the possibility of PUYMY Pot€ : :
@ Spiniuid hase’ Foreven igher censites, he igner (7 T2 ST i S1Ectof e peent scaterng e
crystal will quantum melt at=r.. P 9 :

While the ferromagnet with disorder-averaged order pa-to rigorous results known in classical statistical mechaffics,

ter(Sy 0 ve in th ¢ K di we can argue that these broken-symmetry transitions in the
‘rjametr(]ar(S) . C""‘\r/I]SS:'LV'Vte tm € p:_esder;cetr? We_at ISOI” o round state are necessarily continulishus, scaling must
€f, the various states are tied 1o he exiStence ofqq 4t these quantum phase transitions, and the signature of
translational symmetry. As noted earlier, crystalline order

il be dest q I lenath les b ¢ uantum criticality should be observable at finite, but low
will bé destroyed on long length scales by any amount 0 emperatures. In contrast, the Wigner-crystal transition of a
disorder in two dimensions. Hence, no multisublattice anti-

: - . ure system is a first-order transition at which scaling could
ferromagnetic phases can exist in the disordered systerﬁ

Similarly, various dimerized broken-symmetry states cannot ot possibly hold.
be distinct states of matter eitiférWe expect a crossover
region, with short-range antiferromagnetic correlations, to a
spin-glass phase at=0, although there may not be a finite-
temperature spin-glass transitiondr= 2. (In fact, numerical This work was supported by NSF-DMR-9971138. We
finite-size diagonalizations in simpler randomly frustratedwould like to thank H. K. Nguyen, S. Kivelson, and C.
spin- nearest-neighbor Heisenberg models have been arguéthyak for discussions. More recently, C. de Chamon has
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TABLE II. Dependence of the classical action on the number of TABLE IV. Prefactor in the double-well problem for different

time slices used in the calculation. numbers of time slices.
M ”33 Error M 4 8 16 32 64 128
A 10.25 9.970 9.859 9.819 9.804 9.799
2 1.1924 —25%
4 1.4919 —5.9%
6 1.5455 —2.5% V(X)=(X2—1)2 (Bl)
8 1.5638 —-1.3%
12 1.5763 —0.54% and the mass of the particle is sete= 1. According to Ref.
16 1.5804 —0.28% 19, a general expression for the prefad®dn one dimension
32 1.5840 —0.05% is
indicated to us the possibility of competing ferromagnetic P72=A—ef“’°TT, (B2)

and p-wave superconducting states. We would like to thank 0

him for interesting discussions and correspondence. S.GyhereT _ is the length of the time slicéwe setT,— at the

would also like to thank the Aspen Center for Physics where, | ¢ tPT1e calculationandwy= ya?VIdx2],_, isTthe attempt
. x=

a part of the work was carried out. frequency.A is the lowest eigenvalue of the equation

APPENDIX A:  ACCURACY ISSUES [—(93+V(X( 7)) ]u(7r)=Au(7), (B3)

In Table 1l we see how the classical action dependsonthe,. . . 9
number of time slice used in the discretized forrf67). Wiich is given b)]’
We use the three-particle exchange, with 27 mobile particles,
as an example. The errors for other exchange processes are Ao

comparable. Extrapolating thl = yields S;=1.5848. Er- Sinst

rors are given with respect to this value. B . . .
Table Ill shows the dependence on the number of particle¥N€"€Snsi= JdXy2V(X) is the action along the classical tra-

allowed to move in the exchange. Herds the number of Jectory andA_is the prefactor for'the asymptotic form of the
layers added around the interchanging particles. The numbdfSt time derivative of the classical trajectory,

of time slices isM=12. Extrapolation toL=c yields S;
=1.5558. Since the errors introduced by finlifeand finite
Nmobile @re of opposite sign, the choic&=16 andN e : : : :
=80 for the clean system should yield accurate results t(l)ntegratlng the equation of motic16) yields
within ~0.2%. For the disordered system, where we used
M =8 andN =32, we expect the systematic errors to be
of the order of 1%.

4
0 p2c-woT, (B4)

X.(7)=Ae" woll g5 7 +oo. (B5)

Xc(7)=tanhv2r. (B6)
From Egs.(B2), (B4), and(B6) we immediately get

APPENDIX B: PREFACTOR IN ONE DIMENSION P=4./6~9.798. (B7)

Here we apply the method introduced in Sec. IlIB for
numerical calculation of the prefactor to tunneling in a Table IV shows results of a numerical computation using
double-well potential in one dimension, which can be solved
exactly. This serves as a useful test for the validity of the TABLE V. Dependence of mean and standard deviation of the
technique. The double-well potential is given by dimensionless action on disorder strength.

TABLE IIl. Dependence of the classical action on the number ofd/a S, 72 Ss T3 Sy Ta
electrons allowed to move.

2.0 1.631 0.025 1521 0.016 1.662 0.023
15 1.633 0.043 1.519 0.031 1.659 0.042

Nrmobe - S =rror 1.0 1627 0089 1514 0066 1.649 0.083
3 0 1.93334 24% 07 1621 0144 1501 0120 1.626 0.138
12 1 1.659 10 6.6% 06 1614 0171 1490 0153 1600 0.177
27 2 157627 1.3% 05 1587 0210 1487 0185 1588 0231
46 3 1.56166 0.38% 04 158 0227 1513 0184 1627 0258
69 4 1.557 62 0.11% 03 1572 0234 1533 0189 1.678  0.290
96 5 1.556 28 0.03% 02 1598 0254 1569 0189 1725  0.297
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M time slices. We see that the technique reproduces the exact ~ 1 (3,—S,)2
result within 1% accuracy foM = 16. P(S,)= exg ————— (Cy
\/Zan 207,

APPENDIX C:

DISTRIBUTION OF EXCHANGE FREQUENCIES . . . S =
Q In this approximation, the frequency distribution §f,

The dimensionless actioB, that enters the expression and thereby o, can be reconstructed from two param-
(84) for the exchange frequencies depends on the particulaters, the mean actio§, and the standard deviation,, ,
realization of disorder, and can therefore be viewed as a rawhich are listed in Table V for various disorder strengths.
dom variable. In most regions of parameter space the random For d/a<0.1 the random distribution acquires a signifi-
distribution turns out to be well described by a normal dis-cant non-Gaussian component, hence the corresponding val-
tribution ues are not listed.
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