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Optimal electronic transitions in a simple two-band model

A. Dargys*
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~Received 24 May 2001; revised manuscript received 31 July 2001; published 28 November 2001!

A quantum-mechanical problem of coherent control of charge-carrier transfer dynamics between two para-
bolic and spherical energy bands using optical electric fields was solved within the effective-mass approxima-
tion. Starting from the Luttinger-Kohn Hamiltonian, the problem at first was reduced to a single time-
dependent Schro¨dinger-like equation for coherent hole transitions between two bands. Then, the obtained
equation and the functional that minimizes the energy of optical pulse are used to deduce the Euler equation for
optimal control. The multiplicity of the quantum-control problem is demonstrated explicitly. An example of
interband excitation with an optimalp-type monopulse is presented.
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I. INTRODUCTION

By tailoring the shape of electromagnetic pulse it is p
sible to manipulate constructive and destructive interfere
of a quantum system and in this way to achieve the des
final state of the system at the end of the perturbation. In
case of quantum control in solids, the duration of the opti
pulse must be shorter than or, at least, comparable to
shortest scattering time by lattice phonons to preserve
coherence of the quantum transition. The optimization of
tical pulses, in general, is a complex multidimensional c
trol problem.1–17 In quantum mechanics the control is n
unique,13 and should be treated as a quantum-mechan
rather than a classical measurement process. In Ref. 13 i
been argued that there will be ‘‘denumerably infinite numb
of solutions’’ to a well-posed quantum-mechanical optim
control problem. It is important to stress that the control a
observation of the quantum systems takes place in a
space rather than in an abstract Hilbert space of state vec
Thus, quantum-control methods that consider the guida
of a state vector from one point to the other point of t
Hilbert space have a limited practical usefulness, althou
in this case as shown in Ref. 3, in principle, it is possible
derive a scheme to control the evolution of the state vecto
a desired final state.

Until now, quantum control was mainly applied to ele
tronic transitions between discrete energy levels, for
ample, in molecular dynamics,4–9 or transitions between
quantum wells.10–12 Recently, the problem was extended
polaritons,18 phonons,19 and to electronic transitions betwee
energy bands.14–16 Due to mathematical difficulties most o
the quantum-control problems were treated numerically. T
control of charge carrier transitions between the bands
solved using either the nonlinear programming method14,15

or the genetic algorithm.16 Some analytically tractable prob
lems, for example, the optimal control of electron spin fl
ping by time-varying magnetic fields in a two-level syste
can be found in the book by Butkovskiy and Samoilenko2

In this paper, a simple two-band model based on
Luttinger-Kohn Hamiltonian is solved analytically with th
aim to obtain a deeper understanding of the properties
optimal control in the case of extended energy bands.
model is rather general and is not limited to free holes. T
0163-1829/2001/64~23!/235123~7!/$20.00 64 2351
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results can be applied to electronic transitions as well. T
charge carriers that participate in the interband transition
be provided by donors, acceptors, or injection currents. T
paper considers only noninteracting carriers; therefore,
injection or doping levels should be low, for example, t
carrier concentration should be lower than 1015 cm23 at
room temperature. The paper is limited to single-carrier
timal transitions. The case of distribution of carriers is mo
difficult and not considerd here. Some preliminary resu
obtained with numerical methods are presented in Ref. 17
Sec. II, starting from the Luttinger-Kohn Hamiltonian a tw
band model is reduced to a simple time-dependent equa
that describes population transfer dynamics between two
ergy bands. In Sec. III, the Euler differential equation f
optimal interband transitions is obtained, and in Sec. IV
numerical solution of the Euler equation is presented as
illustration.

II. TWO-BAND EQUATION

An effective-mass Hamiltonian that describes valen
band of the elementary semiconductors will be used a
starting point:20,21

Ĥ05
M1N

2
k22

N

2
~kÎ !2. ~1!

In Hamiltonian~1!, M andN are the valence-band paramete
and,k5(kx ,ky ,kz) is the hole wave vector, the componen
of which are measured with respect to Cartesian axes.
Hamiltonian is constructed in terms of the spin operatoÎ
5( Î x , Î y , Î z), where

Î x5U0 0 0

0 0 2 i

0 i 0
U , Î y5U 0 0 i

0 0 0

2 i 0 0
U , Î z5U0 2 i 0

i 0 0

0 0 0
U ,

~2!

and i 5A21. The spin matrices~2! satisfy standard commu
tation relations andÎ x

21 Î y
21 Î z

252. Atomic units (e5\5m
51) are used in this paper. The quadratic Hamiltonian~1!
represents energy surfaces with maximal~triple! degeneracy
at the center of the Brillouin zone. The eigenvalues of Eq.~1!
©2001 The American Physical Society23-1
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A. DARGYS PHYSICAL REVIEW B 64 235123
describe two parabolic and spherical energy bands: the
bly degenerate heavy-mass~h! band and single nondegene
ate light-mass~l! band with the following dispersion laws:

«h5Mk2/2, ~3!

« l5~M1N!k2/2. ~4!

The parametersM and N can be expressed through heav
and light-hole masses. It should be noted that the consid
problem is not limited to valence band only. It applies to a
bands described by spherical and parabolic dispersion la
If needed band degeneracy at the pointk50 can be lifted. In
the following the more general case with the degeneracy
cluded will be analyzed. The electric fieldF of electromag-
netic radiation couples the bands. If the field is switched
say, at momentt50, then at later moments the population
the probability to detect the hole in a particular band w
depend on time. In the presence of the electric field the
responding Schro¨dinger equation for three-component wa
function c will be written in the following way:21

i
]c

]t
5S Ĥ01

F~ t !

i

]

]kDc. ~5!

In the case of energy bands the time dependence of the w
vectork is described by the equation22

dk/dt5F~ t !. ~6!

In our case Eq.~6! is redundant since it is a characteris
equation of the solved Schro¨dinger system~5!. Equation~6!
will be used later to obtain a set of ordinary differential equ
tions. Due to the high symmetry of the problem, the solut
of the system~5! is not unique. In Ref. 23 it was shown th
for spherical bands the interband transitions between de
erate and nondegenerate bands could be partially decou
The corresponding unitary transformation operatorT̂ that de-
couples the bands was constructed in Ref. 23. Recent
more general transformation operator was found for the
valence-band Hamiltonian, where the split-off band and n
parabolicity of constant energy surfaces was included to24

For definiteness, in the following it will be assumed th
optical electric field is linearly polarized and parallel to t
kz direction, i.e.,F5(0,0,Fz). Then, as shown in Ref. 23
there exists an orthogonal transformation matrixT̂(a),
where a is an arbitrary parameter, that diagonalizes
Hamiltonian ~1!: Ĥd5T̂21(a)Ĥ0T̂(a). The diagonal ele-
ments inĤd represent the dispersion equations~3! and ~4!.
The matrixT̂(a) allows us to transform Eq.~5! into an en-
ergy representation. In this representation the Schro¨dinger
system~5! assumes the following form:
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]tUw1

w2

w3

U5H U« l 0 0

0 «h 0

0 0 «h

U
1

Fz

i U ]/]kz 2b sina 2b cosa

b sina ]/]kz 0

b cosa 0 ]/]kz

UJ Uw1

w2

w3

U .

~7!

The three-component column functionw is related toc

via transformationw5T̂21(a)c. The componentuw i u2 gives
the population of thei th band. An explicit matrix for the
operatorT̂(a) can be found in Ref. 23. The second matrix
the transformed Schro¨dinger equation~7! represents the in-
terband coupling matrix. The parameterb5k' /(k'

2 1kz
2),

where k'5Akx
21ky

2 is the wave vector perpendicular t
electric field, plays the role of a coupling coefficient, whic
due to Eq.~6!, depends on time. In the coupling matrix th
parametera is an arbitrary constant that comes out of t
general transformation operatorT̂(a). Equation~7! shows
that the light-mass band may be coupled either toh1 or to
h2 of the two degenerate heavy-mass bands by choo
eithera50 or a5p/2. In the general case, thel band may
be coupled to both heavy-mass bands simultaneously i
intermediate value ofa is chosen. It should be noted that th
parametera is absent in the initial formulation of the prob
lem in Eq. ~5!. The free parameter, or more precisely t
function tana, in fact, represents the ratio of the coupling
the l band toh1 andh2 bands. As shown in Ref. 25, th
hidden symmetry of the problem is revealed as chaotic
cillations between doubly degenerateh1 and h2 bands, if
one tries to solve the system~5! numerically and uses a nu
merical unitary transformation to obtain the evolution of ho
populations in the bands in the presence of the optical fi
Thus, before attempting to find a concrete solution of
transformed equation~7! one must at first assign a numeric
value toa. In the following we shall assume thata5p/2,
i.e., only electronic transitions between bands character
by wave functionsw1[wh andw2[w l will be considered.

It can be shown that solution of the wave vector equat
~6! is the characteristic equation of partial differential equ
tion ~5!. Using this property and the relation between to
and partial derivatives,dw i /dt5]w i /]t1Fz]w i /]kz , one
can reduce Eq.~5! from partial derivatives to total deriva
tives. Remembering thata5p/2, one gets the following two
coupled equations from Eq.~7!:

i
dw1

dt
5

M1N

2
k2w11 iF zbw2 , ~8!

i
dw2

dt
5

M

2
k2w22 iF zbw1 . ~9!

The time-dependent system~8! and ~9! is rather general. If
needed, the degeneracy at the pointk50 can be lifted by
adding a constant term to the first right-hand-side term
3-2
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OPTIMAL ELECTRONIC TRANSITIONS IN A SIMPLE . . . PHYSICAL REVIEW B 64 235123
either Eq.~8! or ~9!. The coupling between bands depends
k. It is small at large wave vectors, which is physically a
ceptable. In the following, we shall show that further simp
fication of the resulting equations~8! and ~9! is possible.
Since we are interested in optimal control of measura
quantities rather than the control of evolution of the st
vectorw in the Hilbert space, it appears possible to simpl
the problem in this case to a single time-dependent equa
If instead ofw1 and w2, new functionsR and f are intro-
duced with the help of relations

w15R cosf, w25R sinf, ~10!

then, remembering thatb5k' /k2, one gets the following
coupled equations forR andf from Eqs.~8!–~10!:

i
dR

dt
5

k2

2
~M1N cos2f!R, ~11!

df

dt
5

ik2

4
N sin 2f2Fzb. ~12!

One should note that in Eq.~12! only the energy difference
Nk2/25« l2«h between the bands at the pointk rather than
the absolute band energies is of importance. If one is in
ested in carrier population dynamics in respective ba
only, then one can show26 that it is not needed to know th
solution of functionR. Thus, the problem of band populatio
dynamics reduces to a single equation~12! and the probabil-
ity to find the carrier in the heavy- or light-mass band,Ph or
Pl , at the momentt reduces to calculation of real and imag
nary parts off only. SincePl5uw1(t)u2 and Ph5uw2(t)u2,
then using Eqs.~10!–~12! it can be shown that

Pl5~12cos 2f r /cosh 2f i !/2, ~13!

Ph5~11cos 2f r /cosh 2f i !/2, ~14!

where f r and f i are the real and imaginary parts off.
Equations~13! and ~14! at the same time yield the initia
condition for f in Eq. ~12!. If, for example, att50 the
carrier was in the heavy-mass band with probabilityPh51,
then as follows from Eqs.~13! and~14! the initial conditions
f r(0)50 andf i(0)50 should be satisfied at the mome
t50. In Secs. III and IV we shall be interested in optimu
population dynamics; therefore only Eq.~12! will be used in
the optimal control model.

Figure 1 shows the probabilityPl to find the carrier inl
band as a function of time calculated with Eqs.~6! and ~12!
under various types of excitationFz(t), assuming thatN
512 and that at the initial moment the probabilities arePl
50 andPh51. The stepped electric field~curve 1! that was
switched on att50 yields only transient interband excitatio
of small amplitude, Pl(t),0.045. The harmonically
varying field, the frequencyv of which is tuned
to resonancev5« l(k0)2«h(k0)50.0012 a.u., wherek0

5(0.01,A0.01,A0.01) a.u. is the initial wave vector, yield
periodic Rabi oscillations of band population@curve 2 in
panel~b!#. Curve 3 in panela shows the Gaussian-shapedp
23512
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pulse, and the respective curve in panel~b! shows the evo-
lution of the probabilityPl from zero to unity.

Thus, the main result of this section is that the two-ba
population dynamics can be reduced to a single dynam
transition equation~12!, which depends on the energy diffe
ence D«5« l(k)2«h(k)5Nk2/2 between the bands rathe
than on the absolute energies of the bands. The main e
tion ~12! bears some resemblance to the classical nonlin
oscillator equation, although Eq.~12! is complex and should
be solved simultaneously with the wave vector equation~6!.

III. VARIATIONAL CALCULATION OF OPTIMAL FIELD

In this section the Euler equation for optimal electron
transitions between two energy bands is deduced. The va
tional problem becomes analytically treatable if instead
time t a new variablez5kz(t)/k' is introduced, and the
complex trigonometric function in Eq.~12! is eliminated in

FIG. 1. ~a! Three shapes of the electric field switched on at
momentt50 and~b! time dependence of corresponding probab
ties to detect the hole inl-band as calculated with Eqs.~6! and~12!.
1, stepped electric field; 2, resonant harmonic field; 3, Gaussiap
pulse.
3-3
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A. DARGYS PHYSICAL REVIEW B 64 235123
favor of the new variabley5tanf. Then, the following dif-
ferential equations for real and imaginary parts ofy can be
obtained from Eq.~12!:

dyr

dz
52

«'

f
~11z2!yi2

11yr
22yi

2

11z2
, ~15!

dyi

dz
5

«'

f
~11z2!yr2

2yiyr

11z2
, ~16!

where «'5k'
2 N/2 and f (t)5Fz(t)/k' . The probabilities

~13! and ~14! reduce to

Pl5yy* /~11yy* !, Ph51/~11yy* !. ~17!

Since the transverse wave vector is the constant of mot
the energy«' is the constant of motion too. Equations~15!–
~17! and the normalized wave vector equation for compon
kz

dz/dt5 f ~18!

make up a closed system in the analysis of the optimi
interband transitions.

In the following the Euler equation foryi(z) is deduced.
For this purpose, we shall solve the terminal optimizat
problem with the quadratic optimization criterion.2 Let field
Fz act the carrier that participates in the interband transit
during time intervalDt5(02t f), where t f is the final or
terminal time. The quadratic functional

J@yi~z!#5E
0

t f
Fz

2dt ~19!

will be used to construct the Euler equation. The functio
~19! requires the total energy of the pulse to be minimal
should be noticed that, in fact, the energy of the pulse will
minimal at any value oft f , in other words, at any before
hand assumed final time. In the functional~19!, the argument
yi(z) indicates that we are interested in the optimization
yi(z) trajectory in the complexy plane. The trajectory of
yr(z) remains undefined. Of course, instead of the imagin
part one can use real partyr(z), or even modulusuyu in the
optimization of interband transitions. Using the normaliz
characteristic equation~18!, the quadratic functional can b
transformed to a linear one:

J@yi~z!#5k'
2 E

0

t f
f dz. ~20!

Then, after expressing the field from Eq.~16!, the functional
becomes

J@yi~z!#5E
0

t f «'k'
2 ~11z2!yr

yi812yiyr /~11z2!
dz, ~21!

where yi8[dyi /dz. This functional yields the following
second-order Euler differential equation with respect
yi(z),
23512
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a2yi91a1yi81b1~yi8!21a050, ~22!

where coefficients arez-dependent functions:

a052yiyr~113yi
22yr

216yrz!, ~23!

a15~11z2!~212yi
212zyr27yr

2!, ~24!

a2522~11z2!2yr , ~25!

b152~11z2!2yi /yr . ~26!

If f is expressed from Eq.~16! and then inserted into Eq
~15!, then the resulting equation and Euler equation~22!
form a closed system for finding optimal electric fields.

The obtained Euler equation~22! is highly nonlinear and
analytically untractable. Since the interband coupling coe
cient b5k' /@kz

2(t)1k'
2 # is a time-varying function~due to

parallel to theFz wave vector!, to simplify the problem fur-
ther it is tempting to assume thatb is constant and then to try
to solve the variational problem with constant interband c
pling from the beginning, hoping to obtain a simpler Eul
equation. I have deduced such equation for a constant
pling too. The resulting Euler equation in this case was fou
to have the same structure as Eq.~22! and the nonlinearity of
the equation was of the same order. Furthermore, I h
found that, independent of which wave functionsyi , yr , f r
etc. was used to obtain the Euler equation, in all cases
same structure of the nonlinear Euler equation has resul

Before ending this section, a short discussion on bound
conditions will be presented. The solution of the Euler eq
tion must satisfy terminal boundary conditions att50 and
t5t f , i.e., one must assume the boundary valuesyi(z0) and
yi(zf) in Eq. ~22!. As explained after Eq.~14!, the initial
conditions and band populations are related. For definiten
if we assume that att50 the hole was in heavy-mass ban
with the probabilityPh(0)51, then one must satisfyy(z0)
50, which means that at the initial moment both the real a
imaginary parts must be equal zero:yi(z0)5yr(z0)50.
These initial conditions and the conditionyi(zf) are suffi-
cient to solve Eqs.~15! and ~22! with respect toyi(z) and
yr(z). However, the functiony(z), in general, is a complex
quantity and, therefore, the real partyr(zf) remains arbitrary
at the terminal timest f . From this we conclude that ou
optimal control problem is not unique. This is also reflect
in the fact that, for example, one may also work with t
Euler equation for the modulus ofy. Then, the final phase o
y will be an arbitrary terminal function. In the following i
will be assumed that before application of the field, att50,
the carrier with certainty was in theh band and the final
transition probability att f satisfiesPl(zf)'1. Then the func-
tion yr(zf) will remain undefined. Figure 2 shows one
many possible optimal trajectories in the complexy plane
under the described boundary conditions. The dashed line
Fig. 2 show the equationsyi56d. Under assumed boundar
conditions, if one wants to transfer the hole from theh to l
band, the trajectory should begin at the pointy50 and end
up in the upper or lower half of the plane, whereuyi(zf)u
>udu@1. This boundary condition requires an apparatus t
3-4
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OPTIMAL ELECTRONIC TRANSITIONS IN A SIMPLE . . . PHYSICAL REVIEW B 64 235123
measures the probabilityPl(t f)5yi
2(t f)/@11yi

2(t f)#'1 of
the hole being in thel band att f and which, at the same time
does not perturbyr(t f), i.e., the quantityyr , in principle,
should remain an unobservable during the measuring
cess. As mentioned, it is possible to construct the Euler eq
tion for modulus uyu too. Then the measuring apparat
should measure the probabilityPl5uyu2/(11uyu2) and leave
the phase of the wave function unperturbed.

In this section it was demonstrated explicitly that the
exist multiple solutions to a well-posed quantum-mechan
interband optimal control problem. In the next section
example of the interband control is presented.

IV. EXAMPLE

It is convenient to rewrite the obtained equations for o
timal transitions as a system of three first-order differen
equations. Then, after introduction of new variablesu1
5yi , u25yr , u35dyi /dz, one has

u185u3 , ~27!

u2852S u31
2u1u2

11z2 D u1

u2
2

11u2
22u1

2

11z2
, ~28!

u3852~a1 /a2!u32~b1 /a2!u3
21a0 /a2 . ~29!

The new functions satisfy the following boundary cond
tions: u1(z0)5u2(z0)50, u1(zf)@1, wherez0 and zf are
the initial and final normalized wave vectors, respectively
should be noted that the system~27!–~29! is independent of
band parametersN andM. Numerical solution of this system
by standard differential equation solvers is difficult becau
Eqs. ~28! and ~29! are singular: their right-hand sides a
infinite at some points on thez axis whereyr(z)50. Near
these singular points Eqs.~28! and ~29! may be simplified.
Leaving the leading terms on the right-hand sides of E
~28! and ~29!, one obtains

u28'2u1u3 /u2 , ~30!

FIG. 2. A typical trajectory of transient wave function in a com
plex y plane for optimal control, when initially the hole was i
heavy-mass band.
23512
o-
a-

l
n

-
l

t

e

s.

u38'
u3

2~11z2!u2

2
u1

2 S u3

u2
D 2

. ~31!

It is seen that the singularities come from the termu3 /u2

[yi8/yr . The primary source of singularities can be trac
from Eq. ~16!, from which follows that

yi8/yr'~«' / f !~11z2!. ~32!

It is clear that the singularities appear at the points where
electric field goes through zero. In the vicinity of these poin
the evolution of the solution should be analyzed in terms
the primary parametert, for example, with the help of Eqs
~15! and ~16!, rather than in terms of the normalized wav
vectorz. We shall limit the analysis to monopolar field puls
and assume that at the momentt50 the field is finite and has
very small value. This will allow us to find the solution nu
merically between two singular points and avoid the probl
of regularization of the solution. Then, from primary equ
tions ~15! and ~16! follows that att50 instead of boundary
conditions atz0 and zf one can approximately assume th
following zero and nonzero conditions at the boundary po
z0 only: u1(z0)50, u2(z0)Þ0, andu3(z0)Þ0. This means
that for monopolar pulses the problem can be reduced to
initial value problem, which is similar to the shootin
method in the two-point boundary value problems.27

Figure 3 shows the trajectory in they plane calculated
numerically with Eqs.~27!–~29! and ~32! using the follow-
ing input parameters:«'51024 a.u., f 5431026 a.u., z0
520.8, zf51.067,u1(z0)50, andu2(z0)51023. Figure 4
shows the probabilityPl and fieldf as a function of time~the
points in Fig. 4 are plotted at equalDz intervals: Dz
5zf /100). The field was deduced from Eq.~16!,

FIG. 3. Optimal trajectory on the complexy plane found from
the simultaneous solution of Eq.~15! and the Euler equation~22!.
The terminal values ofz arez0520.8 andzf51.067.
3-5
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A. DARGYS PHYSICAL REVIEW B 64 235123
f ~z!5
«'~11z2!u2

u312u1u2 /~11z2!
. ~33!

The coordinatez was transformed to time after numerica
integration of Eq.~18!. The following features should be
noted in Fig. 4. The maximum amplitude of the pulse
f max5Fmax/k''1023 a.u., orFmax52.13104 V/cm if k'

is calculated from«' and N512 is used. The transition
probability changes significantly only in the middle portio
of the electric pulse. At the beginning and end of the pul

FIG. 4. Time dependence of optimal control fieldf ~dots! and
excitation probabilityPl ~line! calculated from Fig. 3.
R

e

h

R
v

v.

2351
l

s

e

the field changes slowly; as a result oscillations in the t
sition probability are absent and the probability is a mo
tonic function of time~compare the oscillating character
the probability in Fig. 1, where a stepped electric field
applied!. The width of the optimal pulse at half-amplitude
very short, about 2000 a.u.'48 fs. The obtained charact
of interband transitions should also be compared with tha
Fig. 1, where a Gaussianp pulse was used to transfer t
hole from theh to l band. The width of the optimal pulse
comparable to the one calculated from the energy-time
certainty relationDtD«51, whereD« is the energy gaine
from the field by the carrier: D«5« l(t f)2«h(0)
5(2M /N)«'(zf

22z0
2)12«'(zf

211). If one assumes tha
M50, i.e., that theh band is flat, than the second term giv
D«5431024 a.u. orDt'2500 a.u., which is comparab
to pulse half-width. For practical applications this means
optimal interband switching is faster in those mater
where energy separation between conduction or val
bands is larger.

In summary, a simple model that describes interband t
sition dynamics between two parabolic and spherical en
bands in the presence of optical field was constructed.
model consists of a single first-order differential equation
the transition wave function rather than of two equations
coupled band wave functions. With this model it appea
possible to solve the variational problem of interband con
analytically and to demonstrate explicitly the multiplicity
solutions of a quantum-mechanical optimal control probl
In case of monopolar pulses, the solution of the Euler e
tion yields a smooth transition probability from one band
another band during a time interval, the length of which is
the order of inverse absorbed total energy by the carrier f
the field. Such ultrashort and optimizedp pulses have a po
tential application in quantum control, femtosecond spect
copy, and quantum computers.
v

.

.

C.

M.

n-

m
st,

u-

ts
*Email address: dargys@uj.pfi.lt
1A. G. Butkovskiy and Y. I. Samoilenko, Dokl. Akad. Nauk SSS

250, 51 ~1980!.
2A. G. Butkovskiy and Y. I. Samoilenko,Control of Quantum Me-

chanical Processes~Nauka, Moscow, 1984! ~in Russian!.
3G. M. Huang, T. J. Tarn, and J. W. Clark, J. Math. Phys.24, 2608

~1983!.
4A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A37, 4950

~1988!.
5M. Dahleh, A. P. Peirce, and H. Rabitz, Phys. Rev. A42, 1065

~1990!.
6S. H. Tersigni, P. Gaspard, and S. A. Rice, J. Chem. Phys.93,

1670 ~1990!.
7S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys. R

Lett. 65, 2355~1990!.
8J. F. Krause, R. M. Whitnel, K. R. Wilson, Y. J. Yan, and S

Mukamel, J. Chem. Phys.99, 6562~1993!.
9B. Kohler, V. V. Yakovlev, J. Che, J. L. Krause, M. Messina, K.

Wilson, N. Schwentner, R. M. Whitnell, and Y. Yan, Phys. Re
Lett. 74, 3360~1995!.

10A. V. Kuznetsov, G. D. Sanders, and C. J. Stanton, Phys. Re
52, 12 045~1995!.
2

.

.

B

11J. L. Krause, D. H. Reitze, G. D. Sanders, A. V. Kuznetsov, and
J. Stanton, Phys. Rev. B57, 9024~1998!.

12M. S. C. Luo, S. L. Chuang, P. C. M. Planken, I. Brener, and
C. Nuss, Phys. Rev. B48, 11 043~1993!.

13M. Demiralp and H. Rabitz, Phys. Rev. A47, 809 ~1993!.
14A. Dargys, Phys. Status Solidi B219, 401 ~2000!.
15A. Dargys, Proc. SPIE4318, 157 ~2001!.
16A. Dargys, Topol. Methods Nonlinear Anal.: Modeling and Co

trol 6, 27 ~2001!.
17A. Dargys, inProceedings of the 11th International Symposiu

on Ultrafast Phenomena in Semiconductors, Vilnius, Augu
2001,Mat. Sci. Forum~accepted!.

18P. Renucci, X. Marie, T. Amand, M. Paillard, and J. Barrau, S
perlattices Microstruct.26, 61 ~1999!.

19V. M. Axt, M. Herbst, and T. Kuhn, Superlattices Microstruct.26,
117 ~1999!.

20J. M. Luttinger and W. Kohn, Phys. Rev.97, 869 ~1955!.
21G. L. Bir and G. E. Pikus,Symmetry and Strain-Induced Effec

in Semiconductors~Wiley, New York, 1974!, Chap. IV.
22C. Kittel, Quantum Theory of Solids~Wiley, New York, 1963!,

Chap. IX.
23A. Dargys and A. F. Rudolph, Phys. Status Solidi B140, 535

~1987!.
3-6



tion

ry,
,

OPTIMAL ELECTRONIC TRANSITIONS IN A SIMPLE . . . PHYSICAL REVIEW B 64 235123
24A. Dargys, Phys. Rev. B59, 4888~1999!.
25A. Dargys, Lith. J. Phys.40, 431 ~2000!.
26In calculatingPh andPl apart fromf we need the productRR* ,

whereR* is the complex conjugate ofR. However, the integral
that appears in the exponent ofRR* after integration of Eq.~11!
can be expressed in terms off i if real and imaginary parts in
23512
Eq. ~12! are separated and then used to change the integra
variable inRR* to f i .

27W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanne
Numerical Recipes in Fortran~Cambridge, University Press
1992!, Chap. 17.
3-7


