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Optimal electronic transitions in a simple two-band model
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A quantum-mechanical problem of coherent control of charge-carrier transfer dynamics between two para-
bolic and spherical energy bands using optical electric fields was solved within the effective-mass approxima-
tion. Starting from the Luttinger-Kohn Hamiltonian, the problem at first was reduced to a single time-
dependent Schdinger-like equation for coherent hole transitions between two bands. Then, the obtained
equation and the functional that minimizes the energy of optical pulse are used to deduce the Euler equation for
optimal control. The multiplicity of the quantum-control problem is demonstrated explicitly. An example of
interband excitation with an optimat-type monopulse is presented.
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[. INTRODUCTION results can be applied to electronic transitions as well. The
charge carriers that participate in the interband transition can
By tailoring the shape of electromagnetic pulse it is pos-be provided by donors, acceptors, or injection currents. This
sible to manipulate constructive and destructive interferenc@aper considers only noninteracting carriers; therefore, the
of a quantum system and in this way to achieve the desiretjection or doping levels should be low, for example, the
final state of the system at the end of the perturbation. In théarrier concentration should be lower than*1@m~° at
case of quantum control in solids, the duration of the opticaloom temperature. The paper is limited to single-carrier op-
pulse must be shorter than or, at least, comparable to tH&€mal transitions. The case of distribution of carriers is more
shortest scattering time by lattice phonons to preserve thdifficult and not considerd here. Some preliminary results
coherence of the quantum transition. The optimization of opobtained with numerical methods are presented in Ref. 17. In
tical pulses, in general, is a complex multidimensional con-S€c. Il, starting from the Luttinger-Kohn Hamiltonian a two-
trol problem!™*" In quantum mechanics the control is not band model is reduced to a simple time-dependent equation
unique®® and should be treated as a quantum-mechanicdhat describes population transfer dynamics between two en-
rather than a classical measurement process. In Ref. 13 it hg§dy bands. In Sec. lll, the Euler differential equation for
been argued that there will be “denumerably infinite numberoptimal interband transitions is obtained, and in Sec. IV a
of solutions” to a well-posed quantum-mechanical optimalnumerical solution of the Euler equation is presented as an
control problem. It is important to stress that the control andllustration.
observation of the quantum systems takes place in a real
space rather than in an abstract Hilbert space of state vectors. Il. TWO-BAND EQUATION
Thus, quantum-control methods that consider the guidance An effective-mass Hamiltonian that describes valence
of a state vector from one point to the other point of the

Hilbert space have a limited practical usefulness, aIthoughg?nS of th.elz%!zelmentary semiconductors will be used as a
in this case as shown in Ref. 3, in principle, it is possible to arting point.
derive a scheme to control the evolution of the state vector to . M+N N .
a desired final state. Ho=— k?— 7 (K )2, 1)
Until now, quantum control was mainly applied to elec-
tronic transitions between discrete energy levels, for exin Hamiltonian(1), M andN are the valence-band parameters
ample, in molecular dynamiés® or transitions between and,k=(ky,ky k) is the hole wave vector, the components
quantum wells®~** Recently, the problem was extended to of which are measured with respect to Cartesian axes. The
polaritons}® phonons® and to electronic transitions between |, witonian is constructed in terms of the spin operdtor
energy band$*~® Due to mathematical difficulties most of =~ ~ ~ - pin op
(Ix.ly,1,), where

the quantum-control problems were treated numerically. The-

control of charge carrier transitions between the bands was 00 O 0 0 i 0 —i 0
solved using either the nonlinear programming methdd 1 o

or the genetic algorithrtf Some analytically tractable prob- 1,={0 0 —i|, 1,= 0 0 0O, 1,=/i 0 0f,
lems, for example, the optimal control of electron spin flip- 0Oi O —i 0 0 0O 0 O
ping by time-varying magnetic fields in a two-level system, 2)

can be found in the book by Butkovskiy and SamoileAko. ] ] ] )

In this paper, a simple two-band model based on théndi=1/—1. The spin matrice) satisfy standard commu-
Luttinger-Kohn Hamiltonian is solved analytically with the tation relations andf+|§+|§=2. Atomic units g=#2=m
aim to obtain a deeper understanding of the properties of 1) are used in this paper. The quadratic Hamiltonian
optimal control in the case of extended energy bands. Theepresents energy surfaces with maxirtieiple) degeneracy
model is rather general and is not limited to free holes. Thet the center of the Brillouin zone. The eigenvalues of &j.
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describe two parabolic and spherical energy bands: the dou- | ¢, e 0 O
bly degenerate heavy-mady band and single nondegener- _J _ 0 0
ate light-masgl) band with the following dispersion laws: 'ﬁ P2| = h
¢3 0 0 ey
en=MKk2/2, 3) . dlok, —pBsinae —Bcosa @1
+i—Z Bsina  dldk, 0 ®sl .
0 al ok
&= (M+N)K2/2. (4) B cosa z 3
(7

The parameter$! and N can be expressed through heavy- The three-component column functignis related toys

and light-hole masses. It should be noted that the considergg, transformationp=T~*(a) . The componenii;|? gives

problem is not limited to valence band only. It applies to anyne population of theth band. An explicit matrix for the

bands described by spherical and parabolic dispersion laws. A . o
If needed band degeneracy at the péirt0 can be lifted. In OperatorT («) can be found in Ref. 23. The second matrix in

the following the more general case with the degeneracy in'Ehe transformed Schdinger equatior(7) represents the in-

. . 2 2
cluded will be analyzed. The electric fiekl of electromag- terband coupling matrix. The parametge=k, /(ki +k;),

netic radiation couples the bands. If the field is switched onWhere k. = vki+kj is the wave vector perpendicular to
say, at momert=0, then at later moments the population or electric field, plays the role gf a coupling coefﬂuent, v_vhlch,
the probability to detect the hole in a particular band will due to Eq.(6), depends on time. In the coupling matrix the
depend on time. In the presence of the electric field the cofParametera is an arbitrary constant that comes out of the
responding Schidinger equation for three-component wave general transformation operatdi(«). Equation(7) shows
function ¢ will be written in the following way?* that the light-mass band may be coupled eithehioor to

h2 of the two degenerate heavy-mass bands by choosing
eithera=0 or = w/2. In the general case, thédand may

be coupled to both heavy-mass bands simultaneously if an
intermediate value o is chosen. It should be noted that the
parametefw is absent in the initial formulation of the prob-
lem in Eq. (5). The free parameter, or more precisely the
In the case of energy bands the time dependence of the waygnction tana, in fact, represents the ratio of the coupling of
vectork is described by the equatitin the | band tohl andh2 bands. As shown in Ref. 25, the
hidden symmetry of the problem is revealed as chaotic os-
cillations between doubly degenerdié andh2 bands, if
one tries to solve the syste(B) numerically and uses a nu-
merical unitary transformation to obtain the evolution of hole
populations in the bands in the presence of the optical field.

In our case Eq(6) is redundant since it is a characteristic Thus, before attempting to find a concrete solution of the
equation of the solved Schitimger systent5). Equation(6) ’ npting ! X .
transformed equatiofV) one must at first assign a numerical

will be used later to obtain a set of ordinary differential equa- 1 < toa. In the following we shall assume that= /2
tions. Due to the high symmetry of the problem, the solution. @ 9 — e

of the system(5) is not unique. In Ref. 23 it was shown that I.e.;/vg?/g filﬁgggr?'c tLansgﬁgs bitwevevﬁl zzngjng? daer?ecéenzed
for spherical bands the interband transitions between degerri)y It can be showsr‘f%;agtogolutiéorfgfgct}lhe wave vector e u.ation
erate and nondegenerate bands could be partially decouple&i)) q

. . . - is the characteristic equation of partial differential equa-
The corresponding unitary transformation operdiahat de- o (5) Using this property and the relation between total

couples the bands was qonstructed in Ref. 23. Recently, a4 partial derivativesde; /dt=de, /ot+F,de;13k,, one
more general transformation operator was found for the full.;y requce Eq(5) from partial derivatives to total deriva-
valence-band Hamiltonian, where the split-off band and NONgiyeg Remembering that= /2, one gets the following two
parabolicity of constant energy surfaces was included’too. coup.led equations from Eg7): '

For definiteness, in the following it will be assumed that '
optical electric field is linearly polarized and parallel to the

-

(A F(t)ﬁ)
Iﬂt_ H0+i—— . (5)

ak

dk/dt=F(t). (6)

k direction, i.e.,F=(0,0F,). Then, as shown in Ref. 23 =3 K2p,+iF,B¢,, 8
there exists an orthogonal transformation matiiX«),

where a is an arbitrary parameter, that diagonalizes the d

Hamiltonian (1): Flg=T~*(a)A,T(a). The diagonal ele- i%:5k2¢2—iF25¢1. 9)

ments inH, represent the dispersion equatids and (4).

The matrixT(a) allows us to transform Eq5) into an en-
ergy representation. In this representation the Siihger
system(5) assumes the following form:

The time-dependent syste(8) and (9) is rather general. If
needed, the degeneracy at the pdirtO can be lifted by
adding a constant term to the first right-hand-side term in
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either Eq.(8) or (9). The coupling between bands depends on &.0x10°
k. It is small at large wave vectors, which is physically ac-

ceptable. In the following, we shall show that further simpli-
fication of the resulting equation@) and (9) is possible. 4.0x10°
Since we are interested in optimal control of measurable
guantities rather than the control of evolution of the state \
vector ¢ in the Hilbert space, it appears possible to simplify 20x10"1
the problem in this case to a single time-dependent equation
If instead of ¢, and ¢,, new functionsR and ¢ are intro-

duced with the help of relations E 01
e
. ]
¢1=Rcos¢, ¢,=Rsing, (10 & 00l
then, remembering thg8=k, /k?, one gets the following
coupled equations fdR and ¢ from Eqgs.(8)—(10): 4.0x10° -
dR_K M+ N cog¢)R 11
i cos ¢)R, (11) 1o
d¢ ik? o8
E_TN sin2¢—F,B. (12 8-
One should note that in E412) only the energy difference & .|
Nk?/2=¢g,— ¢, between the bands at the pokarather than 8
the absolute band energies is of importance. If one is inter- 8
o

ested in carrier population dynamics in respective bands 0.4
only, then one can shdWthat it is not needed to know the

solution of functionR. Thus, the problem of band population
dynamics reduces to a single equati@®) and the probabil- 0.2
ity to find the carrier in the heavy- or light-mass bafg,or
P,, at the moment reduces to calculation of real and imagi-

nary parts of¢ only. SinceP,;=|¢,(t)|? and Pp=|¢,(1)|?, 007

~—7

then using Eqs(10)—(12) it can be shown that 0

P,=(1—cos 2¢, /cosh 2,)/2, (13

T T T
20000 30000 40000 50000
Time (a.u)

FIG. 1. (a) Three shapes of the electric field switched on at the
P,=(1+cos 2p, /cosh 24,)/2, (14) momentt=0 and(b) time dependence of corresponding probabili-
ties to detect the hole ikband as calculated with Eq®) and(12).
where ¢, and ¢; are the real and imaginary parts @ 1, stepped electric field; 2, resonant harmonic field; 3, Gaussian

Equations(13) and (14) at the same time yield the initial pulse.
condition for ¢ in Eq. (12). If, for example, att=0 the

carrier was in the heavy-mass band with probabifity=1, pulse, and the respective curve in pafi®l shows the evo-
then as follows from Eqg13) and(14) the initial conditions lution of the probabilityP, from zero to unity.
¢,(0)=0 and ¢;(0)=0 should be satisfied at the moment Thus, the main result of this section is that the two-band
t=0. In Secs. lll and IV we shall be interested in optimum population dynamics can be reduced to a single dynamical
population dynamics; therefore only Ed.2) will be used in  transition equatiori12), which depends on the energy differ-
the optimal control model. ence Ae=¢,(k) —ep(k) =Nk?/2 between the bands rather
Figure 1 shows the probabilitl?, to find the carrier in than on the absolute energies of the bands. The main equa-
band as a function of time calculated with E¢®). and (12) tion (12) bears some resemblance to the classical nonlinear
under various types of excitatioR,(t), assuming thaiN oscillator equation, although E¢L2) is complex and should
=12 and that at the initial moment the probabilities &e be solved simultaneously with the wave vector equat®n

=0 andP,,=1. The stepped electric fieldurve 1 that was
switched on at=0 yields only transient interband excitation
of small amplitude, P,(t)<0.045. The harmonically

IIl. VARIATIONAL CALCULATION OF OPTIMAL FIELD

varying field, the frequencyw of which is tuned In this section the Euler equation for optimal electronic
to resonancew=g(kg) —ep(kp)=0.0012 a.u., where&k, transitions between two energy bands is deduced. The varia-
=(0.01,/0.01,J/0.01) a.u. is the initial wave vector, yields tional problem becomes analytically treatable if instead of
periodic Rabi oscillations of band populatijpurve 2 in  time t a new variablez=k,(t)/k, is introduced, and the
panel(b)]. Curve 3 in paneh shows the Gaussian-shaped complex trigonometric function in Eq12) is eliminated in
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favor of the new variablg=tan¢. Then, the following dif-
ferential equations for real and imaginary partsyafan be
obtained from Eq(12):

dy, e, lt+yi-vy?
E——T(lﬂLZ)Yi—ﬁ. (15
dy, e 2yiy
TR AR b (16)

where &, =k?N/2 and f(t)=F,(t)/k, .
(13) and(14) reduce to

The probabilities

Pi=yy*/(1+yy*), Ph=U1+yy*). (17

PHYSICAL REVIEW B 64 235123

apy; +agy/ +by(y/)?+a,=0, (22

where coefficients are-dependent functions:
a0=2y,y/(1+3y; —yi+6y,2), (23)
a=(1+2%)(~ 1y} +22y,— 7y7), (24)
a,=—2(1+2%)?y,, (25)
b,=—(1+2%)2%y;ly,. (26)

If fis expressed from Eq16) and then inserted into Eq.

(15), then the resulting equation and Euler equati@g)

form a closed system for finding optimal electric fields.
The obtained Euler equatid22) is highly nonlinear and

Since the transverse wave vector is the constant of motion 5 ically untractable. Since the interband coupling coeffi-

the energy, is the constant of motion too. Equatiofis)—

(17) and the normalized wave vector equation for componen

K
dz/dt=f (18)

cient 8=k, /[kZ(t)+k?] is a time-varying functior(due to
E)arallel to theF, wave vectoy, to simplify the problem fur-
ther it is tempting to assume thatis constant and then to try
to solve the variational problem with constant interband cou-
pling from the beginning, hoping to obtain a simpler Euler

make up a closed system in the analysis of the optimizegquation. | have deduced such equation for a constant cou-

interband transitions.
In the following the Euler equation foy;(z) is deduced.

pling too. The resulting Euler equation in this case was found
to have the same structure as E2R) and the nonlinearity of

For this purpose, we shall solve the terminal optimizationthe equation was of the same order. Furthermore, | have

problem with the quadratic optimization criteriérL.et field

found that, independent of which wave functions y,, ¢,

F, act the carrier that participates in the interband transitioretc. was used to obtain the Euler equation, in all cases the

during time intervalAt=(0—t;), wheret; is the final or
terminal time. The quadratic functional

ts 2
J[Yi(z)]:fo Fdt (19

same structure of the nonlinear Euler equation has resulted.
Before ending this section, a short discussion on boundary
conditions will be presented. The solution of the Euler equa-
tion must satisfy terminal boundary conditionstatO and
t=t;, i.e., one must assume the boundary valuéz,) and
yi(z;) in Eq. (22). As explained after Eq(14), the initial

will be used to construct the Euler equation. The functionakonditions and band populations are related. For definiteness,
(19 requires the total energy of the pulse to be minimal. Itif we assume that at=0 the hole was in heavy-mass band
should be noticed that, in fact, the energy of the pulse will bawith the probabilityP,(0)=1, then one must satisfy(z,)
minimal at any value ot;, in other words, at any before- =0, which means that at the initial moment both the real and

hand assumed final time. In the functiond®), the argument

imaginary parts must be equal zergi(zy)=Y,(z,)=0.

yi(2) ind_icates that we are interested in the opt_imization ofThese initial conditions and the condition(z) are suffi-
yi(2) trajectory in the compley plane. The trajectory of cient to solve Eqs(15) and (22) with respect toy;(z) and
y:(2) remains undefined. Of course, instead of the imaginary, (z). However, the functiory(z), in general, is a complex

part one can use real part(z), or even modulusy| in the

quantity and, therefore, the real pgf{z;) remains arbitrary

optimization of interband transitions. Using the normalizedat the terminal timed;. From this we conclude that our
characteristic equatiofiL8), the quadratic functional can be optimal control problem is not unique. This is also reflected

transformed to a linear one:

Ayi(2)]=K? f:f dz. (20)

Then, after expressing the field from E@6), the functional
becomes

e, K2 (1+2)y,
Z,
yi +2yiy, /[(1+2%)

ts
Jyi(2)]= JO (21)

where y; =dy;/dz. This functional yields the following

in the fact that, for example, one may also work with the
Euler equation for the modulus gf Then, the final phase of
y will be an arbitrary terminal function. In the following it
will be assumed that before application of the fieldta0,
the carrier with certainty was in thie band and the final
transition probability at; satisfiesP|(z;)~1. Then the func-
tion y,(z;) will remain undefined. Figure 2 shows one of
many possible optimal trajectories in the complexylane
under the described boundary conditions. The dashed lines in
Fig. 2 show the equationg= =d. Under assumed boundary
conditions, if one wants to transfer the hole from théo |
band, the trajectory should begin at the pojrt0 and end

second-order Euler differential equation with respect toup in the upper or lower half of the plane, whesg(z;)|

yi(2),

=|d|> 1. This boundary condition requires an apparatus that
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A Yi 0
Complex
d>>1 y-planc
_________________ -2
T4 > .
— __d_ _________ N
>
7 -6-
Z=Z,
-84
FIG. 2. Atypical trajectory of transient wave function in a com-
plex y plane for optimal control, when initially the hole was in
heavy-mass band.
-10 T T T T T
-6 5 4 -3 2 1 0

measures the probabilit?,(tf)=yi2(tf)/[1+yi2(tf)]~1 of
the hole being in théband att; and which, at the same time, Y,
does not perturly,(t;), i.e., the quantityy,, in principle, ) .
should remain an unobservable during the measuring pro- F'G- 3. Optimal trajectory on the complexplane found from
cess. As mentioned, it is possible to construct the Euler equdl® Simultaneous solution of EGLS) and the Euler equatio@2).
tion for modulus|y| too. Then the measuring apparatus he terminal values of arezy=—0.8 andz;=1.067.
should measure the probabiliBf=|y|?/(1+|y|?) and leave
the phase of the wave function unperturbed. , Us Uq(Ug

In this section it was demonstrated explicitly that there U™~ o~ ?(u_z) : (3D
exist multiple solutions to a well-posed quantum-mechanical
interband optimal control problem. In the next section an

: . It is seen that the singularities come from the tewgfu
example of the interband control is presented. 9 giliz

=y/ly,. The primary source of singularities can be traced

from Eq. (16), from which follows that
IV. EXAMPLE

It is convenient to rewrite the obtained equations for op- yily~(e, If)(1+2°). (32
timal transitions as a system of three first-order differential
equations. Then, after introduction of new variables It is clear that the singularities appear at the points where the

=y, U,=Y,, Uz=dy;/dz one has electric field goes through zero. In the vicinity of these points
the evolution of the solution should be analyzed in terms of
u;=us, (27) the primary parameter for example, with the help of Egs.

(15 and(16), rather than in terms of the normalized wave

2ug,\ Uy 1+ u%— U% vectorz. We shall limit the analysis to monqpo]ar field pulses
up=— ( Ug+ ) = , (28) and assume that at the momentO the field is finite and has
1+2%) Uz 142 very small value. This will allow us to find the solution nu-
merically between two singular points and avoid the problem
us=—(as/ay)uz—(by/ay)ui+ay/a,. (29  of regularization of the solution. Then, from primary equa-

tions (15) and (16) follows that att=0 instead of boundary
The new functions satisfy the following boundary condi- conditions atz, and z; one can approximately assume the
tions: u;(zp) =U2(2p) =0, uy(zr)>1, wherez, andz; are  following zero and nonzero conditions at the boundary point
the initial and final normalized wave vectors, respectively. Itz only: u;(z,)=0, u,(zo) #0, anduz(z,)#0. This means
should be noted that the systé@v)—(29) is independent of  that for monopolar pulses the problem can be reduced to the
band parameterd andM. Numerical solution of this system jnitial value problem, which is similar to the shooting
by standard differential equation solvers is difficult becausenethod in the two-point boundary value problefhs.
Egs. (28) and (29) are singular: their right-hand sides are  Figure 3 shows the trajectory in theplane calculated
infinite at some points on the axis wherey,(z)=0. Near  numerically with Eqs(27)—(29) and (32) using the follow-
these singular points Eqg28) and (29) may be simplified. ing input parameterse, =10"* a.u., f=4x10"° a.u., z,
Leaving the leading terms on the right-hand sides of Eqs=—0.8, z,=1.067, u;(z,) =0, andu,(z,) =10 2. Figure 4

(28) and(29), one obtains shows the probability?, and fieldf as a function of timéthe
) points in Fig. 4 are plotted at equalz intervals: Az
Uy~ —UjU3/uy, (300 =z/100). The field was deduced from Ed.6),
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FIG. 4. Time dependence of optimal control fidlddots and

excitation probabilityP, (line) calculated from Fig. 3.

e (1+Z2%)u,
f(z)= —.
Us+2uqU,/(1+29)

(33

The coordinatez was transformed to time after numerical
integration of Eq.(18). The following features should be

PHYSICAL REVIEW B 64 235123

the field changes slowly; as a result oscillations in the tran-
sition probability are absent and the probability is a mono-
tonic function of time(compare the oscillating character of
the probability in Fig. 1, where a stepped electric field is
applied. The width of the optimal pulse at half-amplitude is
very short, about 2000 a.&=48 fs. The obtained character
of interband transitions should also be compared with that in
Fig. 1, where a Gaussian pulse was used to transfer the
hole from theh to | band. The width of the optimal pulse is
comparable to the one calculated from the energy-time un-
certainty relatiomMtAe =1, whereAe is the energy gained
from the field by the carrier: Ae=¢g(t;) —¢en(0)
=(2M/N)e, (22— 25)+2¢,(z2+1). If one assumes that

M =0, i.e., that thén band is flat, than the second term gives
Ae=4x10"% a.u. orAt~2500 a.u., which is comparable
to pulse half-width. For practical applications this means that
optimal interband switching is faster in those materials
where energy separation between conduction or valence
bands is larger.

In summary, a simple model that describes interband tran-
sition dynamics between two parabolic and spherical energy
bands in the presence of optical field was constructed. The
model consists of a single first-order differential equation for
the transition wave function rather than of two equations for
coupled band wave functions. With this model it appeared
possible to solve the variational problem of interband control
analytically and to demonstrate explicitly the multiplicity of
solutions of a quantum-mechanical optimal control problem.
In case of monopolar pulses, the solution of the Euler equa-
tion yields a smooth transition probability from one band to

noted in Fig. 4. The maximum amplitude of the pulse isanother band during a time interval, the length of which is of

fmax= Fmax/K. =102 a.u., orF h,=2.1x10* Vicm if k,
is calculated frome, and N=12 is used. The transition

the order of inverse absorbed total energy by the carrier from
the field. Such ultrashort and optimizedpulses have a po-

probability changes significantly only in the middle portion tential application in quantum control, femtosecond spectros-
of the electric pulse. At the beginning and end of the pulsecopy, and quantum computers.
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