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Density-functional perturbation theory with ultrasoft pseudopotentials
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Density-functional perturbation theory for lattice dynamics is presented in a general framework which
includes Vanderbilt's ultrasoft pseudopotentials, nonlinear exchange and correlation core corrections, the local
spin-density approximation, and spin-polarized generalized gradient corrections. The dynamical matrices of
metallic and of insulating solids are calculated at arbitrary wave vectors. The method is applied te0d® Cu
surface and to the nitrobenzene molecule.
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[. INTRODUCTION derivatives depend on the first-order wave-function deriva-
tives due to a single perturbation. Thus the response to one
In the last ten yearsb initio calculations of the phonon- phonon allows the evaluation of a full row of the dynamical
dispersion spectra of solids and surfaces have complementeaatrix. This approach, introduced in the first implementation
the empirical Born—von Karman force-constant models inof DFPT}’ has been generalized to metallic systems as
interpreting and explaining the experimental data, thanks tovell B
the introduction of density-functional perturbation theory DFPT turns out to be simple to implement with a plane-
(DFPT).}2 This technique, based on density-functionalwaves(PW's) basis set and norm conservifiyC) pseudo-
theory (DFT), allows the efficient treatment of the responsepotentials(PP’9.%° The only drawback is that PW's are not
of an electron system to external perturbations. The phonoefficient enough to describe first-row elements or transition
frequencies are obtained at arbitrary wave vectors of thénetals and for these applications all-electron methdds,
Brillouin zone (BZ) with an effort which is almost wave- or mixed basi¥' have been extensively applied in the past.
length independent and comparable, for each mode, to theFPT has been presented in the framework of the linearized
effort required to calculate the ground state of the unperaugmented PW method APW),'® of the linear muffin tin
turbed system. At present, there are several implementatiorgsbitals (LMTO) schemé? and with mixed basi$’ Several
of DFPT for lattice dynamics which apply different formulas applications of these methods have been reviewed in Ref. 2.
for the interatomic force constants and reflect the peculiari- More recently, Vanderbilt's ultrasofUS) PP’s (Ref. 18
ties of the scheme employed for the solution of the DFThave been demonstrated capable to deal with localized elec-
equations. trons and to provide results which are often as accurate as
In the Born-Oppenheimer approximation, the interatomicthose obtained with the all-electron methods. This paper is
force constants are identified with the second-order energgtevoted to the presentation of DFPT in the framework of US
derivatives with respect to atomic displacements. In DFT, thd®P’s. Its purpose is to provide all the details needed to imple-
energy is a functional of the electronic charge density and anent the method with a PW basis set. In Ref. 19, DFPT with
minimum variational principle gives the ground-state den-US PP’s has been briefly described, the discussion was fo-
sity. As a consequence, also the even-order energy derivaused on insulating systems whereas the treatment of metals
tives are variational.In practice, the energy minimization is was only sketched. In this paper, | start from an energy
carried out on the Kohn and Sha(KS) functional which  functional which applies to metallic systems, as well as to
depends on single-particle orbitals subject to orthonormalizainsulators. Spin polarization is included in the energy func-
tion constraints. The Taylor expansion of the energy functional for the study of magnetic materials and the exchange
tional and the Lagrange multipliers technique lead to variaand correlation energy functional depends on the total spin
tional expressions for the second-order energy derivativesharge densitiesi, and on their gradient¥n,. The total
which can be regarded as functionals of the first-order wavespin charge densities are obtained by adding a pseudized
function derivatives. The minimization of the second-ordercore charge to the valence charge densities as in the nonlin-
energy shows that the first-order wave-function derivativesear core correctiofNLCC) approximatiorf’ This scheme
are the solution of a self-consistent Sternheimer linear syssomprises several different recipes for the generalized gradi-
tem. The same conclusion is reached also via standard peznt approximation(GGA), and the local spin-density ap-
turbation theory applied to the KS equatidnén some proximation(LSDA) is recovered by neglectingn,, in the
implementations, the solution of the self-consistent lineaexchange and correlation energy. The orbitals are subject to
system is entirely avoided via a direct minimization of thegeneralized orthonormalization constraints with an overlap
second-order enerdy. matrix which varies in response to small atomic displace-
The interatomic force constants can be calculated also bgnents. Furthermore the charge density is calculated with an
differentiation of the Hellmann-Feynma#iF) forces® This  augmentation term as in the US PP scheme. The interatomic
procedure leads to expressions which are not variationaforce constants are obtained by differentiation of the HF
Nevertheless, in this way, the mixed second-order energforces and the induced spin charge densities and the first-
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order wave-function derivatives are discussed in detail. occupations and spin polarizatfdrallows the description of

The formulas obtained in this paper have been applied topen as well as closed-shell finite systems or metallic as well
the calculation of the phonon dispersions of Cu, Ag, and Auas insulating crystalline solids. | choose a functional which
in Ref. 19, and of Si, C, Cu, and Al in Ref. 21. In the latter includes a term that makes it variational even with variable
reference, the performances of the local-density approximasccupationg®?%8 A smearing approach is used and the oc-
tion (LDA) and of the GGA have been compared. Thecupation numbers are functions of the energy le¥glsand
phonons of magnetic bcc iron and fcc nickel have been preef the Fermi energy ¢ which fixes the electron number. The
sented in Ref. 22 and the vibrational properties of theionic positions act as external parameters for the functional.
Cu(002)/CO system have been discussed in Ref. 23. In thisn the US PP’s scheme, the energy has four contributions:
paper the theory is illustrated with two examples: the

Cu(00]) surface and the nitrobenzene molecule. First, | ana- Fiot= E[{#io(N)}]1+F[ps(r),pc o(r)]1+Uy

lyze the interatomic force constants at the(@) surface

and within the bulk, comparing the results of the LDA and +E n’él(sF_gia). e
the ones of the GGA. Second, the vibrational modes of a io

finite Cu001) slab are calculated, the surface modes of the ) ) )

slab are identified and discussed together with the availablé? order to establish a uniform notation, these four terms are

experimental data. The nitrobenzene molecule is simulated ifgcalled in this section. All equations are in atomic units: the

a cubic supercell, all its vibrational modes are calculated anfflanck constanti=1, the electron charge’=1, and the

the theoretical frequencies are compared with data provide@lectron massn.=1. The energy is measured in Hartree.

by infrared and Raman spectroscopies. The first term in Eq(1) is
This paper is organized as follows. In Sec. Il, the DFT .

energy, the KS equations, and the HF forces are written for O~ EF T Eie 2

the US PP’s scheme. Section Il deals with the charge den- E[W“’(r)}]_% 6( 7 )w“"_ 2V Vo),

sity linearly induced by a perturbation, Sec. IV with the gen- 2)

eralized Sternheimer equation, and Sec. V with the mixed 3

second-order energy derivatives. The vibrational propertiewhere the index runs over all electronic state®. is an

of the CUY002) surface are presented in Sec. VI and the vi-approximation of the Fermi function, thus in practice, this

brational spectra of the nitrobenzene molecule is discussed sum extends to the completely filled orbitals in insulators and

Sec. VII. In the paper, the notation is kept as simple as posalso to some partially filled states above the Fermi energy in

sible in order to focus on the new features of the US PP'snetals. The form off depends on the smearing technique
scheme. The notation is simplified by considering a generadnd on a smearing parametgr For vanishings, it coin-
quantum system, a general perturbation and general nonlocglyes \ith the step function. Examples 6ffunctions are

PP’s. The appendixes report detailed expressions impleme%und in Refs. 30 and 31, where the smearing approximation

e s i o 1 opens UGS o o g o O b o
9y » SP ‘5(x) while 8(x)=[*_'8(y)dy. Vy. is the nonlocal part

a periodic solid, a phonon perturbation and US PP’s, are used" SN }
to calculate the dynamical matrices at an arbitrgugoint of of the PP which, in the US PP's scheme, reads

the BZ. At this level the basis functions used to expand the

orbitals are not relevant, provided that they do not depend ony/ (v, r,)=>, DO D —R)BED(r,—R)), (3)
the ionic positions, as the PW’'s, so that Pulay-type fnm

correction$* are not needed. Finally in Appendix B, | intro- _ ) 0 -
duce the PW basis set. The formula of this Appendix havévhere the projector functiongy”'(r) and the coefficients

been implemented in a code based on PW's and US®P's. Dim"") characterize the PP for each atomic tyyf¢). They

are obtained by atomic calculations as discussed in Ref. 18.

The index | labels the ionic positiondR,. The indexes
Il. GROUND-STATE ENERGY AND IONIC FORCES n and m run over the 8 functions. In the Kleinman

Bylander(KB) (Ref. 10 separable NC PP’s scheme, the non-
local part of the PP is written as in E¢B), but with only

According to the Hohenberg and Kohn theoréhthe en-
ergy of a system oNy, interacting electrons in the potential " - .
ofgt);e ionsyis a unialue functior?al of the electronl?c charged'agonang?\)Y(l) coefficients. In both cases, the meaning
density and it is minimized by the ground-state density. An°f tr;e gra-k*et notation in Eq.(2) is: (ie|Viil¥is)
explicit form for this functional has been given by Kohn and =Jd°r,d r2l/lia(r1)VN|__(rl’r2) ‘/fia(rg)- _

Sham who introduced an auxiliary system N, noninter- The second term in Eq(l), F, is a functional of the
acting electrons with the same density of the interacting sysSPin-up and spin-down valence electron charge densities:
tem. The charge density of the noninteracting electrons has a

unique representation in terms of single-particle electronic I N 3, 43 % . _

orbitals {i,(r)} (the indexi labels the electronic energy pol() Z aF""f A0y, (TR (FrL ) Yi(r2)
levels, ands the spin statg and the energy of the interacting

system becomes a functional of these orbitals. The generali- => b, (o K (D) i) (4)
zation of this scheme to energy functionals with fractional T e 7
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where, following Ref. 8, | introduced a compact notationenergy to determine them, or to treat them as a function of

”gF i(r=79[(8F—8ia)/77]- With a NC PP, the electron valence the single-particle energies as done here. In the latter case,
charge densities of the noninteracting auxiliary electron systhe minimization of the energy yields the KS equations for
tem (and hence of the interacting onare the sum of the the orbitals and, in the formulas for the HF forces, the occu-
square moduli of the wave functions, weighted by the occuPation numbers derivatives do not app&iThis formalism,
pation numbers. In the present scheme, this case is recoveréffich reduces to the finite temperature DFT with Fermi-
by taking K(r;ry,r,)=48(r—ry)8(r—r,). In the US PP's Dirac occupation factors, is used in this paper in the context
scheme the functiorK(r;rq,r,) contains an augmentation Of the smearing approach to metals and its main purpose is

term (1 refer to Refs. 18 and 32 for additional detils the efficient evaluation of BZ integrals in the presence of a
Fermi surface.

The orbitals{¢;,(r)} are subject to generalized orthonor-

K(riry,rp)=o8(r=ry)a(r=ra)+ % Qi (r=Ry) malization constraint&
XBRO(r=R)B (=R, (9) (ol Sl¥jo) = i Y

The augmentation functior®?{)(r—R,) are calculated to- With an overlap matrix S:

gether with the PP and are localized about the atoms. When

the atoms move, the centers of the augmentation functions S(r1.,72)=6(r1—rp)

change. Therefore, to develop a perturbation scheme, we

must consideiK(r;ry,r,) as a function of the perturbation + > 0B —R)BED(r,—R)), (8
parametersk is the sum of the local, Hartree, and exchange Inm

and correlation energies: where the coefficientg?)=[d%Q*!)(r) are the integrals

1 of the augmentation functions. Given this definitionSthe
F[po(r),pcyg(r)]zf d3rV ee(Np(r)+ Ef d3r,dr, charge conservation condition in the US PP’s scheme be-
comes identical to the one found in the NC scheme. This
r r condition defines the Fermi energy and it is
PUIPTZ) g (), ¥, (1],
ri=ry -
©) 2 Brio=Ner. )
where the total valence chargér) is the sum of the spin-up ) N o
and spin-down valence electron densitips,,(r) are the The ground-state spin charge densities minimize the en-

core charges obtained from the atomic core charges, arffdy functional. As a consequence, the KS functional is mini-

Ny(r)=p,(r) + pe.o(r) are the total spin charge densities. mized by the auxiliary single-particle orbitdlg;,.(r)}. With

Vloc(f)=2|Vf/o(p(f—R|) is the local part of the PFE,, is the constraints in Ed7), the minimum condition leads to the

the exchange and correlation energy functional. Following<S equations:
the NLCC recipe, | assume th&,. is a functional of the
total spin charge densities. In GGE, . depends also on the
gradients,Vn,(r). Core spin polarization is neglected, as-
suming thatp. ,(r)=1/2p.(r). The core charge does not
depend on the orbitals but it is a function of the atomic
positions.

The termU,;, in Eq. (1), is the ion-ion interaction dealt IE
with via the Ewald summation method. In the following, | VI(r) = ——
focus only on the electronic contribution to the force con- dp,(T)

stants. l’she ionic  contribution is discussed in several . expression ok’ (r), in the context of the GGA ap-
,7, H H 1 XC 1
paper§”**and no new feature is introduced by the US PP Sproximation, is given in Ref. 22. To simplify the notation, the

scheme. L i
The last term in the energy functional, EQ), is a cor- KS potential is defined as

rection that resembles an entropy term for fixed electron
numbers and is nonvanishing for fractional occupation num\/;{s(rl,rz)=VNL(rl,r2)+J A3V (NK(rry,ry). (12
bers. It coincides with an entropy term when the occupation

factors have the .Ferm|-D|rac form. In this Cf”}.s%t 'S_ a At the electronic ground state, the forces acting on the
free-energy functional. In general, the functi@h(x) is:  atoms are the negative derivatives of the energy functional
61(x)=[*_.yd(y)dy. With this definition, the energy in Eq. [Eq. (1)] with respect to atomic displacements. The atomic
(1) is variational and is equivalent to the energy introducedpositions act as external parameters in this functional thus
for instance in Ref. 29, as discussed in Refs. 2 and 8. It ithe HF theorerh applies: the forces depend only on the

equivalent to assume that the occupation numbers are indground-state orbitals. In the US PP’s scheme, the overlap
pendent parameters, as in Ref. 29, and to use the variationadatrix S changes as the atoms move, thus giving rise to a

|¢|o’>:8|0's| ¢|0'>! (10)

- §V2+VN,_+ f d3rV I (r)K(r)

where the effective potential is the sum of the local, Hartree,
and exchange and correlation potentials:

=V.oc<r>+fd3rl%+v;’c<r). (1
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term in the forces. This term is found using the linearized dp(b)( _ dii,
orthonormalization constraints which provide the relation- =2 O < d K(r)|¢ig>+c.c., (17)
ships :
where c.c. indicates the complex conjugate. The third term
< Yo Sl )+ (W |S’ ‘//m> =~y |5_S| Uin), (13) has no correspondent counterpart in the NC scheme. It is due
dx 7 7 NI to the displacement of the augmentation functions and it is
where\ denotes the amplitude of an atomic dlsplacementertten
The final expression of the energy derivative is (c) c?K(r)
Aé g (o8 g, 18
dFm Z ioWiol— —¥is)- (18)

S
_2 F|0'<¢|O'| siomhﬂio’)

Two new quantities appear in Ec(s.ﬁ) and(17): the varia-
tion of the occupation numbers and the first-order change in
+> J d3r Ve rl)&pw(rl) , (14)  the wave functions. In insulators and with NC PP’s, one can
xe IN show that only the conduction-band projectior ;. /d )
ontributes to the induced spin charge density and, of course,
he occupation numbers are fixed. As shown in Ref. 8, in
metals one can define a generalized projector in the

where the last term accounts for the NLCC, and the parti
derivative ofVgg is defined as

o conduction-band manifold and set up a linear system to get
k(1. 2) :ﬁVNL(rl’rZ) f d3 (N'O—C(r)K(r;rl,rz) the wave-function changes, in such a way that Ef8). and

In IN IN (17) are calculated with expressions which closely resemble

IK(Tiry,r>) those valid for insulators. With respect to Ref. 8, the major

f dBrVI(r) ————— N . (15  difficulty of the US PP’s scheme originates from the depen-

dence ofS, and hence of the orthonormalization constraints,
In these expressions and in the following, | use the totaPn the atomic positions. By contrast, the displacement of the
derivative symbold) to denote a derivative where the orbit- augmentation functions gives rise to E48) which can be
als are considered as implicit functions of while the par- ~ calculated as it is, without further manipulations.
tial derivative symbol §) indicates derivatives done at fixed ~ First-order perturbation theory, applied to the KS equa-
orbitals. The partial derivative is used also to differentiatetions[Eg. (10)], yields the components ¢€;,/dw) in the
quantities such aS or p, which do not depend on the orbit- Subspace orthogonal to the eigenspacg/of) and also the
als. For fixed occupation numbers and neglecting NLCC, Eqgenergy levels derivatives with respect go Differentiation
(14) has been reported in several papésse, for instance, Of Eq.(10) yields
Ref. 32. In order to calculate the interatomic force constants

and hence the dynamical matrix, | differentiate Ef) with [_ SV24Ve—g,,S ’d¢|g>

respect to a second perturbation paramgted F,,,/d\ does 77 du

not depend either on the induced spin charge densities or on

the first-order wave-function derivatives with respectito __ dVis W )+ S| Do),
Therefore the mixed second-order energy derivatives will de- du "’& e 7

pend only on the induced spin charge densities and on the (19)
first-order change in the orbitals with respectto Before
differentiating Eq.(14), in the next section, | discuss how to Where the total derivative of the KS potential is
calculate the induced charge-density and the wave-function,, .,
. 4 UVE(ry 1) aVKS r, rz) 3 ch( )
d d°r————K(r;rq,rs).

changes within the US PP’s scheme.
Ill. FIRST-ORDER WAVE-FUNCTION AND CHARGE- (20)
DENSITY DERIVATIVES This derivative differs from the partial derivative of
Vgs(ri,ro), discussed abovesee Eq(15)], for the presence

The spin-up and spin-down charge densities are calculategk a self-consistent term. Indeedly;, .(r)/du is the change

via Eq. (4). By differentiating this expression with respect to jn the Hartree and exchange and correlation potential:
the perturbation parameter, | get the induced spin charge

densities at first order. There are three terms. The first one is dViye(r) 5 dp(ry) 1 dVy(r)
the spin charge density induced by the change in the occu- —_J e r=ryq] du

pation factors:
linear in the induced spin charge densitid¥;(r)/du, in
(a)(r) Okio the GGA approximation, is calculated in Ref 22.
E <l7[/|0'|K(r)|'r//I0'> (16) The linear system in Eq19) is singular as in the NC case
where, in order to solve it, one projects both sides in the
while the second one accounts for the change in the waveonduction-band manifold and adds to the left-hand side a
functions: multiple of the valence-band projector so as to make the
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projected linear system suffice since only the conduction- |¢,U> (22
band projection ofldi;,/du) contributes to the induced

spin charge densities and to the interatomic force constantand forj #i:
In the US case, instead, also the valence-band projection of
|dy,/du) gives a finite contribution talp,(r)/du sinceS dVks

is changing with the perturbation. In the following, | show disi, (#io] d '03 |‘/"0>

how this works in the US PP’s scheme. As shown in Ref. 8, (ol S5 >= —— . (23
one can deal with the general case of metals, insulators are a Eie™ Ejo

special case. | assume thgf, is nondegenerate, but the gen- Using Eq.(23), the transformation discussed in Ref. 8, and
eralization to the degenerate case is straightforward. Projec&dditional bookkeeping to account for the energy-level ex-

ing Eq.(19) on the unperturbed orbital{$y; )} gives changes, Eq(17) can be rewritten as

system nonsinguldr.In the NC case, the solutions of the d',3|
- < Io’|

IO'a

(o

dp$(r) Orio— OF jo
dM =2R ZI ;I majo',iapio,ja'<wja| dM slaa,u |{rll|a'>
ZI ; [eFla i joT 0F]o’ Jalo]PlaJa<¢ja| |¢|o> (24)

where p;, i = (¥i,|K(r)|4;,), and ¢ is a step function. In
the first term of Eq(24) thej=i term is missing. In a metal, |8"¥i,)= 2 [0F.io Oigjo™T 9Fw Jom]|l//w><¢m| |¢|o>
the change in the occupation numbers could give rise to a 27)
nonvanishing =i term. In fact, Eq.(16) can be split as
In an insulator|A*y;,,) is the projection ofdi;,/du) on
the conduction-band manifold, whil&*;,,) is reminiscent

dp@(r) B dT9FYi,, of a projection of/d¢;,/du) in the valence-band manifold.
du —Ei du Pic,ic It is nonvanishing only if the orthonormalization constraints
are variable. Given these definitions, at linear order, the in-
1.  deg 1. dg, duced spin charge densities become
:E _5Fi0' plo’la_z _5F,io'_lpia',io"
i 7 du i 7 du dp,(r)
25 du ~2Re2 (BiolK(DIA ig) = 2 (dio]
In the limit ej,— i, the ratio @ i,— O jo)/ (eie—&jo) IS ><K(r)|5“¢|,,>+2 O |0<¢IG| |¢,w>
equal to— (1/9) ¢ ;.. Therefore the second term in E5)
is the missingj =i term of Eq.(24) and can be included in (28

the sum. The first term of Eq25) shows that the change in
the Fermi energy could affect the induced spin charge de
sities(see Ref. 2 for a discussion of the origin of this t&rm
Equation(24) is a central result of this paper. The last term
shows how the changing orthonormalization constraints af-
fect the induced charge densities and how the variable occu-
pation numbers must be handled. IV. LINEAR SYSTEM
To proceed further, let us define two vectors:

Equation (28), limited to spin unpolarized insulators, has
een presented in Ref. 19. As in Ref. 19, in the following, the
last two terms are called*p,(r), while the second term is
called 5" Po, orth(r)

The sum ovey in the definition of the vecto* i) [Eq.

(27)] is over all states, but actually ti@efunctions limit the
1. 9F . 9F ) sum to filled and partially filled states. We can assume that
|A# i )= 2 —Br o d | Yig)t 2 8—8] 000l ¥jo) hé':'jg- is vanishing if the eigenvalue;, is higher thaneg
K e "o +37. Instead the sum ovay in the definition of| A* ;)
[Eq. (26)], extends to all states. In principle this is an infinite
[ i) (26) sum. If the orbitals are expanded in a finite basis set, the sum
is over a number of states comparable to the number of basis
functions. The explicit evaluation ¢A* ;) via Eq.(26) is
and computationally expensive since it requires the knowledge of

(o

dVis
X<¢jo| d

Slo&
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all the eigenvectors of Eq10) and summations over all tiation of Eq.(14) with respect tou gives four terms. The
states. Instead, the sum can be carried out exactly and effirst accounts for the change in the occupation numbers:
ciently by solving an algebraic linear system. This formalism
is known as the Green-function technidukeintroduce a lin- 42F@

tot

ear system whose  solution is|A% ;) =|A*;,) 5 d)\zz deF"’( w|[ si”j_ﬂ|¢i”>' (32
—(1/29) 3¢ i, (deg /du)| ¢,). Following Ref. 8: # s

The second is due to the change in the energy levels and in

[_ V24 VIt Q7 e, S|[R ) the wave functions:
2(b)
Vis d Ftot__ dej,
— _pt. [ dlu 8“7(9’“ |lv[/|o> (29) de)\ - % Fiio d <¢Io’|a)\|¢lo>
with dii,|| IVR JS
~ io KS

+§ 6F,io[<ﬂ W_Sioahlpia’)"_c'c']'

CIo’ 0F|a’ 2 ﬂla’jo’S“bJa')(wJo@ (30) (33)

QY is an operator, vanishing on the conduction states abovéhe third term generalizes to the US PP’s scheme, the ex-
eg+ 37, which makes the linear system nonsingular. In thePectation value of the mixed second-order derivative of the
US PP’s scheme it iQ7=X;a,S|#j,)(¥;,|S, whereq;, external potential:

is vanishing if.e,(r is abovesF+377 and is equal t08|:

+37n—gj, if it is below. This linear system can be solved 42F(9) Vs 52S
with iterative techniques, such as the conjugate gradmné— 2 0;,,,(1,0”,|[ ( ) sigm}ww). (34
method. By projecting on the unperturbed levels, one sho du H

that by choosing theg;, ;, as
The fourth term is due to NLCC and is equal to E({34)
9F _ —~9F _ and (135 of Ref. 2(see also Ref. 34
o Jjo

Blrr](r 6F|00|1r10+0F100]0|0+aJ(r _
€ic™ €jo

jo,io
(3D) d’F{5) 5 J c<r1) Ipc,o(11)
d,ud)\ I\

its solution is indeed the vectph“y;,,) [see Eq(26)]. Note

that with this definition all sums are limited to states with 3 pc +(ry)

energy lower than eg+37%. In insulators ~0F,i(, +§0: f d°ryVi(r)———— IwoN (39
—2Bic,joeS|¥js)(j,| becomes the projector over the con-

duction states manifol®), which does not depend on the )

energy level. For nonmagnetic and insulating solids, this lin-  The two vectorgA*y;,), and|&*4;,,) introduced to cal-

ear systeniEq. (29)] was introduced in Ref. 19. culate the induced spin charge densities suffice also to evalu-
ate the mixed second-order energy derivatives. | start with
V. MIXED SECOND-ORDER ENERGY DERIVATIVES Eq. (33). Using Egs.(22) and (23) for the change in the

energy levels and in the wave functions and techniques simi-
In this section | calculate the mixed second-order energyar to those applied to derive E§R4), one transforms Eq.
derivatives with respect to atomic displacements. Differen{33) into

g

d?F Q) 9Fm 0Fjo- dVgs
d,ud)\ =2R | l | ] 0]0’,ia’<¢ia’| W Ia'(9 |¢jo’><¢ju’|

0" Ejo

as}
siaﬁ |¢io‘>

aS
EJ: [[0FIO' |0'J0'+ 0F]a’ Jo’lo'](lplo'| |$J0’><l//]a'|[ 8i05:||‘//i0>+(/*4‘(_>)\)]

io

dV{xc(1)
+2 fd rg—ﬂg\l)a,orth(r)v (36)

o
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where(u«\) denotes a term equal to the one in the brackettation functiond Eq. (18)]. This integral is obtained partially
with N exchanged withe. Equation(36) is the second main in Eqg. (37), from thex derivative ofdVi4/ N, and partially
result of this paper. It shows how the change in the orthonorin Eq. (36) from the manipulation ofl?F{2)/dwdx
malization constraints reflects in the expression of the inter- The fourth term, obtained in E¢36), has the same origin
atomic force constants and how to handle partial occupaasgkpmnh, it is due to the dependence of the orthonormal-
tions. Furthermore, it shows that'p, .n(r) couples with jzation constraints on the atomic positions:
the variation ofV{,.(r).

Equation(32) is transformed as Eq16). It is split into d?F{&)
the missingj =i term of Eq.(36) and into a contribution due dudn > {(5"1/%
to the Fermi energy change. 7

In the NC case, the expectation value of the mixed
second-order derivatives of the electron-ion potential is foror nonmagnetic, insulating materials these terms have been
mally similar to Eq.(34). However, this equation differs discussed in Ref. 19 and in Ref. 2. Equati@®9) accounts
from the NC case since the augmentation functions makeyr NLCC and is added to these four terfté.In Appendix
dVig/ I\ dependent on the charge densities throufij [see A, | shall show how to exploit these relationships to get the
Eg. (15] and therefore the derivative ofdVgg/d\ depends dynamical matrices of a periodic solid.
also on the induced self-consistent charge densities. Expand-

N S
{W_sirrﬁ}|l/’io>+(ﬂﬁ)\)] .
(42)

ing the total derivative with respect @ one obtains V1. PHONON DISPERSIONS OF CU(001)
d (dVgs| 9*VEs 5. A V(1) dK(r) In this section the vibrational properties of the (Qil)
du\ an | amon d*r du IN (37 surface are investigated by DFPT with US PP’s. The surface
_ . o _ is simulated by 39 and 107 layer slalisThe interatomic
where the mixed partial derivative &fZg is force constants of these slabs are calculated from the bulk Cu

and from a seven layer @02J) slab. The latter provides the

2 . .
I Vis(ra.r) _52VNL(T1J2 interactions among three surface layers whereas the former

) o Vi)
+j d rWK(r’rl’rZ)

AwoN o\ describes the force constants in the other layers. The ex-
o change and correlation energy functional is approximated by
+f d*rve, (1) I°K(rr,r) the LDA (Ref. 27 or by the Perdew, Burke, and Ernzerhof
eff EIT)N (PBE) (Ref. 35 GGA. The phonon dispersions obtained with
these two functionals are compared. A similar comparison
n f darﬁvloc(r) IK(riry,ra) +(Aesp)|.  Was carried out for bulk Cu in Ref. 21. In this work, | use the
N I same Cu PP’s. PW’'s up to a cutoff of 280) Ry for the

(39) wave functions and 2080) Ry for the charge density are
included in the basis set in the LD@&®BE GGA.

Collecting these resulf€gs.(36)—(38)], and ordering the The seven layer slab is studied with a tetragonal unit cell.
terms as in Ref. 19, the mixed second-order energy derivalne periodically repeated slabs are separated by a vacuum
tives assume the final form. The first two terms generalize, t§Pace equivalent to eightDA) and nine(PBE GGA lay-
the US case, the NC terms in the interatomic force constant§'s. The in-plane lattice constantdig=6.71 a.u(LDA), and

The expectation value of the second derivative of the2o=6.95a.u(PBE GGA which are the theoretical values in

electron-ion potential becomes the bulk. k-point sampling is done with 21 points in the
irreducible wedge of the surface B&BZ). The smearing
parameter i3=0.05 Ry. The interlayer spacings are relaxed,

[¥ie), (39  starting from the ideal surface and minimizing the energy. At
equilibrium, the forces acting on the atoms are less than 0.2

and the change in the wave functions gives a term mRy/a.u.. The relaxation is mainly confined to the first layer
which relaxes inwardg,,= —3.0% both in LDA and in PBE
GGA. The second and third layers do not relax appreciably.

[ig). (40 A more detailed account of the calculated geometrical pa-
rameters of the Q001) surface can be found in Ref. 23.

In the US PP’s scheme one must consider two additional The dynamical matrices of the seven layer slab are evalu-

contributions, which have no correspondent counterparts iated via Eqs(B32)—(B37) on a 4<4 mesh ofg points in the

the NC scheme. The first is the interaction between the&SBZ. A Fourier transform of these matrices provides the in-

change invV{,. andA*p, : teratomic force constants of three surface layers, until five

neighbors on the surface. A frozen phonon calculation of

FR < -
de)\ = E 9F,io’< lv//i(T|

lo

Vi S
JuIN 1T guan

il 2ReY, (A*
duan eig< biol

Vg S
N Clogn

d’F () 5 V(1) comparable accuracy would require 16 surface atciing
dudh :g f ar du A%p,(r). (42 unit cell would contain 106 atomsTable | presents a com-
parison of the interatomic force constants obtained at the
A*p,, includes both the orthonormalization terdp, o , surface and within the bulk. The interactions of a Cu atom

and the charge induced by the displacement of the augmenmwith its first neighbor on the surface and with the first neigh-
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TABLE |. Theoretical LDA and PBE GGA interatomic force cu(001)
constants of the GQ001) surface. The moving atom is at the origin, I I I
whereas the coplanar atom is &tl1,0). The first neighbor in the L Mo
layer below the one of the moving atom is a{0.5,0.5) @
=a,/+/2). The units are eV/A. Vanishing force constants are not
reported. 'T_‘
£
LDA PBE GGA 22
-k -F, -F, -F -F, -F >
C
x —1.88 019 -1.42 0.11 S
Surface y 0.06 0.05 o
atom z —0.19 -0.18 -0.11 -0.08 -
Sub- x —054 -0.70 091 -041 -052 0.67 _gga
surface 'y —-0.70 —054 091 -052 —-0.41 0.67 A b PR, |
atom z 095 095 -116 072 072 -0.88 T X M T
FIG. 1. Calculated PBE GGA dispersion curves for the phonons
x —213 —160 of a 39 layer C(001) slab compared with HAS and EELS data
BtU|k y 0.12 0.08 (solid triangle$. The modes with dominant first-layer displacements
atom z

0.11 0.07 are indicated. Open squares refer to shear vertical modes, open
circles mark shear horizontal modes, and solid circles point to lon-
Lower x —045 —-056 080 —-0.35 —0.41 0.60 gitudinal modegsee text

bulk y —-056 —-045 080 -041 -035 0.60
atom z 080 080 —-1.00 060 060 —0.76 reported. All the same, these surface modes are marked with
small empty circles in Fig. 1.

Along theI'-X direction there are three first-layer surface
bor on the subsurface layer are shown. These force constantdes clearly identified by peaks in the SD. In this direction,
are compared with the corresponding ones in the bulk. Thenodes polarizations are strictly parallel or perpendicular to
PBE GGA force constants between first neighbor atoms irthe sagittal plane. The low-frequency mo8e is a shear
the same layer are 11% stiffer in the bulk than on the surfacehorizontal mode. The mod§, corresponds to the Rayleigh
By contrast, the interactions between surface and subsurfaggave (RW) with displacements predominantly perpendicular
Cu atoms are about 15-20 % stiffer than those acting in théo the surface. Its frequency Xtis 105 cm L. Close to the
bulk. Within LDA, the largest components of the force con-zone boundary, at 192 ¢m, there is a third surface mode
stant tensor are about 25% stiffer than in PBE GGA, but theSg, with longitudinal polarization. Three surface modes can
15-20% increase of the interaction between surface ange identified also along th¥-M direction. Here symmetry
subsurface atoms with respect to the bulk is unchanged. Figillows the mixing ofS; and S, which exchange character
ure 1 shows the PBE GGA dispersions curyesntinuous
lines) for the phonons of a 39 layer @201) slab along the 04 |

I'-X, X-M, and M-TI" directions of the SBZ. The surface © |
modes are marked with points and their frequencies are Com§°'°5 ;
pared with the experimental data. Only surface modes whos1§ N wo
displacements are dominant first layer are indicated. In orde =

to identify the surface modes) resolved surface phonon
spectral densitiegSD’s) of a 107 layer slab are examined.
The SD’s are calculated as a sum of normalized Gaus-
sian functions with root-mean-square deviations equal to
1.22 cm' L.

Figure 2 shows the SD’s calculated with PBE GGA at six
points of the SBZ along the path of Fig. 1 and separatedéo.os _
according to the polarization of the vibrational eigenmodes. 3 ; /\ A
SD’s for modes characterized by dominant first-layer shear 0 5 ==00-"500" 50 200 350 0 50 100 150 200 50
vertical (perpendicular to the surfacdisplacements and by
dominant first-layer longitudinal displacemer(jzarallel to
the g wave vector are plotted with continuous and dashed FIG. 2. The surface phonon spectral densities, at (0.143,8.0)
lines, respectively. The SD for the shear horizontal surfacgo.321,0.0)(b), X (c), M (d), (0.316,0.316)e), and (0.158,0.158)
modes, with displacements perpendicular to the sagittaf). Units are 27/a,. Shear verticalcontinuous ling and longitu-
plane(defined by the surface normal and theectop, is not  dinal (dashed ling polarizations are shown.

(

phonon spectral density

frequency (cm™") frequency (cm™')
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along this direction. AtM, the S, mode is the RW(with Cu(001)
frequency 135 cm'). This mode is present also along the

M-T" direction while theSy; mode disappears in this direc-

tion. A new model ; with longitudinal polarization appears

close toM. This mode enters into a region of bulk modes
with the same polarization along the-T direction, and be-

comes weak after 2/5 of thel-T" path. A shear horizontal
mode, not visible experimentally, with similar frequency is
found along the entird-1I" direction. No other mode gives
well defined peaks in the first-layer SD.

Experimentally, the frequencies of the RW mode along

the'-X andM-T directions have been measured by electron
energy-loss spectroscopifELS) and helium atom scattering

-

frequency [cm

(HAS).*" In Fig. 1, | report several measured frequencies as ) A U |
filled triangles®’ For the RW, the agreement between theory r X M r
and experiment is good: & andM they differ by 4 and 1 FIG. 3. Calculated LDA dispersion curves for the phonons of a

203 eni'! 11 cmt higher than the theoretical PBE GGA triangles. The modes with dominant first-layer displacements are
value. This behavior of the PBE GGA was found also in bu|kindicated. Open squares refer to shear vertical modes, open circles
cu?! where the frequency of the transverse acoustic mode@ark shear horizontal modes, and solid circles point to longitudinal
are in good agreement with experiment, while the frequen0des(see text

cies of the longitudinal acoustic modes are underestimated . . .
overestimates all the phonon frequencies as found in the

vr;/:(taf:]tsrespect to the inelastic neutron-scattering measuret-)ulk.ﬂ The errors of the RW frequency are 11 and 18-&m

In addition to the modes discussed above, another pea X and M, respectively. The maximum in the SD of the
present in the HAS cross section along heX andM-T  longitudinal modes along thE-X direction is still present,
directions has been attributed to longitudinal resonafces.Put the peak is less intense than in PBE GGA, so in Fig. 3
However, the origin of these peaks is still controverdidh ~ the mode apparently disappears closer tolthgoint.

Fig. 2, there are no well defined peaks in the SD which

correspond to these modes, but the longitudinal surface pho- v|. VIBRATIONAL SPECTRA OF NITROBENZENE

non SD display a very broad peak. In Fig. 1, | indicate the ) i . ) '
positions of the maximurh of these peaks with small filled ~ In this section, | address the ability of DFPT with US PP's
circles. AlongM-T" the maximum of the longitudinal SD is to predict the vibrational spectra of a medium size organic

found at a frequency close to the experimental points. B>?.1olecule: nitrobenzene. In addition to the aromatic ring with

lond™-X th . f the SD ‘ ive CH bonds, the molecule contains a NQ@roup. The
contrast, alond’-X the maximum of the SD occurs at fre- iy ational spectra of this molecule has been measured both
guencies which do not match the peak of the experiment

HAS ion. H di . il y infrared and by Raman spectroscopies. Vibrational fre-
cross section. However, a more direct comparison wi quencies calculated by quantum chemistry methods are also

require the theoretical calculation of the experimental HASavaiIabIe (see, for instance, Refs. 41, 42, and references
Cross sectlpr;.tf\s shown in Ref. 39, tze ;hape of Te 'nterafgwerein for calculations performed at the Hartree-Fock level
t|<|)n pO‘eln“_a et\:ve_e_n Hi atoms and t Ie dCu surface Coul,s correlation treated with the Mer-Plesset proceduyel
play arole in explaining the experimental data. ~_ gimyate the molecule inside a cubic box of 22 a.u. All atoms
Previousab initio Calculation§:6 limited to theX and M are described by us qugEnergy cutoffs of 30 and 240 Ry
points of the SBZ, found a clear longitudinal resonance at th@ave been used for the wave functions and for the charge
M point (L), and a small peak on the SD of the longitudinal density, respectively. The BZ is sampled by th@oint only.
modes alX at about 115 cm’. In the present calculation the The giagonal elen;]ents of the dynaTing rlna'iric_es are cor-
resen fthe. m M i nfirm it is found ected to recover the acoustic sum rule. Calculations are car-
presence o—t—el. ode at . S CO. ed, but it Is .ou d ried out with the LDA and the PBE GGA approximations.
that, alongM-T" this mode mixes with bulk modes with the

L _ X Figure 4 shows the main parameters of the nitrobenzene ge-
same polarizations and could possibly explain the experiymetry The theoretical values of these parameters, obtained

mental measurements only close to Mepoint. By contrast, by relaxing the atomic positions to the minimum energy, are
the longitudinal mode aX is not present in the surface pho- reported in Table II. With respect to LDA, PBE GGA ex-
non SD of Fig. Zc). pands the CO, NO, and CN bond lengths by about 0.02 A,
In Fig. 3, | show the dispersion curves for the phonons ofthe CC bond lengths by 0.01 A, and contracts the CH bonds
a 39 layer C(001) slab, calculated within the LDA approxi- by about 0.003 A. The agreement with the experimental re-
mation. The modes are analyzed as the PBE GGA ones. Thaults is good in both approximations. The maximum error,
qualitative conclusions are the same, but quantitatively LDAwhich includes also the PP’s error, 450.042 A for the CN
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the present pseudopotentiéfshis cutoff is sufficient to con-
verge within 5 cm! the frequencies of almost all the CH
bending modes but not the NO or CH stretch modes. In Table
I, the frequencies deduced from infrared and Raman spec-
troscopies on liquid nitrobenzene are repoftedhe fre-
quencies of the N@modes have been measured also in the
gas phas® and since these modes are particularly sensitive
to the molecular environment, in Table Ill, | report the gas
phase values. With respect to experiment, the absolute errors
of the CH stretch are larger than those of the other méales
the order of 40 cm? for LDA and up to 72 cm? for PBE
GGA). The relative error is, however, about 2%. For a few
frequencies, experimentally, the mode assignment is not
FIG. 4. Geometry of the nitrobenzene molecule. The nonequivacompletely settled. For instance, different authors do not
lent bonds and angles are indicated in the figure. Their theoreticadgree on the symmetry-type assignment for the out of plane
and experimental values are compared in Table Il. CH bending modes in the 800—1000-?:?’nregion. My as-
signment is in good agreement with the most recent experi-
bond with LDA and 0.026 A for the NO bond with PBE mental datd’ reported in Table Ill. Thé; mode experimen-
GGA. tally reported at 1316 cm' is deduced from Ref. 41, but is
Nitrobenzene ha€,, point group symmetry. Its 36 vibra- not present according to Ref. 42, which suggests instéad a
tional modes belong to the A3+4A,+128,+7B, sym- mode at 1095 cm', not found in my spectra. The theoretical
metry types. | report in Table IIl the frequencies calculatedfrequencies for the mode at 1316 chhave errors some-
within LDA and PBE GGA, the mode symmetry, and a com-what larger than the other modé&2 cm ! in LDA and 43
pact description of the mode eigenvectors. In some cases tigen ' in PBE GGA. Excluding this mode as well as the CH
displacement pattern is complex and | have not reported anstretch modes, the average difference between theoretical
indication. In other cases the assignment describes only th&nd experimental frequencies is 12 chboth within LDA
largest displacements. The symmetry types indicate the bend PBE GGA. With LDA, the maximum error is 45 Crh
havior of the displacements with respect to the symmetryasymmetric stretch of N§), whereas with PBE-GGA it is
operations of theC,, point group: displacements of thg, ~ 41 cmi ! (symmetric stretch of N§). These figures are par-
and B; modes are parallel to the molecular plane, whileticularly good and possibly partly fortuitous since experi-
those of theA, andB, modes are perpendicular to the mo- mental data are not corrected for anharmonicity, however,
lecular planeA (B) modes are evefodd) with respect to a they show that DFPT with US PP’s is accurate enough to be
180° rotation about the twofold molecular axis. In Table IlI, useful in interpreting the vibrational spectra of isolated or-
| report also the vibrational frequencies of the molecule cal-ganic molecules. For this particular application, the PW’s
culated with a cutoff of 25 Ry for the wave functions and 200basis is less efficient than other methods, but it can be com-
Ry for the charge density. As can be seen from the table, witlpetitiveéltgo study these molecules adsorbed on metallic
surfaces:

TABLE II. Theoretical LDA and PBE-GGA geometries of the
nitrobenzene molecule. Distances are in A and angles in degrees. ACKNOWLEDGMENTS
The symbols are defined in Fig. 4. Experimental data are from Ref.
41. In parentheses are shown the differences on the last digit, be- | thank S. Baroni, S. de Gironcoli, F. Favot, P. Giannozzi,

tween electron-diffraction data and microwavesported. A. Pasquarello, E. Tosatti, and A. Baldereschi for useful dis-
cussions and collaborations. | also thank V. Bortolani for
LDA PBE GGA Expt. suggesting the study of the @©1) surface. This work has

been supported by INFNI'Iniziativa trasversale calcolo par-

dno 1.230 1.253 1.227<4) allelo” and Sezioni F and Gand by Italian MURST(Cofin
den 1.450 1471 1.492+46) 99). Numerical calculations were performed on the Cray-
di 1.379 1.392 1.37%21) .

cc : : : T3E at CINECA in Bologné(ltaly).
dzc 1.378 1.391 1.40343)
dic 1.383 1.395 1.3964) .
dJéH 1.090 1.087 APPENDIX A: PERIODIC SOLIDS
&y 1.091 1.089 1.08112) In this appendix, | link the equations of the second-order
d, 1.092 1.089 energy derivative$Egs. (39)—(42)] with the dynamical ma-
aoNo 124.7 124.1 124.310) trices of a crystalline solid at finitg points of the BZ. In a
acen 118.8 118.9 117.%8) crystalline solid, the atomic positions are defined by a Bra-
atcw 122.8 122.2 122.2 vais lattice{R,} and by the positions of the atoms,, in a
aZ ey 119.8 119.7 119.7 reference cell. To each inddxcorresponds an atom identi-
aden 119.8 119.8 119.9 fied by two indexesI(s) with R, =R,+ 7. In a periodic

system, the wave functions are classified according to the
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TABLE lll. Theoretical LDA and PBE GGA frequencies of the vibrational modes of nitrobenzene. In
parentheses, the errors of a calculation a{2®) Ry cutoffs. 8 denotes bending modes in the molecular
plane,y out of plane bending modes, andstretch modesvs, and v, indicate the symmetric and asym-
metric stretch of the N@bonds. Experimental data are taken from Ref. 41. They are not corrected for
anharmonic effects.

Frequency (cm?) Symmetry Assignment
LDA PBE GGA Expt.
64 (—4) 52(0) 50 A, NO, tors.
163 (—2) 159(0) 180 B,
253 (—6) 247 (- 3) 265 B;
396 (0) 385 (—1) 399 A NO, tr.+Ring br.
407 (—2) 404 (-1) 399 A,
434 (-2) 430(0) 425 B,
522 (—2) 507 (1) 532 B, B(CN)+ B(NO,) as.
609 (—2) 606 (0) 613 B,
683 (1) 669 (—1) 680 A, B(NO,) sy+Ring br.
686 (—2) 677 (-1) 675 B,
703 (—2) 690 (-1) 704 B, 7(NO,) + y(CH)
803 (—2) 788 (-1) 791 B, 7(NO,) + y(CH)
830 (—3) 829 (—2) 838 A, v(CH)
849 (—3) 823 (—1) 853 A, B(NOy)
941 (—4) 937 (—2) 936 B, v(CH)
976 (—4) 972 (1) 975 A, 7(CH)
999 (3) 994 (—1) 990 B, v(CH)
1003(2) 994 (1) 1002 Aq
1018(3) 1018 (1) 1021 A, B(CH)
1057 (—2) 1068 (—1) 1069 B, B(CH)
1102(2) 1085(2) 1108 A, »(CN)+ B(CH)
1138 (1) 1152 (1) 1162 B; B(CH)
1157 (- 2) 1161 (1) 1176 A, B(CH)
1274 (—2) 1292 (1) 1308 B; B(CH)
1371 (— 16) 1319 (11) 1366 A, v5(NOy)
1401(17) 1362(3) 1316 B, »(CC)
1449(3) 1444(0) 1460 B,
1460(4) 1460(0) 1480 Aq
1593 (- 25) 1538 (- 18) 1548 B, v2s(NO,)
1608(9) 1582(2) 1588 A, »(CC)
1636 (4) 1603(0) 1612 B, v(CC)
3089 (—14) 3108 (-9) 3050 A, v(CH)
3098 (—13) 3119 (- 7) 3080 B, v(CH)
3106 (—13) 3128 (-8) 3080 Ay v(CH)
3119 (-12) 3152 (-9) 3080 B, v(CH)
3119 (- 12) 3152 (-8) 3080 A, »(CH)

8Gas phase data.

Bloch theorem. The indexes of the energy leviets j be-  as Eq.(3) but with screened coefficient8.Introducing Eq.
come double indexes,v wherek is a point of the BZ, and (5) in Eq. (12) and using Eq(3) one obtains

v is a band index which denotes both filled and partially

filled states. Up to now, in the text, the operatwfg(r,r,), - - -

K(r;ry,r,), and S(ry,r,) have been used to %implify the VKS(rl'rZ):Veff(rl)a(rl_r2)+% DB V(1= R))
notation. In this appendix, | expand these operators, using

their definitions in terms of the augmentation functions and X,Bfny(')(rz—RQ, (A1)
the B projectorg see Eqs(3), (5), and(8)]. As an example, |

write explicitly Vs whose nonlocal part has the same formwhere the coefficient®y,,, are
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1
Diyn= D+ [ VE(NQE-R).  (A2) [—§v2+vgﬁ+Q”+%<Df’nm—skqus?>|ﬁ'n>

The dynamical matrix, calculated at a fingepoint of the X{Bh| — ekpor || A Dy, )
BZ, is the Fourier transform of the interatomic force con-
stants: B , o vy,

- Pc,kva |¢kvg’ >+ dUSa(Q) | wkva>
1 . d%F o .
40,58 )=— > e 4R eld R, .
g N du,(1,8)dug(l’,s") +2 21 B0 B o) |, (A7)
(A3) Inm

where the projectorg?((r—R,) are written with a bra-ket
whereu,(l,s) refers to the displacement, in the direction  notation ag.), and | defined the integral
of the atom which, at equilibrium, is iR+ 7. N is the

number of unit cells of the crystal in the Born—von Karman dVv?, (1)

approach. Equation@9)—(42) yield the mixed second-order 3|:’:;1(q)"=f dard—) MWir—R)). (A8)
energy derivatives with respect to two perturbation param- Usa(d

etersy and\. Comparing Eq(A3) with Egs.(39-(42), | The change in the Hartree and exchange and correlation po-

take u as the displacement,(l,s) and\ asug(l’,s). To  tentjal[Eq. (21)] is linear in the induced spin charge densi-
evaluate Eq(40) one needs to solve the linear systffy. ijes:

(29)] in order to get the change in the wave functions. The

right-hand side of this system, as well d¥};,/du in Eq. dVve, (1) , dp(ry) 1 dVe(r)
(41), depends self-consistently on the induced charge density du—():f rldu (@ r=rq] + dug(q)° (A9)
[Eq. (28)]. Therefore, in this Appendix, | use Eq89)—(42) sal@ sal 1 sald

to write the dynamical matrices of a crystal and rewrite EQ.|n metals, the projector on the conduction bang, . de-
! T KU O

(28) and Eq.(29) for this purpose. pends on the band index, and it is the operator given in Eq.
As shown, for instance, in Ref. 7, in order to calculate the(30). in insulatorsP! . =PI=1—,.,/ [y o) Pirorol
3 Cc v v'o vol*

dynamical matrix, it is convenient to introduce collective Gkoo

Usa(A)y
atomic displacementgphonon$ characterized by a finite |¢kw )is
wavelength which can be commensurate or incommensurate -
with the underling lattice. These phonon perturbations have | ,us,(a)\ _ ior| Vks B 9S
o : e | ) =20 el e |-
the following displacement pattern: in the cell identified by kv T duy(l,s) YT au,(l,s) ve
R, the displacement of each atom is obtained from the dis- (A10)

placement of the atoms in the reference unit agl{q) mul-

tiplying by ag-dependent phase factor: Using Eq.(15) for the partial derivative of the KS potential

and expanding th& operator,| q&‘k‘ifr(q)) is written more ex-
. licitly:

Ual1,8) = Ugo (@)%, agy P
J

(1 I
o &ua(l,s)(|ﬂn>

Usa(a)y iq-R o _
The charge density induced by this phonon perturbation is |¢km ) 2,: € '% (Dinm= £kwolam

o) < op doulD)
2 Ty (A5)

Ve
_ X<B:‘n|)|wkv(r>}+zl elq.Rl aua(ll,S)ll/jkv(f)
dusa(q) |

o 1,8)o
+2 @RS 59 7B Bl i)

while the change in the wave functions induced by a phonon
perturbation are

+3 RS 210009 gy (Bl o), (ALD)

|AUS“(q)l/Ikw>:§l: e URIAYD gy ). (AB)  \where the two integrals are
N _ _ IQR(r=Ry)
|AYsa(@ gy ) is obtained from the solution of a linear system 1lz;*rf"s)":f BV —————, (Al2)
as Eq.(29), by adding, atq=0 a term due to the Fermi du,(l,s)
energy change. By adding, with the correct phase, the linear
systems for each displacement, | get the linear system for a zlua(l,s):j dgrﬂVmc(f) QO (r-R)) (A19
phonon perturbation: Inm —0ua(l,s) nm -
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Note that?l depends on both the atom which movéss\  and another term diagonal mands’ which contains inte-
and on the center of the augmentation functiyn whereas grals of the effective potential with the augmentation charges
in 11 we havel =(l,s). and their derivativegsee Eq.(38)]:

The induced spin charge densities are calculated via Egs.

(28) and (A5). It is useful to group together the first two (1b) ~ 4 Uy(1,5) B
terms. This is done by defining the auxiliary vector: (a.s,s )_ E 8| 2 Priwss B10.9 i

X<¢kuo|ﬁln><ﬁlm| lpkva’)
+ % bF,kvo’% ll zﬁflvs)”( lﬁkvo’|

kv0' k'v'o

_ ~ 1 Us, ()
| AUsal@ gy — | R Usal® gy -5 > f [ ry o)
k'v'

+ 13 der S0l Ykvo)
277 F,kvo’dusa(q) q0 wkvtr ’

where ><(|,8'n><ﬁ!n|>|wkw>+(a<ﬁﬁ>”, (A19)

|
(A14) o ( S)

where | defined the integral
usa(q) E elq kavo’ k’v’oz q)/(l) 9

kvtr k'v'o
PR —R)

du,(l,8)dug(l,s)” (A20)

d 4|i‘r¥rflvsw0:f d*rV(r)
(ool 555 (1B (BrDIYio),  (ALS)

at Furthermore, there is a third terpsee Eq.(38)], which is
and the weights are nonvanishing also on the nondiagors#s’ elements. In
fact, due to the long range of the local potential, the potential
centered at one atom interacts with the augmentation charge

centered at another atom:
Given these definitions, the spin charge densities induced by

a phonon perturbation become

kao’,k’v’a'z 0F,kv09kvo',k’v’0'+ gF,k’v’O'gk’v’O',kvo' . (A16)

P (a8 s)= (S e

dpy(r) _22 G, (DAY Dy (1) +2 > ”

dug,(q) & o x 5129000y 1 BINBY Yo o)
XQYD(r =R\ Wicwol B Bral AUV ifre, o)

2 OF, kuaE S).q1s")

~ I
+ Be oo 2ol Yol
kvo Inm

+ @R B o, [Qzﬁ?(r—R.) aug(l",s")
| “ " X (| BB )
X<¢kuo| u (| S (|ﬁn><ﬁm|)|‘/jkv0’> +[Ua(|,S)<—>UB(|,,S')] eiq‘Rl” (AZ]_)
aQ)’(')(r | |
+w(¢kw|ﬁn><ﬁmllﬂkw> : where
(AL7) (1.8 u5(1" S Nioe(r) IQI(r=R))
where time-reversal symmetry has been used in the first two 5'nﬁ$|' el ):j O|3ro”ul(l S) ) l (A22)
terms. ally aug(l’,s")

The dynamical matrix is Separated into four contributions -The other parts of the dynam|ca| matrix are eas"y found

The first term generalizes the expectation value of the mixegsing the definitions introduced in this appendix. The second
derivatives of the electron-ion potentiaee Eq(39)]. Inthe  termis

NC case, this term is diagonal in the atomic indeges. In

the US PP’s scheme there is a similar term:
‘bfém-s,s’% > (A | i ). (A23)

(1a)(q S, S 2 555’[ E 0F kvo‘E DInm 8kv<rqy“))

2

The third term describes the interaction of the change in
fxc With the induced charge densities at fixed orbitals:

XWwol ST a0 S o
v au,(l,s)dug(l,s 1 dVEo (r)
19019 E(a.s5) = 2 fd?’rmJH—XZ;)A“S’B(q)po(f), (A24)
X(|:8n><:8m|)|wkua> 7 Sa
5 Viee() where A'<'s(Vp (1) =3, 4 RIA%("Dp (r). The fourth
fd Fus)ausl, S)P( )i, (A18)  term, due to the orthonormalization, is written as
@ B
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1
(4) Ne=_ =
Pop(a,ss) =~

sa( ) 1 .
2 f:uuo,kf]v’a' Bg(l)(k—’_G):\/_ﬁj dsrﬁz(l)(r)eil(kJrG)'r- (BS)

kvk'v' o

Herek is a vector of the first BZ of the unperturbed system.
A similar expansion is valid for the augmentation functions
and the local potential. For instance, the augmentation func-

where H.c. indicates the Hermitean conjugate. In addition tdions are expanded as
these four terms, the dynamical matrix contains also two

X (Yool B4 EP) + H.c.

vo

., (A25)

terms due to NLCC. Their expressions are given in 1 i .
P gven @43 UVO=2 T AW k+e)eO (@6
of Ref. 2. N <
APPENDIX B: RECIPROCAL SPACE with
The equations of the previous section are not yet useful in (1) _ i 3~ () Ci(k+G)-r
a practical calculation because they are basis-set independent ' (K+G)= Q d*rQam (re - B

and contains sums over the unit cells indekand!’. In this ) ) ) ) )
appendix, | introduce a PW's basis set to expand the wavé he choice of the prefactors, in the direct and inverse Fourier
functions. It is well knowA that the functions in the final fransform, is a matter of definition. Their product must be
expressions have the periodicity of the unperturbed latticel/N{2, whereN{} is the volume of the real-space integration.
The finite wavelength of the phonon is dealt with through I order to calculate the dynamical matrix, the induced
phase factors which disappear from the final expressiong&harge density, and the linear system we need scalar products

These expressions are given here. between B8 functions, or their derivatives and the wave
| start with some preliminary definitions. The PW expan- functions or tPelr first-order change. Taklng|=(l,s),
sion of the unperturbed wave functions is the product (Bp|¢x..)can be factorized agBy|¥iyo)
=1/JyNe*Rigm where
1 : )
r= ek > ¢ e'cr, B1 :
Prvolr) \/m % k+Guvo (B1) Bill;ng:% Ck+GuaB:17(S)(k+ G)el(k+G)'TS (B8)

where {G} are the reciprocal-lattice vectors of the unper-
turbed Bravais latticef) the volume of a unit cell, andll is
the number of unit cells. The first-order change in the wave |

functions is also expanded in PW’s. For a phonon perturba- MW/ :ieik-&asam (B9)
tion of wavelengthy, |AYs« @y, Y is the product of a func- duy(l,8) KT N koo

tion with the periodicity of the unperturbed Bravais lattice

and a phase facta (<" 9"

does not depend on the cell indexBy analogy,

A gy (1) = —— DTS leal® GO () An= 20 Cicr oot (K+8) o (k+ G)e O™, (B10)
vo G *

\/m k+q+Guo
and
d)EjfT(Q)(r) is expanded adse( Dy (r):
9% Br 1
T o) = =€ Nyget™, (B1Y)
$Use(® () = 1 gt TS pUsal® G (g ‘9Ua(|’5)‘9“ﬁ(|’5)| wo) N “
kvo k+q+Guvo '
NG © with
The US PP’s are characterized by three set of functions.
The B projectors[Eq. (3)], the augmentation functiorj&q. Yieo'= = Crscoo(k+G)(k+G)
(5)], and the local potentidEq. (6)]. None of these functions G
is periodic. However, using the Born—von Karman periodic > Bﬂay(s)(kJrG)ei(km).fs_ (B12)

boundary conditions, | assume periodicity in a very large
Bravais lattice, whose unit cell contaiféunit cells of the  The product of thes functions and the change in the wave
unperturbed lattice. These quantities are therefore expandédnctions has a phase factor &f+q wavelength. Withl

in a Fourier series. For thg functions we have =(l,s;) we have
BK(')(r)=LJ— > 2 BOKk+G)e O (B (Bl Ay )=\/i_ei(k+q)'R'1K“5a(q),8ilm (B13)
NVQ ¥ G ’ N ve?
with the inverse transformation where
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o

dv,
Alsa(@ g = 2 sl B (kg4 Gl arOr T, 3|§sﬁgg)o Q% _dUS'*(X;)(q+G)Q*V(Sl)(q+G) e+ C) 7,

(B14) (B22)
4y uy(1,5) B
does not depend on the cell indéx Using these scalar 'nm [Eq. (A20)] does not depend dnand therefore |

products, three sums over the BZ and over the filled bandgall it 1322 with
are calculated. Let us define

U= -0 G.GVEH(GIQIR(Ge O (B23)

USa(Q)U * SN\ Ug,(q) pSIM
8s.nm Z Proa A7 Brog ®15 |y order to write in reciprocal space?| a9 s11:50
[Eq. (A22)], it is useful to write SIL‘“(I Sugllas)
ig- (R~ apq
=(1IN) 3 e'9 (RI=Ri) 5°%9P8 \yhere
snm N 2 HF kvoﬁ:vsar:lﬁkva" (816) d nm

=03 (a1 6)o(a+ GV (a+G)

SC(U' 0 *San + * SN __Sam Bl ) .
2 F, kv(r[aku(r kv(r Bkv(r kv(r] ( 7) Xel(q+G)-TSQrJ]’E:1)(q+ G)efl(quG)w-Sl_ (824)
The orthonormalization terms in the induced charge densitiNote that only®l depends on the self-consistent change in

and in the dynamical matrix require the coefficientsVii.. The other integrals are calculated only once at the
f sl [see Eq(A15)], which do not depend on the unit beginning of the self-consistent DFPT run. Note also that

cgll ;Hvdgare nonvanishing only k' =k+q. | therefore drop Dinm does not depend ohnsinceVe(r) is a periodic func-
thek’ index and write tion and therefore, in the following, | shall call,,,

Given these definitions, it is straightforward to expand the
linear systen{Eq. (A7)], the induced spin charge densities
fiiﬁf)a—wkwv 02 A (@, B+ BT i), [Eq. (A17)], and the dynamical matrices at agyoint [Eqs.
(A18)—(A25)] in the PW basis. Consider the linear system

(B18)
where > (k+ q+G)28gg +VI{(G—G')
G!
Wkvov' o™ 0F kvo’ekvo k+qu’ 0'+ 0F k+qv'0'0k+qv o,kvo - +Q0-(k+ q+ G,k+q+ G,)_Skvu
(B19)
_ ¥(s1)y p¥(s1) -iG 7
The augmentation functions, or their derivatives, are inte- N S nm~ Ekoolnm By~ (K+a+G)e B

Sinm
grated with the local potential or its derivatives, with the !

effective potential or with the variation &f;,, .. In the pre-

vious appendix, five integrals of the augmentation functions
with the potentials were defined. Here, these integrals are
calculated in reciprocal space and their dependence on the =—P[, [pral® 4 lsad (B25)

. ) ; - () k+g+Guvo k+g+Guvo
unit cell index is made explicit. Actually,llng1 [Eq.
Sao’

(A12)] does not depend drand therefore | write it asl 3% .
In reciprocal space,

X B (kg G T

where

QU:Z a’k+qv’¢rs| ¢k+qu’a'><¢k+qv’0'|si (826)
Him =02 G VeGP (G)e® ™. (B20)  ang

u,(l,s)

i order fowrie 0 reCIprocaI Spacalﬁm [Eq (Au13|)37 PI kvo ?F,kva_z Bkvo’,k+Qu’g—Sl ¢k+QU’0><'rljk+QU’a| ’

let us take I=(l;,s). We have 2«9 ' "

=(1/N)qu*iQ-(R|*R|1)2|§;¥[$Im, with (B27)
with

A= 02 (-)(a+6), Q0 (a+6)

X e@re) 7\ (q+G)e 1079 % (B21)

l[))kv(r k+qu'o™ GF kv(rakva' k+qu’ (r+ 0F JKk+qu’ (rek+qv okvo

aF,kva_aF,k+qv’0'
. 3y U (Q) +ak+qv’0' k+qu’okvo -
Calling 1=(l,s;), we have [Eq. (A8)] °“I Ekvo ™ Ektap’a

=gldRi, 3 g;ggj)” with (B28)
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The right-hand side of the linear system has a non-self-consistertfzartAll)],

P oo™ 2 (DZan ekuotifa ) (— 1) (K+a+G) B9 (k+ g+ G)e (a0 gy,

+2 (=i)(q+G—G'),e TC- ) X (q+ G- G')cpsgrpat 2 X

sy nm

X B (k+q+ G)e (0O 5l 5L (DG 1o QI e+ M BRn) + 2108, (B29)

kvod?

and a self-consistent part
®(P(q,s,8")= 5542 DI i i
g

(o

dv,
et = 2 (G~ G )G 6w
G

k+g+Guva - duSa( )

+ > 2 Lk saog Sﬁ”+(aH,3)” (B33

+2 2 3|usa(q)<rﬂy(sl)
s, nm oM while Eq. (A21) becomes

X(k+q+G)e '(krarem gal — (B3Q)

The solution of the linear system allows the calculation of ®45(d.s,s")= {E ;ﬂ *lam Pba
the q+G components of the Fourier transform of the in- 7
duced spin charge densifiq. (A17)]:

+2 > AR Bl Hc.
o nm

(B34)

* _usa(q)
dusa(q) due(q) 9T G =2FTqe kzv Yioo(1)A Yiwolr) where H.c. means the Hermitean conjugate of the term in the
same brackefcomplex conjugate anda exchanged with

! s’ B). The second part of the dynamical matrix, similar in the
+2 2 Q(a+Ge 0O 3 g )

< NC scheme, depends on the solution of the linear system
[Eq. (A23)]:
X[agma? "+ 85 Oty + O (—1)

(I)(Z) s,s' )= d* Usa(0) ug’ g(a) ) B35
where the symboF +G,Cr;1%é ﬁ@”rhat the first terng IS 2:al- 5(0:5:8")= kvzo % g+ GooPhrgrGuo (B39
culated in real space and then the G component of its
Fourier transform is taken. Two other terms are present only in the US PP’s scheme. The

Finally, | discuss the dynamical matrix. Equatiohl8) is  interaction of the moving augmentation charge with the
similar to the one in the NC PP scheme: variation of V}, . [Eq. (A24)] is calculated in real space in-

tegrating in a primitive cell:

q)(la)(q SS) 533’ 2 E N 2 (Dsnm_skva-q)/(s))

kvo

dViire(r)
®GYass) =2 f dr du“*f AU Dp (1), (B36)
XaF,kvu’[ F),’I:vsrgﬁnﬂkv(r ﬁ;vsar']‘YEggm >
L ok San M, kspn_sam where AY's@p (r) is calculated as in Eq(B31) taking
oo Yo T Yo Yoo AYs'8@y, (r)=0. Finally the term due to the change in the
orthonormalization constrainf&q. (A25)] is

—Q% ViY(G)e'® %G, Gep(G) .

(I)(4) —_ f* Usq ()
(832) (q S:S ) kg kvov'o
Equations(A19) and(A21) are characteristic of the US PP’s
scheme. The diagonal term, E@19), becomes x> C:+q+Gv opﬁi'ﬁ(f)evﬁ H.c.|. (B37)
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