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Density-functional perturbation theory with ultrasoft pseudopotentials
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Density-functional perturbation theory for lattice dynamics is presented in a general framework which
includes Vanderbilt’s ultrasoft pseudopotentials, nonlinear exchange and correlation core corrections, the local
spin-density approximation, and spin-polarized generalized gradient corrections. The dynamical matrices of
metallic and of insulating solids are calculated at arbitrary wave vectors. The method is applied to the Cu~001!
surface and to the nitrobenzene molecule.
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I. INTRODUCTION

In the last ten years,ab initio calculations of the phonon
dispersion spectra of solids and surfaces have compleme
the empirical Born–von Karman force-constant models
interpreting and explaining the experimental data, thank
the introduction of density-functional perturbation theo
~DFPT!.1,2 This technique, based on density-function
theory ~DFT!, allows the efficient treatment of the respon
of an electron system to external perturbations. The pho
frequencies are obtained at arbitrary wave vectors of
Brillouin zone ~BZ! with an effort which is almost wave
length independent and comparable, for each mode, to
effort required to calculate the ground state of the unp
turbed system. At present, there are several implementa
of DFPT for lattice dynamics which apply different formula
for the interatomic force constants and reflect the peculi
ties of the scheme employed for the solution of the D
equations.

In the Born-Oppenheimer approximation, the interatom
force constants are identified with the second-order ene
derivatives with respect to atomic displacements. In DFT,
energy is a functional of the electronic charge density an
minimum variational principle gives the ground-state de
sity. As a consequence, also the even-order energy de
tives are variational.3 In practice, the energy minimization i
carried out on the Kohn and Sham~KS! functional which
depends on single-particle orbitals subject to orthonormal
tion constraints. The Taylor expansion of the energy fu
tional and the Lagrange multipliers technique lead to va
tional expressions for the second-order energy derivat
which can be regarded as functionals of the first-order wa
function derivatives. The minimization of the second-ord
energy3 shows that the first-order wave-function derivativ
are the solution of a self-consistent Sternheimer linear s
tem. The same conclusion is reached also via standard
turbation theory applied to the KS equations.1 In some
implementations, the solution of the self-consistent lin
system is entirely avoided via a direct minimization of t
second-order energy.4,5

The interatomic force constants can be calculated also
differentiation of the Hellmann-Feynman~HF! forces.6 This
procedure leads to expressions which are not variatio
Nevertheless, in this way, the mixed second-order ene
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derivatives depend on the first-order wave-function deri
tives due to a single perturbation. Thus the response to
phonon allows the evaluation of a full row of the dynamic
matrix. This approach, introduced in the first implementat
of DFPT,1,7 has been generalized to metallic systems
well.8

DFPT turns out to be simple to implement with a plan
waves~PW’s! basis set and norm conserving~NC! pseudo-
potentials~PP’s!.9,10 The only drawback is that PW’s are no
efficient enough to describe first-row elements or transit
metals and for these applications all-electron methods,11–13

or mixed basis14 have been extensively applied in the pa
DFPT has been presented in the framework of the lineari
augmented PW method~LAPW!,15 of the linear muffin tin
orbitals ~LMTO! scheme,16 and with mixed basis.17 Several
applications of these methods have been reviewed in Re

More recently, Vanderbilt’s ultrasoft~US! PP’s ~Ref. 18!
have been demonstrated capable to deal with localized e
trons and to provide results which are often as accurate
those obtained with the all-electron methods. This pape
devoted to the presentation of DFPT in the framework of
PP’s. Its purpose is to provide all the details needed to imp
ment the method with a PW basis set. In Ref. 19, DFPT w
US PP’s has been briefly described, the discussion was
cused on insulating systems whereas the treatment of m
was only sketched. In this paper, I start from an ene
functional which applies to metallic systems, as well as
insulators. Spin polarization is included in the energy fun
tional for the study of magnetic materials and the excha
and correlation energy functional depends on the total s
charge densitiesns and on their gradients¹ns . The total
spin charge densities are obtained by adding a pseud
core charge to the valence charge densities as in the no
ear core correction~NLCC! approximation.20 This scheme
comprises several different recipes for the generalized gr
ent approximation~GGA!, and the local spin-density ap
proximation~LSDA! is recovered by neglecting¹ns in the
exchange and correlation energy. The orbitals are subjec
generalized orthonormalization constraints with an over
matrix which varies in response to small atomic displa
ments. Furthermore the charge density is calculated with
augmentation term as in the US PP scheme. The interato
force constants are obtained by differentiation of the
forces and the induced spin charge densities and the fi
©2001 The American Physical Society18-1
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ANDREA DAL CORSO PHYSICAL REVIEW B64 235118
order wave-function derivatives are discussed in detail.
The formulas obtained in this paper have been applie

the calculation of the phonon dispersions of Cu, Ag, and
in Ref. 19, and of Si, C, Cu, and Al in Ref. 21. In the latt
reference, the performances of the local-density approxi
tion ~LDA ! and of the GGA have been compared. T
phonons of magnetic bcc iron and fcc nickel have been p
sented in Ref. 22 and the vibrational properties of
Cu~001!/CO system have been discussed in Ref. 23. In
paper the theory is illustrated with two examples: t
Cu~001! surface and the nitrobenzene molecule. First, I a
lyze the interatomic force constants at the Cu~001! surface
and within the bulk, comparing the results of the LDA a
the ones of the GGA. Second, the vibrational modes o
finite Cu~001! slab are calculated, the surface modes of
slab are identified and discussed together with the avail
experimental data. The nitrobenzene molecule is simulate
a cubic supercell, all its vibrational modes are calculated
the theoretical frequencies are compared with data prov
by infrared and Raman spectroscopies.

This paper is organized as follows. In Sec. II, the D
energy, the KS equations, and the HF forces are written
the US PP’s scheme. Section III deals with the charge d
sity linearly induced by a perturbation, Sec. IV with the ge
eralized Sternheimer equation, and Sec. V with the mi
second-order energy derivatives. The vibrational proper
of the Cu~001! surface are presented in Sec. VI and the
brational spectra of the nitrobenzene molecule is discusse
Sec. VII. In the paper, the notation is kept as simple as p
sible in order to focus on the new features of the US P
scheme. The notation is simplified by considering a gen
quantum system, a general perturbation and general non
PP’s. The appendixes report detailed expressions implem
able in an electronic structure code. In Appendix A, the f
mulas for the second-order energy derivatives, specialize
a periodic solid, a phonon perturbation and US PP’s, are u
to calculate the dynamical matrices at an arbitraryq point of
the BZ. At this level the basis functions used to expand
orbitals are not relevant, provided that they do not depend
the ionic positions, as the PW’s, so that Pulay-ty
corrections24 are not needed. Finally in Appendix B, I intro
duce the PW basis set. The formula of this Appendix ha
been implemented in a code based on PW’s and US PP25

II. GROUND-STATE ENERGY AND IONIC FORCES

According to the Hohenberg and Kohn theorem,26 the en-
ergy of a system ofNel interacting electrons in the potentia
of the ions is a unique functional of the electronic char
density and it is minimized by the ground-state density.
explicit form for this functional has been given by Kohn a
Sham who introduced an auxiliary system ofNel noninter-
acting electrons with the same density of the interacting s
tem. The charge density of the noninteracting electrons h
unique representation in terms of single-particle electro
orbitals $c is(r )% ~the index i labels the electronic energ
levels, ands the spin state!, and the energy of the interactin
system becomes a functional of these orbitals. The gene
zation of this scheme to energy functionals with fraction
23511
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occupations and spin polarization27 allows the description of
open as well as closed-shell finite systems or metallic as w
as insulating crystalline solids. I choose a functional wh
includes a term that makes it variational even with varia
occupations.28,29,8A smearing approach is used and the o
cupation numbers are functions of the energy levels« is and
of the Fermi energy«F which fixes the electron number. Th
ionic positions act as external parameters for the functio
In the US PP’s scheme, the energy has four contribution

Ftot5E@$c is~r !%#1F@rs~r !,rc,s~r !#1UII

1(
is

hũ1S «F2« is

h D . ~1!

In order to establish a uniform notation, these four terms
recalled in this section. All equations are in atomic units: t
Planck constant\51, the electron chargee251, and the
electron massme51. The energy is measured in Hartree.

The first term in Eq.~1! is

E@$c is~r !%#5(
is

ũS «F2« is

h D ^c isu2
1

2
¹21VNLuc is&,

~2!

where the indexi runs over all electronic states.ũ is an
approximation of the Fermi function, thus in practice, th
sum extends to the completely filled orbitals in insulators a
also to some partially filled states above the Fermi energ
metals. The form ofũ depends on the smearing techniq
and on a smearing parameterh. For vanishingh, it coin-
cides with the step function. Examples ofũ functions are
found in Refs. 30 and 31, where the smearing approxima
is introduced by defining the shape of the Dirac delta fu
tion d̃(x) while ũ(x)5*2`

x d̃(y)dy. VNL is the nonlocal part
of the PP which, in the US PP’s scheme, reads

VNL~r1 ,r2!5(
Inm

Dnm
(0)g(I )bn

g(I )~r12RI !bm*
g(I )~r22RI !, ~3!

where the projector functionsbm
g(I )(r ) and the coefficients

Dnm
(0)g(I ) characterize the PP for each atomic typeg(I ). They

are obtained by atomic calculations as discussed in Ref.
The index I labels the ionic positionsRI . The indexes
n and m run over the b functions. In the Kleinman
Bylander~KB! ~Ref. 10! separable NC PP’s scheme, the no
local part of the PP is written as in Eq.~3!, but with only
diagonal Dnn

(0)g(I ) coefficients. In both cases, the meani
of the bra-ket notation in Eq.~2! is: ^c isuVNLuc is&
5*d3r 1d3r 2c is* (r1)VNL(r1 ,r2)c is(r2).

The second term in Eq.~1!, F, is a functional of the
spin-up and spin-down valence electron charge densities

rs~r !5(
i

ũF,isE d3r 1d3r 2c is* ~r1!K~r ;r1 ,r2!c is~r2!

5(
i

ũF,is^c isuK~r !uc is&, ~4!
8-2
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DENSITY-FUNCTIONAL PERTURBATION THEORY WITH . . . PHYSICAL REVIEW B64 235118
where, following Ref. 8, I introduced a compact notati
ũF,is5 ũ@(«F2« is)/h#. With a NC PP, the electron valenc
charge densities of the noninteracting auxiliary electron s
tem ~and hence of the interacting one! are the sum of the
square moduli of the wave functions, weighted by the oc
pation numbers. In the present scheme, this case is recov
by taking K(r ;r1 ,r2)5d(r2r1)d(r2r2). In the US PP’s
scheme the functionK(r ;r1 ,r2) contains an augmentatio
term ~I refer to Refs. 18 and 32 for additional details!:

K~r ;r1 ,r2!5d~r2r1!d~r2r2!1(
Inm

Qnm
g(I )~r2RI !

3bn
g(I )~r12RI !bm*

g(I )~r22RI !. ~5!

The augmentation functionsQnm
g(I )(r2RI) are calculated to-

gether with the PP and are localized about the atoms. W
the atoms move, the centers of the augmentation funct
change. Therefore, to develop a perturbation scheme,
must considerK(r ;r1 ,r2) as a function of the perturbatio
parameters.F is the sum of the local, Hartree, and exchan
and correlation energies:

F@rs~r !,rc,s~r !#5E d3rVloc~r !r~r !1
1

2E d3r 1d3r 2

3
r~r1!r~r2!

ur12r2u
1Exc@ns~r !,¹ns~r !#,

~6!

where the total valence charger(r ) is the sum of the spin-up
and spin-down valence electron densities,rc,s(r ) are the
core charges obtained from the atomic core charges,
ns(r )5rs(r )1rc,s(r ) are the total spin charge densitie
Vloc(r )5( IVloc

g(I )(r2RI) is the local part of the PP.Exc is
the exchange and correlation energy functional. Follow
the NLCC recipe, I assume thatExc is a functional of the
total spin charge densities. In GGA,Exc depends also on th
gradients,¹ns(r ). Core spin polarization is neglected, a
suming thatrc,s(r )51/2rc(r ). The core charge does no
depend on the orbitals but it is a function of the atom
positions.

The termUII , in Eq. ~1!, is the ion-ion interaction deal
with via the Ewald summation method. In the following,
focus only on the electronic contribution to the force co
stants. The ionic contribution is discussed in seve
papers2,7,33and no new feature is introduced by the US P
scheme.

The last term in the energy functional, Eq.~1!, is a cor-
rection that resembles an entropy term for fixed elect
numbers and is nonvanishing for fractional occupation nu
bers. It coincides with an entropy term when the occupat
factors have the Fermi-Dirac form. In this caseFtot is a
free-energy functional. In general, the functionũ1(x) is:
ũ1(x)5*2`

x yd̃(y)dy. With this definition, the energy in Eq
~1! is variational and is equivalent to the energy introduc
for instance in Ref. 29, as discussed in Refs. 2 and 8.
equivalent to assume that the occupation numbers are i
pendent parameters, as in Ref. 29, and to use the variat
23511
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energy to determine them, or to treat them as a function
the single-particle energies as done here. In the latter c
the minimization of the energy yields the KS equations
the orbitals and, in the formulas for the HF forces, the oc
pation numbers derivatives do not appear.28,8This formalism,
which reduces to the finite temperature DFT with Ferm
Dirac occupation factors, is used in this paper in the cont
of the smearing approach to metals and its main purpos
the efficient evaluation of BZ integrals in the presence o
Fermi surface.

The orbitals$c is(r )% are subject to generalized orthono
malization constraints:18

^c isuSuc j s&5d i j , ~7!

with an overlap matrix S:

S~r1 ,r2!5d~r12r2!

1(
Inm

qnm
g(I )bn

g(I )~r12RI !bm*
g(I )~r22RI !, ~8!

where the coefficientsqnm
g(I )5*d3rQnm

g(I )(r ) are the integrals
of the augmentation functions. Given this definition ofS, the
charge conservation condition in the US PP’s scheme
comes identical to the one found in the NC scheme. T
condition defines the Fermi energy and it is

(
is

ũF,is5Nel . ~9!

The ground-state spin charge densities minimize the
ergy functional. As a consequence, the KS functional is m
mized by the auxiliary single-particle orbitals$c is(r )%. With
the constraints in Eq.~7!, the minimum condition leads to th
KS equations:

F2
1

2
¹21VNL1E d3rVe f f

s ~r !K~r !G uc ls&5« lsSuc ls&, ~10!

where the effective potential is the sum of the local, Hartr
and exchange and correlation potentials:

Ve f f
s ~r !5

]F

]rs~r !
5Vloc~r !1E d3r 1

r~r1!

ur2r1u
1Vxc

s ~r !. ~11!

The expression ofVxc
s (r ), in the context of the GGA ap-

proximation, is given in Ref. 22. To simplify the notation, th
KS potential is defined as

VKS
s ~r1 ,r2!5VNL~r1 ,r2!1E d3rVe f f

s ~r !K~r ;r1 ,r2!. ~12!

At the electronic ground state, the forces acting on
atoms are the negative derivatives of the energy functio
@Eq. ~1!# with respect to atomic displacements. The atom
positions act as external parameters in this functional t
the HF theorem6 applies: the forces depend only on th
ground-state orbitals. In the US PP’s scheme, the ove
matrix S changes as the atoms move, thus giving rise
8-3
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ANDREA DAL CORSO PHYSICAL REVIEW B64 235118
term in the forces. This term is found using the lineariz
orthonormalization constraints which provide the relatio
ships

K dc is

dl USuc j s&1^c isuSUdc j s

dl L 52^c isu
]S

]l
uc j s&, ~13!

wherel denotes the amplitude of an atomic displaceme
The final expression of the energy derivative is

dFtot

dl
5(

is
ũF,is^c isu

]VKS
s

]l
2« is

]S

]l
uc is&

1(
s

E d3r 1Vxc
s ~r1!

]rc,s~r1!

]l
, ~14!

where the last term accounts for the NLCC, and the par
derivative ofVKS

s is defined as

]VKS
s ~r1 ,r2!

]l
5

]VNL~r1 ,r2!

]l
1E d3r

]Vloc~r !

]l
K~r ;r1 ,r2!

1E d3rVe f f
s ~r !

]K~r ;r1 ,r2!

]l
. ~15!

In these expressions and in the following, I use the to
derivative symbol~d! to denote a derivative where the orb
als are considered as implicit functions ofl, while the par-
tial derivative symbol (]) indicates derivatives done at fixe
orbitals. The partial derivative is used also to differentia
quantities such asS or rc which do not depend on the orbi
als. For fixed occupation numbers and neglecting NLCC,
~14! has been reported in several papers~see, for instance
Ref. 32!. In order to calculate the interatomic force consta
and hence the dynamical matrix, I differentiate Eq.~14! with
respect to a second perturbation parameterm. dFtot /dl does
not depend either on the induced spin charge densities o
the first-order wave-function derivatives with respect tol.
Therefore the mixed second-order energy derivatives will
pend only on the induced spin charge densities and on
first-order change in the orbitals with respect tom. Before
differentiating Eq.~14!, in the next section, I discuss how t
calculate the induced charge-density and the wave-func
changes within the US PP’s scheme.

III. FIRST-ORDER WAVE-FUNCTION AND CHARGE-
DENSITY DERIVATIVES

The spin-up and spin-down charge densities are calcul
via Eq.~4!. By differentiating this expression with respect
the perturbation parameterm, I get the induced spin charg
densities at first order. There are three terms. The first on
the spin charge density induced by the change in the o
pation factors:

drs
(a)~r !

dm
5(

i

dũF,is

dm
^c isuK~r !uc is&, ~16!

while the second one accounts for the change in the w
functions:
23511
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drs
(b)~r !

dm
5(

i
ũF,isF K dc is

dm UK~r !uc isL 1c.c.G , ~17!

where c.c. indicates the complex conjugate. The third te
has no correspondent counterpart in the NC scheme. It is
to the displacement of the augmentation functions and i
written

drs
(c)~r !

dm
5(

i
ũF,is^c isu

]K~r !

]m
uc is&. ~18!

Two new quantities appear in Eqs.~16! and ~17!: the varia-
tion of the occupation numbers and the first-order chang
the wave functions. In insulators and with NC PP’s, one c
show that only the conduction-band projection ofudc is /dm&
contributes to the induced spin charge density and, of cou
the occupation numbers are fixed. As shown in Ref. 8,
metals one can define a generalized projector in
conduction-band manifold and set up a linear system to
the wave-function changes, in such a way that Eqs.~16! and
~17! are calculated with expressions which closely resem
those valid for insulators. With respect to Ref. 8, the ma
difficulty of the US PP’s scheme originates from the depe
dence ofS, and hence of the orthonormalization constrain
on the atomic positions. By contrast, the displacement of
augmentation functions gives rise to Eq.~18! which can be
calculated as it is, without further manipulations.

First-order perturbation theory, applied to the KS equ
tions @Eq. ~10!#, yields the components ofudc is /dm& in the
subspace orthogonal to the eigenspace ofuc is& and also the
energy levels derivatives with respect tom. Differentiation
of Eq. ~10! yields

F2
1

2
¹21VKS

s 2« isSGUdc is

dm L
52FdVKS

s

dm
2« is

]S

]mG uc is&1
d« is

dm
Suc is&,

~19!

where the total derivative of the KS potential is

dVKS
s ~r1 ,r2!

dm
5

]VKS
s ~r1 ,r2!

]m
1E d3r

dVHxc
s ~r !

dm
K~r ;r1 ,r2!.

~20!

This derivative differs from the partial derivative o
VKS

s (r1 ,r2), discussed above@see Eq.~15!#, for the presence
of a self-consistent term. Indeed,dVHxc

s (r )/dm is the change
in the Hartree and exchange and correlation potential:

dVHxc
s ~r !

dm
5E d3r 1

dr~r1!

dm

1

ur2r1u
1

dVxc
s ~r !

dm
, ~21!

linear in the induced spin charge densities.dVxc
s (r )/dm, in

the GGA approximation, is calculated in Ref. 22.
The linear system in Eq.~19! is singular as in the NC cas

where, in order to solve it, one projects both sides in
conduction-band manifold and adds to the left-hand sid
multiple of the valence-band projector so as to make
8-4
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system nonsingular.2 In the NC case, the solutions of th
projected linear system suffice since only the conducti
band projection ofudc is /dm& contributes to the induced
spin charge densities and to the interatomic force consta
In the US case, instead, also the valence-band projectio
udc is /dm& gives a finite contribution todrs(r )/dm sinceS
is changing with the perturbation. In the following, I sho
how this works in the US PP’s scheme. As shown in Ref
one can deal with the general case of metals, insulators a
special case. I assume that« is is nondegenerate, but the ge
eralization to the degenerate case is straightforward. Pro
ing Eq. ~19! on the unperturbed orbitals$uc is&% gives
,
o

n
e

m
a

cc
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d« is

dm
5^c isuFdVKS

s

dm
2« is

]S

]mG uc is&, ~22!

and for j Þ i :

^c j suSUdc is

dm L 5

^c j suFdVKS
s

dm
2« is

]S

]mG uc is&

« is2« j s
. ~23!

Using Eq.~23!, the transformation discussed in Ref. 8, a
additional bookkeeping to account for the energy-level
changes, Eq.~17! can be rewritten as
drs
(b)~r !

dm
52 ReH (

i
(
j Þ i

ũF,is2 ũF, j s

« is2« j s
u j s,isr is, j s^c j suFdVKS

s

dm
2« is

]S

]mG uc is&J
2(

i
(

j
@ ũF,isu is, j s1 ũF, j su j s,is#r is, j s^c j su

]S

]m
uc is&, ~24!
.
ts
in-

s
he
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of
wherer is, j s5^c isuK(r )uc j s&, andu is a step function. In
the first term of Eq.~24! the j 5 i term is missing. In a metal
the change in the occupation numbers could give rise t
nonvanishingj 5 i term. In fact, Eq.~16! can be split as

drs
(a)~r !

dm
5(

i

dũF,is

dm
r is,is

5(
i

1

h
d̃F,is

d«F

dm
r is,is2(

i

1

h
d̃F,is

d« is

dm
r is,is .

~25!

In the limit « j s→« is , the ratio (ũF,is2 ũF, j s)/(« is2« j s) is
equal to2(1/h) d̃F,is . Therefore the second term in Eq.~25!
is the missingj 5 i term of Eq.~24! and can be included in
the sum. The first term of Eq.~25! shows that the change i
the Fermi energy could affect the induced spin charge d
sities~see Ref. 2 for a discussion of the origin of this term!.
Equation~24! is a central result of this paper. The last ter
shows how the changing orthonormalization constraints
fect the induced charge densities and how the variable o
pation numbers must be handled.

To proceed further, let us define two vectors:

uDmc is&5
1

2h
d̃F,is

d«F

dm
uc is&1(

j

ũF,is2 ũF, j s

« is2« j s
u j s,isuc j s&

3^c j suFdVKS
s

dm
2« is

]S

]mG uc is& ~26!

and
a

n-

f-
u-

udmc is&5(
j

@ ũF,isu is, j s1 ũF, j su j s,is#uc j s&^c j su
]S

]m
uc is&.

~27!

In an insulator,uDmc is& is the projection ofudc is /dm& on
the conduction-band manifold, whileudmc is& is reminiscent
of a projection ofudc is /dm& in the valence-band manifold
It is nonvanishing only if the orthonormalization constrain
are variable. Given these definitions, at linear order, the
duced spin charge densities become

drs~r !

dm
52 Re(

i
^c isuK~r !uDmc is&2(

i
^c isu

3K~r !udmc is&1(
i

ũF,is^c isu
]K~r !

]m
uc is&.

~28!

Equation ~28!, limited to spin unpolarized insulators, ha
been presented in Ref. 19. As in Ref. 19, in the following, t
last two terms are calledDmrs(r ), while the second term is
calleddmrs,orth(r ).

IV. LINEAR SYSTEM

The sum overj in the definition of the vectorudmc is& @Eq.
~27!# is over all states, but actually theũ functions limit the
sum to filled and partially filled states. We can assume t
ũF, j s is vanishing if the eigenvalue« j s is higher than«F
13h. Instead the sum overj, in the definition ofuDmc is&
@Eq. ~26!#, extends to all states. In principle this is an infini
sum. If the orbitals are expanded in a finite basis set, the
is over a number of states comparable to the number of b
functions. The explicit evaluation ofuDmc is& via Eq. ~26! is
computationally expensive since it requires the knowledge
8-5
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all the eigenvectors of Eq.~10! and summations over a
states. Instead, the sum can be carried out exactly and
ciently by solving an algebraic linear system. This formalis
is known as the Green-function technique.1 I introduce a lin-
ear system whose solution isuD̃mc is&5uDmc is&
2(1/2h) d̃F,is(d«F /dm)uc is&. Following Ref. 8:

F2
1

2
¹21VKS

s 1Qs2« isSG uD̃mc is&

52Pc,is
† FdVKS

s

dm
2« is

]S

]mG uc is&, ~29!

with

Pc,is
† 5F ũF,is2(

j
b is, j sSuc j s&^c j suG . ~30!

Qs is an operator, vanishing on the conduction states ab
«F13h, which makes the linear system nonsingular. In
US PP’s scheme it is:Qs5( ja j sSuc j s&^c j suS, wherea j s
is vanishing if « j s is above«F13h and is equal to«F
13h2« j s if it is below. This linear system can be solve
with iterative techniques, such as the conjugate grad
method. By projecting on the unperturbed levels, one sh
that by choosing theb is, j s as

b is, j s5 ũF,isu is, j s1 ũF, j su j s,is1a j s

ũF,is2 ũF, j s

« is2« j s
u j s,is ,

~31!

its solution is indeed the vectoruD̃mc is& @see Eq.~26!#. Note
that with this definition all sums are limited to states w
energy lower than «F13h. In insulators ũF,is
2( jb is, j sSuc j s&^c j su becomes the projector over the co
duction states manifoldPc

† , which does not depend on th
energy level. For nonmagnetic and insulating solids, this
ear system@Eq. ~29!# was introduced in Ref. 19.

V. MIXED SECOND-ORDER ENERGY DERIVATIVES

In this section I calculate the mixed second-order ene
derivatives with respect to atomic displacements. Differ
23511
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tiation of Eq. ~14! with respect tom gives four terms. The
first accounts for the change in the occupation numbers:

d2Ftot
(a)

dmdl
5(

is

dũF,is

dm
^c isuF]VKS

s

]l
2« is

]S

]lG uc is&. ~32!

The second is due to the change in the energy levels an
the wave functions:

d2Ftot
(b)

dmdl
52(

is
ũF,is

d« is

dm
^c isu

]S

]l
uc is&

1(
is

ũF,isH K dc is

dm UF]VKS
s

]l
2« is

]S

]lG uc is&1c.c.J .

~33!

The third term generalizes to the US PP’s scheme, the
pectation value of the mixed second-order derivative of
external potential:

d2Ftot
(c)

dmdl
5(

is
ũF,is^c isuF d

dmS ]VKS
s

]l D 2« is

]2S

]m]lG uc is&. ~34!

The fourth term is due to NLCC and is equal to Eqs.~134!
and ~135! of Ref. 2 ~see also Ref. 34!:

d2Ftot
(d)

dmdl
5(

s
E d3r 1

dVxc
s ~r1!

dm

]rc,s~r1!

]l

1(
s

E d3r 1Vxc
s ~r1!

]2rc,s~r1!

]m]l
. ~35!

The two vectorsuDmc is&, andudmc is& introduced to cal-
culate the induced spin charge densities suffice also to ev
ate the mixed second-order energy derivatives. I start w
Eq. ~33!. Using Eqs.~22! and ~23! for the change in the
energy levels and in the wave functions and techniques s
lar to those applied to derive Eq.~24!, one transforms Eq
~33! into
d2Ftot
(b)

dmdl
52 ReH (

is
(
j Þ i

ũF,is2 ũF, j s

« is2« j s
u j s,is^c isuFdVKS

s

dm
2« is

]S

]mG uc j s&^c j suF]VKS
s

]l
2« is

]S

]lG uc is&J
2(

is
(

j
H @ ũF,isu is, j s1 ũF, j su j s,is#^c isu

]S

]m
uc j s&^c j suF]VKS

s

]l
2« is

]S

]lG uc is&1~m↔l!J
1(

s
E d3r

dVHxc
s ~r !

dm
dlrs,orth~r !, ~36!
8-6



e

o
te
p

e
o

ak

an

iv
,
n
th

n
s
th

e

al-

een

he

ace

Cu

mer
ex-
by

of
th
on
e

e

ell.
uum

n
e

d,
At
0.2
er

bly.
pa-

alu-

in-
ve
of

-
the
m
h-

DENSITY-FUNCTIONAL PERTURBATION THEORY WITH . . . PHYSICAL REVIEW B64 235118
where~m↔l! denotes a term equal to the one in the brack
with l exchanged withm. Equation~36! is the second main
result of this paper. It shows how the change in the orthon
malization constraints reflects in the expression of the in
atomic force constants and how to handle partial occu
tions. Furthermore, it shows thatdlrs,orth(r ) couples with
the variation ofVHxc

s (r ).
Equation~32! is transformed as Eq.~16!. It is split into

the missingj 5 i term of Eq.~36! and into a contribution due
to the Fermi energy change.

In the NC case, the expectation value of the mix
second-order derivatives of the electron-ion potential is f
mally similar to Eq. ~34!. However, this equation differs
from the NC case since the augmentation functions m
]VKS

s /]l dependent on the charge densities throughVe f f
s @see

Eq. ~15!# and therefore them derivative of]VKS
s /]l depends

also on the induced self-consistent charge densities. Exp
ing the total derivative with respect tom one obtains

d

dmS ]VKS
s

]l D 5
]2VKS

s

]m]l
1E d3r

dVHxc
s ~r !

dm

]K~r !

]l
, ~37!

where the mixed partial derivative ofVKS
s is

]2VKS
s ~r1 ,r2!

]m]l
5

]2VNL~r1 ,r2!

]m]l
1E d3r

]2Vloc~r !

]m]l
K~r ;r1 ,r2!

1E d3rVe f f
s ~r !

]2K~r ;r1 ,r2!

]m]l

1F E d3r
]Vloc~r !

]l

]K~r ;r1 ,r2!

]m
1~l↔m!G .

~38!

Collecting these results@Eqs.~36!–~38!#, and ordering the
terms as in Ref. 19, the mixed second-order energy der
tives assume the final form. The first two terms generalize
the US case, the NC terms in the interatomic force consta
The expectation value of the second derivative of
electron-ion potential becomes

d2Ftot
(1)

dmdl
5(

is
ũF,is^c isuF]2VKS

s

]m]l
2« is

]2S

]m]lG uc is&, ~39!

and the change in the wave functions gives a term

d2Ftot
(2)

dmdl
52 Re(

is
^Dmc isuF]VKS

s

]l
2« is

]S

]lG uc is&. ~40!

In the US PP’s scheme one must consider two additio
contributions, which have no correspondent counterpart
the NC scheme. The first is the interaction between
change inVHxc

s andDlrs :

d2Ftot
(3)

dmdl
5(

s
E d3r

dVHxc
s ~r !

dm
Dlrs~r !. ~41!

Dlrs includes both the orthonormalization term,dlrs,orth ,
and the charge induced by the displacement of the augm
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tation functions@Eq. ~18!#. This integral is obtained partially
in Eq. ~37!, from them derivative of]VKS

s /]l, and partially
in Eq. ~36! from the manipulation ofd2Ftot

(b)/dmdl
The fourth term, obtained in Eq.~36!, has the same origin

asdlrs,orth , it is due to the dependence of the orthonorm
ization constraints on the atomic positions:

d2Ftot
(4)

dmdl
52(

is
H ^dmc isUF]VKS

s

]l
2« is

]S

]lG uc is&1~m↔l!J .

~42!

For nonmagnetic, insulating materials these terms have b
discussed in Ref. 19 and in Ref. 2. Equation~35! accounts
for NLCC and is added to these four terms.2,34 In Appendix
A, I shall show how to exploit these relationships to get t
dynamical matrices of a periodic solid.

VI. PHONON DISPERSIONS OF CU„001…

In this section the vibrational properties of the Cu~001!
surface are investigated by DFPT with US PP’s. The surf
is simulated by 39 and 107 layer slabs.38 The interatomic
force constants of these slabs are calculated from the bulk
and from a seven layer Cu~001! slab. The latter provides the
interactions among three surface layers whereas the for
describes the force constants in the other layers. The
change and correlation energy functional is approximated
the LDA ~Ref. 27! or by the Perdew, Burke, and Ernzerh
~PBE! ~Ref. 35! GGA. The phonon dispersions obtained wi
these two functionals are compared. A similar comparis
was carried out for bulk Cu in Ref. 21. In this work, I use th
same Cu PP’s. PW’s up to a cutoff of 25~30! Ry for the
wave functions and 200~480! Ry for the charge density ar
included in the basis set in the LDA~PBE GGA!.

The seven layer slab is studied with a tetragonal unit c
The periodically repeated slabs are separated by a vac
space equivalent to eight~LDA ! and nine~PBE GGA! lay-
ers. The in-plane lattice constant isa056.71 a.u.~LDA !, and
a056.95 a.u.~PBE GGA! which are the theoretical values i
the bulk. k-point sampling is done with 21 points in th
irreducible wedge of the surface BZ~SBZ!. The smearing
parameter ish50.05 Ry. The interlayer spacings are relaxe
starting from the ideal surface and minimizing the energy.
equilibrium, the forces acting on the atoms are less than
mRy/a.u.. The relaxation is mainly confined to the first lay
which relaxes inward,d12523.0% both in LDA and in PBE
GGA. The second and third layers do not relax apprecia
A more detailed account of the calculated geometrical
rameters of the Cu~001! surface can be found in Ref. 23.

The dynamical matrices of the seven layer slab are ev
ated via Eqs.~B32!–~B37! on a 434 mesh ofq points in the
SBZ. A Fourier transform of these matrices provides the
teratomic force constants of three surface layers, until fi
neighbors on the surface. A frozen phonon calculation
comparable accuracy would require 16 surface atoms~the
unit cell would contain 106 atoms!. Table I presents a com
parison of the interatomic force constants obtained at
surface and within the bulk. The interactions of a Cu ato
with its first neighbor on the surface and with the first neig
8-7
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ANDREA DAL CORSO PHYSICAL REVIEW B64 235118
bor on the subsurface layer are shown. These force cons
are compared with the corresponding ones in the bulk.
PBE GGA force constants between first neighbor atoms
the same layer are 11% stiffer in the bulk than on the surfa
By contrast, the interactions between surface and subsur
Cu atoms are about 15–20 % stiffer than those acting in
bulk. Within LDA, the largest components of the force co
stant tensor are about 25% stiffer than in PBE GGA, but
15–20 % increase of the interaction between surface
subsurface atoms with respect to the bulk is unchanged.
ure 1 shows the PBE GGA dispersions curves~continuous
lines! for the phonons of a 39 layer Cu~001! slab along the

Ḡ-X̄, X̄-M̄ , and M̄ -Ḡ directions of the SBZ. The surfac
modes are marked with points and their frequencies are c
pared with the experimental data. Only surface modes wh
displacements are dominant first layer are indicated. In o
to identify the surface modes,q resolved surface phono
spectral densities~SD’s! of a 107 layer slab are examine
The SD’s are calculated as a sum of normalized Ga
sian functions with root-mean-square deviations equa
1.22 cm21.

Figure 2 shows the SD’s calculated with PBE GGA at
points of the SBZ along the path of Fig. 1 and separa
according to the polarization of the vibrational eigenmod
SD’s for modes characterized by dominant first-layer sh
vertical ~perpendicular to the surface! displacements and b
dominant first-layer longitudinal displacements~parallel to
the q wave vector! are plotted with continuous and dash
lines, respectively. The SD for the shear horizontal surf
modes, with displacements perpendicular to the sag
plane~defined by the surface normal and theq vector!, is not

TABLE I. Theoretical LDA and PBE GGA interatomic forc
constants of the Cu~001! surface. The moving atom is at the origi
whereas the coplanar atom is ata(1,0). The first neighbor in the
layer below the one of the moving atom is ata(0.5,0.5) (a
5a0 /A2). The units are eV/Å2. Vanishing force constants are no
reported.

LDA PBE GGA
2Fx 2Fy 2Fz 2Fx 2Fy 2Fz

x 21.88 0.19 21.42 0.11
Surface y 0.06 0.05
atom z 20.19 20.18 20.11 20.08

Sub- x 20.54 20.70 0.91 20.41 20.52 0.67
surface y 20.70 20.54 0.91 20.52 20.41 0.67
atom z 0.95 0.95 21.16 0.72 0.72 20.88

x 22.13 21.60
Bulk y 0.12 0.08
atom z 0.11 0.07

Lower x 20.45 20.56 0.80 20.35 20.41 0.60
bulk y 20.56 20.45 0.80 20.41 20.35 0.60
atom z 0.80 0.80 21.00 0.60 0.60 20.76
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reported. All the same, these surface modes are marked
small empty circles in Fig. 1.

Along theḠ-X̄ direction there are three first-layer surfa
modes clearly identified by peaks in the SD. In this directio
modes polarizations are strictly parallel or perpendicular
the sagittal plane. The low-frequency modeS1 is a shear
horizontal mode. The modeS4 corresponds to the Rayleig
wave~RW! with displacements predominantly perpendicu
to the surface. Its frequency atX̄ is 105 cm21. Close to the
zone boundary, at 192 cm21, there is a third surface mod
S6, with longitudinal polarization. Three surface modes c
be identified also along theX̄-M̄ direction. Here symmetry
allows the mixing ofS1 and S4 which exchange characte

FIG. 1. Calculated PBE GGA dispersion curves for the phon
of a 39 layer Cu~001! slab compared with HAS and EELS da
~solid triangles!. The modes with dominant first-layer displacemen
are indicated. Open squares refer to shear vertical modes,
circles mark shear horizontal modes, and solid circles point to l
gitudinal modes~see text!.

FIG. 2. The surface phonon spectral densities, at (0.143,0.0)~a!,

(0.321,0.0)~b!, X̄ ~c!, M̄ ~d!, (0.316,0.316)~e!, and (0.158,0.158)
~f!. Units are 2p/a0. Shear vertical~continuous line! and longitu-
dinal ~dashed line! polarizations are shown.
8-8
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DENSITY-FUNCTIONAL PERTURBATION THEORY WITH . . . PHYSICAL REVIEW B64 235118
along this direction. AtM̄ , the S1 mode is the RW~with
frequency 135 cm21). This mode is present also along th

M̄ -Ḡ direction while theS6 mode disappears in this direc
tion. A new modeL1 with longitudinal polarization appear

close toM̄ . This mode enters into a region of bulk mod

with the same polarization along theM̄ -Ḡ direction, and be-

comes weak after 2/5 of theM̄ -Ḡ path. A shear horizonta
mode, not visible experimentally, with similar frequency

found along the entireM̄ -Ḡ direction. No other mode give
well defined peaks in the first-layer SD.

Experimentally, the frequencies of the RW mode alo
theḠ-X̄ andM̄ -Ḡ directions have been measured by elect
energy-loss spectroscopy~EELS! and helium atom scatterin
~HAS!.37 In Fig. 1, I report several measured frequencies
filled triangles.37 For the RW, the agreement between theo
and experiment is good: atX̄ and M̄ they differ by 4 and 1
cm21. The S6 mode measured by EELS atX̄ is instead at
203 cm21, 11 cm21 higher than the theoretical PBE GG
value. This behavior of the PBE GGA was found also in bu
Cu,21 where the frequency of the transverse acoustic mo
are in good agreement with experiment, while the frequ
cies of the longitudinal acoustic modes are underestima
with respect to the inelastic neutron-scattering meas
ments.

In addition to the modes discussed above, another p
present in the HAS cross section along theḠ-X̄ and M̄ -Ḡ
directions has been attributed to longitudinal resonance37

However, the origin of these peaks is still controversial.39 In
Fig. 2, there are no well defined peaks in the SD wh
correspond to these modes, but the longitudinal surface p
non SD display a very broad peak. In Fig. 1, I indicate t
positions of the maximumL of these peaks with small filled
circles. AlongM̄ -Ḡ the maximum of the longitudinal SD i
found at a frequency close to the experimental points.
contrast, alongḠ-X̄ the maximum of the SD occurs at fre
quencies which do not match the peak of the experime
HAS cross section. However, a more direct comparison
require the theoretical calculation of the experimental H
cross section. As shown in Ref. 39, the shape of the inte
tion potential between He atoms and the Cu surface co
play a role in explaining the experimental data.

Previousab initio calculations,36 limited to theX̄ and M̄
points of the SBZ, found a clear longitudinal resonance at
M̄ point (L1), and a small peak on the SD of the longitudin
modes atX̄ at about 115 cm21. In the present calculation th
presence of theL1 mode atM̄ is confirmed, but it is found
that, alongM̄ -Ḡ this mode mixes with bulk modes with th
same polarizations and could possibly explain the exp
mental measurements only close to theM̄ point. By contrast,
the longitudinal mode atX̄ is not present in the surface pho
non SD of Fig. 2~c!.

In Fig. 3, I show the dispersion curves for the phonons
a 39 layer Cu~001! slab, calculated within the LDA approxi
mation. The modes are analyzed as the PBE GGA ones.
qualitative conclusions are the same, but quantitatively L
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overestimates all the phonon frequencies as found in
bulk.21 The errors of the RW frequency are 11 and 18 cm21

at X̄ and M̄ , respectively. The maximum in the SD of th
longitudinal modes along theḠ-X̄ direction is still present,
but the peak is less intense than in PBE GGA, so in Fig
the mode apparently disappears closer to theḠ point.

VII. VIBRATIONAL SPECTRA OF NITROBENZENE

In this section, I address the ability of DFPT with US PP
to predict the vibrational spectra of a medium size orga
molecule: nitrobenzene. In addition to the aromatic ring w
five CH bonds, the molecule contains a NO2 group. The
vibrational spectra of this molecule has been measured
by infrared and by Raman spectroscopies. Vibrational f
quencies calculated by quantum chemistry methods are
available ~see, for instance, Refs. 41, 42, and referen
therein for calculations performed at the Hartree-Fock le
plus correlation treated with the Mo” ller-Plesset procedure!. I
simulate the molecule inside a cubic box of 22 a.u. All ato
are described by US PP’s.40 Energy cutoffs of 30 and 240 Ry
have been used for the wave functions and for the cha
density, respectively. The BZ is sampled by theG point only.
The diagonal elements of the dynamical matrices are c
rected to recover the acoustic sum rule. Calculations are
ried out with the LDA and the PBE GGA approximation
Figure 4 shows the main parameters of the nitrobenzene
ometry. The theoretical values of these parameters, obta
by relaxing the atomic positions to the minimum energy, a
reported in Table II. With respect to LDA, PBE GGA ex
pands the CO, NO, and CN bond lengths by about 0.02
the CC bond lengths by 0.01 Å, and contracts the CH bo
by about 0.003 Å. The agreement with the experimental
sults is good in both approximations. The maximum err
which includes also the PP’s error, is20.042 Å for the CN

FIG. 3. Calculated LDA dispersion curves for the phonons o
39 layer Cu~001! slab compared with HAS and EELS data~solid
triangles!. The modes with dominant first-layer displacements
indicated. Open squares refer to shear vertical modes, open ci
mark shear horizontal modes, and solid circles point to longitud
modes~see text!.
8-9
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ANDREA DAL CORSO PHYSICAL REVIEW B64 235118
bond with LDA and 0.026 Å for the NO bond with PBE
GGA.

Nitrobenzene hasC2v point group symmetry. Its 36 vibra
tional modes belong to the 13A114A2112B117B2 sym-
metry types. I report in Table III the frequencies calculat
within LDA and PBE GGA, the mode symmetry, and a co
pact description of the mode eigenvectors. In some case
displacement pattern is complex and I have not reported
indication. In other cases the assignment describes only
largest displacements. The symmetry types indicate the
havior of the displacements with respect to the symme
operations of theC2v point group: displacements of theA1
and B1 modes are parallel to the molecular plane, wh
those of theA2 andB2 modes are perpendicular to the m
lecular plane.A ~B! modes are even~odd! with respect to a
180° rotation about the twofold molecular axis. In Table I
I report also the vibrational frequencies of the molecule c
culated with a cutoff of 25 Ry for the wave functions and 2
Ry for the charge density. As can be seen from the table, w

FIG. 4. Geometry of the nitrobenzene molecule. The nonequ
lent bonds and angles are indicated in the figure. Their theore
and experimental values are compared in Table II.

TABLE II. Theoretical LDA and PBE-GGA geometries of th
nitrobenzene molecule. Distances are in Å and angles in deg
The symbols are defined in Fig. 4. Experimental data are from R
41. In parentheses are shown the differences on the last digit
tween electron-diffraction data and microwaves~reported!.

LDA PBE GGA Expt.

dNO 1.230 1.253 1.227 (24)
dCN 1.450 1.471 1.492 (26)
dCC

1 1.379 1.392 1.375~21!

dCC
2 1.378 1.391 1.403 (23)

dCC
3 1.383 1.395 1.396~4!

dCH
1 1.090 1.087

dCH
2 1.091 1.089 1.081~12!

dCH
3 1.092 1.089

aONO 124.7 124.1 124.3~10!

aCCN 118.8 118.9 117.5~8!

aCCH
1 122.8 122.2 122.2

aCCH
2 119.8 119.7 119.7

aCCH
3 119.8 119.8 119.9
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the present pseudopotentials,40 this cutoff is sufficient to con-
verge within 5 cm21 the frequencies of almost all the CH
bending modes but not the NO or CH stretch modes. In Ta
III, the frequencies deduced from infrared and Raman sp
troscopies on liquid nitrobenzene are reported.41 The fre-
quencies of the NO2 modes have been measured also in
gas phase42 and since these modes are particularly sensi
to the molecular environment, in Table III, I report the g
phase values. With respect to experiment, the absolute e
of the CH stretch are larger than those of the other modes~of
the order of 40 cm21 for LDA and up to 72 cm21 for PBE
GGA!. The relative error is, however, about 2%. For a fe
frequencies, experimentally, the mode assignment is
completely settled. For instance, different authors do
agree on the symmetry-type assignment for the out of pl
CH bending modes in the 800–1000-cm21 region. My as-
signment is in good agreement with the most recent exp
mental data,41 reported in Table III. TheB1 mode experimen-
tally reported at 1316 cm21 is deduced from Ref. 41, but i
not present according to Ref. 42, which suggests insteadB1
mode at 1095 cm21, not found in my spectra. The theoretic
frequencies for the mode at 1316 cm21 have errors some
what larger than the other modes~82 cm21 in LDA and 43
cm21 in PBE GGA!. Excluding this mode as well as the C
stretch modes, the average difference between theore
and experimental frequencies is 12 cm21 both within LDA
and PBE GGA. With LDA, the maximum error is 45 cm21

~asymmetric stretch of NO2), whereas with PBE-GGA it is
41 cm21 ~symmetric stretch of NO2). These figures are par
ticularly good and possibly partly fortuitous since expe
mental data are not corrected for anharmonicity, howe
they show that DFPT with US PP’s is accurate enough to
useful in interpreting the vibrational spectra of isolated
ganic molecules. For this particular application, the PW
basis is less efficient than other methods, but it can be c
petitive to study these molecules adsorbed on meta
surfaces.43
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APPENDIX A: PERIODIC SOLIDS

In this appendix, I link the equations of the second-ord
energy derivatives@Eqs.~39!–~42!# with the dynamical ma-
trices of a crystalline solid at finiteq points of the BZ. In a
crystalline solid, the atomic positions are defined by a B
vais lattice$Rl% and by the positions of the atoms,ts , in a
reference cell. To each indexI corresponds an atom ident
fied by two indexes (l ,s) with RI5Rl1ts . In a periodic
system, the wave functions are classified according to

-
al

es.
f.
e-
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TABLE III. Theoretical LDA and PBE GGA frequencies of the vibrational modes of nitrobenzene
parentheses, the errors of a calculation at 25~200! Ry cutoffs.b denotes bending modes in the molecu
plane,g out of plane bending modes, andn stretch modes.nsy andnas indicate the symmetric and asym
metric stretch of the NO2 bonds. Experimental data are taken from Ref. 41. They are not correcte
anharmonic effects.

Frequency (cm21) Symmetry Assignment
LDA PBE GGA Expt.

64 (24) 52 ~0! 50 A2 NO2 tors.
163 (22) 159 ~0! 180 B2

253 (26) 247 (23) 265 B1

396 ~0! 385 (21) 399 A1 NO2 tr.1Ring br.
407 (22) 404 (21) 399 A2

434 (22) 430 ~0! 425 B2

522 (22) 507 (21) 532a B1 b(CN)1b(NO2) as.
609 (22) 606 ~0! 613 B1

683 ~1! 669 (21) 680 A1 b(NO2) sy.1Ring br.
686 (22) 677 (21) 675 B2

703 (22) 690 (21) 704a B2 g(NO2)1g(CH)
803 (22) 788 (21) 791 B2 g(NO2)1g(CH)
830 (23) 829 (22) 838 A2 g(CH)
849 (23) 823 (21) 853a A1 b(NO2)
941 (24) 937 (22) 936 B2 g(CH)
976 (24) 972 (21) 975 A2 g(CH)
999 ~3! 994 (21) 990 B2 g(CH)
1003 ~2! 994 ~1! 1002 A1

1018 ~3! 1018 (21) 1021 A1 b(CH)
1057 (22) 1068 (21) 1069 B1 b(CH)
1102 ~2! 1085 ~2! 1108 A1 n(CN)1b(CH)
1138 (21) 1152 (21) 1162 B1 b(CH)
1157 (22) 1161 (21) 1176 A1 b(CH)
1274 (22) 1292 (21) 1308 B1 b(CH)
1371 (216) 1319 (211) 1360a A1 nsy(NO2)
1401 ~17! 1362 ~3! 1316 B1 n(CC)
1449 ~3! 1444 ~0! 1460 B1

1460 ~4! 1460 ~0! 1480 A1

1593 (225) 1538 (218) 1548a B1 nas(NO2)
1608 ~9! 1582 ~2! 1588 A1 n(CC)
1636 ~4! 1603 ~0! 1612 B1 n(CC)
3089 (214) 3108 (29) 3050 A1 n(CH)
3098 (213) 3119 (27) 3080 B1 n(CH)
3106 (213) 3128 (28) 3080 A1 n(CH)
3119 (212) 3152 (29) 3080 B1 n(CH)
3119 (212) 3152 (28) 3080 A1 n(CH)

aGas phase data.
lly

e
in
n

rm
Bloch theorem. The indexes of the energy levelsi or j be-
come double indexesk,v wherek is a point of the BZ, and
v is a band index which denotes both filled and partia
filled states. Up to now, in the text, the operatorsVKS

s (r1 ,r2),
K(r ;r1 ,r2), and S(r1 ,r2) have been used to simplify th
notation. In this appendix, I expand these operators, us
their definitions in terms of the augmentation functions a
theb projectors@see Eqs.~3!, ~5!, and~8!#. As an example, I
write explicitly VKS

s whose nonlocal part has the same fo
23511
g
d

as Eq.~3! but with screened coefficients.18 Introducing Eq.
~5! in Eq. ~12! and using Eq.~3! one obtains

VKS
s ~r1 ,r2!5Ve f f

s ~r1!d~r12r2!1(
Inm

DInm
s bn

g(I )~r12RI !

3bm*
g(I )~r22RI !, ~A1!

where the coefficientsDInm
s are
8-11
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DInm
s 5Dnm

(0)g(I )1E d3rVe f f
s ~r !Qnm

g(I )~r2RI !. ~A2!

The dynamical matrix, calculated at a finiteq point of the
BZ, is the Fourier transform of the interatomic force co
stants:

Fab~q,s,s8!5
1

N (
l l 8

e2 iq•Rl
d2Ftot

dua~ l ,s!dub~ l 8,s8!
eiq•Rl 8,

~A3!

whereua( l ,s) refers to the displacement, in the directiona,
of the atom which, at equilibrium, is inRl1ts . N is the
number of unit cells of the crystal in the Born–von Karm
approach. Equations~39!–~42! yield the mixed second-orde
energy derivatives with respect to two perturbation para
etersm and l. Comparing Eq.~A3! with Eqs. ~39!–~42!, I
take m as the displacementua( l ,s) and l as ub( l 8,s8). To
evaluate Eq.~40! one needs to solve the linear system@Eq.
~29!# in order to get the change in the wave functions. T
right-hand side of this system, as well asdVHxc

s /dm in Eq.
~41!, depends self-consistently on the induced charge den
@Eq. ~28!#. Therefore, in this Appendix, I use Eqs.~39!–~42!
to write the dynamical matrices of a crystal and rewrite E
~28! and Eq.~29! for this purpose.

As shown, for instance, in Ref. 7, in order to calculate
dynamical matrix, it is convenient to introduce collectiv
atomic displacements~phonons! characterized by a finite
wavelength which can be commensurate or incommensu
with the underling lattice. These phonon perturbations h
the following displacement pattern: in the cell identified
Rl the displacement of each atom is obtained from the
placement of the atoms in the reference unit cellusa(q) mul-
tiplying by a q-dependent phase factor:

ua~ l ,s!5usa~q!eiq•Rl. ~A4!

The charge density induced by this phonon perturbation

drs~r !

dusa~q!
5(

l
eiq•Rl

drs~r !

dua~ l ,s!
, ~A5!

while the change in the wave functions induced by a pho
perturbation are

uDusa(q)ckvs&5(
l

eiq•RluDua( l ,s)ckvs&. ~A6!

uDusa(q)ckvs& is obtained from the solution of a linear syste
as Eq. ~29!, by adding, atq50 a term due to the Ferm
energy change. By adding, with the correct phase, the lin
systems for each displacement, I get the linear system f
phonon perturbation:
23511
-

-

e

ity

.

e

te
e

-

n

ar
a

F2
1

2
¹21Ve f f

s 1Qs1(
Inm

~DInm
s 2«kvsqnm

g(I )!ubn
I &

3^bm
I u2«kvsG uD̃usa(q)ckvs&

52Pc,kvs
† F ufkvs

usa(q)
&1

dVHxc
s

dusa~q!
uckvs&

1(
Inm

3I Inm
usa(q)subn

I &^bm
I uckvs&G , ~A7!

where the projectorsbn
g(I )(r2RI) are written with a bra-ket

notation asubn
I &, and I defined the integral

3I Inm
usa(q)s

5E d3r
dVHxc

s ~r !

dusa~q!
Qnm

g(I )~r2RI !. ~A8!

The change in the Hartree and exchange and correlation
tential @Eq. ~21!# is linear in the induced spin charge dens
ties:

dVHxc
s ~r !

dusa~q!
5E d3r 1

dr~r1!

dusa~q!

1

ur2r1u
1

dVxc
s ~r !

dusa~q!
. ~A9!

In metals, the projector on the conduction bandPc,kvs
† de-

pends on the band index, and it is the operator given in
~30!; in insulatorsPc,kvs

† 5Pc
†512(k8v8uck8v8s&^ck8v8su.

ufkvs
usa(q)

& is

ufkvs
usa(q)

&5(
l

eiq"RlS ]VKS
s

]ua~ l ,s!
2«kvs

]S

]ua~ l ,s!
D uckvs&.

~A10!

Using Eq.~15! for the partial derivative of the KS potentia
and expanding theK operator,ufkvs

usa(q)
& is written more ex-

plicitly:

ufkvs
usa(q)

&5(
l

eiq•Rl(
Inm

~DInm
s 2«kvsqnm

g(I )!F ]

]ua~ l ,s!
~ ubn

I &

3^bm
I u!uckvs&G1(

l
eiq•Rl

]Vloc

]ua~ l ,s!
uckvs&

1(
l

eiq•Rl(
Inm

d I ,(l ,s)
1I nm

ua( l ,s)subn
I &^bm

I uckvs&

1(
l

eiq•Rl(
Inm

2I Inm
ua( l ,s)ubn

I &^bm
I uckvs&, ~A11!

where the two integrals are

1I nm
ua( l ,s)s

5E d3rVe f f
s ~r !

]Qnm
g(I )~r2RI !

]ua~ l ,s!
, ~A12!

2I Inm
ua( l ,s)

5E d3r
]Vloc~r !

]ua~ l ,s!
Qnm

g(I )~r2RI !. ~A13!
8-12
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Note that 2I depends on both the atom which moves (l ,s)
and on the center of the augmentation functionRI , whereas
in 1I we haveI 5( l ,s).

The induced spin charge densities are calculated via E
~28! and ~A5!. It is useful to group together the first tw
terms. This is done by defining the auxiliary vector:

uD̄usa(q)ckvs&5uD̃usa(q)ckvs&2
1

2 (
k8v8

f
kvs,k8v8s

usa(q) uck8v8s&

1
1

2h
d̃F,kvs

d«F

dusa~q!
dq0uckvs&, ~A14!

where

f
kvs,k8v8s

usa(q)
5(

l
eiq•Rlwkvs,k8v8s(

Inm
qnm

g(I )

3^ck8v8su
]

]ua~ l ,s!
~ ubn

I &^bm
I u!uckvs&, ~A15!

and the weights are

wkvs,k8v8s5 ũF,kvsukvs,k8v8s1 ũF,k8v8suk8v8s,kvs . ~A16!

Given these definitions, the spin charge densities induce
a phonon perturbation become

drs~r !

dusa~q!
52(

kv
ckvs* ~r !D̄usa(q)ckvs~r !12(

kv
(
Inm

3Qnm
g(I )~r2RI !^ckvsubn

I &^bm
I uD̄usa(q)ckvs&

1(
l

eiq•Rl(
kv

ũF,kvs(
Inm

FQnm
g(I )~r2RI !

3^ckvsu
]

]ua~ l ,s!
~ ubn

I &^bm
I u!uckvs&

1
]Qnm

g(I )~r2RI !

]ua~ l ,s!
^ckvsubn

I &^bm
I uckvs&G ,

~A17!
where time-reversal symmetry has been used in the first
terms.

The dynamical matrix is separated into four contributio
The first term generalizes the expectation value of the mi
derivatives of the electron-ion potential@see Eq.~39!#. In the
NC case, this term is diagonal in the atomic indexess,s8. In
the US PP’s scheme there is a similar term:

Fab
(1a)~q,s,s8!5

1

N (
l

dss8H (kvs
ũF,kvs(

Inm
~DInm

s 2«kvsqnm
g(I )!

3^ckvsu
]2

]ua~ l ,s!]ub~ l ,s!

3~ ubn
I &^bm

I u!uckvs&

1E d3r
]2Vloc~r !

]u l ,s!]u l ,s!
r~r !J , ~A18!
a~ b~

23511
s.

by

o

.
d

and another term diagonal ins and s8 which contains inte-
grals of the effective potential with the augmentation char
and their derivatives@see Eq.~38!#:

Fab
(1b)~q,s,s8!5

1

N (
l

dss8H (kvs
ũF,kvs(

Inm
d I ,(l ,s)

4I nm
ua( l ,s)bs

3^ckvsubn
I &^bm

I uckvs&

1F(
kvs

ũF,kvs(
Inm

1I nm
ua( l ,s)s

^ckvsu
]

]ub~ l ,s!

3~ ubn
I &^bm

I u!uckvs&1~a↔b!G J , ~A19!

where I defined the integral

4I nm
ua( l ,s)bs

5E d3rVe f f
s ~r !

]2Qnm
g(s)~r2RI !

]ua~ l ,s!]ub~ l ,s!
. ~A20!

Furthermore, there is a third term@see Eq.~38!#, which is
nonvanishing also on the nondiagonalsÞs8 elements. In
fact, due to the long range of the local potential, the poten
centered at one atom interacts with the augmentation ch
centered at another atom:

Fab
(1c)~q,s,s8!5

1

N (
l l 8

e2 iq•RlF(
kvs

ũF,kvs(
Inm

d I ,(l 8s8)

3 5I nm
ua( l ,s)ub( l 8,s8)

^ckvsubn
I &^bm

I uckvs&

1(
kvs

ũF,kvs(
Inm

2I Inm
ua( l ,s)

^ckvsu
]

]ub~ l 8,s8!

3~ ubn
I &^bm

I u!uckvs&

1@ua~ l ,s!↔ub~ l 8,s8!#Geiq•Rl 8, ~A21!

where

5I nm
ua( l ,s)ub( l 8,s8)

5E d3r
]Vloc~r !

]ua~ l ,s!

]Qnm
g(I )~r2RI !

]ub~ l 8,s8!
. ~A22!

The other parts of the dynamical matrix are easily fou
using the definitions introduced in this appendix. The seco
term is

Fab
(2)~q,s,s8!5

2

N (
kvs

^Dusa(q)ckvsufkvs
us8b(q)

&. ~A23!

The third term describes the interaction of the change
VHxc

s with the induced charge densities at fixed orbitals:

Fab
(3)~q,s,s8!5

1

N (
s

E d3r
dVHxc* s ~r !

dusa~q!
Dus8b(q)rs~r !, ~A24!

where Dus8b(q)rs(r )5( l 8e
iq•Rl 8Dub( l 8,s8)rs(r ). The fourth

term, due to the orthonormalization, is written as
8-13
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Fab
(4)~q,s,s8!52

1

N F (
kvk8v8s

f
kvs,k8v8s
* usa(q)

3^ck8v8sufkvs
us8b(q)

&1H.c.G , ~A25!

where H.c. indicates the Hermitean conjugate. In addition
these four terms, the dynamical matrix contains also t
terms due to NLCC. Their expressions are given in Eq.~135!
of Ref. 2.

APPENDIX B: RECIPROCAL SPACE

The equations of the previous section are not yet usefu
a practical calculation because they are basis-set indepen
and contains sums over the unit cells indexesl andl 8. In this
appendix, I introduce a PW’s basis set to expand the w
functions. It is well known2 that the functions in the fina
expressions have the periodicity of the unperturbed latt
The finite wavelength of the phonon is dealt with throu
phase factors which disappear from the final expressio
These expressions are given here.

I start with some preliminary definitions. The PW expa
sion of the unperturbed wave functions is

ckvs~r !5
1

ANV
eik•r (

G
ck1GvseiG•r, ~B1!

where $G% are the reciprocal-lattice vectors of the unpe
turbed Bravais lattice,V the volume of a unit cell, andN is
the number of unit cells. The first-order change in the wa
functions is also expanded in PW’s. For a phonon pertur
tion of wavelengthq, uDusa(q)ckvs& is the product of a func-
tion with the periodicity of the unperturbed Bravais latti
and a phase factorei (k1q)•r:

Dusa(q)ckvs~r !5
1

ANV
ei (k1q)•r (

G
dk1q1Gvs

usa(q) eiG•r. ~B2!

fkvs
usa(q)(r ) is expanded asDusa(q)ckvs(r ):

fkvs
usa(q)

~r !5
1

ANV
ei (k1q)•r (

G
pk1q1Gvs

usa(q) eiG•r. ~B3!

The US PP’s are characterized by three set of functio
The b projectors@Eq. ~3!#, the augmentation functions@Eq.
~5!#, and the local potential@Eq. ~6!#. None of these functions
is periodic. However, using the Born–von Karman perio
boundary conditions, I assume periodicity in a very lar
Bravais lattice, whose unit cell containsN unit cells of the
unperturbed lattice. These quantities are therefore expan
in a Fourier series. For theb functions we have

bn
g(I )~r !5

1

NAV
(

k
(
G

bn
g(I )~k1G!ei (k1G)•r, ~B4!

with the inverse transformation
23511
o
o
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ent
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e
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bn
g(I )~k1G!5

1

AV
E d3rbn

g(I )~r !e2 i (k1G)•r. ~B5!

Herek is a vector of the first BZ of the unperturbed syste
A similar expansion is valid for the augmentation functio
and the local potential. For instance, the augmentation fu
tions are expanded as

Qnm
g(I )~r !5

1

N(
k

(
G

Qnm
g(I )~k1G!ei (k1G)•r, ~B6!

with

Qnm
g(I )~k1G!5

1

VE d3rQnm
g(I )~r !e2 i (k1G)•r. ~B7!

The choice of the prefactors, in the direct and inverse Fou
transform, is a matter of definition. Their product must
1/NV, whereNV is the volume of the real-space integratio

In order to calculate the dynamical matrix, the induc
charge density, and the linear system we need scalar prod
between b functions, or their derivatives and the wav
functions or their first-order change. TakingI 5( l ,s),
the product ^bm

I uckvs&can be factorized aŝ bm
I uckvs&

51/AN eik•Rlbkvs
sm where

bkvs
sm 5(

G
ck1Gvsbm*

g(s)~k1G!ei (k1G)•ts ~B8!

does not depend on the cell indexl. By analogy,

]^bm
I u

]ua~ l ,s!
uckvs5

1

AN
eik•Rlakvs

sam , ~B9!

with

akvs
sam5(

G
ck1Gvsi ~k1G!abm*

g(s)~k1G!ei (k1G)•ts, ~B10!

and

]2^bm
I u

]ua~ l ,s!]ub~ l ,s!
uckvs&5

1

AN
eik•Rlgkvs

sabm , ~B11!

with

gkvs
sabm52(

G
ck1Gvs~k1G!a~k1G!

3 bbm*
g(s)~k1G!ei (k1G)•ts. ~B12!

The product of theb functions and the change in the wav
functions has a phase factor ofk1q wavelength. WithI
5( l 1 ,s1) we have

^bm
I uD̄usa(q)ckvs&5

1

AN
ei (k1q)•Rl 1D̄usa(q)bkvs

s1m , ~B13!

where
8-14
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D̄usa(q)bkvs
s1m

5(
G

d̄k1q1Gvs
usa(q) bm

* g(s1)
~k1q1G!ei (k1q1G)•ts1

~B14!

does not depend on the cell indexl 1. Using these scala
products, three sums over the BZ and over the filled ba
are calculated. Let us define

as1nm
usa(q)s

5
2

N (
kv

bkvs
* s1n

D̄usa(q)bkvs
s1m , ~B15!

bsnm
s 5

1

N (
kv

ũF,kvsbkvs* snbkvs
sm , ~B16!

cnm
sas5

1

N (
kv

ũF,kvs@akvs* sanbkvs
sm 1bkvs* snakvs

sam#. ~B17!

The orthonormalization terms in the induced charge den
and in the dynamical matrix require the coefficien
f

kvs,k8v8s

usa(q)
@see Eq.~A15!#, which do not depend on the un

cell and are nonvanishing only ifk85k1q. I therefore drop
the k8 index and write

f
kvsv8s

usa(q)
5wkvsv8s(

nm
qnm

g(s)~ak1qv8s
* san bkvs

sm 1bk1qv8s
* sn akvs

sam!,

~B18!

where

wkvsv8s5 ũF,kvsukvs,k1qv8s1 ũF,k1qv8suk1qv8s,kvs .
~B19!

The augmentation functions, or their derivatives, are in
grated with the local potential or its derivatives, with th
effective potential or with the variation ofVHxc

s . In the pre-
vious appendix, five integrals of the augmentation functio
with the potentials were defined. Here, these integrals
calculated in reciprocal space and their dependence on
unit cell index is made explicit. Actually,1I nm

ua( l ,s)s
@Eq.

~A12!# does not depend onl and therefore I write it as1I nm
sas .

In reciprocal space,

1I nm
sas5V(

G
iGaVe f f

s ~G!Qnm* g(s)~G!eiG•ts. ~B20!

In order to write in reciprocal space2I Inm
ua( l ,s)

@Eq. ~A13!#,

let us take I 5( l 1 ,s1). We have 2I Inm
ua( l ,s)

5(1/N)(qe
2 iq•(Rl2Rl 1

) 2I s1nm
saq , with

2I s1nm
saq 5V(

G
~2 i !~q1G!aQnm

* g(s1)
~q1G!

3ei (q1G)•ts1Vloc
g(s)~q1G!e2 i (q1G)•ts. ~B21!

Calling I 5( l 1 ,s1), we have @Eq. ~A8!# 3I Inm
usa(q)s

5eiq•Rl 1
3I s nm

usa(q)s with

1

23511
s

ty

-

s
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he

3I s1nm
usa(q)s

5V(
G

dVHxc
s

dusa~q!
~q1G!Qnm

* g(s1)
~q1G!ei (q1G)•ts1.

~B22!
4I nm

ua( l ,s)bs
@Eq. ~A20!# does not depend onl and therefore I

call it 4I nm
sabs with

4I nm
sabs52V(

G
GaGbVe f f* s~G!Qnm

g(s)~G!e2 iG•ts. ~B23!

In order to write in reciprocal space5I nm
ua( l ,s)ub( l 1 ,s1)

@Eq. ~A22!#, it is useful to write 5I nm
ua( l ,s)ub( l 1 ,s1)

5(1/N)(qe
iq•(Rl2Rl 1

) 5I nm
ss1abq where

5I nm
ss1abq

5V(
G

~q1G!a~q1G!bVloc* g(s)~q1G!

3ei (q1G)•tsQnm
g(s1)

~q1G!e2 i (q1G)•ts1. ~B24!

Note that only 3I depends on the self-consistent change
VHxc

s . The other integrals are calculated only once at
beginning of the self-consistent DFPT run. Note also t
DInm

s does not depend onl sinceVe f f(r ) is a periodic func-
tion and therefore, in the following, I shall call itDsnm

s

Given these definitions, it is straightforward to expand t
linear system@Eq. ~A7!#, the induced spin charge densitie
@Eq. ~A17!#, and the dynamical matrices at anyq point @Eqs.
~A18!–~A25!# in the PW basis. Consider the linear system

(
G8

F1

2
~k1q1G!2dGG81Ve f f

s ~G2G8!

1Qs~k1q1G,k1q1G8!2«kvs

1 (
s1nm

~Ds1nm
s 2«kvsqnm

g(s1)
!bn

g(s1)
~k1q1G!e2 iG•ts1

3bm
* g(s1)

~k1q1G8!eiG8•ts1G d̃k1q1G8vs

usa(q)

52Pc,kvs
† @pk1q1Gvs

usa(q)
1tk1q1Gvs

usa(q)
#, ~B25!

where

Qs5(
v8

ak1qv8sSuck1qv8s&^ck1qv8suS, ~B26!

and

Pc,kvs
† 5F ũF,kvs2(

v8
bkvs,k1qv8sSuck1qv8s&^ck1qv8suG ,

~B27!

with

bkvs,k1qv8s5 ũF,kvsukvs,k1qv8s1 ũF,k1qv8suk1qv8s,kvs

1ak1qv8s

ũF,kvs2 ũF,k1qv8s

«kvs2«k1qv8s

uk1qv8s,kvs .

~B28!
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The right-hand side of the linear system has a non-self-consistent part@Eq. ~A11!#,

pk1q1Gvs
usa(q)

5(
nm

~Dsnm
s 2«kvsqnm

g(s)!~2 i !~k1q1G!abn
g(s)~k1q1G!e2 i (k1q1G)•tsbkvs

sm

1(
G8

~2 i !~q1G2G8!ae2 i (q1G2G8)•tsVloc
g(s)~q1G2G8!ck1G8vs1(

s1
(
nm

3bn
g(s1)

~k1q1G!e2 i (k1q1G)•ts1@dss1
„~Dsnm

s 2«kvsqnm
g(s)!akvs

sam11I nm
sasbkvs

sm
…12I s1nm

saq bkvs
s1m

#, ~B29!
o
n-

l-

’s

the

he
tem

The
he
-

e

and a self-consistent part

tk1q1Gvs
usa(q)

5(
G8

dVHxc
s

dusa~q!
~q1G2G8!ck1G8vs

1(
s1

(
nm

3I s1nm
usa(q)sbn

g(s1)

3~k1q1G!e2 i (k1q1G)•ts1bkvs
s1m . ~B30!

The solution of the linear system allows the calculation
the q1G components of the Fourier transform of the i
duced spin charge density@Eq. ~A17!#:

drs

dusa~q!
~q1G!52FTq1GF(

kv
ckvs* ~r !D̄usa(q)ckvs~r !G

1(
s1

(
nm

Qnm
g(s1)

~q1G!e2 i (q1G)•ts1

3@as1nm
usa(q)s

1dss1
cnm

sas1dss1
~2 i !

3~q1G!abs1nm
s #, ~B31!

where the symbolFTq1G , means that the first term is ca
culated in real space, and then theq1G component of its
Fourier transform is taken.

Finally, I discuss the dynamical matrix. Equation~A18! is
similar to the one in the NC PP scheme:

Fab
(1a)~q,s,s8!5dss8H(

s
(
mn

1

N (
kvs

~Dsnm
s 2«kvsqnm

g(s)!

3 ũF,kvs@gkvs* sabnbkvs
sm 1bkvs* sngkvs

sabm

1akvs* sanakvs
sbm1akvs* sbnakvs

sam#

2V(
G

Vloc* g(s)~G!eiG•tsGaGbr~G!J .

~B32!

Equations~A19! and~A21! are characteristic of the US PP
scheme. The diagonal term, Eq.~A19!, becomes
23511
f

Fab
(1b)~q,s,s8!5dss8H(

s
(
nm

4I nm
sabsbnm

ss

1F(
s

(
nm

1I nm* sascnm
sbs1~a↔b!G J ~B33!

while Eq. ~A21! becomes

Fab
(1c)~q,s,s8!5H F(

s
(
nm

5I nm
ss8abqbnm

s8s

1(
s

(
nm

2I s8nm
* saqcnm

s8bsG1H.c.J , ~B34!

where H.c. means the Hermitean conjugate of the term in
same bracket~complex conjugate andsa exchanged with
s8b). The second part of the dynamical matrix, similar in t
NC scheme, depends on the solution of the linear sys
@Eq. ~A23!#:

Fab
(2)~q,s,s8!5

2

N (
kvs

(
G

dk1q1Gvs
* usa(q) pk1q1Gvs

us8b(q) . ~B35!

Two other terms are present only in the US PP’s scheme.
interaction of the moving augmentation charge with t
variation ofVHxc

s @Eq. ~A24!# is calculated in real space in
tegrating in a primitive cell:

Fab
(3)~q,s,s8!5(

s
E

V
d3r

dVHxc* s ~r !

dusa~q!
Dus8b(q)rs~r !, ~B36!

where Dus8b(q)rs(r ) is calculated as in Eq.~B31! taking
Dus8b(q)ckvs(r )50. Finally the term due to the change in th
orthonormalization constraints@Eq. ~A25!# is

Fab
(4)~q,s,s8!52

1

N F (
kvv8s

f
kvsv8s
* usa(q)

3( ck1q1Gv s
* pk1q1Gvs

us8b(q)
1H.c.G . ~B37!
G 8
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