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We report on a nonperturbative approach to the one-dimensi@baland two-dimensional2D) Hubbard
models that is capable of recovering both strordg>(t) and weak-couplingy <t) limits, with U the on-site
Coulomb repulsion and the kinetic energy. Dynamical corrections to the electron self-energy in the single
particle Green function are explicitly included by expanding in terms of the 16 eigenstates that characterize two
nearest neighbor sites. We first show that even whénmuch smaller than the bandwidth, the Mott-Hubbard
gap never closes at half filling in both 1D and 2D. Consequently, the Hubbard model at half filling is always
in the strong-coupling nonperturbative regime. For both large and dhale find that the population of
nearest-neighbor singlet states approaches a value of order ufity-8sas would be expected for antiferro-
magnetic order. We also find that the double occupancy is a smooth monotonic functioanaf approaches
the anticipated noninteracting limit of 1/4 &5—0 and vanishes a’—«. Finally, we compute the heat
capacity] C(T,U)] for both 1D and 2D. Our results for 1D at moderate to high temperatures are in quantitative
agreement with those of the exact Bethe ansatz solution, differing by no more than 1%. In addition, we find
that in 2D, theC(T,U) curves vsT for different values ofU exhibit a universal crossing point at two
characteristic temperaturds~1.74+0.1t and T~0.4+0.1t as is seen universally in Hubbard models and
experimentally in a wide range of strongly correlated systems suctHas UBeg, and CeCy_,Al,. The
success of this method in recovering well-established results that stem fundamentally from the Coulomb
interaction suggests that local dynamics are at the heart of the physics of strongly correlated systems.

DOI: 10.1103/PhysRevB.64.235117 PACS nuniber71.10.Fd, 71.2%a

I. INTRODUCTION Andersofi has argued that almost certainly the half-filled 2D
Hubbard model is nonperturbative as in the 1D case,
In both the weak and strong coupling regimes, the 2Dthereby possessing a discontinuity onlyat 0. At the heart
Hubbard model at half filling is expected to be an antiferro-of the nonperturbative nature of the Hubbard mbdelthe
magnet aff=0. The strong-coupling argument relies on anProjective mismatch between the low-energy physical sub-
isomorphism between the half-filled Hubbard model in thesPace and the “antibound states” which form in 2D for any
limit that the on-site Coulomb repulsids exceeds the hop- nonzero value o). Antiferromagnetism follows necessarily
ping integralt and a Heisenberg antiferromagnet. As a con-as & corollary from the break-down of perturbation theory.
sequence, the corresponding ground state is antiferromar%- In this paper we reexamine this problem using an ap-

ti th le for th t th oach that is capable of spanning the weak- and strong-
netic and the energy scale for the gap between the upper ag(gupling regimes. Our approach is based on the Hubbard

occupancyA ~U. In the opposite or weak-counling limid operators which exactly diagonalize the interaction part of
pancya =. PPO ping .. the Hubbard Hamiltonian. Consequently, the Hubbard opera-
<t, perturbation theory predicts that a van Hove singularit

ind i-densit duci that i Ytors are tailor-made to access the strong-coupling regime,
INAUCES a Spin-density wave producing a gap that IS xpQys.t Rather than work in the static approximation in which
nentially small in the Coulomb repulsion; that i\

U ) X quantum fluctuations are ignored leading to infinitely sharp
~te """, While the perturbative argument cannot be ex-ypper and lower Hubbard bands, we include the dynamical
tended into the strong-coupling regime where thgé map-  corrections which lead to broadening of the spectral features.
ping to a perfect Heisenberg antiferromagnet applies, contias in the work of Matsumoto and Mancitfl;** we focus on
nuity between the two regimes suggests thathe dynamics associated with two neighboring sites. The
antiferromagnetism persists for any nonzero value&loFur-  dominant dynamics appear to be governed by spin fluctua-
ther, this argument would also suggest that the Hubbard gajions which lead to singlet-triplet excitations. From our
never closes for any nonzero value f Consequently, the analysis, we conclude that the Hubbard gap never closes and
half-filled Hubbard model is always in the strong-coupling the 2D Hubbard model at half filling is always in the strong-
regime. However, no exact results are known. In fact, whilecoupling regime. Our results then corroborate those of a re-
numerical simulatiorfssupport an antiferromagnet at half cent improvement on dynamical mean-field thedryin
filling, several mean-field arguments suggest otherwise. Datwhich the momentum dependence of the self-energy is ex-
ing back to the pioneering work of M8tand Brinkman and  plicitly included? at particular points in the Brillouin zone.
Rice? numerous calculations on the 2(Refs. 4,5 or the  To determine the validity of the approach we use here, we
D=« (Refs. 6,7 half-filled Hubbard models suggest that study as well the 1D half-filled Hubbard model as exact re-
wheneverU is much smaller than the bandwidéd=8t, the  sults are known from Bethe ansdtzAs expected, we find
Hubbard gap closes and a metallic phase ensues. Contrastlgat the Hubbard gap persists even in the weak coupling

lower Hubbard bands is set by the energy cost for doubl
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regime. In addition, we find that our results for the heat caticularly useful because it allows us to recast the equations of
pacity are in perfect agreement with those from Bethe ansatmotion for the Hubbard operators

in the temperature range where the Coulomb interaction . 0 ) )

dominates the physics, that is, moderate to high tempera- Ji()=Eothi +P(6]7) + 6]i=E¢;i + 5] ()
turgs. Finally, we 3_ng that we recover thg Well-establlsheqln terms of the renormalized energy matrix

universal crossing2®of C(T,U) vs T for various values of

U that is seen experimentally in a V\1/i7de range of strgngly E(k)=Eq+ FT({5J'?¢'1//,T,,}>|71(k) 6)
correlated systems such as’He; CeCy_,Al,, o 0 0 )
Nd,_,CeCu0,,'® and UBa.?° The success of our approach and a correctiorsj; = 6j; —P(4j;). Clearly,P(5;)=0. The

strongly correlated electronic systems. tion
Il. DYNAMICAL GREEN FUNCTION APPROACH G(k,w)= w—E(K)—om(k. o) 1(k) ()
The starting point of our analysis is the on-site HubbardContains the self-energy
model
am(k, ) = FT(R{ 3], (1), 8] ,(t )} ®
— T , ,
H——i;U tiJCiUCJU+U§i: NitNip s (1) whereR denotes retarded anidthe irreducible part. For a
v paramagnetic phase, the overlap matrix
wheret;; =t if (i,j) are nearest-neighbor sites and zero oth-
erwise. Rather than working with the original electron opera- 1— n 0
tors, we use the Hubbard operatoys,=c;,n;_, and &, 2 ERY
=¢;,(1—n;_,) as these operators exactly diagonalize the I= nl 10 I 9
interaction term. In terms of the Hubbard operatars 0o =

=75, & . While the interaction term is now simplified in 2
this basis, the Hubbard operators do not obey standard Fermg explicitly diagonal. The weights which appear along the
statistics, making impossible any diagrammatic approachiiagonal represent the contribution from the lower and upper
based on Wick's theorem. However, the equation of motiorHubbard bands, respectively. Note, they sum to unity. This
approach has been demonstratetf to offer an alternative  feature coupled with the fact that the dynamical corrections
to the diagrammatic expansion. Consider the two-componeRfanish whenU=0 guarantees that we recover the correct
basis noninteracting limit.
The primary operational hurdle with any analytical ap-
@ proach to the Hubbard model is the evaluation of the dy-
Do namical self-energy. In the static approximatfon?® the
self-energy is dropped, and the Green function reduces to the
and its associated Green functi@(i,j,t,t’)=(<¢ig;¢fg>> pole structure
= 0(t—t’)({¢ig(t),zpjTU(t’)}), where{A,B} is the anticom-
mutator and(- - - ) is the thermal average. The equations of 1

io

%(i)=<

motion for the Hubbard operators Glk,w)= w—E(k) (k) (10
b whereE(k) defines the energy bands. At this level of theory,
jitth=i ﬁ_tl =Eoi; + 6j? (3)  the Hubbard bands are sharp as the Green function has a pole

at the energy of each band. As our focus, however, is on the
will of course contain a contribution which is linear in the ¢losing of the Hubbard gap, the pole approximation is inad-
Hubbard basis and in addition new tern#§® which contain ~ ©duate and the broadening in the bands arising from the self-
operators that lie outside the Hubbard basis. Ideally, if sucfgnergy is crucial. In the context of the composite operator

operators are included in the Hubbard basis, then the nonli@PProach, Mancini and Matsumotchave developed a real-

ear contributions can be minimized. However, such a proceSPace scheme for computing the dynamical corrections to the

dure is necessarily cumbersome. Instead of enlarging the béga}:lctﬁppzerX|ma_1tloln. To wpplement this procedure, we re-
sis, we projectsj” onto the Hubbard basis using the Rth W€ the dynamical correction
projector

1 -1
5m(k,w)=Dm(k,w)<_1 1 ) (12
P(O)=2 ({04 })in"thn 4
— . ) . T -
which projects any operatd® onto the Hubbard operator =FT(R&j;(1) 6j; (1)K
basis, Wherel(k)=FT({z//(,(i,t),t//T,(j,t}% and FT denotes in terms of the 22 matrixK. Becausédd m(k,w) cannot be
the time and space Fourier transform. This projector is parevaluated exactly, we seek a systematic way of calculating
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the dynamical corrections. The simplest approach would bes well as=F| andF F| . The two-site system described by
to consider the single-site approximation. Such an approxiall sixteen states of this form is not isolated. The rest of the
mation is in the spirit to thel= (Ref. 6 methods in which  system acts as a reservoir. The coupling is realized through
the self-energy is momentum independent. An improvementhe electron propagator for the rest of the system, which can
would be to consider the dynamics associated with two sitebe obtained from the appropriate trace of the single-particle
as proposed by Mancini and Matsumdfd?! Evaluation of ~ Green function defined in Eq7). Consequently, the energy
the self-energy over successively larger clusters would leatbvels of the two-site states are broadened. We
to an exact determination of the dynamical correctionsdefine then the resolvent of a two-site stal,(t)

Hence, we write the dynamical corrections as a series
Dm(x,x")= 6X,X,Dm0(x,x’)+2 Oxax DMy(X,x" )+ -
a

in increasing cluster size. Her&, and x’ are neighboring

sites andh indexes all nearest-neighbor sites. In the two-site
approximation, the series is truncated at the level of on-sit

Dm, and nearest-neighbddm, contributions. In Fourier
space, the dynamical corrections can be written as

Dm(k,w)~Dmg(w)+ a(k)Dm;(w) (12)
with
1
Dmg(w)= ZFT(R{aj(t),aj Ty,
1 . y
Dmy(w)= ZFT<R{5J(t),5J (), (13

=6(t)((P,()@](0))), as a trace over the degrees of free-
dom of the reservoir and the two-site subsystem. The Fourier
transform of the resolvent

(16)
w—w' +id

an(w):f do’
%an be written in terms of the spectral function for the two-
site system, which is defined ag,,= — ImMR,,,/7. The §j’s
are then expanded

dj= E anmq)lq)m (17)
nm

in terms of the sixteen level operators that describe the two-
site physics. The products @jf’s that comprise the dynami-
cal corrections are then expressed in terms of the two-site
resolvents using the noncrossing approximatiddCA).
Consequently, the total self-energy contains all the possible
convolutions of the two-site resolvents. As the dynamics in-

where the factor of 1/4 arises from the coordination numbetluded are local, the NCA is expected to be accufaiehe

on a square latticer(k) = (cosk,+cosk,)/2, andsj and 6j’

resolvents associated with local triplet and singlet states are

are centered o and x’, respectively. The goal here is to sharply peaked at well-defined energt®3he energy differ-

study the half-filled Hubbard model by evaluatibgn, and
Dm; in the two-site approximation.

ence is small, however, and given roughly tSyU at large
U. Consequently, singlet-triplet mixing cannot be ignored.

Because the procedure for implementing the two-site apwe can introduce this spin-fluctuation effect as a correction

proximation has been described previod8Iy* we will only

to the self-energies of the resolvents. The effective energy of

outline the essence of the methdd) enumerate the quan- the exchange interaction is given by the difference

tum mechanical states for two neighboring sitg3,use the

resolvent methad?® to express how the surrounding envi-

ronment interacts with the two-site syste(8) express the

\]Ef G)((TFFS_ O'FFA)d(I), (18)

8j’s in terms of the level operators for the two-site system,

and (4) use the noncrossing approximation to expand®
Dm(k,®) in terms of the two-site states. For two sites, ther

are #=16 electronic states. L&(i), F,(i), andD(i), rep-
resent single site level operators acting on enjatyposon

statg, singly (with spino) and doubly occupied sites respec-

f the first moments of the spectral functions for the singlet

eand triplet two-site states. Antiferromagnetism corresponds

to J>0. To facilitate a self-consistent evaluation of the ex-
change energy, we computed the equations of motion for the
two-site level operators in the presence of the spin-

- _ t
tively. In terms of the level operators, the original Hubbardfluctuation termJn-n®/2. Here n=(c;;,¢; ) ai(Ciy ,Ci)) ",

operators aré,=B'F_ and 17,,=0FT,UD. The level opera-

tors for two-site state®,, are formed by all possible sym-

metric and antisymmetric combinations Bf F,, andD on

two neighboring sites. Two particular states of interest ar

the singlet
F.F/—FF;
T 1"
FFp=——F—— (14
g V2
and triplet state formed from three states
F.Fl+F F;
1 11
FFg=——F——, (15
° V2

with o the Pauli matrices and represents an average over
the nearest neighbors of the second site in the cluster exclu-
sive of the first site. A final quantity that is needed is the

occupancy in the two-site states

n(pn:Z(pn/Z, (19)

with Zq,n:fdw;nn((l)), whereZ represents a sum over all

Z.m's for the sixteen states animz exp(— Bw)o ().

Ill. RESULTS

To obtain a self-consistent solution for the Green function,
we start with an initial guess for the electron spectral func-
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FIG. 3. Density of states fou =8t,6t,4t,2t for T=0.1% in D

FIG. 1. Momentum and energy dependence of the electron spec= 1 The presence of a gap for all valuestbindicates an absence
tral function forU =8t andT=0.1% for different values ok. From 4 3 metallic state at half filling.
top to bottom, the momenta correspond td, K,)=(0,0)
—(m,m)—(m0)—(0,0). Each momentum trace is shifted by \eight is located at (0,0). Broad spectral features obtain near
hand. the (7,0) point. The analogous spectral function for fhe
i i ) i . =1 case is shown in Fig. 2. As in the 2D case, the energy
tion which will be used to describe the properties of thegenaration between the lower and upper Hubbard bands for
environment in which the two-site system is placed. Thep — 1 s striking. In both cases, the periodicity of the band is
two-site resolvents are then determined |t_erat|vely. Once _thgﬂ as is expected for a paramagnetic solution. Nonetheless,
resolvents are determined, they are fed into the dynamicg|e \ill show that local antiferromagnetic correlations exist.
corrections and the Green function is determined. A NeW |heqration of the spectral functions with respect to mo-
spectral function is then computed thereby closing the selfiantum yields the density of staté€®0OS) as a function of
consistent set of equations. This procedure is repeated “”E-hergy shown in Figs. 3 and 4. It is evident that the Hubbard
convergence is reached. gap is fully formed forU~W, whereW is the bandwidth
(W=4t for D=1 andW=8t for D=2). In theD=1 case,
the gap is wider than iD=2. For all values ofJ, we see a
clear suppression in the density of states near zero energy.
However, for small values dfJ, the density of states at the
filled Hubbard model fold=8t and T=0.15. Each trace F_ermi energy does _not vanish at th_e tem_peratures we con-
corresponds to a momentum starting from (0,0) 40) to sider here. It is crucial then th_at we investigate the tempera-
(7,0) and then back to (0,0). Clearly shown, are the uppeFure dependenc_e of_ the _den5|ty of _states at zero energy fpr
an('j lower Hubbard bands \;vith an energy gap of otdand smallU. Shown in Fig. 5 is the density of states at the Fermi
the flatness of the band near the,Q) point. The broadening ege;%{jﬂ(gz as a function of temperature for both 1D and

is due entirely to the dynamical corrections. In the absence o _ _
such processes, the spectral function would correspond to a For bothD=1 andD =2, p(0) drops to zero as the tem-

series ofs functions at the lower and upper Hubbard bands Perature decreases. T.he enhancement seen in the density of
In the upper Hubbard band, the dominant spectral weight lie tates at zero energy in tie=2 case over th&®=1 prob-

: . em is tied to the shape of the noninteracting density of
h h he | h | .
at the (m, ) point whereas in the lower band the spectra states. InD=1, asU decreases, the density of states be-

comes sharand actually diverggesat the band edges rather

A. Hubbard gap

Shown in Fig. 1 is the electron spectral function
{_Im[Gll(k,(,!))+2G12(k,(1))+622(k,(1))]/77} fOI’ the half'

0.2
5 U=4t LU=2
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[ 015 '\\i"\ U U = 8t
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FIG. 2. Momentum and energy dependence of the electron spec-

tral function forU =8t andT=0.1% for different values ok. From
top to bottom, the momenta corresponde- 0— 7. Each momen-
tum trace is shifted by hand.

FIG. 4. Density of states foU =8t,6t,4t,2t for T=0.1% in D
=2. The presence of a gap for all valueslbfndicates an absence
of a metallic state at half filling.
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FIG. 5. Density of states at the Fermi energy fd=2t as a FIG. 7. Double occupancy as a functionlfIn bothD=1 and
function of temperature. D=2, the double occupancy approaches the noninteracting value of

1/4 asU—0 and vanishes ad —.
than approaching a constant value as for 2. In fact, in

D=2, the band exhibits a singularity at the Fermi level. L
Consequently, it is easier to fill in the gap D=2 than in 1/4 asU decreases. The absence of any kink in the double

D=1 as is seen in Fig. 5. This trend also persists for an)pccupa.ncyindicates an absence of a phase t_ransition between

value ofU as demonstrated in Fig. 6 faf=28t. the re_g|mesU<W andU>W. Hence, a continuity appears
We see clearly thap(0) is nonzero even in the strong- to exist between the small and_larglereglmes in the half-_

coupling regimelJ>t provided that the temperature is suffi- f|IIed.Hu_bbard models. 'I_'he existence of a nonperturbative

ciently large. This signifies that the physics at small and larg ap indicates that half-ﬁlled 1D and 2D Hubbard models

U do not differ qualitatively. Because we have probed bothIOW to strong coupling.

U<W and U>W, we conclude that the Hubbard gap per-

sists for all values ofU both inD=1 andD=2 and is B. Local antiferromagnetism

certainly fully formed atT=0. Hence, the only singular B thod i ble of loaking th d
point in the half-filled Hubbard model id =0 where the gap ecause our method 1S capablé ot uncloaking the under-

disappears. Consequently, in 2D there is an absence of I}éing §pin dynamics,'we investigated the'behavior of the lo-
metallic state at half filling. This result is in agreement with cal_trlple_t Nees and singleteea occupancies for the states
that of Moukouri and Jaréff and is consistent with the ar- defined in Egs(15) and(14), respectively. These quantities

gument of Andersdhthat the Hubbard model is always in were computed directly from the resolvents that enter Eg.
the strong-coupling regime (19). Should the ground state be an antiferromagnet, the sin-

Additional confirmation of the continuity between the 9/t 0ccupancynggs should exceed the triplet occupancy

weak and strong coupling regimes at half filling is seen fromnhFFS ?t suf;ic:]entl_y l?W tergpgre;tures. For b.OIh 1D arr:d ZD.
the double occupancy shown in Fig. 7. In terms of the two-N€ Plots of the singlet and triplet occupancies are shown in
s. 8 and 9, respectively.

site resolvents, the expression for the double occupancy i'g'g X . . . .
given by As is evidenthgga>ngpg as is consistent with a tendency

toward antiferromagnetism. Notice in the largelimit in
2D, singlet state formation is enhanced over the 1D value.
D= E(nFDS+ NFpat Npas+Npea) + Npp s (20) However, to ascertain if these local probes are true signatures
of ground state properties, we computed the temperature de-
wheren, is given by Eq.(19). In both cases, the double pendence ohgrgandngg, for both 1D and 2D at) =8t.
occupancy smoothly approaches the noninteracting value of

- 0.8
1D n
= FFA
6 U=st 0.6
2D @ /\
o
o [T
S < 04 )
X 4 E —————————
=) s e
& 0.2 i
2
o | ’ T =0.15t
/ 0
0 2 4 6 8
0 uvt
. 1 1. 2
0 05 % 5

FIG. 8. Singlet Ogga) and triplet (ie9 State occupancies as a
FIG. 6. Density of states at the Fermi energy =8t as a  function of U/t for D=1. For any nonzero value of), Nggs
function of temperature. >ngeg indicating a tendency toward antiferromagnetic order.
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0.8 0.8
2D Mera
0.6 0.6
i @2
'S CLI.
< 04 0.4
s P
[IS [’
c c
0.2 Yeps e 0.2
_______________ T=0.15t
G0 2 4 6 8 G0 0.2 0.4 0.6
U/t ! T/t : '

FIG. 9. Singlet iggs) and triplet fige9 State occupancies as a FIG. 11. Temperature dependence of the singiet{) and trip-
function of U/t for D=2. For any non-zero value dfJ, ngea let (nge9 occupancies foD=2. The fact that the singlet occu-
>ngeg indicating a tendency toward antiferromagnetic order. pancy asT—0 becomes of order unity is consistent with antiferro-

magnetic order.

From Figs. 10 and 11, we find that at high temperatures

triplet excitations dominate. However, this trend is reversedyyantities are readily available by this technique. Rather than
below some temperature and the singlet occupancy becomggmpare with the total energy, we compute the temperature
of order unity. This is significant and is consi_stent with an_ti- derivative or the heat Capacity_ Computation of the average
ferromagnetism. The tendency toward antiferromagnetisngnergy is straightforward because we have already obtained
appears to be slightly enhanced in 2D relative to the 10he average double occupancy. Shown in Fig. 13 is a com-
problem. Our results then are consistent with antiferromagparison between the heat capacity computed within the

netic order aff =0 in both 1D and 2D. present methogsolid line) and the prediction from the Bethe
The energy splitting between the singlet and triplet stateginsat?® (triangles for U= 8t.
is due to an effective exchange interaction. Using &4), This figure demonstrates that at high to moderately low

we computed the effective exchange interaction shown iRemperatures, the present method is quantitatively accurate,
Fig. 12 for both 1D and 2D. Note first thatis always posi-  yielding results which differ by no more than 1% from those
tive as a consequence of the fact that the singlet state is lowgf the Bethe ansatz. Such agreement is significant because in
in energy than the triplet. As expectedlis well approxi- 1D, correlation effects are particularly amplified. The two-
mated byt?/U in the strong-coupling regime. However,ds  peak structure of the heat capacity is tied to a competition
decreases, deviations from this behavior are observed.  petween the contribution from the potential enetgigh T)
and the kinetic energglow T) as illustrated in Fig. 14.

C. Heat capacity Both display maxima but in distinctly different energy

The natural question that arises with any approximat rggimes. Ngaar perfept agreement with the Bethe ansatz solu-
Sion is obtained at high temperatures where the potential en-

treatment of strong correlation physics is, how seriously : 2

should the results be taken? Our study of the 1D problem i§'9Y dommg;es. This is to be expectedfars], the Hul_JbIard op

in part motivated by the fact that exact results are availableratOrS provide an accurate treatment of the potential energy
. . ut only an approximate description of the kinetic energy. At

from the Bethe ansatz. While Bethe ansatz is not amenable Q friciently low temperatures. where the kinetic ener

yielding the Green functions from which the density of state y P ' 9y

Sy "
can be calculated, ground state energies and thermodynamqgmmates’ sharp spectral features appear and the numerical

accuracy of the method wanes. Another source of error could
be the two-site approximation itself. At low temperatures, an

0.8,
1
0.6
T=0.15t
e | ™o~ T
& 0.8
C 04
< S
i - . 1D
= =~ 06
0.2 -
2D It
U=28t
0.4
0
0 0.2 T/t 0.4 0.6
. . . 0.2
FIG. 10. Singlet () and triplet (iery State occupancies as a 0 2 4 6 8

u/t
function of temperature fob=1. The fact that the singlet occu-

pancy asT—0 becomes of order unity is consistent with antiferro-  FIG. 12. Effective exchange interactidnas a function ofUu/t
magnetic order. computed using Eq198).
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FIG. 13. Heat capacity for the 1D half-filled Hubbard model as  FIG. 15. Heat capacity for the 1D half-filled Hubbard model as
a function of temperature fod =8t. The filled triangles are the a function of temperature fdy = 2t. The deviation from the dashed
results from the exact treatment via Bethe anésée Ref. 1B line at low temperature stems from the emergence of sharp spectral

features belowl ~ 0.1t which prohibit an accurate numerical deter-

accurate description of the low-energy physics becomes esination of the integral that enter the heat capacity.
sential. It might be that the two-site approximation inherently
overestimates the magnitude of the kinetic energy. To see tre crossing point occurs at roughly= 1.7t + 0.1t whereas
this breakdown persists for small, we computed the heat the low-temperature crossing pointTs=0.4+0.1. The er-
capacity forU = 2t. The two-peak structure that occurs in the rors are due largely to the uncertainty in the data at siall
large U regime is absent fay<W as illustrated in Fig. 15. In the quantum Monte Carlo studies of Duffy and Mafeo
The disappearance of the two peaks is dictated by the noron a 6x6 square lattice, similar values for the low and high
interacting limit which possesses a single peakiat0.5.  temperature crossing points were found as well. In Ehe
Our results are in quantitative agreement with the numericals o [imit, 4% two crossing points are observed as well
simulations of Shiba and Pinciisdown to T~0.1t. Below  though at substantially smaller temperatures than in the 2D
this temperature, lack of numerical precision prohibited anycase. A unique crossing point f@(T,U) as a function off
accurate determination of the heat capacity. It appears thewr different values otU implies that at a particular tempera-
that the source of the breakdown at low temperatures stemare, the heat capacity is independentlaf This behavior
more from the lack of numerical accuracy than from the localis observed in a wide variety of strongly correlated
description of the physics. However, more studies on this arexperimental systems, such adHel’ CeCy_,Al,,*®
necessary. Nd, ,CegCu0,,'” and UBg.?° Vollhardf'® has shown that

In 2D, the heat capacitysee Fig. 16 has the familiar independence of(T,U) onU at a particular temperature is
two-peak structure of the 1D problem. Here again, this strucfundamentally rooted in strong correlation physics. The con-
ture arises from a competition between the kinetic and podition for a unique crossing point fa€(T,U) versusT for
tential energies as the dashed lines in Fig. 14 reveal. Similafarious values ofJ can be recat} as
results have also been obtained by Scalettar and colledgues

from quantum Monte Carlo simulations on finite samples. =dT 9C(T,U)
The final feature on which we focus is the crossing of 0= T a0 (21
C(T,U) versusT for various values oU. In 1D comparison 0
of Fig. 13 with 15 reveals that the heat capacities cross both
at high temperature and at low temperature. Figure 16 re- 0.7 a
veals that this trend persists in 2D as well. The high tempera- 0.6f A U=t 2D
A .,
~ 05 & w »
i 044 & o Ry
L AG o | 84 AT The A
’/ 0.3 ‘C\A’A/ \‘g\\n
0.2} : U=8t /{“*\:“
0.1ta U=4
% T o1, 2 3
FIG. 16. Heat capacity for the 2D half-filled Hubbard model as

a function of temperature fdd = 2t,4t,8t. The crossing points at
T~1.7+0.1t and atT=0.4+ 0.1t is in agreement with the general

FIG. 14. Kinetic AC,) and potential AC;) energy contribu- arguments of Ref. 16. The low-peak in the heat capacity arises
tions to the heat capacity of the 1D and 2D half-filled Hubbardfrom spin fluctuations and the high temperature physics is tied to
models forU = 8t. charge fluctuations.

0 1 2 3
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At high temperaturesC(T,U)<U/T. Hence,dC/dU>0 as zeroU, and the universal crossing of the heat capacity as a
T—oo. However, for the sum rule given by E@1) to hold,  function of T for various values olJ. As these features are
dCldU must change sign as the temperature is loweredhe signatures of strong-correlation at half filling, it appears
Such sign changes will be mediated by terms proportional téhat local dynamics offer an adequate description of these
higher powers olU that enter with opposing signs. Hence, phenomena. Extending this method to three sites is prohibi-
the sign change ofC/4U is a true correlation effect arising tive as this will entail an expansion in®4 64 three-site
from terms at least proportional td2 and higher in the eigenstates. This calculation is impossible as the complexity
internal energyE(T,U). As there is no phase transition as a of the two-site problem is already daunting. What does seem
function of temperature, the curves f6(T,U) must cross to  promising, however, is a possible field theory description of
satisfy the vanishing of the integral in E@1). At low T, the  the local dynamics that seem to be essential to an accurate
width of the crossing point is determined by low-lying exci- description of strong correlation physics. Work along these
tations generated by the kinetic energy. The natural scale fdines as well as extending the present method to the doped
such excitations is #/U, in rough agreement with the low case is underway.

temperature crossing point in Fig. 16. At highcharge ex-

citations dominate the contribution to the heat capacity. At ACKNOWLEDGMENTS
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