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Local dynamics and strong correlation physics:
One- and two-dimensional half-filled Hubbard models
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We report on a nonperturbative approach to the one-dimensional~1D! and two-dimensional~2D! Hubbard
models that is capable of recovering both strong- (U@t) and weak-coupling (U!t) limits, with U the on-site
Coulomb repulsion andt the kinetic energy. Dynamical corrections to the electron self-energy in the single
particle Green function are explicitly included by expanding in terms of the 16 eigenstates that characterize two
nearest neighbor sites. We first show that even whenU is much smaller than the bandwidth, the Mott-Hubbard
gap never closes at half filling in both 1D and 2D. Consequently, the Hubbard model at half filling is always
in the strong-coupling nonperturbative regime. For both large and smallU, we find that the population of
nearest-neighbor singlet states approaches a value of order unity asT→0 as would be expected for antiferro-
magnetic order. We also find that the double occupancy is a smooth monotonic function ofU and approaches
the anticipated noninteracting limit of 1/4 asU→0 and vanishes asU→`. Finally, we compute the heat
capacity@C(T,U)# for both 1D and 2D. Our results for 1D at moderate to high temperatures are in quantitative
agreement with those of the exact Bethe ansatz solution, differing by no more than 1%. In addition, we find
that in 2D, theC(T,U) curves vsT for different values ofU exhibit a universal crossing point at two
characteristic temperaturesT'1.7t60.1t and T'0.460.1t as is seen universally in Hubbard models and
experimentally in a wide range of strongly correlated systems such as3He, UBe3, and CeCu62xAl x . The
success of this method in recovering well-established results that stem fundamentally from the Coulomb
interaction suggests that local dynamics are at the heart of the physics of strongly correlated systems.

DOI: 10.1103/PhysRevB.64.235117 PACS number~s!: 71.10.Fd, 71.27.1a
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I. INTRODUCTION

In both the weak and strong coupling regimes, the
Hubbard model at half filling is expected to be an antifer
magnet atT50. The strong-coupling argument relies on
isomorphism between the half-filled Hubbard model in t
limit that the on-site Coulomb repulsionU exceeds the hop
ping integralt and a Heisenberg antiferromagnet. As a co
sequence, the corresponding ground state is antiferrom
netic and the energy scale for the gap between the upper
lower Hubbard bands is set by the energy cost for dou
occupancyD'U. In the opposite or weak-coupling limitU
!t, perturbation theory predicts that a van Hove singula
induces a spin-density wave producing a gap that is ex
nentially small in the Coulomb repulsion; that is,D
'te22pt/U. While the perturbative argument cannot be e
tended into the strong-coupling regime where thet/U map-
ping to a perfect Heisenberg antiferromagnet applies, co
nuity between the two regimes suggests t
antiferromagnetism persists for any nonzero value ofU. Fur-
ther, this argument would also suggest that the Hubbard
never closes for any nonzero value ofU. Consequently, the
half-filled Hubbard model is always in the strong-coupli
regime. However, no exact results are known. In fact, wh
numerical simulations1 support an antiferromagnet at ha
filling, several mean-field arguments suggest otherwise. D
ing back to the pioneering work of Mott2 and Brinkman and
Rice,3 numerous calculations on the 2D~Refs. 4,5! or the
D5` ~Refs. 6,7! half-filled Hubbard models suggest th
wheneverU is much smaller than the bandwidthW58t, the
Hubbard gap closes and a metallic phase ensues. Contr
0163-1829/2001/64~23!/235117~8!/$20.00 64 2351
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Anderson8 has argued that almost certainly the half-filled 2
Hubbard model is nonperturbative as in the 1D cas9

thereby possessing a discontinuity only atU50. At the heart
of the nonperturbative nature of the Hubbard model8 is the
projective mismatch between the low-energy physical s
space and the ‘‘antibound states’’ which form in 2D for a
nonzero value ofU. Antiferromagnetism follows necessaril
as a corollary from the break-down of perturbation theory

In this paper we reexamine this problem using an
proach that is capable of spanning the weak- and stro
coupling regimes. Our approach is based on the Hubb
operators which exactly diagonalize the interaction part
the Hubbard Hamiltonian. Consequently, the Hubbard ope
tors are tailor-made to access the strong-coupling regi
U@t. Rather than work in the static approximation in whic
quantum fluctuations are ignored leading to infinitely sha
upper and lower Hubbard bands, we include the dynam
corrections which lead to broadening of the spectral featu
As in the work of Matsumoto and Mancini,10,11 we focus on
the dynamics associated with two neighboring sites. T
dominant dynamics appear to be governed by spin fluc
tions which lead to singlet-triplet excitations. From o
analysis, we conclude that the Hubbard gap never closes
the 2D Hubbard model at half filling is always in the stron
coupling regime. Our results then corroborate those of a
cent improvement12 on dynamical mean-field theory7 in
which the momentum dependence of the self-energy is
plicitly included12 at particular points in the Brillouin zone
To determine the validity of the approach we use here,
study as well the 1D half-filled Hubbard model as exact
sults are known from Bethe ansatz.13 As expected, we find
that the Hubbard gap persists even in the weak coup
©2001 The American Physical Society17-1
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B64 235117
regime. In addition, we find that our results for the heat
pacity are in perfect agreement with those from Bethe an
in the temperature range where the Coulomb interac
dominates the physics, that is, moderate to high temp
tures. Finally, we show that we recover the well-establish
universal crossing14–16of C(T,U) vs T for various values of
U that is seen experimentally in a wide range of stron
correlated systems such as3He,17 CeCu62xAl x ,18

Nd22xCexCuO4,19 and UBe3.20 The success of our approac
suggests that local dynamics lead to many of the feature
strongly correlated electronic systems.

II. DYNAMICAL GREEN FUNCTION APPROACH

The starting point of our analysis is the on-site Hubba
model

H52 (
i , j ,s

t i j cis
† cj s1U(

i
ni↑ni↓ , ~1!

wheret i j 5t if ( i , j ) are nearest-neighbor sites and zero o
erwise. Rather than working with the original electron ope
tors, we use the Hubbard operatorsh is5cisni 2s and j is
5cis(12ni 2s) as these operators exactly diagonalize
interaction term. In terms of the Hubbard operatorscis
5h is1j is . While the interaction term is now simplified i
this basis, the Hubbard operators do not obey standard F
statistics, making impossible any diagrammatic appro
based on Wick’s theorem. However, the equation of mot
approach has been demonstrated21–23 to offer an alternative
to the diagrammatic expansion. Consider the two-compon
basis

cs~ i !5S j is

h is
D ~2!

and its associated Green functionG( i , j ,t,t8)5^^c is ;c j s
† &&

5u(t2t8)^$c is(t),c j s
† (t8)%&, where$A,B% is the anticom-

mutator and̂ •••& is the thermal average. The equations
motion for the Hubbard operators

j i~ t !5 i
]c i

]t
5E0c i1d j i

0 ~3!

will of course contain a contribution which is linear in th
Hubbard basis and in addition new terms,d j i

0 which contain
operators that lie outside the Hubbard basis. Ideally, if s
operators are included in the Hubbard basis, then the non
ear contributions can be minimized. However, such a pro
dure is necessarily cumbersome. Instead of enlarging the
sis, we projectd j i

0 onto the Hubbard basis using the Roth22

projector

P~O!5(
ln

^$O,c l
†%&I ln

21cn ~4!

which projects any operatorO onto the Hubbard operato
basis, whereI (k)5FT^$cs( i ,t),cs

†( j ,t%&, and FT denotes
the time and space Fourier transform. This projector is p
23511
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ticularly useful because it allows us to recast the equation
motion for the Hubbard operators

j i~ t !5E0c i1P~d j i
0!1d j i5Ec i1d j i ~5!

in terms of the renormalized energy matrix

E~k!5E01FT^$d j is
0 ,c ls

† %&I 21~k! ~6!

and a correctiond j i5d j i
02P(d j i

0). Clearly,P(d j i)50. The
formal solution for the Fourier transform of the Green fun
tion

G~k,v!5
1

v2E~k!2dm~k,v!
I ~k! ~7!

contains the self-energy

dm~k,v!5FT^R$d j is~ t !,d j ls
† ~ t8!%& I , ~8!

where R denotes retarded andI the irreducible part. For a
paramagnetic phase, the overlap matrix

I 5S 12
n

2
0

0
n

2

D 5S I 1 0

0 I 2D ~9!

is explicitly diagonal. The weights which appear along t
diagonal represent the contribution from the lower and up
Hubbard bands, respectively. Note, they sum to unity. T
feature coupled with the fact that the dynamical correctio
vanish whenU50 guarantees that we recover the corre
noninteracting limit.

The primary operational hurdle with any analytical a
proach to the Hubbard model is the evaluation of the
namical self-energy. In the static approximation,21–23 the
self-energy is dropped, and the Green function reduces to
pole structure

G~k,v!5
1

v2E~k!
I ~k!, ~10!

whereE(k) defines the energy bands. At this level of theo
the Hubbard bands are sharp as the Green function has a
at the energy of each band. As our focus, however, is on
closing of the Hubbard gap, the pole approximation is ina
equate and the broadening in the bands arising from the
energy is crucial. In the context of the composite opera
approach, Mancini and Matsumoto10 have developed a real
space scheme for computing the dynamical corrections to
static approximation. To implement this procedure, we
write the dynamical correction

dm~k,v!5Dm~k,v!S 1 21

21 1 D ~11!

[FT^Rd j i~ t !d j l
†~ t !&K̂

in terms of the 232 matrixK. BecauseDm(k,v) cannot be
evaluated exactly, we seek a systematic way of calcula
7-2
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LOCAL DYNAMICS AND STRONG CORRELATION . . . PHYSICAL REVIEW B64 235117
the dynamical corrections. The simplest approach would
to consider the single-site approximation. Such an appr
mation is in the spirit to thed5` ~Ref. 6! methods in which
the self-energy is momentum independent. An improvem
would be to consider the dynamics associated with two s
as proposed by Mancini and Matsumoto.10,11 Evaluation of
the self-energy over successively larger clusters would l
to an exact determination of the dynamical correctio
Hence, we write the dynamical corrections as a series

Dm~x,x8!5dx,x8Dm0~x,x8!1(
a

dx1a,x8Dm1~x,x8!1•••

in increasing cluster size. Here,x and x8 are neighboring
sites anda indexes all nearest-neighbor sites. In the two-s
approximation, the series is truncated at the level of on-
Dm0 and nearest-neighborDm1 contributions. In Fourier
space, the dynamical corrections can be written as

Dm~k,v!'Dm0~v!1a~k!Dm1~v! ~12!

with

Dm0~v!5
1

4
FT^R$d j ~ t !,d j †~ t8!%&,

Dm1~v!5
1

4
FT^R$d j ~ t !,d j 8†~ t8!%&, ~13!

where the factor of 1/4 arises from the coordination num
on a square latticea(k)5(coskx1cosky)/2, andd j andd j 8
are centered onx and x8, respectively. The goal here is t
study the half-filled Hubbard model by evaluatingDm0 and
Dm1 in the two-site approximation.

Because the procedure for implementing the two-site
proximation has been described previously,10,11 we will only
outline the essence of the method:~1! enumerate the quan
tum mechanical states for two neighboring sites,~2! use the
resolvent method24,25 to express how the surrounding env
ronment interacts with the two-site system,~3! express the
d j ’s in terms of the level operators for the two-site syste
and ~4! use the noncrossing approximation to expa
Dm(k,v) in terms of the two-site states. For two sites, the
are 42516 electronic states. LetB( i ), Fs( i ), andD( i ), rep-
resent single site level operators acting on empty~a boson
state!, singly ~with spins) and doubly occupied sites respe
tively. In terms of the level operators, the original Hubba
operators arejs5B†Fs andhs5sF2s

† D. The level opera-
tors for two-site statesFn are formed by all possible sym
metric and antisymmetric combinations ofB, Fs , andD on
two neighboring sites. Two particular states of interest
the singlet

FFA5
F↑F↓82F↓F↑8

A2
~14!

and triplet state formed from three states

FFS5
F↑F↓81F↓F↑8

A2
, ~15!
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as well asF↑F↑8 andF↓F↓8 . The two-site system described b
all sixteen states of this form is not isolated. The rest of
system acts as a reservoir. The coupling is realized thro
the electron propagator for the rest of the system, which
be obtained from the appropriate trace of the single-part
Green function defined in Eq.~7!. Consequently, the energ
levels of the two-site states are broadened.
define then the resolvent of a two-site stateRnm(t)
5u(t)^^Fn(t)Fm

† (0)&&, as a trace over the degrees of fre
dom of the reservoir and the two-site subsystem. The Fou
transform of the resolvent

Rnm~v!5E dv8
snm~v8!

v2v81 id
~16!

can be written in terms of the spectral function for the tw
site system, which is defined assnm52ImRnm /p. Thed j ’s
are then expanded

d j 5(
nm

anmFn
†Fm ~17!

in terms of the sixteen level operators that describe the t
site physics. The products ofd j ’s that comprise the dynami
cal corrections are then expressed in terms of the two-
resolvents using the noncrossing approximation~NCA!.
Consequently, the total self-energy contains all the poss
convolutions of the two-site resolvents. As the dynamics
cluded are local, the NCA is expected to be accurate.24 The
resolvents associated with local triplet and singlet states
sharply peaked at well-defined energies.10 The energy differ-
ence is small, however, and given roughly byt2/U at large
U. Consequently, singlet-triplet mixing cannot be ignore
We can introduce this spin-fluctuation effect as a correct
to the self-energies of the resolvents. The effective energ
the exchange interaction is given by the difference

J[E
2`

`

v~sFFS
2sFFA

!dv, ~18!

of the first moments of the spectral functions for the sing
and triplet two-site states. Antiferromagnetism correspo
to J.0. To facilitate a self-consistent evaluation of the e
change energy, we computed the equations of motion for
two-site level operators in the presence of the sp
fluctuation term Jn•na/2. Here n5(ci↑ ,ci↓)s i(ci↑ ,ci↓)†,
with s i the Pauli matrices anda represents an average ov
the nearest neighbors of the second site in the cluster ex
sive of the first site. A final quantity that is needed is t
occupancy in the two-site states

nFn
5ZFn

/Z, ~19!

with ZFn
5*dvs̄nn(v), whereZ represents a sum over a

Znm’s for the sixteen states ands̄nm5exp(2bv)snm(v).

III. RESULTS

To obtain a self-consistent solution for the Green functio
we start with an initial guess for the electron spectral fun
7-3
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B64 235117
tion which will be used to describe the properties of t
environment in which the two-site system is placed. T
two-site resolvents are then determined iteratively. Once
resolvents are determined, they are fed into the dynam
corrections and the Green function is determined. A n
spectral function is then computed thereby closing the s
consistent set of equations. This procedure is repeated
convergence is reached.

A. Hubbard gap

Shown in Fig. 1 is the electron spectral functio
$2Im@G11(k,v)12G12(k,v)1G22(k,v)#/p% for the half-
filled Hubbard model forU58t and T50.15t. Each trace
corresponds to a momentum starting from (0,0) to (p,p) to
(p,0) and then back to (0,0). Clearly shown are the up
and lower Hubbard bands with an energy gap of orderU and
the flatness of the band near the (p,0) point. The broadening
is due entirely to the dynamical corrections. In the absenc
such processes, the spectral function would correspond
series ofd functions at the lower and upper Hubbard ban
In the upper Hubbard band, the dominant spectral weight
at the (p,p) point whereas in the lower band the spect

FIG. 2. Momentum and energy dependence of the electron s
tral function forU58t andT50.15t for different values ofk. From
top to bottom, the momenta correspond tokx50→p. Each momen-
tum trace is shifted by hand.

FIG. 1. Momentum and energy dependence of the electron s
tral function forU58t andT50.15t for different values ofk. From
top to bottom, the momenta correspond to (kx ,ky)5(0,0)
→(p,p)→(p,0)→(0,0). Each momentum trace is shifted b
hand.
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weight is located at (0,0). Broad spectral features obtain n
the (p,0) point. The analogous spectral function for theD
51 case is shown in Fig. 2. As in the 2D case, the ene
separation between the lower and upper Hubbard bands
D51 is striking. In both cases, the periodicity of the band
2p as is expected for a paramagnetic solution. Nonethel
we will show that local antiferromagnetic correlations exi

Integration of the spectral functions with respect to m
mentum yields the density of states~DOS! as a function of
energy shown in Figs. 3 and 4. It is evident that the Hubb
gap is fully formed forU'W, whereW is the bandwidth
(W54t for D51 andW58t for D52). In theD51 case,
the gap is wider than inD52. For all values ofU, we see a
clear suppression in the density of states near zero ene
However, for small values ofU, the density of states at th
Fermi energy does not vanish at the temperatures we
sider here. It is crucial then that we investigate the tempe
ture dependence of the density of states at zero energy
smallU. Shown in Fig. 5 is the density of states at the Fer
energy,r(0) as a function of temperature for both 1D an
2D at U52t.

For bothD51 andD52, r(0) drops to zero as the tem
perature decreases. The enhancement seen in the dens
states at zero energy in theD52 case over theD51 prob-
lem is tied to the shape of the noninteracting density
states. InD51, as U decreases, the density of states b
comes sharp~and actually diverges! at the band edges rathe

c-

c-
FIG. 3. Density of states forU58t,6t,4t,2t for T50.15t in D

51. The presence of a gap for all values ofU indicates an absenc
of a metallic state at half filling.

FIG. 4. Density of states forU58t,6t,4t,2t for T50.15t in D
52. The presence of a gap for all values ofU indicates an absenc
of a metallic state at half filling.
7-4
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LOCAL DYNAMICS AND STRONG CORRELATION . . . PHYSICAL REVIEW B64 235117
than approaching a constant value as forD52. In fact, in
D52, the band exhibits a singularity at the Fermi lev
Consequently, it is easier to fill in the gap inD52 than in
D51 as is seen in Fig. 5. This trend also persists for a
value ofU as demonstrated in Fig. 6 forU58t.

We see clearly thatr(0) is nonzero even in the strong
coupling regimeU@t provided that the temperature is suf
ciently large. This signifies that the physics at small and la
U do not differ qualitatively. Because we have probed b
U,W and U.W, we conclude that the Hubbard gap pe
sists for all values ofU both in D51 and D52 and is
certainly fully formed atT50. Hence, the only singula
point in the half-filled Hubbard model isU50 where the gap
disappears. Consequently, in 2D there is an absence
metallic state at half filling. This result is in agreement w
that of Moukouri and Jarell12 and is consistent with the ar
gument of Anderson8 that the Hubbard model is always i
the strong-coupling regime.

Additional confirmation of the continuity between th
weak and strong coupling regimes at half filling is seen fr
the double occupancy shown in Fig. 7. In terms of the tw
site resolvents, the expression for the double occupanc
given by

D5
1

2
~nFDS1nFDA1nDBS1nDBA!1nDD , ~20!

where nf is given by Eq.~19!. In both cases, the doubl
occupancy smoothly approaches the noninteracting valu

FIG. 5. Density of states at the Fermi energy forU52t as a
function of temperature.

FIG. 6. Density of states at the Fermi energy forU58t as a
function of temperature.
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1/4 asU decreases. The absence of any kink in the dou
occupancy indicates an absence of a phase transition bet
the regimes,U,W andU.W. Hence, a continuity appear
to exist between the small and largeU regimes in the half-
filled Hubbard models. The existence of a nonperturbat
gap indicates that half-filled 1D and 2D Hubbard mod
flow to strong coupling.

B. Local antiferromagnetism

Because our method is capable of uncloaking the und
lying spin dynamics, we investigated the behavior of the
cal triplet nFFS and singletnFFA occupancies for the state
defined in Eqs.~15! and ~14!, respectively. These quantitie
were computed directly from the resolvents that enter
~19!. Should the ground state be an antiferromagnet, the
glet occupancynFFA should exceed the triplet occupanc
nFFS at sufficiently low temperatures. For both 1D and 2
the plots of the singlet and triplet occupancies are shown
Figs. 8 and 9, respectively.

As is evident,nFFA.nFFS as is consistent with a tendenc
toward antiferromagnetism. Notice in the largeU limit in
2D, singlet state formation is enhanced over the 1D va
However, to ascertain if these local probes are true signat
of ground state properties, we computed the temperature
pendence ofnFFS andnFFA for both 1D and 2D atU58t.

FIG. 7. Double occupancy as a function ofU. In bothD51 and
D52, the double occupancy approaches the noninteracting valu
1/4 asU→0 and vanishes asU→`.

FIG. 8. Singlet (nFFA) and triplet (nFFS) state occupancies as
function of U/t for D51. For any nonzero value ofU, nFFA

.nFFS indicating a tendency toward antiferromagnetic order.
7-5
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TUDOR D. STANESCU AND PHILIP PHILLIPS PHYSICAL REVIEW B64 235117
From Figs. 10 and 11, we find that at high temperatu
triplet excitations dominate. However, this trend is revers
below some temperature and the singlet occupancy beco
of order unity. This is significant and is consistent with an
ferromagnetism. The tendency toward antiferromagnet
appears to be slightly enhanced in 2D relative to the
problem. Our results then are consistent with antiferrom
netic order atT50 in both 1D and 2D.

The energy splitting between the singlet and triplet sta
is due to an effective exchange interaction. Using Eq.~18!,
we computed the effective exchange interaction shown
Fig. 12 for both 1D and 2D. Note first thatJ is always posi-
tive as a consequence of the fact that the singlet state is lo
in energy than the triplet. As expected,J is well approxi-
mated byt2/U in the strong-coupling regime. However, asU
decreases, deviations from this behavior are observed.

C. Heat capacity

The natural question that arises with any approxim
treatment of strong correlation physics is, how seriou
should the results be taken? Our study of the 1D problem
in part motivated by the fact that exact results are availa
from the Bethe ansatz. While Bethe ansatz is not amenab
yielding the Green functions from which the density of sta
can be calculated, ground state energies and thermodyn

FIG. 9. Singlet (nFFA) and triplet (nFFS) state occupancies as
function of U/t for D52. For any non-zero value ofU, nFFA

.nFFS indicating a tendency toward antiferromagnetic order.

FIG. 10. Singlet (nFFA) and triplet (nFFS) state occupancies as
function of temperature forD51. The fact that the singlet occu
pancy asT→0 becomes of order unity is consistent with antiferr
magnetic order.
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quantities are readily available by this technique. Rather t
compare with the total energy, we compute the tempera
derivative or the heat capacity. Computation of the aver
energy is straightforward because we have already obta
the average double occupancy. Shown in Fig. 13 is a c
parison between the heat capacity computed within
present method~solid line! and the prediction from the Beth
ansatz13 ~triangles! for U58t.

This figure demonstrates that at high to moderately l
temperatures, the present method is quantitatively accu
yielding results which differ by no more than 1% from tho
of the Bethe ansatz. Such agreement is significant becau
1D, correlation effects are particularly amplified. The tw
peak structure of the heat capacity is tied to a competit
between the contribution from the potential energy~high T)
and the kinetic energy~low T) as illustrated in Fig. 14.

Both display maxima but in distinctly different energ
regimes. Near perfect agreement with the Bethe ansatz s
tion is obtained at high temperatures where the potential
ergy dominates. This is to be expected as the Hubbard
erators provide an accurate treatment of the potential en
but only an approximate description of the kinetic energy.
sufficiently low temperatures, where the kinetic ener
dominates, sharp spectral features appear and the nume
accuracy of the method wanes. Another source of error co
be the two-site approximation itself. At low temperatures,

FIG. 11. Temperature dependence of the singlet (nFFA) and trip-
let (nFFS) occupancies forD52. The fact that the singlet occu
pancy asT→0 becomes of order unity is consistent with antiferr
magnetic order.

FIG. 12. Effective exchange interactionJ as a function ofU/t
computed using Eq.~18!.
7-6
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accurate description of the low-energy physics becomes
sential. It might be that the two-site approximation inheren
overestimates the magnitude of the kinetic energy. To se
this breakdown persists for smallU, we computed the hea
capacity forU52t. The two-peak structure that occurs in th
large U regime is absent forU!W as illustrated in Fig. 15.
The disappearance of the two peaks is dictated by the n
interacting limit which possesses a single peak atT'0.5t.
Our results are in quantitative agreement with the numer
simulations of Shiba and Pincus26 down to T'0.1t. Below
this temperature, lack of numerical precision prohibited a
accurate determination of the heat capacity. It appears
that the source of the breakdown at low temperatures st
more from the lack of numerical accuracy than from the lo
description of the physics. However, more studies on this
necessary.

In 2D, the heat capacity~see Fig. 16! has the familiar
two-peak structure of the 1D problem. Here again, this str
ture arises from a competition between the kinetic and
tential energies as the dashed lines in Fig. 14 reveal. Sim
results have also been obtained by Scalettar and colleag27

from quantum Monte Carlo simulations on finite sampl
The final feature on which we focus is the crossing
C(T,U) versusT for various values ofU. In 1D comparison
of Fig. 13 with 15 reveals that the heat capacities cross b
at high temperature and at low temperature. Figure 16
veals that this trend persists in 2D as well. The high tempe

FIG. 13. Heat capacity for the 1D half-filled Hubbard model
a function of temperature forU58t. The filled triangles are the
results from the exact treatment via Bethe ansatz~see Ref. 13!.

FIG. 14. Kinetic (DCt) and potential (DCU) energy contribu-
tions to the heat capacity of the 1D and 2D half-filled Hubba
models forU58t.
23511
s-
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th
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ture crossing point occurs at roughlyT'1.7t60.1t whereas
the low-temperature crossing point isT'0.4t60.1. The er-
rors are due largely to the uncertainty in the data at smalU.
In the quantum Monte Carlo studies of Duffy and Moreo15

on a 636 square lattice, similar values for the low and hig
temperature crossing points were found as well. In theD
→` limit,14,16 two crossing points are observed as w
though at substantially smaller temperatures than in the
case. A unique crossing point forC(T,U) as a function ofT
for different values ofU implies that at a particular tempera
ture, the heat capacity is independent ofU. This behavior
is observed in a wide variety of strongly correlate
experimental systems, such as3He,17 CeCu62xAl x ,18

Nd22xCexCuO4,19 and UBe3.20 Vollhardt16 has shown that
independence ofC(T,U) on U at a particular temperature i
fundamentally rooted in strong correlation physics. The c
dition for a unique crossing point forC(T,U) versusT for
various values ofU can be recast16 as

05E
0

`dT

T

]C~T,U !

]U
. ~21!

FIG. 15. Heat capacity for the 1D half-filled Hubbard model
a function of temperature forU52t. The deviation from the dashe
line at low temperature stems from the emergence of sharp spe
features belowT'0.1t which prohibit an accurate numerical dete
mination of the integral that enter the heat capacity.

FIG. 16. Heat capacity for the 2D half-filled Hubbard model
a function of temperature forU52t,4t,8t. The crossing points a
T'1.7t60.1t and atT50.4t60.1t is in agreement with the genera
arguments of Ref. 16. The low-T peak in the heat capacity arise
from spin fluctuations and the high temperature physics is tied
charge fluctuations.
7-7
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At high temperatures,C(T,U)}U/T. Hence,]C/]U.0 as
T→`. However, for the sum rule given by Eq.~21! to hold,
]C/]U must change sign as the temperature is lower
Such sign changes will be mediated by terms proportiona
higher powers ofU that enter with opposing signs. Henc
the sign change of]C/]U is a true correlation effect arisin
from terms at least proportional toU2 and higher in the
internal energyE(T,U). As there is no phase transition as
function of temperature, the curves forC(T,U) must cross to
satisfy the vanishing of the integral in Eq.~21!. At low T, the
width of the crossing point is determined by low-lying exc
tations generated by the kinetic energy. The natural scale
such excitations is 4t2/U, in rough agreement with the low
temperature crossing point in Fig. 16. At highT, charge ex-
citations dominate the contribution to the heat capacity.
largeU, the gap should scale asU2W.

IV. CLOSING REMARKS

We have applied a local method10,11 to the determination
of the dynamical corrections to the self-energy in the sing
particle Green function for the 1D and 2D Hubbard mode
Although this method focuses on local two-site correlatio
it captures such established features as the onset of an
romagnetism, absence of a Mott-Hubbard transition for n
tis

hy

.J

ity

i

m

4
dy
s

23511
d.
to

or

t

-
.
,
er-
-

zeroU, and the universal crossing of the heat capacity a
function of T for various values ofU. As these features ar
the signatures of strong-correlation at half filling, it appea
that local dynamics offer an adequate description of th
phenomena. Extending this method to three sites is proh
tive as this will entail an expansion in 43564 three-site
eigenstates. This calculation is impossible as the comple
of the two-site problem is already daunting. What does se
promising, however, is a possible field theory description
the local dynamics that seem to be essential to an accu
description of strong correlation physics. Work along the
lines as well as extending the present method to the do
case is underway.
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