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Theory of the electronic structure of the alloys of the actinides
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An earlier theory of the electronic structure of the actinides is improved, generalized to alloys of actinides,
and applied to plutonium and its alloys with other trivalent metals. The theory combines thes andd electrons
as free electrons, treating them to second order in an empty-core pseudopotential. Thef levels produce bands
in this theory, which are actually broadened by electron correlations, but their role in the bonding is decreased.
The effects both of the coupling between neighboringf shells and of the correlation are included in a second
moment in terms of which the total energy is estimated using a Friedel model. This allows all contributions to
be rewritten in terms of near-neighbor interactions and on-site terms. It is found thatf-shell contribution alone
favors a much smaller spacing than the free-electron contribution alone, and the competition makes the
resulting structure very sensitive to the parameters of the theory. Adjustment of the parameters seems essential.
An f-shell radius is adjusted, within the range of previous estimates, so that the minimum in thef-shell
contributions for plutonium comes at a spacing of 2.5 Å, and the total is scaled back such that the minimum is
of the same depth. The same scaling factors are applied to other actinides. Then the pseudopotential core radius
is adjusted for each actinide and trivalent simple metal in the face-centered-cubic structure to yield the
observed atomic volume~that for the delta structure in the case of plutonium!. The resulting electronic
structure is tested successfully by using it to predict the bulk modulus of all of these metals. Using the same
parameters for plutonium, the energy is calculated in thea structure, found to have higher energy than the fcc
structure at the atomic volume ofd plutonium, but lower energy at a reduced volume, near that of the observed
low-temperaturea structure. The same formulas and parameters are applicable to random alloys of any of these
metals, evaluating each term in an alloy ofx atomic fraction ofB in A with the appropriate weighting ofx,
x(12x), or (12x)2. This does not predict correct variations with concentrationx of the lattice spacings unless
we introduce the interaction between simple-metal cored states and actinide valenced states, absent in the pure
materials. A moderate scaling of previously predictedd-state radii brings the dilute-alloy spacings into accord
with experiment for plutonium alloys with gallium, indium, and thallium. Aluminum, without cored states,
was initially in accord and is not affected. The ordered alloys, Pu3Ga, Pu3In, and Pu3Al, are found to have
larger spacings than the random alloys, in accord with experiment, though Pu3Al is not found to be the stable
structure. For alloys of two actinides, or with rare earths, the effects ofd-state couplings are expected to be
negligible, but additional terms in thef-state energy arise from the contribution off levels of different energy
to the globalf bands. With this effect included, cerium, americium, and curium are found to increase the
spacing ofd plutonium, in accord with experiment, but the lighter actinides, as well as the type-B simple
metals, Al, Ga, In, and Tl decrease the spacing, also in accord with experiment. Alloys with the typeA metals
Sc, Y, and La are found to increase the spacing. Initial studies of the displacement of plutonium neighbors to
substituted gallium atoms showeda-like reconstructions, as in pure plutonium.
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I. TOTAL ENERGY OF ELEMENTAL ACTINIDES

We have given1,2 a simple theory of the electronic struc
ture of actinide metals. It was similar to the theory for tra
sition metals given in both references. For transition meta
was generalized to alloys, following the approach
Pettifor3,4 in order to estimate heats of solution. We no
generalize the theory of the actinides to alloys in a w
which provides a much wider range of applications. T
involved including the effects of the pseudopotential to s
ond order, rather than to first as in the theory of transit
metals. We also rewrite the theory in terms of near-neigh
interactions, rather than in an atomic-sphere approximat
We retain the effects of electron correlations, which are
portant for actinides but could be, and were, omitted for tr
sition metals. These correlations were included by a ge
alization of an exact solution of a two-level problem to t
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case off-shell bands~Ref. 1, 598 ff, Ref. 2, 67ff!. We de-
scribe the theory for all of the actinides and a series of ot
trivalent metals in order to have parameters for alloys of
of these, but we consider plutonium in detail as the m
interesting material, and the metal for which the properties
the alloys have been discussed quite completely by Heck5

When we discuss the alloys of actinides with gallium a
indium we find it necessary to include also the effects
coupling between the cored states on these simple meta
and the valenced states on actinides. No such cored states
arise for aluminum.

In this theory the actinides are regarded as having th
electrons per atom in free-electron-like states, and the eff
of the remaining electrons, inf states, were treated sep
rately. As pure elements the energy per atom, or ion, w
given by Eq.~16-26! in Ref. 1. That equation for the tota
energy per ion contains two contributionsEtot /ion5Esd
©2001 The American Physical Society12-1
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WALTER A. HARRISON PHYSICAL REVIEW B64 235112
1Ef f , with Ef f being the contribution from thef-like bands,
of bandwidthWf , but with their effect reduced by electro
correlations represented by a Coulomb interactionU f ,

Ef f52
Zf~12Zf /14!

2
~AWf

21U f
22U f !1816Zf

\2r f
10

mr0
12 .

~1!

Esd is the energy of a free-electron-like metal, in this ca
arising froms andd states on the atom. We now take them
be given by@Ref. 1, Eq.~14-12!, Ref. 2, Eq.~1-15!#

Esd5ZS 3\2kF
2

10m
2

3e2kF

4p
1

2e2kF
3

4pk2 ~k2r c
221! D

2
Z2e2k

2
cosh~kr c!e

2kr c1
1

2
( j Þ iV~r i2r j ! ~2!

for a metal of valenceZ, 3 in the cases we treat here, a
Fermi wave numberkF , related to the atomic sphere radiu
r 0 by kF

359pZ/(4r 0
3). The earlier treatment of actinides i

Ref. 1 used a simple-metal energy of only first order in
empty-core pseudopotential@Ref. 1, Eq.~13-18!# rather than
this form which is of second order in that pseudopotent
This was suggested by the fact that in Ref. 1 predictions s
as the bulk modulus of the simple metals~arising in the cases
of Al, Ga, In, and Tl froms andp electrons, rather thans and
d electrons! were much improved if the energy was calc
lated to second order.

The first line of Eq.~2! depends upon atomic arrang
ments only through the total volume. The first term is t
electronic kinetic energy per atom; the second is the
change energy per atom. The third term comes from
pseudopotential and is proportional to the square of
empty-core pseudopotential radiusr c . Values for this radius
can be obtained from thes-state term value~Ref. 1, p. 481!,
from the third ionization potential of a trivalent metal~Ref.
6, p. 380!, or from computed pseudopotential form facto
~Ref. 6, p. 361!, and vary between 0.45 and 0.86 Å for triv
lent metals~Ref. 6, the Solid-State Table!, including ac-
tinides and rare earths. Here it will be preferable to adj
them, once we have decided on approximations for ot
terms in the energy, so that the calculated energy is minim
at the observed spacing. Then the exact value in each ca
lation will depend upon which approximation is being mad
It will be gratifying to find that this adjustment always leav
them in the same range.

The remaining terms include the Madelung energy a
effects of the screened pseudopotential. Screening was b
upon the Fermi-Thomas theory, with the Fermi-Thom
screening parameter given by

k25
4e2kFm

p\2 . ~3!

The final sum in Eq.~2! is over the screened interatom
interaction given by

V~r !5
Z2e2 cosh2 kr ce

2kr

r
. ~4!
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Except for this sum, the simple-metal energyEsd of Eq. ~2!
depends upon the total volume, throughkF , but is otherwise
independent of the atomic positions.

It is not difficult to use a full quantum calculation to sec
ond order in the pseudopotential which has the effect of a
ing Friedel oscillations to Eq.~4!, as shown in Fig. 1. We
explored the consequences of doing this in detail by retu
ing to the second-order perturbation theory from which E
~4! was derived. This came in the form of a sum in wav
number space of an energy wave-number characteristicF(q)
~Ref. 1, p. 484!, which could be written in full quantum form
~as in the Lindhard dielectric function! or the Fermi-Thomas
form. The sum of the difference over the wave-number l
tice was then the quantum correction to Fermi-Thom
theory. It gave a significant contribution to the energy, var
ing in volume in a way comparable to the sum over th
interactions of Eq.~4!, and depended weakly on distortion
of a face-centered-cubic lattice, but seemed not essentia
the problems we address here and we dropped it in the e
We in fact will in the end reduce all sums over neighbors
very few, usually just nearest neighbors, in order to simpl
the calculations, allow more accurate inclusion of distortion
and to assist in interpreting the results. The nearest-neigh
distance is indicated in Fig. 1 and suggests that a small s
in core radius might give quite similar results to use of fu
quantum screening.

The sum of the quantum form over distant neighbors w
somewhat slowly converging, particularly in comparison
the Fermi-Thomas form, requiring more than 300 terms
the sum over lattice wave numbers, so considerable sim
fication is provided by this approximation. The simple form
Eq. ~4!, gives a stable fcc structure, without the tetragon
distortion appropriate for indium, or an instability that woul
suggest a gallium structure~whether using all neighbors, o
only nearest neighbors!. The quantum corrections to the

FIG. 1. The screened interatomic interaction for gallium, calc
lated with Fermi-Thomas screening, and given in Eq.~4!, and with
a full quantum calculation based upon the same empty-core pse
potential. The nearest-neighbor distance is indicated by the vert
line, and will fall in the same point relative to the oscillations in a
trivalent metals.
2-2
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THEORY OF THE ELECTRONIC STRUCTURE OF THE . . . PHYSICAL REVIEW B 64 235112
screened empty-core pseudopotential do not rectify this
parameters appropriate to these metals, so nonlocal term
the pseudopotential, and/or terms beyond second-order
turbation theory are necessary to obtain these structure
the simple metals. This point and these features have b
thoroughly discussed by Hafner,7 who also pointed out tha
the effects of the quantum screening are not nearly so s
in the monovalent and divalent metals as they are in
trivalent metals illustrated in Fig. 1. For learning the ess
tial features of the actinides it seems preferabe to use
much simpler Fermi-Thomas theory. Probably the most
portant missing ingredients from Eq.~2! are the effects of
cored states in the simplespmetals. They must ultimately b
responsible for the complex structures of the simple me
which have cored states7 and we shall in fact need to includ
their coupling with the actinide valenced states when we
treat alloys in Sec. III.

Equation~1! gives the contribution to the energy of th
Zf f electrons, which are treated separately. The first te
comes from the partially filledf bands, with a band width
~Ref. 1, p. 603!

Wf5181
\2r f

5

mr0
7 ~5!

obtained from a second moment of the bands. Values for
f-state radiir f based upon Straub’s atomic-surface-meth
calculations8 and upon Skriver’s linear muffin-tin orbita
~LMTO! calculations9 will be listed in Table I. A numberZf
of f electrons~less than or equal to 14 per atom!, placed in

TABLE I. Preliminary parameters for the actinides and oth
trivalent metals.Zf5Z23 is the number off electrons per atom.r f

values were obtained from two different sources, to be discus
U f was based upon experimental values from Brewer~Ref. 10!.

Zf r 0 (Å) r f (Å) U f ~eV!

Strauba Skriverb

Sc 0 1.80 0
Y 0 1.98 0
La 0 2.08 0
Ce 1 2.02 0.46 7.2
Ac 0 2.10 1.11 3.00
Th 1 1.99 0.87 3.20
Pa 2 1.80 0.877 0.70 3.35
U 3 1.69 0.836 0.64 4.09
Np 4 1.66 0.814 0.60 3.90
Pu 5 1.81c 0.791 0.58 4.61
Am 6 1.91 0.787 0.58 4.96
Cm 7 2.03 0.773 0.61 5.10
Al 0 1.58 0
Ga 0 1.67 0
In 0 1.84 0
Tl 0 1.89 0

aCalculated with the atomic surface method by Straub~Ref. 8!.
bBased upon LMTO band widths from Skriver~Ref. 9!.
cr 051.68 Å for a-Pu.
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the lowest levels for a constant density of states, 14/Wf over
the energy range6Wf /2, has an energy per atom2Zf(1
2Zf /14)Wf /2. The form given in Eq.~1! incorporates the
effects of the Coulomb repulsionU f , also in Table I, which
is the extra repulsion within thef shells, relative to that be
tween anf and ans electron on the same atom. The final ter
in Eq. ~1! is from repulsion between nearest-neighbor she
arising from nonorthogonality of neighboringf states and
evaluated for 12 nearest neighbors as in a face-cente
cubic structure. It is written in terms ofr 0 , the atomic sphere
radius, related to the nearest-neighbor spacingd in the face-
centered-cubic structure assumed by 4pr 0

3/35(A2d)3/4
~with dA2 being the edge of the face-centered cube of f
atoms! or

d5S 4A2p

3 D 1/3

r 0'1.809 r 0 ~6!

for face-centered-cubic, or hexagonal close-pack
structures.

For our studies here it will be convenient to rewrite
number of these contributions in terms of sums over nei
bors. The final term in Eq.~1! was initially derived in
Ref. 1 in terms of neighbor distances a
83 780ZfS j\

2r f
10/(mdi j

12) @Eq. ~16-15! of Ref. 1. Then re-
placing the sum over nearest neighborsj by a factor of 12 for
close-packed structures, using the exact form in Eq.~6! to
convertd to r 0 , and rounding 816.4 to 816 gave the fin
form which we quoted as the last term in Eq.~1! here.# The
final sum in Eq.~2! is already in terms if distances, wit
neighbor distancesur i2r j u written di j . The terms preceding
this sum in Eq.~2! depend only upon total volume and ca
be evaluated directly in terms of the free-electron Fer
wave number, given above as

kF53~p/4!1/3/r 052.768/r 0 ~7!

for our systems withZ53 free electrons per atom.
Similarly we may write the bandwidthWf in terms of a

sum over neighbors since Eq.~5! was obtained by equating
the second moment of a square distribution of widthWf ,
which is Wf

2/12, to the second moment obtained as a s
over the squared couplings of the sevenf orbitals~numbered
by i! on one atom to thef orbitals on its 12 nearest neighbor
(1/7)S i , jVi j

2(di j ). Thus we may square both sides of E
~5!, and rewrite the result in terms of the nearest-neigh
distance using Eq.~6!. We then replace 1/d14 by a sum over
neighbors (1/12)S j 1/di j

14 and take the square root to obta

Wf5181~1.8097!
\2r f

5

m
A 1

12 ( j

1

di j
14

53318
\2r f

5

m
A ( j

1

di j
14. ~8!

With these rewritings, Eqs.~1! and ~2! can be combined to
become

r

d.
2-3
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Etot

ion
53 S 3\2kF

2

10m
2

3e2kF

4p
1

2e2kF
3

3pk2 ~k2r c
221! D

2
Z2e2k

2
cosh~kr c!e

2kr c1
1

2
( j Þ iV~di j !

2Sf

Zf~12Zf /14!

2
~AWf

21U f
22U f !

1Sf83 780Zf ( j Þ i

\2r f
10

mdi j
12 . ~9!

The first line depends only upon volume. The remain
lines contain sums over neighbors, in the expression forWf

2

obtained from Eq.~8! as well as in the first and last explic
sums.Sf is a scale factor which will be discussed and tak
equal to 0.15 in the following section. With Eqs.~3!, ~4!, ~6!,
~7!, and~8!, this is essentially a computer program for com
putation of the structural-dependent energy of the actinide
simple metal.

By specifying the atomic positions determining thedi j we
might think that it is a zero-temperature theory but of cou
we can use it to calculate the vibration spectrum, a
therefore the corresponding entropy at any temperat
and it could even be used to obtain the forces for molec
dynamics.

This will be a good starting point for the generalization
the theory to alloys and to various structures. For clo
packed structures and nearest neighbors only the sums oj
become a factor of 12 with thedi j replaced by the neares
neighbor distance. Before proceeding to alloys we sho
make an application to the pure actinides, which will make
clear that some adjustment of parameters is needed.

II. STRUCTURAL STABILITY OF PLUTONIUM

For any given atomic-sphere radiusr we may obtainkF
from Eq. ~7!, and k from Eq. ~3! as well asd for a close-
packed structure from Eq.~6! and evaluate the energy from
Eq. ~9!. We have given two sets of values forr f and one for
U f for each actinide in Table I, and we now consider plu
nium. The difference in the twor f values is really quite
large, since it enters the bandwidth of Eq.~8! as the fifth
power. Thus the two predictedWf values differ by a factor of
nearly 5. If we select the smaller of the two values,r f
50.58 Å, and adjustr c such that the minimum in that energ
occurs at the observed atomic volume, which we do for
fcc structure for which the observed atomic-sphere radiu
r 051.81 Å, we obtainr c50.518 Å. The resulting energy a
a function of nearest-neighbor distance,d51.809r , is shown
in Fig. 2 as the curve labeledr f50.58 Å.

The essential feature was noted already in Ref. 1,
though we have indeed fit a minimum atd51.80931.81
53.275 Å, a second minimum occurs at smaller spaci
This is because theEsd by itself has a minimum near th
larger spacing, butEf f has a minimum near the smaller spa
ing and the sum has two minima. Further, the two energ
very nearly cancel each other over this entire region leav
the quite flatE(d) seen there. We believe thatthis cancella-
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tion is responsible for the complex structural properties
plutonium, and the other light actinides, and that is the es-
sence of the understanding of them which we present h
At the same time, the cancellation of these two large ener
for which we have only approximate descriptions means t
we cannot reliably predict the properties. Our description a
parameters have in fact indicated an equilibrium spacing
approximatelyd52.2 Å, much smaller even than spacings
alpha plutonium.

The natural approach would be to scale the uncertainr f
up or down, as illustrated in Fig. 2. This has two effects,
may be seen in the figure. Reducingr f rapidly reduces the
entire energyEf f , eliminating the inner minimum in the tota
energy~without a very large shift in the outer minimum!, but
also moves the position of the inner minimum inEf f to still
smallerd. What seemed to be necessary to give stability
the a-plutonium structure was to shift the minimum inEf f
outward without deepening it. Thus for plutonium we rais
r f to 0.74 Å ~still below Straub’s estimate in Table I! which,
however, made the minimum deeper by a factor of nearly
We therefore scaled the entireEf f down by a factor ofSf
50.15@where indicated in Eq.~9!#. This would seem to be a
very large and arbitrary scaling ofEf f , but in some sense ou
scaling is much smaller than either ther f or Ef f scaling
alone. We have effectively shifted the position of the min
mum out from 2.0 to 2.53 Å, and reduced its depth sligh
from 225 to220 eV. This indeed eliminates the inner min
mum seen in ther f50.58 Å curve in Fig. 2. We then re
evaluatedr c as 0.522 Å, needed to place the minimum in t
energy in the fcc structure ofd plutonium at 3.275 Å. We
preferred this to fitting to thea spacing since the interestin
alloys of plutonium are in the delta structure. The resulti
total energy per ion is shown as the dashed line in Fig. 2

These scalings do indicate the inherent uncertainty in
rameters, illustrated by the fact that thef-band width differs
by a factor of 5 depending on whether one uses Skriver’s

FIG. 2. The energy as a function of spacing for plutonium in t
fcc structure from Eq.~9!, using the smaller of the predictedr f

values ~0.58 Å!, as well as with smaller and larger values.r c

50.518 Å yields a minimum near the observed 3.27 Å in all cas
The dashed curve is our adjusted total energy, withr f50.74, but
with the entireEf f energy scaled down by a factorSf50.15, and
r c50.522 Å.
2-4
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THEORY OF THE ELECTRONIC STRUCTURE OF THE . . . PHYSICAL REVIEW B 64 235112
Straub’s values. Such uncertainties are not resolved by o
cal spectra in such strongly correlated systems; we expec
corrections for electron correlations to be comparable to
differences.

There is an interesting check on the resulting mode
that we can predict the bulk modulus from the second
rivative of the energy per atom with respect to atomic sph
radius. It is1

B5
r 0

2

9V0

]2Etot / ion

]r 0
2 5

1

12pr 0

]2Etot / ion

]r 0
2 , ~10!

with V0 the volume per atom. This gives 0.5
31012ergs/cm3, near the observed bulk modulus13 of 0.55
ergs/cm3. Had we instead adjustedr c to 0.501 Å to obtain the
observed volume in thea-plutonium structure, we would
have obtained a bulk modulus of 0.8231012ergs/cm3 which
may be a better comparison since the measured value is
sumably for a plutonium, but we proceed with th
d-plutonium value. Bulk moduli provide a relevant test b
cause theEf f is giving a negative contribution andEsd a
positive contribution to the prediction, providing a sensiti
test to the scale ofEf f .

For the other actinides we chose anr f which is the same
factor 0.936 smaller than Straub’s estimates from Tabl
and the sameSf50.15 for scalingEf f , leading to the values
shown in Table II. For actinium and thorium, for whic
Straub gave no values, we extrapolated the same scalin
ing values based on Skriver’s calculations, which appea

TABLE II. Parameters used in the theory. Values forr f scaled
from Straub’s values of Table I by a factor 0.936 as for Pu.r c was
adjusted to give the atomic sphere radius, shown in column 2, in
fcc structure.U f is as in Table I.r d is thed-state radius and«d is the
d-state energy, valence states for all but Ga, In, and Tl where
are core states.

Zf r 0 ~Å! r c ~Å! r f ~Å! U f r d «d ~eV!a

Sc 0 1.80 0.485 0 29.35
Y 0 1.98 0.567 0 26.80
La 0 2.08 0.613 0 27.31
Ce 1 2.02 0.586 0.46 7.2 27.36
Ac 0 2.10 0.624 1.20 3.00 2.39b 26.84
Th 1 1.99 0.596 0.97 3.20 2.17b 28.05
Pa 2 1.80 0.524 0.820 3.35 2.03b 27.15
U 3 1.69 0.486 0.782 4.09 1.93b 27.25
Np 4 1.66 0.478 0.762 3.90 1.91b 27.32
Pu 5 1.81c 0.522 0.740 4.61 1.91b 27.35
Am 6 1.91 0.554 0.736 4.96 2.06b 27.35
Cm 7 2.03 0.597 0.723 5.10 2.26b 27.42
Al 0 1.58 0.388 0
Ga 0 1.67 0.427 0 0.409d 232.47
In 0 1.84 0.503 0 0.574d 228.92
Tl 0 1.89 0.526 0 0.705d 226.34

aHartree-Fock values from Mann~Ref. 12!.
bFrom Straub~Ref. 8!.
cFor d-Pu. r 051.68 Å for a-Pu.
dFrom Straub~Ref. 11!.
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in Table I. We scaledr c to obtain the minimum energy at th
observed pure-metal spacing in the fcc structure, though
lighter actinides have complex structures, giving the valu
listed in Table II. For the elements such as gallium whi
have noEf f there is only the single parameterr c which is
adjusted to give the observed spacing, again in the fcc st
ture. Such values are also given in Table II. The result
bulk moduli are reasonably well predicted, as seen in Ta
III. The actinides are about as close as the simple metals.
the latter, the only input parameter was the atomic sph
radius, in terms of whichr c was determined, and therefor
the bulk modulus at the observed radius.

Though we have eliminated the inner minimum in t
total energy as a function of volume, we have not elimina
it from the interatomic interaction at constant volume. Of
the terms inEsd from Eq.~2!, only the final term contributes
to the two-body interaction which determines structures
fixed volume. The total two-body interaction in plutoniu
has a minimum at a spacing, near 2.53 Å, very different fr
thed-plutonium nearest-neighbor distance and in fact this
interaction has a negative curvature at the nearest-neig
distance. This favors distortion of the fcc structure. We m
for example, recalculate the total energy as a function o
uniaxial shear, expanding the crystal in thex andy directions
by a factor 11e1 , and shrinking the crystal along thez axis
by a factor 1/(11e1)2, all at constant volume. We may red
the calculation at different volumes to find a stable structu
We find in fact that the original fcc structure is unstable~the
energy dropping for small negativee1! and the lowest energy
is obtained withe150.44 at a reduced spacing of 3.24 Å
below the spacing 3.275 Å of the lowest-energy fcc stru
ture. This is very reminiscent of real pure plutonium which
unstable in the fcc structure and goes to thea structure with
a volume corresponding to an fcc spacing of 3.04 Å. We fi
two other metastable states, one ate1520.22 at a reduced
spacing near 3.16, and one at still higher energy ate1
50.12 and a spacing nearer the original 3.275 Å.

We can proceed to the truea structure, which has bee
given by Zachariasen and Ellinger.14 There are 16 atoms pe
primitive cell, with a 180° rotary reflection taking a set o
eight lying in one plane to another set in a parallel pla
separated by 2.411 Å. That is, if the position of one atom
the first plane is given in terms of fractions of the distan

TABLE III. Predicted and experimentala bulk moduli ~in
units of 1012 ergs/cm3, or dyn/cm2! based upon the parameters
Table II.

Theory Expt.a Theory Expt.

Ac 0.38 0.25 Al 1.07 0.72
Th 0.46 0.60 Ga 0.87 0.57
Pa 0.61 In 0.62 0.41
U 0.75 1.21 Tl 0.57 0.36
Np 0.82 0.77 Sc 0.68
Pu 0.50 0.55 Y 0.48
Am 0.46 0.36 La 0.40 0.24
Cm 0.41 Ce 0.59 0.26

aKittel ~Ref. 13!.
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WALTER A. HARRISON PHYSICAL REVIEW B64 235112
along the three edges of the monoclinic primitive cell bya,
b, and c, then there is an atom in the second plane at
2a), (12b), and (12c). We begin with the atom num
bered I in the first set of eight, with positions given in Tab
8 of Ref. 14, calculating the distances to all atoms in eit
plane within 3.78 Å of the first atom. This distance w
selected to include, on average, 12 neighbors to each a
We then proceed to atom II, including all neighbors exc
atoms numbered I, and continue through atom VIII, exclu
ing again all pairs previously counted. This gives a total
48 distances, six per atom since each bond is shared bet
two atoms. These were approximately in accord with
values given in Table 9 of Ref. 14, except for an appar
typographical error in the spacing between III in one pla
and IV in the other, for which we found 3.365 Å. For neig
bors in the second plane, we counted the pair as if assoc
entirely with the first plane, but did not count the correspon
ing pair with an atom in the plane on the opposite side. T
same result is obtained if we treat neighbors to atoms in
second plane.

To evaluate the total energy we again use Eq.~9!, but the
sums overj in the second line are now over the 48 distanc
rather than 12, and the sum is to be divided by 4 to give
energy per atom. This can be compared with the correspo
ing fcc evaluation which included a sum over 12 near
neighbors. Evaluating thisa-plutonium energy at the atomic
sphere radius 1.81 Å appropriate tod plutonium gives an
energy per atom slightly higher than the energy for thed
structure. However, if we allow the atomic-sphere radius
vary from this value, which gave minimum energy for thed
structure, we find that the energy is minimum for thea struc-
ture at the smaller radius of 1.74 Å, not so far from t
observed 1.68 Å. This is just what we hoped would be
case, giving strong support to our approximation to the
ergy. It would also be possible to vary the individual po
tions of the eight atoms to see to what extent the cor
structure is predicted, but that has not yet been done.

III. ALLOYS WITH SIMPLE METALS AND THE dd
INTERACTION

We turn next to dilute alloys of an actinide with a simp
metal, such as plutonium with gallium. We could proce
directly with the expression for the energy given in Eq.~9!,
with kF and k determined for the global volume and tot
number ofsdelectrons in the first line. Also the coshkrce

2krc

is replaced by (12x)coshkrcAe
2krcA1xcoshkrcBe

2krcB, with
x the concentration of the simple metalB in the actinideA.
For the sums over neighbors in the second line, and in
~8!, we weight each combination by the fraction of pairs
each kind, Pu-Pu, Pu-Ga, etc., and use the spacingdi j appro-
priate to that pair, assuming a random distribution of at
species on each site. We may do this first on an undisto
fcc lattice. We find that at small concentrationsx the lowest
energy occurs at a spacingd which can be written in terms o
the equilibrium spacingsdA anddB of the pure component
~in the fcc structure! in the form

d5dA1nx~dB2dA!. ~11!
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If this were valid for allx, it would mean thatn51, called
Vegard’s law, but that is ordinarily not a good approximatio
This Vegard law may be approximately correct for alloys
simple metals,7 where the pseudopotentials are weak, but
an alloy between an actinide and a simple metal each sim
metal atom in a dilute fcc alloy eliminates 12ff contribu-
tions. This disproportionately expands the lattice tending
lead to positive deviations from Vegard’s law. For gallium
plutonium, dB2dA is negative so such effects tend to d
crease the magnitude ofn while the lattice parameters ob
tained from x rays dropmorerapidly than Vegard’s law, cor-
responding to~Ref. 5, Fig. 21! n52.08.

It is difficult to imagine how this could be true without a
additional term in the energy. Our first guess was the c
pling between gallium cored states and the unoccupiedf
states in the plutonium. The theory of this is analogous
that for the ff coupling described above~and Ref. 1! and
Straub had previously~Ref. 11! calculated thed-state radius
for gallium which could be used with thef-state radius for
plutonium of Table I to estimate this contribution. It turne
out to be much too small, by a factor of more than 100,
we next tried the coupling between gallium cored states and
the unoccupiedd states in the plutonium. We again had va
ues for all needed parameters and found this effect m
larger. These terms produce an attraction between neigh
ing gallium and plutonium atoms, not present in either pu
material, and deviations from Vegard’s law of the kind o
served. Reasonable scaling of thed-state radii, as we shal
see, increased the effect by the factor of 9 needed to ac
with experiment.

The inclusion ofdd coupling between states of very di
ferent energy~or d and f states of very different energy!
required a rederivation of the energy given in Eq.~1!. It was
based upon a two level system~Ref. 6, p. 536!, with the
levels ua& and ub& at energy6M3 , coupled by ^auHub&
5M2 , and having nonorthogonalitŷaub&5S. Minimizing
the energŷ cuHuc&/^cuc& with respect tou and n for uc&
5uua&1vub& gave

«5
2M2S2@M2

2S21~12S2!~M2
21M3

2!#1/2

12S2

~with M2,0!. ~12!

A new coupling2V25M2 /(12S2) and new starting levels
6M3 /(12S2)1/2 led to the formula «52AV2

21V3
2

1SV2 which was generalized to obtain Eq.~1! here. We
should now make an expansion of Eq.~12! for largeM3 , or
more specifically to second order in bothS andM2 , leading
to

«52M32
1

2M3
~M21SM3!2. ~13!

The second term is of the form of a second-order shift
the level at2M3 by a couplingM21SM3 to the level at
M3 . We generalize this to the coupling of two neighboringd
levels, with angular momentumm\ around the internuclea
distance as2(Vddm1M3Sddm)2/(2M3) with M35(«d

A

2«d
B)/2 and withA for plutonium andB for gallium for the
2-6
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case of Ga in Pu. We sum it over22<m<2 and over neigh-
bors to obtain the interaction in analogy with Eq.~1!. We
multiply by 2 for the two spins for each core level shifte
and neglect any effect of occupation of thed-like states in
the conduction band. We are thinking of these shifts aris
from the atomic levels, and then afterward recognize that
upperd levels become so broad that they are included w
the s levels of the conduction band. We have given gene
formulas from which theVddm andSddm may be obtained in
Ref. 1, pp. 606 and 607 in terms of ther d so the evaluation
is direct, leading to

Edd52
~r d

Ar d
B!3

p2M3
( jF S 245\2

mdj
5 1

5M3

dj
3 D 2

12S 30\2

mdj
52

5M3

dj
3 D 2

12S 215\2

2mdj
5 1

5M3

2dj
3 D 2G .

~14!

At large spacings theM3 term dominates each contribu
tion. The energy becomes deeper at smaller distances,
rises to zero between 1.4 and 2.4 Å and then drops aga
smaller spacing. The results from each contribution
hardly distinguishable from values obtained from the full E
~12!, above this zero in the energy, but we obtained spuri
low total energies if we allowed deformations of the latti
beyond these unrealistically small values, so we sim
added all terms only beyond the node for that term.

In the evaluation we neededM3 , half the energy differ-
ence between the simple metal core state and the actinid
state. There would not seem to be difficulties associated w
shifting either due to charging, as in the transition-metad
states~Ref. 1, p. 561!. It may be adequate to simply subtra
the free-atom term values, which contains the princi
variations from one system to the other, and the Hartr
Fock values were listed in Table II and used here. We tr
an alternative view, that in the alloy we have a single spac
and three free electrons per atom to suggest that thes-state
energy in both atoms will have the same relation to the co
mon Fermi energy, so we could use«d2«s , directly subtract
and divide by 2 to obtain the correspondingM3 . This re-
quired considerably larger scaling of theEdd contribution
and we abandoned that approach.

For the dilute alloy, in the fcc lattice, the sum in Eq.~14!
gives a factor of 12x(12x) for the average number of Pu-G
couplings per atom if we include only nearest neighbors
we use ther d values given by Straub and appearing in Ta
II, this contribution is not sufficient to give the observe
deviation from Vegard’s law. However, scaling it by a fact
of 9, corresponding to scaling eachr d by 91/651.44 is, lead-
ing to a value ofn52.1 for gallium in plutonium, equal to
the experimental value obtained from Fig. 21 in Ref. 5. Su
a scaling is not unreasonable but it should be considere
tentative because we have not included any effects of re
ation around impurities, to be discussed in the followi
section.

We may also treat alloys of aluminum in plutonium. Alu
minum has no cored states so theEdd vanishes, but the sam
program can be run withr d50 for aluminum. Forx50.1 we
23511
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obtain a spacing of 3.233 Å, in this case identical to t
Vegard’s law prediction of 3.233 Å, and in accord wi
experiment.

Similarly we may treat indium in plutonium, using param
eters from Table I and the same scaling ofEdd by a factor of
9. Indium has slightly larger volume per atom thand pluto-
nium, as seen in Table I, but our calculation for small co
centrations indicates a reduced spacing due to indium ad
to plutonium, to 3.24 Å at 10%, which would correspond
a negativen if we use Eq.~11!. Indeed this reversal is ob
served in dilute alloys~Ref. 5, p. 274!; indium reduces the
lattice parameter. A calculation of the spacing at minimu
energy for the entire range of concentrations is appro
mately parabolic with a minimum of 3.20 Å atx50.4, and of
course the pure-metal spacings atx equal to zero and 1. This
decreasing spacing with added indium arose entirely fr
the dd coupling. If that is omitted, the spacing is found
increase with added indium, reaching a peak of 3.35 Å n
x50.7. The application to thallium in plutonium is similar t
that for indium. Again Vegard’s law predicts an expansi
but a contraction is predicted here. It would of course
possible to adjust ther d for indium and thallium to make the
initial slope correct, but we have not done that, but used
same scaling as for added gallium. In some other calc
tions with other parameters we found discontinuous jump
larger spacing with increasingx, as would happen if we fol-
lowed the minimum energy as we decreasedr f in Fig. 2, but
that did not occur in this final calculation.

It is interesting to consider also the addition of trivale
metals of typeA to plutonium, the elements Sc, Y, and L
with parameters at the top of Table II. In all three cases
dilute alloys increased the spacing from that of plutonium,
all cases slightly more that suggested by Vegard’s law. Sc
dium experimentally causes a small decrease, but we are
certain about Y and La.

One other interesting comparison is for the intermeta
compounds Pu3M . These occur in the Cu3Au structure,
which is face-centered cubic with Pu atoms on every cu
face andM5Al, Ga, or In at the cube corner positions. The
half the nearest-neighbor bonds are between Pu andM, and
half are between Pu and Pu. The energy may be evalu
directly from Eqs.~9! and~13!, and the minimum as a func
tion of d obtained. The values ofd found, in Å, are listed as
‘‘Theory’’ in Table IV and compared to linear extrapolation
of our dilute alloy results tox50.25, and to a linear interpo
lation between experimental pure-metal spacings, ‘‘Vegar
law.’’ The only experimental lattice parameter we have,
Pu3Ga ~Fig. 21, Ref. 5!, is 3.19 Å. This is close to our pre

TABLE IV. Predicted interatomic distances~in Å! based upon
the parameters of Table II.

Theory Dilute extrapolation Vegard’s law

Pu3Al 3.20 3.17 3.17
Pu3Ga 3.18 3.16 3.21
Pu3In 3.23 3.21 3.29
2-7
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WALTER A. HARRISON PHYSICAL REVIEW B64 235112
diction and to the Vegard law value and somewhat hig
than the extrapolated dilute-random-alloy result atx50.25,
seen in Table IV to be 3.16.

We can also compare the total energy we obtain for
Pu3M intermetallic compound with that for the random allo
at the same concentration of 0.25. We find a lower energy
Pu3Ga and Pu3In ~by 0.015 and 0.072 eV per atom, respe
tively! in the ordered structure than for the random alloy, b
a higher value for Pu3Al ~by 0.063 eV!. Certainly all three of
the 25% alloys order so the Pu3Al prediction is not correct.
Allowing relaxation of the neighbors, to be discussed ne
would presumably lower the energy of the disordered str
ture further, but not the ordered structure, so that neglect
not cause the difficulty for aluminum.

IV. RELAXATION OF NEIGHBORS

Of course we do not expect the lattice to remain in
undistorted fcc structure. As found by Mikkelsen a
Boyce15 for semiconductor alloys, the neighboring atom
tend to relax much of the way to their natural bond leng
rather than retain the average spacing. In the present ca
dilute alloys we may expect that the replacement of a plu
nium atom by a gallium will cause each of the 12 near
neighbors to that gallium to relax radially. Experimen
x-ray-absorption fine-structure studies of gallium in plu
nium by Villella et al.16 have indicated inward displacemen
of the nearest-neighbor plutonium atoms by 0.1 Å in de
plutonium. Such shifts are expected to result from the eli
nation of theff interaction which was there for the plutoniu
replaced, but not for the gallium, and favors an outward m
tion of nearest-neighbor plutonium atoms. Thedd coupling
between the added gallium and its plutonium neighbors
vors an inward movement of the neighbors. Further,
pseudopotential core radius is smaller for gallium than
the plutonium it replaced, also favoring an inward displa
ment. It is straightforward to introduce such relaxatio
equal for all 12 plutonium neighbors, into our total-ener
program, particularly for dilute enough alloys that each g
lium is treated by itself. We did this, also neglecting rela
ation of more distant neighbors except for allowing an ov
all scaling of the lattice as in the preceding section. T
results of minimizing the energy with respect to such rel
ations were not what we had hoped, but were informativ

We found very largeoutward relaxations, of the order o
an angstrom. In hindsight this is not surprising. Shifti
reach gallium-plutonium distance by a factor 11« shifts the
plutonium-plutonium distance to the atom on the oppos
side by a factor 12«, so 12 Ga-Pu shifts of 11« are ac-
companied by 12 Pu-Pu shifts of 12«. Furthermore the 24
Pu-Pu distances between the nearest-neighbor plutonium
oms are shifted by a factor 11« and the 48 distances be
tween these nearest-neighbor atoms to third-nearest-neig
~to Ga! atoms are increased byA12«1«2'12«/2 and 24
distances between nearest neighbors and second neig
are increased byA11«2. The nearest-neighbor distances
78 different atoms are modified by the introduction of th
one gallium atom. It seems clear that the plutonium is
pressing its instability toward formation ofa plutonium, and
23511
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the instability under axial shearse1 which we discussed nea
the end of Sec. II. Such distortions would likely reduce t
energy ofpure plutonium in the fcc structure, without th
presence of gallium, leading finally to thea structure. The
result of our calculation may be approximately correct, bu
does not address the question of relaxation in the real a
which we had in mind.

These considerations suggest that in fact the stabiliza
of thed structure by gallium requires the effects of neighbo
ing gallium atoms, rather than the simple sum of the effe
of individual gallium atoms. The finding above that eve
with only nearest-neighbor relaxation 78 neighboring ato
are affected by each gallium makes it plausible that one
two percent of gallium can show such cooperative effec
This is also consistent with the need for rapid quenching
dilute gallium alloys to retain thed structure~Ref. 5, p. 273!;
presumably slower cooling allows the gallium to diffuse
favorable sites for the formation of the lower-energya struc-
ture. It is also consistent with the finding by Villellaet al.,16

of significant shifts in the positions of more distant neighbo
to the added gallium atoms. It may be very interesting
consider the distortions in the context of neighboring galliu
atoms. It should not be too difficult with our neares
neighbor interactions, but it has not yet been done.

These relaxations presumably do not occur in the Pu3M
structure, since each Pu is at the center of a square of fou
neighbors, and has no tendency to move in any direct
Only if the structure breaks symmetry can this occur and
would correspond to the formation of a new structure, n
the Cu3Au structure. We are not aware of evidence th
this happens.

V. ALLOYS BETWEEN ACTINIDES

The application of Eqs.~8! and~9! to alloys involving two
actinides is rather direct. The simple metal terms, includ
the sum overV(di j ), is the same as for actinide alloys wit
simple metals, but with differentr c . There are again three
free electrons per atom and a Fermi wave number de
mined by the total volume. The terms from coupling betwe
cored states and valenced states, Eq.~14!, do not arise since
the actinide cored states are so deep as to be irrelevant.

For the evaluation of thef-band width, Eq.~9!, we again
need the second moment and if all nearest-neighbor
tances are taken the same,r f

5 is simply replaced by (1
2x)2r f A

512x(12x)r f A
5/2r f B

5/21x2r f B
5. If different neigh-

bors have different spacingsr f is taken under the square roo
in Eq. ~8! and the appropriater f

10 used for each spacing. A
similar generalization applies to theff repulsion, the final
term in Eq.~9!, with theZf f electrons on each atom shifte
by coupling with a neighbor in proportion to ther F

5 of
both atoms, leading to a (12x)2Zf Ar f A

101x(12x)(Zf A
1Zf B)r f A

5r f B
51x2Zf Br f B

10 replacing theZfr f
10 appearing

in Eq. ~9!. For the term in Eq.~9! based uponWf
2, the

square of the global band width, it is appropriate to repla
Zf by the global number of electrons per atom, and we
place the CoulombU f by its weighted average,

^Zf&5~12x!Zf A1xZf B ,
2-8
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THEORY OF THE ELECTRONIC STRUCTURE OF THE . . . PHYSICAL REVIEW B 64 235112
^U f&5~12x!U f A1xUf B . ~15!

There are additional terms in the second moment wh
did not occur in the elemental materials, from the diago
terms in M25(1/7N)S i j Hi j H ji . The Hii

25« f
2 ~with « f

measured from the average« f for the crystal, since the mo
ment is evaluated relative to the average energy! are now
different for different atoms. These were included f
transition-metal alloys1,2 and we include them here. We no
first the fact that in the pure metal thef-state energy« f i lies
at the middle of thef band for atomi, Wf i /2 @evaluated for
the pure metal from Eq.~8! with d51.809r 0 for fcc struc-
tures# above thef-band minimum, while the Fermi energ
common to the alloy, lies at (Zf i /14)Wf i above the mini-
mum. Thus the diagonal energyHii is given by

« f i5S 1

2
2

Zf i

14DWf i ~16!

relative to the Fermi energy in the pure metal, and we t
that to be true for elements of each atom in the alloy w
Wf i obtained from Eq.~8! using an fcc lattice with the sam
atomic sphere radius as for the alloy. When the elemenB
had nof states, e.g., gallium, then allf states which entered
had the same value and there was no diagonal contributio
the second moment. For an alloy of two actinides the aver
value is^« f&5(12x)« f A1x« f B and the contribution of the
diagonal terms to the second moment is

M2 diag5~12x!~« f A2^« f&!21x~« f B2^« f&!2

5x~12x!~« f B2« f A!2, ~17!
la
pl

23511
h
l

e

to
ge

with the « f A and « f B obtained from Eq.~16!, an additional
contribution to the second moment of the band,Wf

2/12, so
that the band width from Eq.~8! becomes

Wf
2511.063106S \2

m D 2

3@~12x!2r f A
1012~12x!xr f A

5r f B
51x2r f B

10#

3(
n

1

dn
14112x~12x!~« f B2« f A!2, ~18!

which can be directly generalized todn values differing for
different terms in̂ r f

10&. For nearest-neighbor coupling in a
fcc lattice,Sn1/d14 becomes simply 12/d14.

We may note that there is an unphysical feature in
square-root term in Eq.~18! in that there can be contribution
to Wf i

2 @Eq. ~18!# from changes in spacing between neare
neighbor pairs which are themselves far apart, and that th
are contributions toAWf

21@(12x)U f A1xUf B#2 from the
cross term between these two distant distortions. Such lo
range interactions are unphysical but may not be impor
here. The form is appropriate for a perfect lattice, for a u
formly deformed lattice and for a lattice with alternate atom
displaced in opposite directions. The latter two of the
correspond to lattice vibrations of maximum and min
mum wavelength and the theory makes a reasonable in
polation between them, this spanning the entire spectrum
distortions.

We have then the energy per ion, or atom, for a rand
alloy of B in A of
Etot

ion
5Esd2Sf S ^Zf&~12^Zf&/14!

2
~AWf

21^U f&
22^U f&! D

1Sf83780( j Þ i

\2@~12x!2Zf Ar f A
101x~12x!~Zf A1Zf B!r f A

5r f B
51x2Zf Br f B

10#

mdi j
12 . ~19!
er-

al-
of
as
m-
ould

se
his
mall

l

with

Esd53 S 3\2kF
2

10m
2

3e2kF

4p
1

2e2kF
3

3pk2

3$k2@~12x!r cA
21xrcB

2#21% D2
Z2e2k

2

3@ ~12x!cosh~kr cA!e2kr cA1x cosh~kr cB!e2kr cB#

1
1

2 (
j Þ i

V~r i2r j ! ~20!

and Wf
2 obtained from Eq.~18!. An interesting feature of

these forms is that they are not equivalent to the formu
used for alloys with simple metals, even if we set the sim
s
e

metal r f equal to zero. The form in whichx enters^Zf& and
Wf

2 is different, and^U f& is different from the plutonium
U f , while it was the same before. We regard these diff
ences as appropriate to the different systems.

We ran a program incorporating these changes for an
loy of plutonium and americium, using the parameters
Table II, and found that the minimum-energy spacing w
very close to Vegard’s law, the spacing increasing with a
ericium concentration as observed. The same program c
be run also for cerium, a rare earth but having anf shell and
no important cored states. Cerium is also found to increa
the spacing, in agreement with experiment, showing in t
case a considerably steeper slope than Vegard’s law at s
concentrations corresponding ton51.8 in Eq. ~11!, while
experimentallyn is closer to 0.5. We do not know if loca
relaxation helps with these quantitative inconsistencies.
2-9
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WALTER A. HARRISON PHYSICAL REVIEW B64 235112
In both cases, the increase was also suggested by Veg
law. It was interesting to try the light actinides such as th
rium, for which Vegard’s law would also suggest increasi
spacing, but in this case we found the spacing to d
sharply with added thorium, dropping to an fcc spacing
3.15 Å at about 25%, before rising to 3.60 for pure thoriu
The same was true of all of the other light actinides listed
Table II. On the other hand, curium was found to increase
spacing, as did americium. As far as we know, all of the
results are in qualitative accord with experiment.

VI. SUMMARY

We did not succeed in our initial effort to predict th
properties of actinide alloys using existing theory and ex
ing parameters. It was necessary to adjust thef-state radius
for plutonium, within the range of earlier predictions, in o
der to accommodate to the known properties of that elem
and we used the same adjustment factor for the other
tinides. It was also necessary to scale the entiref-state en-
ergy, and as planned we adjusted the pseudopotential
radius for all elements to fit the observed atomic volume
that pure element. In addition, when we discussed alloy
was necessary to introduce the effects of coupling betw
simple metal cored states and thed states on the actinides
and to scale the predictedd-state radii by a factor of 1.44.

The resulting representation of the electronic struct
yielded reasonably good predictions of the bulk modulus
all elements considered. It indicated thatd plutonium, for
which the parameters were fit, was unstable against s
distortions and against the formation of thea structure at
smaller volume. It also yielded shifts in the lattice parame
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of d plutonium with dilute alloying with simple metals an
with other actinides which were in rather good accord w
experiment. This included the prediction that of thef-shell
metals checked only americium, curium, and cerium
creased the lattice spacing, while contrary to Vegard’s l
indium and thorium decreased it, all in accord with expe
ment. The same theory indicated that the ordered all
Pu3Ga and Pu3In were more stable than the disordered all
at the same concentration and that the spacing was large
the ordered alloy, in agreement with experiment. It inc
rectly predicted that the ordered alloy Pu3Al is not stable, but
again predicted a larger spacing.

A comparison of the energies of thed anda phases for the
random alloy failed to show the stabilization of thed phase
in the very dilute random alloy with gallium. Also allowing
radial relaxations of the plutonium neighbors to isolated g
lium atoms indicated an instability analogous to thea struc-
ture. This suggests that the real stabilization may not b
simple additive effect of the individual gallium atoms, b
may be a cooperative effect from neighboring gallium atom
This has not yet been explored but we expect the exten
information available from extended x-ray-absorption fin
structure studies by Villellaet al.16 to provide a guide to
doing this.
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