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An earlier theory of the electronic structure of the actinides is improved, generalized to alloys of actinides,
and applied to plutonium and its alloys with other trivalent metals. The theory combinestits electrons
as free electrons, treating them to second order in an empty-core pseudopotentfdeviite produce bands
in this theory, which are actually broadened by electron correlations, but their role in the bonding is decreased.
The effects both of the coupling between neighboffirstpells and of the correlation are included in a second
moment in terms of which the total energy is estimated using a Friedel model. This allows all contributions to
be rewritten in terms of near-neighbor interactions and on-site terms. It is founfigheli contribution alone
favors a much smaller spacing than the free-electron contribution alone, and the competition makes the
resulting structure very sensitive to the parameters of the theory. Adjustment of the parameters seems essential.
An f-shell radius is adjusted, within the range of previous estimates, so that the minimum firstibg
contributions for plutonium comes at a spacing of 2.5 A, and the total is scaled back such that the minimum is
of the same depth. The same scaling factors are applied to other actinides. Then the pseudopotential core radius
is adjusted for each actinide and trivalent simple metal in the face-centered-cubic structure to yield the
observed atomic voluméthat for the delta structure in the case of plutonjurfihe resulting electronic
structure is tested successfully by using it to predict the bulk modulus of all of these metals. Using the same
parameters for plutonium, the energy is calculated indtstructure, found to have higher energy than the fcc
structure at the atomic volume éfplutonium, but lower energy at a reduced volume, near that of the observed
low-temperaturey structure. The same formulas and parameters are applicable to random alloys of any of these
metals, evaluating each term in an alloy>&tomic fraction ofB in A with the appropriate weighting of,
x(1—x), or (1—x)2. This does not predict correct variations with concentratiofthe lattice spacings unless
we introduce the interaction between simple-metal cstates and actinide valendestates, absent in the pure
materials. A moderate scaling of previously predictestate radii brings the dilute-alloy spacings into accord
with experiment for plutonium alloys with gallium, indium, and thallium. Aluminum, without cdbr&tates,
was initially in accord and is not affected. The ordered alloys@2y Pyln, and PyAl, are found to have
larger spacings than the random alloys, in accord with experiment, thougth iBunot found to be the stable
structure. For alloys of two actinides, or with rare earths, the effectbstite couplings are expected to be
negligible, but additional terms in tHestate energy arise from the contributionfdévels of different energy
to the globalf bands. With this effect included, cerium, americium, and curium are found to increase the
spacing of$ plutonium, in accord with experiment, but the lighter actinides, as well as theBygimple
metals, Al, Ga, In, and Tl decrease the spacing, also in accord with experiment. Alloys with the riygtals
Sc, Y, and La are found to increase the spacing. Initial studies of the displacement of plutonium neighbors to
substituted gallium atoms showedlike reconstructions, as in pure plutonium.
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I. TOTAL ENERGY OF ELEMENTAL ACTINIDES case off-shell bandgRef. 1, 598 ff, Ref. 2, 67§t We de-
scribe the theory for all of the actinides and a series of other
We have giveh? a simple theory of the electronic struc- trivalent metals in order to have parameters for alloys of all
ture of actinide metals. It was similar to the theory for tran-of these, but we consider plutonium in detail as the most
sition metals given in both references. For transition metals iinteresting material, and the metal for which the properties of
was generalized to alloys, following the approach ofthe alloys have been discussed quite completely by Hecker.
Pettifor* in order to estimate heats of solution. We now When we discuss the alloys of actinides with gallium and
generalize the theory of the actinides to alloys in a wayindium we find it necessary to include also the effects of
which provides a much wider range of applications. Thiscoupling between the core states on these simple metals
involved including the effects of the pseudopotential to secand the valencel states on actinides. No such catetates
ond order, rather than to first as in the theory of transitionarise for aluminum.
metals. We also rewrite the theory in terms of near-neighbor In this theory the actinides are regarded as having three
interactions, rather than in an atomic-sphere approximatiorelectrons per atom in free-electron-like states, and the effects
We retain the effects of electron correlations, which are im-of the remaining electrons, if states, were treated sepa-
portant for actinides but could be, and were, omitted for tran+ately. As pure elements the energy per atom, or ion, was
sition metals. These correlations were included by a genegiven by Eq.(16-26 in Ref. 1. That equation for the total
alization of an exact solution of a two-level problem to theenergy per ion contains two contributiors,,/ion=Egg

0163-1829/2001/623)/23511210)/$20.00 64 235112-1 ©2001 The American Physical Society



WALTER A. HARRISON PHYSICAL REVIEW B64 235112

+ E¢¢, with E¢¢ being the contribution from thklike bands,
of bandwidthw;, but with their effect reduced by electron 0.08 . .
correlations represented by a Coulomb interactign L ]

Zi(1—2Z,/14) h2r 10 006 - 1
Eff:—%(\/Wf2+Uf2—Uf)+8laszoflf. L B
(1) % 004 L Fermi-Thomas i

Esq is the energy of a free-electron-like metal, in this case 2 = .
arising froms andd states on the atom. We now take them to 002 L Quanim i

be given by{Ref. 1, Eq.(14-12, Ref. 2, Eq.(1-15)]
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for a metal of valenc&, 3 in the cases we treat here, and
Fermi wave numbek, related to the atomic sphere radius lated with Fermi-Thomas screening, and given in &y, and with

3 s ) o ettt
ro by ke®=9mZ/(4ry"). The earlier treatment of actinides in 5 ¢ quantum calculation based upon the same empty-core pseudo-

Ref. 1 used a simple-metal energy of only first order in the,qgtential, The nearest-neighbor distance is indicated by the vertical
empty-core pseudopotentigRef. 1, Eq.(13-18] rather than — jine and will fall in the same point relative to the oscillations in all
this form which is of second order in that pseudopotentialiiyalent metals.

This was suggested by the fact that in Ref. 1 predictions such
as the bulk modulus of the simple metédsising in the cases Except for this sum, the simple-metal enefgy, of Eq. (2)
of Al, Ga, In, and Tl froms andp electrons, rather thamand  depends upon the total volume, through, but is otherwise
d electron$ were much improved if the energy was calcu- independent of the atomic positions.
lated to second order. It is not difficult to use a full quantum calculation to sec-
The first line of Eq.(2) depends upon atomic arrange- ond order in the pseudopotential which has the effect of add-
ments only through the total volume. The first term is theing Friedel oscillations to Eq(4), as shown in Fig. 1. We
electronic kinetic energy per atom; the second is the exexplored the consequences of doing this in detail by return-
change energy per atom. The third term comes from théng to the second-order perturbation theory from which Eqg.
pseudopotential and is proportional to the square of thé4) was derived. This came in the form of a sum in wave-
empty-core pseudopotential radiys. Values for this radius number space of an energy wave-number characteF$ti¢
can be obtained from thestate term valuéRef. 1, p. 48],  (Ref. 1, p. 484, which could be written in full quantum form
from the third ionization potential of a trivalent met@ef.  (as in the Lindhard dielectric functiomr the Fermi-Thomas
6, p. 380, or from computed pseudopotential form factorsform. The sum of the difference over the wave-number lat-
(Ref. 6, p. 361, and vary between 0.45 and 0.86 A for triva- tice was then the quantum correction to Fermi-Thomas
lent metals(Ref. 6, the Solid-State Tableincluding ac- theory. It gave a significant contribution to the energy, vary-
tinides and rare earths. Here it will be preferable to adjusing in volume in a way comparable to the sum over the
them, once we have decided on approximations for otheinteractions of Eq(4), and depended weakly on distortions
terms in the energy, so that the calculated energy is minimurnf a face-centered-cubic lattice, but seemed not essential to
at the observed spacing. Then the exact value in each calcthe problems we address here and we dropped it in the end.
lation will depend upon which approximation is being made.We in fact will in the end reduce all sums over neighbors to
It will be gratifying to find that this adjustment always leaves very few, usually just nearest neighbors, in order to simplify
them in the same range. the calculations, allow more accurate inclusion of distortions,
The remaining terms include the Madelung energy andand to assist in interpreting the results. The nearest-neighbor
effects of the screened pseudopotential. Screening was basedigtance is indicated in Fig. 1 and suggests that a small shift
upon the Fermi-Thomas theory, with the Fermi-Thomasn core radius might give quite similar results to use of full
screening parameter given by guantum screening.
The sum of the quantum form over distant neighbors was
_4e2ka somewhat slowly converging, particularly in comparison to
T mwh? 3 the Fermi-Thomas form, requiring more than 300 terms in
) ) ) ) ~ the sum over lattice wave numbers, so considerable simpli-
The final sum in Eq.(2) is over the screened interatomic fication is provided by this approximation. The simple form,

FIG. 1. The screened interatomic interaction for gallium, calcu-

K2

interaction given by Eq. (4), gives a stable fcc structure, without the tetragonal
2262 cosh? o distortion appropriate for indium, or an instability that would

V(r)= € Coswlce — (4)  suggest a gallium structu@hether using all neighbors, or

r only nearest neighbors The quantum corrections to the
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TABLE I. Preliminary parameters for the actinides and otherthe lowest levels for a constant density of states\Wk4dver

trivalent metalsZ;=2Z— 3 is the number of electrons per aton the energy range-W;/2, has an energy per atomZ(1
values were obtained from two different sources, to be discussed- 7./14)W;/2. The form given in Eq(1) incorporates the
Us was based upon experimental values from Bre(fsf. 10. effects of the Coulomb repulsidd,, also in Table I, which
A A is the extra repulsion within theshells, relative to that be-
Zi fo (A) re (A b Ur (V) tween arf and ars electron on the same atom. The final term
Strauy Skrive in Eq. (1) is from repulsion between nearest-neighbor shells,
Sc 0 1.80 0 arising from nonorthogonality of neighbqringstates and
v 0 1.98 0 evaluated for 12 nearest neighbors as in a face-centered-
cubic structure. It is written in terms of, the atomic sphere
La 0 2.08 0 . . -
radius, related to the nearest-neighbor spadiimg the face-
Ce 1 202 0.46 7.2 _ 3 3
centered-cubic structure assumed byrrg®/3=(y2d)*/4
pe 0 210 L 399 (with d,2 being the edge of the f tered cube of f
Th 1 1.99 0.87 3.90 a\{[\gms) (\;r eing the edge of the face-centered cube of four
Pa 2 1.80 0.877 0.70 3.35
U 3 1.69 0.836 0.64 4.09
Np 4 166 0.814 0.60 3.90 42|13
Pu 5 18% 0.791 0.58 4.61 d=|—3 fo=~1.809 ro ©
Am 6 1.91 0.787 0.58 4.96
Cm 7 2.03 0.773 0.61 5.10 for face-centered-cubic, or hexagonal close-packed,
Al 0 1.58 0 structures.
Ga 0 1.67 0 For our studies here it will be convenient to rewrite a
In 0 1.84 0 number of these contributions in terms of sums over neigh-
Tl 0 1.89 0 bors. The final term in Eq(1l) was initially derived in

Ref. 1 in terms of neighbor distances as
83780Z;X%°r+'%(md;'?) [Eqg. (16-19 of Ref. 1. Then re-
placing the sum over nearest neighbjoby a factor of 12 for
close-packed structures, using the exact form in By.to
convertd to ry, and rounding 816.4 to 816 gave the final

screened empty-core pseudopotential do not rectify this fo}.orm Wh'ch we quote_d as the Iqst term in E(d!) here] The.
parameters appropriate to these metals, so nonlocal terms iW‘_”‘I sum In Eq.(2) is alrea_dy in terms if distances, V.V'th
the pseudopotential, and/or terms beyond second-order p eighbor _d|stancekri—rj| written d;; . The terms preceding
turbation theory are necessary to obtain these structures f IS sum in Eq.(?) depe_nd only upon total volume and can.
the simple metals. This point and these features have be evaluated d|.rectly in terms of the free-electron Fermi
thoroughly discussed by Hafneryho also pointed out that wave number, given above as
the effects of the quantum screening are not nearly so small
in the monovalent and divalent metals as they are in the ke=3(m/4)Y¥r,=2.768t (7
trivalent metals illustrated in Fig. 1. For learning the essen-
tial features of the actinides it seems preferabe to use th@r our systems wittz=3 free electrons per atom.
much simpler Fermi-Thomas theory. Probably the most im-  Similarly we may write the bandwidtkV; in terms of a
portant missing ingredients from E@) are the effects of sum over neighbors since E() was obtained by equating
cored states in the simplspmetals. They must ultimately be the second moment of a square distribution of witit,
responsible for the complex structures of the simple metalghich is W;%/12, to the second moment obtained as a sum
which have corel state$ and we shall in fact need to include over the squared couplings of the seVenbitals (numbered
their coupling with the actinide valenae states when we by i) on one atom to théorbitals on its 12 nearest neighbors,
treat alloys in Sec. IIl. (U7)%;;Vi;%(dij). Thus we may square both sides of Eq.
Equation(1) gives the contribution to the energy of the (5), and rewrite the result in terms of the nearest-neighbor
Z; f electrons, which are treated separately. The first terngistance using Eq(6). We then replace @4 by a sum over
?S”}esl ffOﬂgOtge partially filled bands, with a band width neighbors (1/12); 1/d;;** and take the square root to obtain
ef. 1, p.

8Calculated with the atomic surface method by StréRbf. 8.
PBased upon LMTO band widths from SkrivéRef. 9.
ro=1.68 A for a-Pu.

2, 5
/25 _ herg 1 1
Wf:181mrf7 5) W;=181(1.809) - 1—22j g
0
. ﬁzrfs 1
obtained fr_c_)m a second moment o,f the ba_nds. Values for the —13318 2; " ®)
f-state radiir; based upon Straub’s atomic-surface-method m dj

calculationf and upon Skriver’s linear muffin-tin orbital
(LMTO) calculations will be listed in Table I. A numbeZ; With these rewritings, Eqg1) and (2) can be combined to
of f electrons(less than or equal to 14 per athnplaced in  become
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The first line depends only upon volume. The remaining 15 5 25
lines contain sums over neighbors, in the expressioMfgr 4
obtained from Eq(8) as well as in the first and last explicit
sums.S; is a scale factor which will be discussed and taken FIG. 2. The energy as a function of spacing for plutonium in the
equal to 0.15 in the following section. With Ed8), (4), (6), fce structure from Eq(9), using the smaller of the predicted
(7), and(8), this is essentially a computer program for com-values (0.58 A), as well as with smaller and larger values.
putation of the structural-dependent energy of the actinide, or 0.518 A yields a minimum near the observed 3.27 A in all cases.
simple metal. The dashed curve is our adjusted total energy, wjth0.74, but
By specifying the atomic positions determining tﬂuewe with the entireE;; energy scaled down by a fact®&=0.15, and
might think that it is a zero-temperature theory but of courséczo'SZZA'
we can use it to calculate the vibration spectrum, and
therefore the corresponding entropy at any temperatur&ion is responsible for the complex structural properties of
and it could even be used to obtain the forces for moleculaplutonium, and the other light actinideand that is the es-
dynamics. sence of the understanding of them which we present here.
This will be a good starting point for the generalization of At the same time, the cancellation of these two large energies
the theory to alloys and to various structures. For closefor which we have only approximate descriptions means that
packed structures and nearest neighbors only the sumg oveyve cannot reliably predict the properties. Our description and
become a factor of 12 with the;; replaced by the nearest- parameters have in fact indicated an equilibrium spacing at

neighbor distance. Before proceeding to alloys we shoulépproximatelyd=2.2 A, much smaller even than spacings in
make an application to the pure actinides, which will make italpha plutonium.

3 3.5 4

clear that some adjustment of parameters is needed. The natural approach would be to scale the uncertain
up or down, as illustrated in Fig. 2. This has two effects, as
Il. STRUCTURAL STABILITY OF PLUTONIUM may be seen in the figure. Reducingrapidly reduces the

entire energ\Es;, eliminating the inner minimum in the total

For any given atomic-sphere radiusve may obtainke  energy(without a very large shift in the outer minimypbut
from Eq. (7), and x from Eq. (3) as well asd for a close- also moves the position of the inner minimumE; to still
packed structure from Eq6) and evaluate the energy from smallerd. What seemed to be necessary to give stability to
Ed. (9). We have given two sets of values farand one for  the a-plutonium structure was to shift the minimum ki,
U; for each actinide in Table I, and we now consider pluto-outward without deepening it. Thus for plutonium we raised
nium. The difference in the two; values is really quite r; to 0.74 A(still below Straub’s estimate in Tablg Which,
large, since it enters the bandwidth of Eg) as the fifth  however, made the minimum deeper by a factor of nearly 7.
power. Thus the two predicted; values differ by a factor of We therefore scaled the entig; down by a factor ofS;
nearly 5. If we select the smaller of the two valugs, =0.15[where indicated in Eq9)]. This would seem to be a
=0.58 A, and adjust, such that the minimum in that energy very large and arbitrary scaling &, but in some sense our
occurs at the observed atomic volume, which we do for thecaling is much smaller than either the or E¢ scaling
fcc structure for which the observed atomic-sphere radius iglone. We have effectively shifted the position of the mini-
ro=1.81A, we obtairr;=0.518 A. The resulting energy as mum out from 2.0 to 2.53 A, and reduced its depth slightly,
a function of nearest-neighbor distandes 1.809, is shown  from —25 to —20 eV. This indeed eliminates the inner mini-
in Fig. 2 as the curve labeleg=0.58 A. mum seen in the;=0.58 A curve in Fig. 2. We then re-

The essential feature was noted already in Ref. 1, thagvaluated . as 0.522 A, needed to place the minimum in the
though we have indeed fit a minimum dt=1.809<1.81  energy in the fcc structure of plutonium at 3.275 A. We
=3.275A, a second minimum occurs at smaller spacingpreferred this to fitting to ther spacing since the interesting
This is because th&gy by itself has a minimum near the alloys of plutonium are in the delta structure. The resulting
larger spacing, bug¢; has a minimum near the smaller spac- total energy per ion is shown as the dashed line in Fig. 2.
ing and the sum has two minima. Further, the two energies These scalings do indicate the inherent uncertainty in pa-
very nearly cancel each other over this entire region leavingameters, illustrated by the fact that thband width differs
the quite flatE(d) seen there. We believe thidis cancella- by a factor of 5 depending on whether one uses Skriver’s or
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TABLE Il. Parameters used in the theory. Values ferscaled TABLE Ill. Predicted and experimentalbulk moduli (in
from Straub’s values of Table | by a factor 0.936 as for Puvas  units of 132ergs/cni, or dyn/cnf) based upon the parameters of
adjusted to give the atomic sphere radius, shown in column 2, in th&able II.
fce structurelU; is as in Table Ir 4 is thed-state radius andy is the
d-state energy, valence states for all but Ga, In, and Tl where they Theory Expt? Theory Expt.
are core states.

Ac 0.38 0.25 Al 1.07 0.72
Zi oA A A U rg eq (EV)? Th 0.46 0.60 Ga 0.87 0.57
Pa 0.61 In 0.62 0.41
Sc 0 180 048 O —935  y 0.75 1.21 Tl 0.57 0.36
La 0 2.08 0.613 0 -7.31 Pu 0.50 0.55 Y 0.48
Ac 0 210 0624 120 300 239 684 (p 0.41 Ce 0.59 0.26
Th 1 199 059 097 320 247 -8.05
Pa 2 180 0524 0.820 335 203 -7.15 Kittel (Ref. 13.
U 3 169 0486 0782 409 193 —7.25 ) ) o
Np 4 166 0478 0762 390 1081 —732 in Table I. We scaled, to ot_)talr_1 the minimum energy at the
Pu 5 18f 0522 0740 461 1.61 _735 qbserved pL_Jre—metaI spacing in the fcc strugtt_;re, though the
Am 6 191 0554 0736 496 206 _7.35 I!ghter.actmldes have complex structures, glvmg.the valges
cm 7 203 0597 0723 510 2B —742 listed in Table Il. For the elements such as gallium which
Al 0 158 0388 0 haye NoE;; there is only the smglg parametey which is
89 —32.47 adjusted to give the observed.spac.mg, again in the fcc struc-
Ga o 167 0427 0 0.4 : ture. Such values are also given in Table Il. The resulting
In 0 184 0503 0 0574 —28.92 bulk moduli are reasonably well predicted, as seen in Table
Tl 0 189 0526 0 0.705 -26.34 Ill. The actinides are about as close as the simple metals. For

the latter, the only input parameter was the atomic sphere
radius, in terms of whichr, was determined, and therefore
the bulk modulus at the observed radius.

Though we have eliminated the inner minimum in the
total energy as a function of volume, we have not eliminated

Straub’s values. Such uncertainties are not resolved by optit- from the interatomic interaction at constant volume. Of all
cal spectra in such strongly correlated systems; we expect tfge terms inEgq from Eq.(2), only the final term contributes

corrections for electron correlations to be comparable to th&® the two-body interaction which determines structures at
differences. fixed volume. The total two-body interaction in plutonium

There is an interesting check on the resulting model irf’as @ minimum at a spacing, near 2.53 A, very different from
that we can predict the bulk modulus from the second dethe &-plutonium nearest-neighbor distance and in fact this net
rivative of the energy per atom with respect to atomic Spherénteractlon has a negative curvature at the nearest-neighbor

3Hartree-Fock values from Man(Ref. 12.
From Straub(Ref. 8.

°For 8&-Pu.r,=1.68 A for a-Pu.

dFrom Straub(Ref. 11).

radius. It i distance. This favors distortion of the fcc structure. We may,
for example, recalculate the total energy as a function of a

ro? 9°Eqlion 1 J%Eylion uniaxial shear, expanding the crystal in thandy directions

S0, ot 12mrg  arg? (100 by a factor H+e,, and shrinking the crystal along tzeaxis

by a factor 1/(H e;)?, all at constant volume. We may redo
with Q, the volume per atom. This gives 0.50 the calculation at different volumes to find a stable structure.
X 10*2ergs/cm, near the observed bulk modutdsf 0.55  We find in fact that the original fcc structure is unstatitee
ergs/cm. Had we instead adjusted to 0.501 A to obtain the energy dropping for small negatieg) and the lowest energy
observed volume in thex-plutonium structure, we would is obtained withe;=0.44 at a reduced spacing of 3.24 A,
have obtained a bulk modulus of 0:820'?ergs/cnd which  below the spacing 3.275 A of the lowest-energy fcc struc-
may be a better comparison since the measured value is prewe. This is very reminiscent of real pure plutonium which is
sumably for a plutonium, but we proceed with the unstable in the fcc structure and goes to éhstructure with
&-plutonium value. Bulk moduli provide a relevant test be-a volume corresponding to an fcc spacing of 3.04 A. We find
cause theEy; is giving a negative contribution anflsq a  two other metastable states, oneeat —0.22 at a reduced
positive contribution to the prediction, providing a sensitivespacing near 3.16, and one at still higher energyeat
test to the scale ofy;. =0.12 and a spacing nearer the original 3.275 A.

For the other actinides we chose mnwhich is the same We can proceed to the true structure, which has been
factor 0.936 smaller than Straub’s estimates from Table Igiven by Zachariasen and EllingérThere are 16 atoms per
and the sam&;=0.15 for scalingg;;, leading to the values primitive cell, with a 180° rotary reflection taking a set of
shown in Table Il. For actinium and thorium, for which eight lying in one plane to another set in a parallel plane
Straub gave no values, we extrapolated the same scaling useparated by 2.411 A. That is, if the position of one atom in
ing values based on Skriver's calculations, which appearethe first plane is given in terms of fractions of the distance

235112-5



WALTER A. HARRISON PHYSICAL REVIEW B64 235112

along the three edges of the monoclinic primitive celldyy If this were valid for allx, it would mean thatv=1, called
b, andc, then there is an atom in the second plane at (1Vegard's law, but that is ordinarily not a good approximation.
—a), (1-b), and (1-c). We begin with the atom num- This Vegard law may be approximately correct for alloys of
bered I in the first set of eight, with positions given in Table simple metals,where the pseudopotentials are weak, but for
8 of Ref. 14, calculating the distances to all atoms in eitheian alloy between an actinide and a simple metal each simple
plane within 3.78 A of the first atom. This distance wasmetal atom in a dilute fcc alloy eliminates ¥ contribu-
selected to include, on average, 12 neighbors to each atortions. This disproportionately expands the lattice tending to
We then proceed to atom I, including all neighbors exceptead to positive deviations from Vegard’s law. For gallium in
atoms numbered |, and continue through atom VIII, excludplutonium, dg—d, is negative so such effects tend to de-
ing again all pairs previously counted. This gives a total ofcrease the magnitude of while the lattice parameters ob-
48 distances, six per atom since each bond is shared betwetined from x rays dropnorerapidly than Vegard’s law, cor-
two atoms. These were approximately in accord with theresponding tqRef. 5, Fig. 2} »=2.08.
values given in Table 9 of Ref. 14, except for an apparent It is difficult to imagine how this could be true without an
typographical error in the spacing between Il in one planeadditional term in the energy. Our first guess was the cou-
and 1V in the other, for which we found 3.365 A. For neigh- pling between gallium corel states and the unoccupiéd
bors in the second plane, we counted the pair as if associatatiates in the plutonium. The theory of this is analogous to
entirely with the first plane, but did not count the correspond-that for theff coupling described abovéand Ref. 1 and
ing pair with an atom in the plane on the opposite side. TheStraub had previouslyRef. 11) calculated thel-state radius
same result is obtained if we treat neighbors to atoms in théor gallium which could be used with thiestate radius for
second plane. plutonium of Table | to estimate this contribution. It turned
To evaluate the total energy we again use @g. but the  out to be much too small, by a factor of more than 100, so
sums ovej in the second line are now over the 48 distancesve next tried the coupling between gallium carstates and
rather than 12, and the sum is to be divided by 4 to give thehe unoccupied states in the plutonium. We again had val-
energy per atom. This can be compared with the correspondies for all needed parameters and found this effect much
ing fcc evaluation which included a sum over 12 nearestarger. These terms produce an attraction between neighbor-
neighbors. Evaluating this-plutonium energy at the atomic- ing gallium and plutonium atoms, not present in either pure
sphere radius 1.81 A appropriate Splutonium gives an material, and deviations from Vegard's law of the kind ob-
energy per atom slightly higher than the energy for the served. Reasonable scaling of ttistate radii, as we shall
structure. However, if we allow the atomic-sphere radius tosee, increased the effect by the factor of 9 needed to accord
vary from this value, which gave minimum energy for the with experiment.
structure, we find that the energy is minimum for thetruc- The inclusion ofdd coupling between states of very dif-
ture at the smaller radius of 1.74 A, not so far from theferent energy(or d and f states of very different eneryy
observed 1.68 A. This is just what we hoped would be therequired a rederivation of the energy given in EL. It was
case, giving strong support to our approximation to the enbased upon a two level syste(Ref. 6, p. 536, with the
ergy. It would also be possible to vary the individual posi-levels |a) and |b) at energy =Mj, coupled by{a|H|b)
tions of the eight atoms to see to what extent the correc M,, and having nonorthogonalitya|b)=S. Minimizing
structure is predicted, but that has not yet been done. the energy(|H|¢)/{|¢) with respect tou and v for |)
=ula)+v|b) gave

IIl. ALLOYS WITH SIMPLE METALS AND THE  dd —MZS—[M2252+(1—SZ)(M22+ |\/|32)]1/2
INTERACTION e= -

We turn next to dilute alloys of an actinide with a simple .
metal, such as plutonium with gallium. We could proceed (with M2<0). (12)
directly with the expression for the energy given in B8, A new coupling—V,=M,/(1—S% and new starting levels
with kg and « determined for the global volume and total +M3/(1-S?)Y2 led to the formula e:—\/v_22+_\/32
number ofsdelectrons in the first line. Also the cogh.e “'c +SV, which was generalized to obtain E¢L) here. We
is replaced by (% x)coshkrcae"eA+x coshxrege "8, With  ghoyid now make an expansion of Ed2) for largeMs, or

x the concentration of the simple me@lin the _actinideA. more specifically to second order in baandM,, leading
For the sums over neighbors in the second line, and in Eqg

(8), we weight each combination by the fraction of pairs of
each kind, Pu-Pu, Pu-Ga, etc., and use the spagjrappro-

priate to that pair, assuming a random distribution of atom e=—M3— —2M3(M2+5M3)2- (13
species on each site. We may do this first on an undistorted
fcc lattice. We find that at small concentrationshe lowest The second term is of the form of a second-order shift in

energy occurs at aspacidg/vhich can be written in terms of the level at—Mj3 by a couplingM,+ SM; to the level at
the equilibrium spacingd, anddg of the pure components M ;. We generalize this to the coupling of two neighborihg

(in the fcc structurgin the form levels, with angular momentum? around the internuclear
distance as—(Vggmt M3Sqam?/(2M3) with My= (g
d=da+vx(dg—da). (11 — &4°)/2 and withA for plutonium andB for gallium for the
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case of Ga in Pu. We sum it over2=m=2 and over neigh- TABLE IV. Predicted interatomic distanceé® A) based upon
bors to obtain the interaction in analogy with Ed). We  the parameters of Table II.
multiply by 2 for the two spins for each core level shifted,

and neglect any effect of occupation of thdike states in Theory  Dilute extrapolation  Vegard's law
the conduction band. We are thinking of these shifts arising:,u3AI 3.20 317 317
from the atomic levels, and then afterward recognize that thg,LbGa 318 316 321

upperd levels become so broad that they are included wit
the s levels of the conduction band. We have given genera
formulas from which thé/ 4, and Sy4,, may be obtained in
Ref. 1, pp. 606 and 607 in terms of thg so the evaluation
is direct, leading to

WIn 3.23 3.21 3.29

obtain a spacing of 3.233 A, in this case identical to the
Vegard’s law prediction of 3.233 A, and in accord with
(rgrg®)® —45h%2 5Mg\? experiment.
S M, 2 de.S + dj3 ) Similarly we may treat indium in plutonium, using param-
5 ) ) 5 eters from Table | and the same scaling=f; by a factor of
Z(ﬁ— 5M3) (‘1571 n 5M3> } 9. Indium has slightly larger volume per atom thépluto-
md® d;° 2md® " 2d® nium, as seen in Table I, but our calculation for small con-
(14) centrations indicates a reduced spacing due to indium added
to plutonium, to 3.24 A at 10%, which would correspond to
At large spacings thd ; term dominates each contribu- a negativer if we use Eq.(11). Indeed this reversal is ob-
tion. The energy becomes deeper at smaller distances, theerved in dilute alloygRef. 5, p. 274; indium reduces the
rises to zero between 1.4 and 2.4 A and then drops again fittice parameter. A calculation of the spacing at minimum
smaller spacing. The results from each contribution arenergy for the entire range of concentrations is approxi-
hardly distinguishable from values obtained from the full Ed.mately parabolic with a minimum of 3.20 A at=0.4, and of
(12), above this zero in the energy, but we obtained spuriouggrse the pure-metal spacingscaqual to zero and 1. This
low total energies if we _allowed deformations of the Ia‘_tticedecreasing spacing with added indium arose entirely from
beyond these unrealistically small values, so we simplye gq coupling. If that is omitted, the spacing is found to
added all terms only beyond the node for that term. increase with added indium, reaching a peak of 3.35 A near

In tl?et evalu?rtllon_welneed?\zllg, halft”:e engr?hy dlﬁg{id x=0.7. The application to thallium in plutonium is similar to
ence between the simple metal core state and he ac ©that for indium. Again Vegard's law predicts an expansion
state. There would not seem to be difficulties associated witl C o ;

ut a contraction is predicted here. It would of course be

shifting either due to charging, as in the transition-metal . . o )
states(gRef. 1, p. 561 It ma;? bg adequate to simply subtract possible to adjust the, for indium and thallium to make the

the free-atom term values. which contains the principali”itial slope correct, but we have not done that, but used the

variations from one system to the other, and the HartreeS2Me scaling as for added gallium. In some other calcula-

Fock values were listed in Table Il and used here. We triedions with other parameters we found discontinuous jumps to
an alternative view, that in the alloy we have a single spacing@fger spacing with increasing as would happen if we fol-
and three free electrons per atom to suggest thasstate lowed the minimum energy as we decreasgth Fig. 2, but
energy in both atoms will have the same relation to the comthat did not occur in this final calculation.
mon Fermi energy, so we could usg— ¢, directly subtract It is interesting to consider also the addition of trivalent
and divide by 2 to obtain the correspondiMy. This re- metals of typeA to plutonium, the elements Sc, Y, and La
quired considerably larger scaling of tlg,4 contribution  with parameters at the top of Table Il. In all three cases the
and we abandoned that approach. dilute alloys increased the spacing from that of plutonium, in
For the dilute alloy, in the fcc lattice, the sum in EG4) all cases slightly more that suggested by Vegard’s law. Scan-
gives a factor of 12(1—x) for the average number of Pu-Ga dium experimentally causes a small decrease, but we are not
couplings per atom if we include only nearest neighbors. Ifcertain about Y and La.
we use the 4 values given by Straub and appearing in Table One other interesting comparison is for the intermetallic
I, this contribution is not sufficient to give the observed compounds PyjM. These occur in the GAu structure,
deviation from Vegard’s law. However, scaling it by a factor which is face-centered cubic with Pu atoms on every cube
of 9, corresponding to scaling eachby 9¥6=1.44 is, lead- face andVl =Al, Ga, or In at the cube corner positions. Then
ing to a value ofv=2.1 for gallium in plutonium, equal to half the nearest-neighbor bonds are between PuManand
the experimental value obtained from Fig. 21 in Ref. 5. Sucthalf are between Pu and Pu. The energy may be evaluated
a scaling is not unreasonable but it should be considered akirectly from Eqgs.(9) and(13), and the minimum as a func-
tentative because we have not included any effects of relaxion of d obtained. The values af found, in A, are listed as
ation around impurities, to be discussed in the following“Theory” in Table IV and compared to linear extrapolations
section. of our dilute alloy results tax=0.25, and to a linear interpo-
We may also treat alloys of aluminum in plutonium. Alu- lation between experimental pure-metal spacings, “Vegard’s
minum has no cord states so th&y4 vanishes, but the same law.” The only experimental lattice parameter we have, for
program can be run withy=0 for aluminum. Fox=0.1we  PwGa (Fig. 21, Ref. 5, is 3.19 A. This is close to our pre-
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diction and to the Vegard law value and somewhat highethe instability under axial sheaes which we discussed near
than the extrapolated dilute-random-alloy resulxat0.25, the end of Sec. Il. Such distortions would likely reduce the
seen in Table IV to be 3.16. energy ofpure plutonium in the fcc structure, without the
We can also compare the total energy we obtain for the@resence of gallium, leading finally to the structure. The
Pw;M intermetallic compound with that for the random alloy result of our calculation may be approximately correct, but it
at the same concentration of 0.25. We find a lower energy fodoes not address the question of relaxation in the real alloy
PuGa and Pgin (by 0.015 and 0.072 eV per atom, respec-which we had in mind.
tively) in the ordered structure than for the random alloy, but These considerations suggest that in fact the stabilization
a higher value for PJAl (by 0.063 eV. Certainly all three of  of the § structure by gallium requires the effects of neighbor-
the 25% alloys order so the FAl prediction is not correct. ing gallium atoms, rather than the simple sum of the effects
Allowing relaxation of the neighbors, to be discussed nextof individual gallium atoms. The finding above that even
would presumably lower the energy of the disordered strucwith only nearest-neighbor relaxation 78 neighboring atoms
ture further, but not the ordered structure, so that neglect didre affected by each gallium makes it plausible that one or
not cause the difficulty for aluminum. two percent of gallium can show such cooperative effects.
This is also consistent with the need for rapid quenching of
dilute gallium alloys to retain thé structure(Ref. 5, p. 273,
presumably slower cooling allows the gallium to diffuse to
Of course we do not expect the lattice to remain in thefavorable sites for the formation of the lower-energgtruc-
undistorted fcc structure. As found by Mikkelsen andture. Itis also consistent with the finding by Villel& al,*®
Boyce™® for semiconductor alloys, the neighboring atomsof significant shifts in the positions of more distant neighbors
tend to relax much of the way to their natural bond lengthto the added gallium atoms. It may be very interesting to
rather than retain the average spacing. In the present case @insider the distortions in the context of neighboring gallium
dilute alloys we may expect that the replacement of a plutoatoms. It should not be too difficult with our nearest-
nium atom by a gallium will cause each of the 12 nearesneighbor interactions, but it has not yet been done.
neighbors to that gallium to relax radially. Experimental These relaxations presumably do not occur in theMPu
x-ray-absorption fine-structure studies of gallium in pluto-structure, since each Pu is at the center of a square of four Ga
nium by Villella et al 6 have indicated inward displacements neighbors, and has no tendency to move in any direction.
of the nearest-neighbor plutonium atoms by 0.1 A in deltaOnly if the structure breaks symmetry can this occur and this
plutonium. Such shifts are expected to result from the elimiwould correspond to the formation of a new structure, not
nation of theff interaction which was there for the plutonium the CuyAu structure. We are not aware of evidence that
replaced, but not for the gallium, and favors an outward mothis happens.
tion of nearest-neighbor plutonium atoms. Tthe coupling
between j{he added gallium and its plqtonium neighbors fa- V. ALLOYS BETWEEN ACTINIDES
vors an inward movement of the neighbors. Further, the
pseudopotential core radius is smaller for gallium than for The application of Eqg8) and(9) to alloys involving two
the plutonium it replaced, also favoring an inward displace-actinides is rather direct. The simple metal terms, including
ment. It is straightforward to introduce such relaxations,the sum oveN(d;;), is the same as for actinide alloys with
equal for all 12 plutonium neighbors, into our total-energysimple metals, but with different.. There are again three
program, particularly for dilute enough alloys that each gal-free electrons per atom and a Fermi wave number deter-
lium is treated by itself. We did this, also neglecting relax-mined by the total volume. The terms from coupling between
ation of more distant neighbors except for allowing an overcored states and valenakstates, Eq(14), do not arise since
all scaling of the lattice as in the preceding section. Thethe actinide corel states are so deep as to be irrelevant.
results of minimizing the energy with respect to such relax- For the evaluation of théband width, Eq(9), we again
ations were not what we had hoped, but were informative. need the second moment and if all nearest-neighbor dis-
We found very largeutward relaxations, of the order of tances are taken the samg? is simply replaced by (1
an angstrom. In hindsight this is not surprising. Shifting —x)2r 2%+ 2x(1—x)r 4% (g>?+ x?rg°. If different neigh-
reach gallium-plutonium distance by a factor & shifts the  bors have different spacings is taken under the square root
plutonium-plutonium distance to the atom on the oppositén Eq. (8) and the appropriate;'° used for each spacing. A
side by a factor &, so 12 Ga-Pu shifts of te are ac- similar generalization applies to tHé repulsion, the final
companied by 12 Pu-Pu shifts of-le. Furthermore the 24 term in Eq.(9), with the Z; f electrons on each atom shifted
Pu-Pu distances between the nearest-neighbor plutonium diy coupling with a neighbor in proportion to thg°® of
oms are shifted by a factorle and the 48 distances be- both atoms, leading to a EX)%Zar 1a %+ X(1—X)(Z¢a
tween these nearest-neighbor atoms to third-nearest-neighberZg)r¢,%r 15>+ x?Z¢gr 10 replacing thezr1° appearing
(to Gg atoms are increased hﬁ—s+sz~l—s/2 and 24 in Eq. (9). For the term in Eq(9) based uponW;?, the
distances between nearest neighbors and second neighbsruare of the global band width, it is appropriate to replace
are increased by/1+ 2. The nearest-neighbor distances toZ; by the global number of electrons per atom, and we re-
78 different atoms are modified by the introduction of thisplace the CoulomlJ by its weighted average,
one gallium atom. It seems clear that the plutonium is ex-
pressing its instability toward formation of plutonium, and (Zs)=(1=X)Zip+XZsg,

IV. RELAXATION OF NEIGHBORS

235112-8



THEORY OF THE ELECTRONIC STRUCTURE OF TH. .. PHYSICAL REVIEW B 64 235112

(Up)=(1—x)Up+xUsg. (15) with the e, and ;g obtained from Eq(16), an additional
contribution to the second moment of the baWé?/12, so
There are additional terms in the second moment whichhat the band width from E¢8) becomes
did not occur in the elemental materials, from the diagonal

terms in M2:(1/7N)2|JH|JH“ . The Hii2:8f2 (Wlth o 2\ 2

measured from the average for the crystal, since the mo- W,2=11.06x 106(_)

ment is evaluated relative to the average eneayg now m

different for different atoms. These were included for X[ (1= X)2r ¢ AL04+ 2(1— X)Xr A5F g5+ X2r (519

transition-metal alloys? and we include them here. We note

first the fact that in the pure metal tiiestate energy;; lies 1 )

at the middle of thé band for atomi, W;;/2 [evaluated for X ; WJFlZX(l_X)(&B—SfA) : (18)
the pure metal from Eq@8) with d=1.809 for fcc struc-

tureg above thef-band minimum, while the Fermi energy, Which can be directly generalized th, values differing for
common to the alloy, lies atZ;;/14)W;; above the mini- different terms inr¢1%. For nearest-neighbor coupling in an

mum. Thus the diagonal enerd; is given by fcc lattice,>,,1/d'* becomes simply 184
We may note that there is an unphysical feature in the
1 Zy square-root term in Eq18) in that there can be contributions
efi= (E_ ﬂ) fi 16 1o W;;2 [Eq. (18)] from changes in spacing between nearest-

. . . neighbor pairs which are themselves far apart, and that there
relative to the Fermi energy in the pure mgtal, and we tgkeare contributions toyW 2+ [(1—x)U;a+ xU;g]2 from the
:/r\]/at tgtb.e t[juf for Elegentfs of eafch Iattc:.m n .iﬂetha”oy W'thcross term between these two distant distortions. Such long-
tﬂ o amre]: romd_ q(8) ufsmgghan ﬁc av\ﬁ]e Wlth eisn%ranet range interactions are unphysical but may not be important
atomic sphere radius as for the alioy. en the element e The form is appropriate for a perfect lattice, for a uni-

had nof states, e.g., gallium, then f"btf’?‘es which er!te“?d formly deformed lattice and for a lattice with alternate atoms
had the same value and there was no diagonal contribution splaced in opposite directions. The latter two of these

the second moment. For an alloy of two actinides the averagg,resnond to lattice vibrations of maximum and mini-
value is{e;)=(1—Xx)esa+Xesg and the contribution of the

di Lt o th d ti mum wavelength and the theory makes a reasonable inter-
lagonal terms to the second moment 1S polation between them, this spanning the entire spectrum of

_ 2 2 distortions.
M3 diag= (1= X)(eta— (&) “+X(erg—(&1)) We have then the energy per ion, or atom, for a random
=X(1-X)(etg— &), (17)  alloy of Bin A of
|
E Zi)(1—(Z;s)I14
Ft:t:Esd_Sf 2t 2< 0 )(VWf2+<Uf>2_<Uf>)
15,8378, B2[(1=X)?Zal 10+ X(l_X)(Zf1A2+ Zig)riaT 18°+ X Ztgr 157 . (19
md”
|
with metalr; equal to zero. The form in whick enters(Z;) and
W;? is different, and(U;) is different from the plutonium
3h%ke? 3e%ke  2e%k:S U, while it was the same before. We regard these differ-
Esa=3 0m 47 3ol ences as appropriate to the different systems.
We ran a program incorporating these changes for an al-
o e 2 P B Z%e%k loy of plutonium and americium, using the parameters of
XA =x)rea” +Xreg”] =1} 2 Table II, and found that the minimum-energy spacing was
very close to Vegard'’s law, the spacing increasing with am-
X[ (1—-x)cost{ kT cp)e “eA+x COSH kT cp)e ™ e8] ericium concentration as observed. The same program could
1 be run also for cerium, a rare earth but having ahell and
+ EE V(ri—r)) (200  no important _cored states. Cerium is allso found to increase
J#i the spacing, in agreement with experiment, showing in this

case a considerably steeper slope than Vegard's law at small
and W;? obtained from Eq(18). An interesting feature of concentrations corresponding to=1.8 in Eq. (11), while
these forms is that they are not equivalent to the formulagxperimentallyv is closer to 0.5. We do not know if local
used for alloys with simple metals, even if we set the simplerelaxation helps with these quantitative inconsistencies.
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In both cases, the increase was also suggested by Vegarai § plutonium with dilute alloying with simple metals and
law. It was interesting to try the light actinides such as tho-with other actinides which were in rather good accord with
rium, for which Vegard's law would also suggest increasingexperiment. This included the prediction that of thehell
spacing, but in this case we found the spacing to dropnetals checked only americium, curium, and cerium in-
sharply with added thorium, dropping to an fcc spacing ofcreased the lattice spacing, while contrary to Vegard's law
3.15 A at about 25%, before rising to 3.60 for pure thorium.indium and thorium decreased it, all in accord with experi-
The same was true of all of the other light actinides listed inment. The same theory indicated that the ordered alloys
Table II. On the other hand, curium was found to increase th®wGa and Pgin were more stable than the disordered alloy
spacing, as did americium. As far as we know, all of theseat the same concentration and that the spacing was larger for

results are in qualitative accord with experiment. the ordered alloy, in agreement with experiment. It incor-
rectly predicted that the ordered alloy{Alis not stable, but
VI. SUMMARY again predicted a larger spacing.

) i o i A comparison of the energies of tld&and a phases for the
We did not succeed in our initial effort to predict the rangom alloy failed to show the stabilization of taghase
properties of actinide alloys using existing theory and existy the very dilute random alloy with gallium. Also allowing
ing parameters. It was necessary to adjustfibate radius  raqial relaxations of the plutonium neighbors to isolated gal-
for plutonium, within the range of earlier predictions, in or- |iym atoms indicated an instability analogous to thstruc-
der to accommodate to the known properties of that elemenyre This suggests that the real stabilization may not be a
and we used the same adjustment factor for the other agimple additive effect of the individual gallium atoms, but
tinides. It was also necessary to scale the erfis&te en-  may e a cooperative effect from neighboring gallium atoms.
ergy, and as planned we adjusted the pseudopotential Cofis has not yet been explored but we expect the extensive
radius for all elements to fit the observed atomic volume Ofiyformation available from extended x-ray-absorption fine-
that pure element. In addition, when we discussed alloys igrycture studies by Villellaet al2® to provide a guide to
was necessary to introduce the effects of coupling betweegying this.
simple metal coral states and thd states on the actinides,
and to scale the predictatistate radii by a factor of 1.44. ACKNOWLEDGMENTS
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