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Numerical atomic orbitals for linear-scaling calculations
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The performance of basis sets made of numerical atomic orbitals is explored in density-functional calcula-
tions of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of
the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance
is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous
proposals. Strict localization is maintained while ensuring the continuity of the basis-function derivative at the
cutoff radius. The basis sets are tested versus converged plane-wave calculations on a significant variety of
systems, including covalent, ionic, and metallic. Satisfactory convergence is obtained for reasonably small
basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is
tested in several cases and it is found to be satisfactory as well.
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I. INTRODUCTION

In order to make intelligent use of the increasing power
computers for the first-principles simulation of ever larg
and more complex systems, it is important to develop a
tune linear-scaling methods, where the computational l
scales only linearly with the number of atoms in the simu
tion cell. The present status of these methods and their
plications can be found in several reviews.1–3 Essential for
linear scaling is locality, and basis sets made of localiz
wave functions represent a very sensible basis choice.
not only the scaling that matters, however, the prefactor
ing also important for practical calculations. The prefac
depends significantly on two aspects of the basis:~i! the
number of basis functions per atom, and~ii ! the size of the
localization regions of these functions.

Atomic orbitals offer efficient basis sets since, ev
though their localization ranges are larger than those of s
other methods,4 the number of basis functions needed is u
ally quite small. The price to pay for this efficiency is th
lack of systematics for convergence. Unlike wi
plane-wave5 or real-space-grid6 related methods, there is n
unique way of increasing the size of the basis, and the rat
convergence depends on the way the basis is enlarged.
fact poses no fundamental difficulties, it just means t
some effort is needed in the preparation of unbiased b
sets, in analogy to the extra work required to prepare pseu
potentials to describe the effect of core electrons.

Maximum efficiency is achieved by choosing atomic o
bitals that allow convergence with small localization rang
and few orbitals. It is a challenge again comparable to
one faced by the pseudopotential community, where trans
ability and softness are sought.7 For atomic wave functions
the optimization freedom is in the radial shape. Gauss
type orbitals have been proposed for linear scaling,8–10 con-
necting with the tradition of quantum chemistry.11,12 These
bases are, however, quite rigid for the mentioned optim
tion, imposing either many Gaussians or large localizat
ranges.
0163-1829/2001/64~23!/235111~9!/$20.00 64 2351
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Numerical atomic orbitals~NAO’s! are more flexible in
this respect. Different ideas have been proposed in the lit
ture, originally within tight-binding contexts concentratin
on minimal ~single z) bases. They are obtained by findin
the eigenfunctions of the isolated atoms confined wit
spherical potential wells of different shapes,13–15 or directly
modifying the eigenfunctions of the atoms.16 These schemes
give strictly localized orbitals, i.e., orbitals that are strict
zero beyond given cutoff radiir c . A first extension towards
more complete basis sets was proposed using the ex
states of the confined atoms,17 but the quite delocalized char
acter of many excited states made this approach ineffic
unless very stringent confinement potentials were used.18

For multiple z, a better scheme was proposed based
the split-valence idea of quantum chemistry,11,12 but adapted
to strictly localized NAO’s.19 In the same work, a systemati
way was proposed to generate polarization orbitals suited
these basis sets. The scheme of Ref. 19 has proven t
quite efficient, systematic, and reasonable for a large var
of systems~for short reviews, see Refs. 19 and 20!.

In this work we go beyond previous methodologies b
cause of two main reasons:~i! It is always desirable to obtain
the highest possible accuracy given the computational
sources available, and~ii ! it is important to know and show
what is the degree of convergence attainable by NAO b
sets of reasonable sizes.

We explore these issues by variationally optimizing ba
sets for a variety of condensed systems. The parameters
fining the orbitals are allowed to vary freely to minimize th
total energy of these systems. This energy is then comp
with that of converged plane-wave calculations for exac
the same systems, including same density functional
pseudopotentials. The optimal basis sets are then te
monitoring structural, and elastic properties of the system

The transferability of the basis sets optimized for partic
lar systems is then checked by transferring them to ot
systems and testing the same energetical, structural, and
tic parameters. Finally, the effect of localizing the orbita
©2001 The American Physical Society11-1
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tighter than what they variationally choose is explored o
demanding system.

II. METHOD

The calculations presented below were all done us
density-functional theory21,22 ~DFT! in its local-density23 ap-
proximation~LDA !. Core electrons were replaced by norm
conserving pseudopotentials7 in their fully separable form.24

The nonlocal partial-core exchange-correlation correctio25

was included for Cu to improve the description of the co
valence interactions.

Periodic boundary conditions were used for all system
Molecules were treated in a supercell scheme allow
enough empty space between molecules to make inter
lecular interactions negligible. For solid systems, integ
tions over the Brillouin zone were replaced by converg
sums over selectedkW sets.26

Thus far the approximations are exactly the same for
two different sets of calculations performed in this wor
based on NAO’s and on plane-waves~PW’s!. The calcula-
tions using NAO’s were performed with theSIESTA method,
described elsewhere.18,27 Besides the basis itself, the on
additional approximation with respect to PW’s is the repla
ment of some integrals in real space by sums in a fin
three-dimensional~3D! real-space grid, controlled by on
single parameter, the energy cutoff for the grid.27 This cutoff,
which refers to the fineness of the grid, was converged fo
systems studied here~200 Ry for all except for Si and H2, for
which 80 and 100 Ry respectively, were used!. Similarly, the
PW calculations were done for converged PW cutoffs.28

Cohesive curves for the solids were obtained by fitt
calculated energy values for different unit-cell volumes
cubic, quartic, and Murnaghan-like29 curves, a procedure
giving values to the lattice parameter, the bulk modulus a
the cohesive energy of each system. The bulk moduli gi
by the Murnaghan and quartic fits deviate from each othe
around 3%, the Murnaghan values being the lowest and
ones shown in the tables. The deviations between M
naghan and cubic fits are of the order of 7%. The ot
cohesive parameters do not change appreciably with the

The atomic-energy reference for the cohesive energy
taken from the atomic calculations within the same DFT a
pseudopotentials, always converged in the basis set. The
hence the same reference for NAO’s and for PW’s, the
ference in cohesive energies between the two accounting
the difference in the total energy of the solid. The isolate
atom calculations included spin polarization.

III. BASIS OF NUMERICAL ATOMIC ORBITALS

The starting point of the atomic orbitals that conform t
basis sets used here is the solution of Kohn-Sham’s Ha
tonian for the isolated pseudoatoms, solved in a radial g
with the same approximations as for the solid or molec
~the same exchange-correlation functional and pseudopo
tial!. A strict localization of the basis functions is ensur
either by imposing a boundary condition, by adding a co
fining ~divergent! potential, or by multiplying the free-atom
23511
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orbital by a cutting function. We describe in the followin
three main features of a basis set of atomic orbitals: s
range, and radial shape.

A. Size: Number of orbitals per atom

Following the nomenclature of quantum chemistry, we
tablish a hierarchy of basis sets, from singlez to multiple z
with polarization and diffuse orbitals, covering from quic
calculations of low quality to highly converged ones, as co
verged as the finest calculations in quantum chemistry
singlez ~also called minimal! basis set~SZ in the following!
has one single radial function per angular momentum ch
nel, and only for those angular momenta with substan
electronic population in the valence of the free atom.

Radial flexibilization is obtained by adding a second fun
tion per channel: doublez ~DZ!. Several schemes have bee
proposed to generate this second function. In quantum ch
istry, the split valence11,30 scheme is widely used: startin
from the expansion in Gaussians of one atomic orbital,
most contracted Gaussians are used to define the first or
of the doublez and the most extended ones for the seco
Another proposal defines the secondz as the derivative of
the first one with respect to occupation.31 For strictly local-
ized functions there was a first proposal17 of using the ex-
cited states of the confined atoms, but it would work only
tight confinement. An extension of the split valence idea
quantum chemistry to strictly localized NAO’s was propos
in Ref. 19 and has been used quite successfully in a var
of systems. It consists of suplementing each basis orb
with a new basis function that reproduces exactly the tai
the original orbital from a given matching radiusr m out-
wards. The inner part goes smoothly towards the origin
r l(a2br2), wherea andb are chosen to ensure continuity o
the function and its derivative atr m . We follow this scheme
in this work, which generalizes to multiplez trivially by
adding more functions generated with the same procedu

Angular flexibility is obtained by adding shells of highe
angular momentum. Ways to generate these so-called p
ization orbitals have been described in the literature, both
Gaussians11,12 and for NAO’s.19 In this work, however, they
will be obtained variationally, as the rest, within the flexibi
ties described below.

B. Range: Cutoff radii of orbitals

Strictly localized orbitals~zero beyond a cutoff radius! are
used in order to obtain sparse Hamiltonian and overlap
trices for linear scaling. The traditional alternative to this
based on neglecting interactions when they fall below a
erance or when the atoms are beyond some scope of ne
bors. For long ranges or low tolerances both schemes
essentially equivalent. They differ in their behavior at shor
ranges, where the strict-localization approach has the ad
tage of remaining in the Hilbert space spanned by the ba
remaining variational, and avoiding numerical instabiliti
no matter how short the range becomes.

For the bases made of strictly localized orbitals, the pr
lem is finding a balanced and systematic way of defining
the different cutoff radii, since both the accuracy and t
1-2
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computational efficiency in the calculations depend on the
A scheme was proposed19 in which all radii were defined by
one single parameter, the energy shift, i.e., the energy r
suffered by the orbital when confined. In this work, howev
we step back from that systematic approach and allow
cutoff radii to vary freely in the optimization procedure~up
to a maximum value of 8 a.u.!.

C. Shape

Within the pseudopotential framework it is important
keep the consistency between the pseudopotential and
form of the pseudoatomic orbitals in the core region. This
done by using as basis orbitals the solutions of the sa
pseudopotential in the free atom. The shape of the orbita
larger radii depends on the cutoff radius~see above! and on
the way the localization is enforced. The first proposal13 used
an infinite square-well potential~see Fig. 1!. It has been
widely and successfully used for minimal bases within theab
initio tight-binding scheme of Sankey and collaborators13 us-
ing the FIREBALL program, but also for more flexible base
using the methodology ofSIESTA.

This scheme has the disadvantage, however, of gener
orbitals with a discontinuous derivative atr c as seen in Fig.
1. This discontinuity is more pronounced for smallerr c’s and
tends to disappear for long enough values of this cutoff
does remain, however, appreciable for sensible values or c
for those orbitals that would be very wide in the free atom
is surprising how small an effect such a kink produces in
total energy of condensed systems~see below!. It is, never-
theless, a problem for forces and stresses, especially if
are calculated using a~coarse! finite three-dimensional grid

Another problem of this scheme is related to its defin
the basis considering the free atoms. Free atoms can pre
extremely extended orbitals, their extension being, bes
problematic, of no practical use for the calculation in co
densed systems: the electrons far away from the atom ca
described by the basis functions of other atoms.

Both problems can be addressed simultaneously by a
ing a soft confinement potential to the atomic Hamiltoni
used to generate the basis orbitals: it smooths the kink
contracts the orbital as variationally suited. Two soft confin
ment potentials have been proposed in the literature~Fig. 1!,
both of the formV(r )5Vor

n, one forn52 ~Ref. 14! and the
other for n56.15 They present their own inconvenience
however. First, there is no radius at which the orbitals
come strictly zero, they have to be neglected at some po
Second, these confinement potentials affect the core re
spoiling its adaptation to the pseudopotential.

This last problem affects a more traditional scheme
well, namely, the one based on the radial scaling of the
bitals by suitable scale factors. In addition to very ba
bonding arguments,32 it is soundly based on restoring virial’
theorem for finite bases, in the case of Coulombic potent
~all-electron calculations!.33 The pseudopotentials limit its
applicability, allowing only for extremely small deviation
from unity (;1%) in the scale factors obtained variationa
~with the exception of hydrogen that can contract up
25%!.34
23511
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An alternative scheme to avoid the kink has also be
proposed:16 Instead of modifying the potential, it directly
modifies the orbitals of the atom. Following ideas of pre
ous mixed-basis schemes37 the atomic orbital is multiplied
by 12exp@2a(r2rc)

2# for r ,r c and zero otherwise.16 In
Ref. 16 it is the hard confined wave function which is th
modified, while in Ref. 37 it is the free atom wave functio
We follow Ref. 37. This method is tested in the next sectio
This scheme does provide strict localization beyondr c, but
introduces a different problem: for largea and smallr c a
bump appears in the orbital close tor c, which becomes a
discontinuity in the wave function in the limit of infinitea
~Ref. 37! ~this is not the case in Ref. 16!.

FIG. 1. Shape of the 3s orbital of Mg in MgO for the different
confinement schemes~a! and corresponding potentials~b!.
1-3
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In this work we propose a new soft confinement poten
avoiding the mentioned deficiencies. It is shown in Fig. 1
is flat ~zero! in the core region, starts off at some intern
radiusr i with all derivatives continuous, and diverges atr c
ensuring the strict localization there. It is

V~r !5Vo

e2(r c2r i )/(r 2r i )

r c2r
. ~1!

In the following the different schemes are compared, th
defining parameters being allowed to change variationall

Finally, the shape of an orbital is also changed by
ionic character of the atom. Orbitals in cations tend to shri
and they swell in anions. Introducing adQ in the basis-
generating free-atom calculations gives orbitals be
adapted to ionic situations in the condensed systems.

IV. OPTIMIZATION PROCEDURE

Given a system and a basis size, the range and shap
the orbitals are defined by a set of parameters as desc
above. The parameters are described in the following.
atomic species there is a globaldQ, an extra charge~positive
or negative! added to the atom at the time of solving th
atomic DFT problem for obtaining the basis orbitals~see
below!.

Confinement is imposed separately for each angular
mentum shell, with its corresponding parameters that dep
on the scheme used. Hard confinement implies one par
eter per shell (r c), and our soft confinement implies thre
(r c , r i , andVo). One parameter (Vo) is needed only in the
r n-confinement schemes,14,15 and two parameters in th
scheme of Elsaesseret al.37 (r c and the width of the cutting
function!. Finally, for eachz beyond the first, there is a
matching radius as mentioned above.19

The values of these parameters are defined variation
according to the following procedure:

~i! Given a set of parameters, the Kohn-Sham Ham
tonian ~including the pseudopotential! is solved for the iso-
lated atom, in the presence of the confining potential and
extra chargedQ. ~In the case of the scheme of Elsaes
et al.,37 there is no confining potential, but ana posteriori
modification of the solution wave functions.! This is done for
all the relevantl shells of all the different atomic specie
The multiple zetas are built from the former using the mat
ing procedure described above,19 according to ther m’s
within the set of parameters. This procedure gives a basis
for each set of parameter values.

~ii ! Given the basis set, a full DFT calculation is pe
formed of the system for which the basis is to be optimiz
normally a condensed system, solid or molecule. The Ko
Sham total energy of this system becomes then a functio
that set of parameters. Note that neither the extra charge
the confinement potentials are added to the Kohn-Sh
Hamiltonian of the system, they were just used to define
basis. The total-energy calculations are performed for gi
structural parameters of the studied system. We have ch
to work with experimental structures. This choice is, ho
ever, of no great importance since the basis sets are supp
to be transferable enough to render any bias negligible. T
23511
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is certainly the case at the DZP level, not so much for mi
mal bases. See the section on transferability below.

~iii ! The previous two steps are built in as a function in
a minimization algorithm. As a robust and simple minimiz
tion method not requiring the evaluation of derivatives, w
have chosen the downhill simplex method.38 We have not
dedicated special efforts to maximizing the efficiency of t
minimization procedure since the systems used for basis
timization typically involve a small number of atoms and t
total-energy calculations are quick. The possible impro
ment in the minimization efficiency is therefore of no re
evance to the present study.

We have no argument to discard the existence of sev
local minima in the energy function. For the systems stud
here there may be sets of parameters giving better bases
the ones we obtain. We systematically tested their robustn
by restarting new simplex optimizations from the alrea
optimized sets. More systematic searches for abso
minima, however, would require much more expensive te
niques, which would not be justified at this point. We ha
thus satisfied ourselves with the ones obtained, that s
good and consistent convergence characteristics. The va
obtained for the parameters in the optimizations descri
below can be obtained from the authors.39

V. RESULTS

A. Comparison of different confinement schemes

Table I shows the performance for MgO of the differe
schemes described above for constructing localized ato
orbitals. The basis sets of both magnesium and oxygen w
variationally optimized for all the schemes. Mg was chos
because the 3s orbital is very extended in the atom and bo
the kink and the confinement effects due to other orbitals
very pronounced. Results are shown for a SZ~singles andp

TABLE I. Comparison of different confinement schemes on t
cohesive properties of MgO, for SZ and DZP basis sets. The g
eralization of the different schemes to DZP is done as explaine
the text. Unconfined refers to using the unconfined pseudoato
orbitals as basis.a, B, and Ec stand for lattice parameter, bul
modulus, and cohesive energy, respectively. The PW calculat
were performed with identical approximations as the NAO on
except for the basis. Experimental values were taken from Ref.

SZ DZP
Basis a B Ec a B Ec

scheme ~Å! ~GPa! ~eV! ~Å! ~GPa! ~eV!

Unconfined 4.25 119 6.49
Sankey 4.17 222 10.89 4.12 165 11.8
Elsaesser 4.16 228 11.12 4.12 163 11.8
Porezag 4.18 196 11.17 4.09 183 11.8
Horsfield 4.15 221 11.26 4.11 168 11.86
This work 4.15 226 11.32 4.10 167 11.87

PW 4.10 168 11.90
Expt. 4.21 152 10.3
1-4
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channels for both species! and a DZP basis~doubles andp
channels plus a singled channel!. Figure 1 shows the shap
of the optimal 3s orbital for the different schemes, and th
shape of the confining potentials.

The following conclusions can be drawn from the resu
~i! Within the variational freedom offered here, the 3s orbital
of Mg wants to be confined to a radius of around 6.5 bo
irrespective of scheme, which is extremely short for the f
atom. This confinement produces a pronounced kink in
hard scheme.~ii ! The total energy is relatively insensitive t
the scheme used to generate the basis orbitals, as lon
there is effective confinement.~iii ! The basis made of uncon
fined atomic orbitals is substantially worse than any of
others.~iv! The pronounced kink obtained in Sankey’s ha
confinement scheme is not substantially affecting the t
energy as compared with the other schemes. It does per
however, by introducing inconvenient noise in the ene
variation with volume and other external parameters, a
especially in the derivatives of the energy.~v! The scheme
proposed in this work is variationally slightly better than t
other ones, but not significantly. Its main advantage is
avoidance of known problems. In the remainder of the pa
the confinement proposed in this work will be used unl
otherwise specified.

B. Basis convergence

Table II shows how NAO bases converge for bulk silico
This is done by comparing different basis sizes, each of th
optimized. The results are compared to converged~50 Ry!
PW results~converged basis limit! keeping the rest of the
calculation identical. Figure 2~a! shows the cohesion curve
for this system.

Even though the main point of this work is testing t
convergence of NAO basis sets independently of other
sues, we consider it interesting to gauge the relevance o
errors introduced by the basis by comparing them with ot
typical errors that appear in these calculations. The NAO
PW results are thus compared to all-electron LDA results49 to
compare basis errors with the ones produced by the pse
potentials. Experiment gives then reference to the error
mitted by the underlying LDA.

The comparisons above are made with respect to
converged-basis limit, for which we used PW’s up to ve
high cutoffs. It is important to distinguish this limit from th
PW calculations at lower cutoffs, as used in many compu

TABLE II. Basis comparisons for bulk Si.a, B, andEc stand for
lattice parameter~in Å!, bulk modulus~in GPa!, and cohesive en-
ergy ~in eV!, respectively. SZ, DZ, and TZ stand for singlez,
doublez, and triplez. P stands for polarized, DP for doubly pola
ized. LAPW results were taken from Ref. 41, and the experime
values from Ref. 42.

SZ DZ TZ SZP DZP TZP TZDP PW LAPW Expt

a 5.52 5.49 5.48 5.43 5.40 5.39 5.39 5.38 5.41 5.
B 85 87 85 97 97 97 97 96 96 98.
Ec 4.70 4.83 4.85 5.21 5.31 5.32 5.34 5.37 5.28 4.
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tions. To illustrate this point, Fig. 2~b! compares the energ
convergence for PW’s and for NAO’s. Even though the co
vergence of NAO results isa priori not systematic with the
way the basis is enlarged, the sequence of bases presen
the figure shows a nice convergence of total energy w
respect to basis size~the number of basis functions per ato
are shown in parentheses in the figure!: the convergence rate
is similar to the one of PW’s~DZP has three times mor
orbitals than SZ, and a similar factor is found for the
equivalents in PW’s!. For the particular case of Si, Fig.
shows that the polarization orbitals (3d shell! are very im-
portant for convergence, more than the doubling of the ba
This fact is observed from the stabilization of SZP with r
spect to SZ, which is much larger than for DZ.

Figure 2 shows that an atomic basis at the DZP le
requires ten times less functions than its~energetically!
equivalent PW basis, being Si the easiest system for PW

FIG. 2. Convergence of NAO basis sets for bulk Si.~a! Cohe-
sive curve for different basis sets. The lowest curve shows the
results, filled symbols the NAO bases of this work (opt), and open
symbols the NAO bases following Ref. 19. Basis labels are like
Table II. ~b! Comparison of NAO convergence with PW conve
gence. In parentheses is the number of basis functions per ato

al
1-5
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For other systems the ratio is much larger, as shown
Table III.

It is important to stress that deviations smaller than
ones due to the pseudopotential or the DFT used are obta
with a relatively modest basis size as DZP. This fact is cl

TABLE III. Equivalent PW cutoff (Ecut) to optimal DZP bases
for different systems. Comparison of number of basis functions
atom for both bases. For the molecules, a cubic unit cell of 10 Å
side was used.

System No. funct. DZP No. funct. PW Ecut ~Ry!

H2 5 11296 34
O2 13 45442 86
Si 13 227 22
Diamond 13 284 59
a-quartz 13 923 76

TABLE IV. Basis comparisons for different solids.a, B, andEc

stand for lattice parameter~in Å!, bulk modulus~in GPa!, and co-
hesive energy~in eV!, respectively.

Exp LAPW Other PW PW DZP

Au a 4.08a 4.05b 4.07c 4.05 4.07
B 173a 198b 190c 191 188
Ec 3.81a - - 4.19 4.03

MgO a 4.21d 4.26e - 4.10 4.11
B 152d 147e - 168 167
Ec 10.30d 10.40e - 11.90 11.87

C a 3.57a 3.54f 3.54g 3.53 3.54
B 442

a
470f 436g 466 453

Ec 7.37a 10.13f 8.96g 8.90 8.81
Si a 5.43a 5.41h 5.38g 5.38 5.40

B 99a 96h 94g 96 97
Ec 4.63a 5.28h 5.34g 5.37 5.31

Na a 4.23a 4.05i 3.98g 3.95 3.98
B 6.9a 9.2i 8.7g 8.8 9.2
Ec 1.11a 1.44j 1.28g 1.22 1.22

Cu a 3.60a 3.52b 3.56g - 3.57
B 138a 192b 172g - 165
Ec 3.50a 4.29k 4.24g - 4.37

Pb a 4.95a - 4.88 - 4.88
B 43a - 54 - 64
Ec 2.04a - 3.77 - 3.51

aC. Kittel, Ref. 42.
bA. Khein, D. J. Singh, and C. J. Umrigar, Ref. 43.
cB. D. Yu and M. Scheffler, Ref. 44.
dF. Finocchi, J. Goniakowski, and C. Noguera, Ref. 40.
eJ. Goniakowski and C. Noguera, Ref. 45.
fN. A. W. Holzwarthet al., Ref. 46.
gM. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Ref. 47
hC. Filippi, D. J. Singh, and C. J. Umrigar, Ref. 41.
iJ. P. Perdewet al., Ref. 48.
jM. Sigalaset al., Ref. 49.
kP. H. T. Philipsen and E. J. Baerends, Ref. 50.
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in Table II for Si, and in Table IV for other systems. Table I
summarizes the cohesion results for a variety of solids
different chemical kind. They are obtained with optimal DZ
basis sets. It can be observed that DZP offers results in g
agreement with converged-basis numbers, showing the
vergence of properties other than the total energy. The de
tions are similar or smaller than those introduced by LDA
by the pseudopotential.47

VI. TRANSFERABILITY

To what extent do optimal bases keep their performa
when transferred to different systems than the ones they w
optimized for? This is an important question, since if t
performance does not suffer significantly, one can hope
tabulate basis sets per species, to be used for whatever
tem. If the transferability is not satisfactory, a new basis
should then be obtained variationally for each system to
studied. Of course the transferability increases with ba
size, since the basis has more flexibility to adapt to differ
environments. In this work we limit ourselves to try it o
DZP bases for a few representative systems.

Satisfactory transferability has been obtained when che
ing in MgO the basis set optimized for Mg bulk and O in
water molecule. Similarly, the basis for O has been teste
H2O and O2, and the basis for C in graphite and diamon

r
f

TABLE V. Transferability of basis sets. ‘‘Transf.’’ stands for th
DZP basis transferred from other systems, while ‘‘Opt.’’ refers
the DZP basis optimized for the particular system. For MgO
basis was transferred from bulk Mg and an H2O molecule, for
graphite the basis was transferred from diamond, and for H2O it
was taken from H2 and O2 . a, B, andEc stand for lattice parameter
bulk modulus, and cohesive energy, respectively.DE stands for the
energy difference per atom between graphite and a graphene p
Eb is the binding energy of the molecule.

System Basis Properties

MgO a ~Å! B ~GPa! Ec ~eV!

Transf. 4.13 157 11.81
Opt. 4.10 167 11.87
PW 4.10 168 11.90

Expt. 4.21 152 10.30
Graphite a ~Å! c ~Å! DE ~meV!

Transf. 2.456 6.50 38
PWa 2.457 6.72 24

Expt.b 2.456 6.674 23c

H2O dO-H ~Å! uH-O-H ~deg! Eb ~eV!

Transf. 0.975 105.0 12.73
Opt. 0.972 104.5 12.94
PW 0.967 105.1 13.10

LAPWd 0.968 103.9 11.05
Expt.e 0.958 104.5 10.08

aM. C. Schabel and J. L. Martins, Ref. 51.
bY. Baskin and L. Mayer, Ref. 52.
cL. A. Girifalco and R. A. Ladd, Ref. 53.
dP. Serena, A. Baratoff, and J. M. Soler, Ref. 54.
eG. Herzberg, Ref. 55.
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Again, the results show deviations due to the basis that
smaller than the errors introduced by the pseudopoten
and/or the DFT functional. The results are shown in Table

Table VI shows the results for the structural parameter
SiO2 in its a-quartz structure. The DZP numbers have be
obtained for a basis that was optimized not fora-quartz it-
self, but for bulk silicon for the Si basis and for the wat
molecule for the O basis. SiO2 was chosen because its bein
quite sensitive to many approximations and in particular
the basis set. It was hard to converge for previous N
schemes,19 giving61 typically longer Si-O bonds~with devia-
tions of around 1.5% and smaller unit cells~deviations of
around 1.5 and 2% for thea andc parameters, respectively!.
The results of Table VI are very satisfactory, showing~i! the
good performance of NAO’s,~ii ! their transferability in this
case, and~iii ! the improvement of the basis sets propos
here over previous bases.

VII. LIMITING THE RANGE

In this work we have concentrated on variationally op
mized basis sets, allowing the cutoff radii for the differe
orbitals to vary freely, as long as the orbitals remain
strictly localized. This was done in the spirit of exploring th
capabilities of the NAO basis sets. Some orbitals deman
reasonably short values ofr c , others chose long ranges. A
mentioned earlier, the range of the orbitals is important
the efficiency in the calculations. Therefore further work w

TABLE VI. Performance of the basis of Si and O as optimiz
in c-Si and in a water molecule, respectively, for the structu
parameters ofa-quartz.

Expt.a PWb PWc PWd PWe DZP

a ~Å! 4.92 4.84 4.89 4.81 4.88 4.85
c ~Å! 5.41 5.41 5.38 5.32 5.40 5.38
dSi-O

1 ~Å! 1.605 1.611 1.60 1.605 1.611
dSi-O

2 ~Å! 1.614 1.617 1.60 1.605 1.611
aSi-O-Si ~deg! 143.7 140.2 139.0 140.0

aL. Levien, C. T. Prewitt, and D. J. Weidner, Ref. 56.
bD. R. Hamann, Ref. 57.
cP. Sautet~unpublished! using ultrasoft pseudopotentials, Ref. 58
dG.-M. Rignaneseet al., Ref. 59.
eF. Liu et al., using ultrasoft pseudopotentials~Ref. 60!.

TABLE VII. Tightening the confinement of the basis i
a-quartz.

r c
Si ~a.u.! r c

O ~a.u.! a c dSi-O
1 dSi-O

2 aSi-O-Si

s p d s p d ~Å! ~Å! ~Å! ~Å! ~deg!

8.0 8.0 8.0 8.0 8.0 8.0 4.85 5.38 1.611 1.612 140
6.0 6.0 6.0 8.0 8.0 8.0 4.85 5.35 1.607 1.608 140
6.0 6.0 6.0 5.0 5.0 5.0 4.74 5.29 1.610 1.610 134
6.0 6.0 6.0 4.5 4.5 4.5 4.69 5.26 1.610 1.610 132
6.0 6.0 6.0 5.0 6.5 4.0 4.84 5.36 1.607 1.608 139
5.6 6.3 4.2 4.0 5.3 2.8 4.81 5.34 1.607 1.610 138
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be very important to explore the possibility of enforcin
smaller ranges in reasonably balanced ways and its effec
the convergence. A systematic study in this direction will
subject of future work, we have limited ourselves here
illustrate the nature of the problem in the particular exam
of a-quartz.

The basis has been optimized as before~Si in bulk Si and
O in H2O), but imposing now tighterr c’s. The results are
summarized in Table VII. The constraining of Si orbitals
6.0 a.u. affects the geometry only slightly, whilst the contra
tion of the O orbitals to 5.0 a.u. implies a substantial co
traction of the cell due to the decrease of Si-O-Si angle ra
than the shortening of the Si-O bond. Note that, from
atomic perspective, the confinement of Si to 6 a.u. is tigh
than the 5 a.u. confinement of O.

Allowing for different r c’s for the different channels we
observe that the shrinking of the cell is avoided keeping
long p orbital for O, the s and d remaining comparably
shorter, indicating the~expected19! different ‘‘compressibili-
ties’’ of the different orbitals.

As a candidate of unifying criterion, we tested a simp
way of definingr c for each channel: Given an optimal orbit
c(r ) as obtained from the unconstrained minimization,
tighter r c is chosen such thatc(r c)50.01 a.u.23/2. With the
r c’s of all channels and species obtained in this manner,
basis is reoptimized keeping theser c’s fixed. Even though
the energy raise is appreciable~about 70 meV per atom!, the
geometry retains an acceptable accuracy, the orbitals b
quite short, thus allowing quite efficient calculations. Furth
work is, however, needed to explore in detail this and ot
possibilities.

VIII. CONCLUSIONS

The variational optimization of NAO basis sets for diffe
ent systems allows us to draw the following conclusions.~i!
The performance of NAO basis sets of modest size as DZ
very satisfactory for the systems tried. For this basis size,
errors due to the basis are comparable or smaller than
errors due to the pseudopotential and LDA.~ii ! The bases
obtained here represent a substantial improvement over
vious NAO basis sets. In particular, the optimization in co
densed systems offers better and more efficient bases
purely atomic schemes.~iii ! The radial shapes of the orbita
obtained as proposed in this work offer better bases t
previous schemes from a variational point of view, albeit n
a substantial difference is obtained.~iv! The elimination of
the discontinuity in the derivative, while retaining strict lo
calization and leaving the core region untouched as in
work and in Ref. 16 gives bases of better quality from t
point of view of the energy, its derivatives, and compu
tional efficiency. ~v! The bases obtained showed enou
transferability to expect that a basis tabulation would be u
ful, and that the optimization of the basis for each particu
system will not be necessary. Finally,~vi! the selective sen-
sitivity to orbital-range tightening has been shown, maki
clear the need of further work systematically to control t
cutoff radii for improving efficiency without loss of accu
racy.

l
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