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Numerical atomic orbitals for linear-scaling calculations
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The performance of basis sets made of numerical atomic orbitals is explored in density-functional calcula-
tions of solids and molecules. With the aim of optimizing basis quality while maintaining strict localization of
the orbitals, as needed for linear-scaling calculations, several schemes have been tried. The best performance
is obtained for the basis sets generated according to a new scheme presented here, a flexibilization of previous
proposals. Strict localization is maintained while ensuring the continuity of the basis-function derivative at the
cutoff radius. The basis sets are tested versus converged plane-wave calculations on a significant variety of
systems, including covalent, ionic, and metallic. Satisfactory convergence is obtained for reasonably small
basis sizes, with a clear improvement over previous schemes. The transferability of the obtained basis sets is
tested in several cases and it is found to be satisfactory as well.
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I. INTRODUCTION Numerical atomic orbital§NAQ’s) are more flexible in
this respect. Different ideas have been proposed in the litera-
In order to make intelligent use of the increasing power ofture, originally within tight-binding contexts concentrating
computers for the first-principles simulation of ever largeron minimal (single {) bases. They are obtained by finding
and more complex systems, it is important to develop andhe eigenfunctions of the isolated atoms confined within
tune linear-scaling methods, where the computational loagpherical potential wells of different shapds®®or directly
scales only linearly with the number of atoms in the simula-modifying the eigenfunctions of the atorffsThese schemes
tion cell. The present status of these methods and their agjive strictly localized orbitals, i.e., orbitals that are strictly
plications can be found in several revielvs.Essential for  zero beyond given cutoff radii,. A first extension towards
linear scaling is locality, and basis sets made of localizednore complete basis sets was proposed using the excited
wave functions represent a very sensible basis choice. It istates of the confined atorhSbut the quite delocalized char-
not only the scaling that matters, however, the prefactor beacter of many excited states made this approach inefficient
ing also im.po_rt'ant for practical calculations. The .prefactorumess very stringent confinement potentials were ¢&ed.
depends significantly on two aspects of the bagisthe For multiple £, a better scheme was proposed based on

number .Of baSI_s functions per atom, ol the size of the the split-valence idea of quantum chemistry? but adapted
localization regions of these functions. to strictly localized NAO's:® In the same work, a systematic
Atomic orbitals offer efficient basis sets since, even y ' - » a Systen
ay was proposed to generate polarization orbitals suited for

though their localization ranges are larger than those of som

other method$4 the number of basis functions needed is usylnese basis sets. The scheme of Ref. 19 has proven to be

ally quite small. The price to pay for this efficiency is the quite efficient, systemat.ic, and reasonable for a large variety
lack of systematics for convergence. Unlike with Of Systems(for short reviews, see Refs. 19 and)20
plane-wave or real-space-grfirelated methods, there is no !N this work we go beyond previous methodologies be-
unique way of increasing the size of the basis, and the rate ¢rause of two main reasor) It is always desirable to obtain
convergence depends on the way the basis is enlarged. THRRe highest possible accuracy given the computational re-
fact poses no fundamental difficulties, it just means thasources available, and) it is important to know and show
some effort is needed in the preparation of unbiased basihat is the degree of convergence attainable by NAO basis
sets, in analogy to the extra work required to prepare pseudsets of reasonable sizes.
potentials to describe the effect of core electrons. We explore these issues by variationally optimizing basis
Maximum efficiency is achieved by choosing atomic or- sets for a variety of condensed systems. The parameters de-
bitals that allow convergence with small localization rangedfining the orbitals are allowed to vary freely to minimize the
and few orbitals. It is a challenge again comparable to thetotal energy of these systems. This energy is then compared
one faced by the pseudopotential community, where transfewith that of converged plane-wave calculations for exactly
ability and softness are soughtFor atomic wave functions the same systems, including same density functional and
the optimization freedom is in the radial shape. Gaussianpseudopotentials. The optimal basis sets are then tested
type orbitals have been proposed for linear scdlifcon-  monitoring structural, and elastic properties of the systems.
necting with the tradition of quantum chemistiy*? These The transferability of the basis sets optimized for particu-
bases are, however, quite rigid for the mentioned optimizalar systems is then checked by transferring them to other
tion, imposing either many Gaussians or large localizatiorsystems and testing the same energetical, structural, and elas-
ranges. tic parameters. Finally, the effect of localizing the orbitals
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tighter than what they variationally choose is explored on aorbital by a cutting function. We describe in the following
demanding system. three main features of a basis set of atomic orbitals: size,
range, and radial shape.

Il. METHOD
) ) A. Size: Number of orbitals per atom
The calculations presented below were all done using

density-functional theoR}??(DFT) in its local-density® ap-
proximation(LDA). Core electrons were replaced by norm-
conserving pseudopotentiais their fully separable form?
The nonlocal partial-core exchange-correlation correétion

was included for Cu to improve the description of the core
P P single{ (also called minimalbasis setSZ in the following

valence interactions. ; , :
Periodic boundary conditions were used for all systems!@S One single radial function per angular momentum chan-
el, and only for those angular momenta with substantial

Molecules were treated in a supercell scheme allowind'

enough empty space between molecules to make interm&€ctronic population in the valence of the free atom.
lecular interactions negligible. For solid systems, integra-, adial flexibilization is obtained by adding a second func-

tions over the Brillouin zone were replaced by convergedi©n Per channel: doublé (DZ). Several schemes have been
sums over selectekl sets?® proposed to generate this second function. In quantum chem-

Thus far t roximations are exactly the same for thiStY: the spiit valencé!®® scheme is widely used: starting
us ar the approximations are exactly tné same 10 ~from the expansion in Gaussians of one atomic orbital, the
two different sets of calculations performed in this work:

based on NAO's and on plane-wavéW's). The calcula- most contracted Gaussians are used to define the first orbital

tions using NAO's were performed with thesTa method of the double{ and the most extended ones for the second.
' Another proposal defines the secofidis the derivative of
described elsewhef&?’ Besides the basis itself, the only prop 0

qditional S ith PW's is th | the first one with respect to occupatidnFor strictly local-
additional approximation with respect to S Is the replaces, oy fynctions there was a first propdgabf using the ex-
ment of some integrals in real space by sums in a finit

&ited states of the confined atoms, but it would work only for
three-dimensional3D) real-space grid, controlled by one y

indl h f for the gAdhi ﬁ tight confinement. An extension of the split valence idea of
single parameter, the energy cutoft for the grid.nis cutoff, uantum chemistry to strictly localized NAO’s was proposed
which refers t.o the fineness of the grid, was cqnverged for aIn Ref. 19 and has been used quite successfully in a variety
systems studied he(@00 Ry for all except for Siand fifor ¢ 5y stems. It consists of suplementing each basis orbital
which 80 an_d 100 Ry respectively, were usegimilarly, the with a new basis function that reproduces exactly the tail of
PW calculations were done for converged PW cutfffs.

. . X _.._the original orbital from a given matching radiug, out-
Cohesive curves for the SO".ds were qbtamed by fittingy ards. The inner part goes smoothly towards the origin as
calculated energy values for different unit-cell volumes tor'(a—brz) wherea andb are chosen to ensure continuity of
C%“?'C' quartic, and Mqrnaghan—ll%curves, a procedure he function and its derivative af,. We follow this scheme
giving values to the lattice parameter, the bulk modulus an this work, which generalizes to multiplé trivially by
the cohesive energy of each system. The bulk moduli give%dd- ' - ;
N4 . ng more functions generated with the same procedure.
by the Murnaghan and quatrtic fits deviate from each other by g unet g " P .

; Angular flexibility is obtained by adding shells of higher
0,
around 3%, th_e Murnaghan values be.|ng the lowest and th ngular momentum. Ways to generate these so-called polar-
ones shown in the tables. The deviations between Mur:

o ization orbitals have been described in the literature, both for
naghan and cubic fits are of the order of 7%. The othe aussiand12and for NAO's™® In this work, however, they

cohesive parameters do not change appreciably with the fitgy, e optained variationally, as the rest, within the flexibili-
The atomic-energy reference for the cohesive energy w

taken from the atomic calculations within the same DFT an
pseudopotentials, always converged in the basis set. They are
hence the same reference for NAO’s and for PW'’s, the dif-
ference in cohesive energies between the two accounting for Strictly localized orbital§zero beyond a cutoff radiuare

the difference in the total energy of the solid. The isolated-used in order to obtain sparse Hamiltonian and overlap ma-

Following the nomenclature of quantum chemistry, we es-
tablish a hierarchy of basis sets, from singléo multiple ¢

with polarization and diffuse orbitals, covering from quick
calculations of low quality to highly converged ones, as con-
verged as the finest calculations in quantum chemistry. A

es described below.

B. Range: Cutoff radii of orbitals

atom calculations included spin polarization. trices for linear scaling. The traditional alternative to this is
based on neglecting interactions when they fall below a tol-
IIl. BASIS OF NUMERICAL ATOMIC ORBITALS erance or when the atoms are beyond some scope of neigh-

bors. For long ranges or low tolerances both schemes are
The starting point of the atomic orbitals that conform theessentially equivalent. They differ in their behavior at shorter
basis sets used here is the solution of Kohn-Sham’s Hamilranges, where the strict-localization approach has the advan-
tonian for the isolated pseudoatoms, solved in a radial gridtage of remaining in the Hilbert space spanned by the basis,
with the same approximations as for the solid or moleculeemaining variational, and avoiding numerical instabilities
(the same exchange-correlation functional and pseudopotene matter how short the range becomes.
tial). A strict localization of the basis functions is ensured For the bases made of strictly localized orbitals, the prob-
either by imposing a boundary condition, by adding a condem is finding a balanced and systematic way of defining all
fining (divergen} potential, or by multiplying the free-atom the different cutoff radii, since both the accuracy and the
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computational efficiency in the calculations depend on them. | | |
A scheme was proposEtin which all radii were defined by

one single parameter, the energy shift, i.e., the energy rais: - === Fre_e atom
suffered by the orbital when confined. In this work, however, 0.3 —— This work
we step back from that systematic approach and allow the |  §f ~ % = =.=. Sankey

cutoff radii to vary freely in the optimization procedufep
to a maximum value of 8 a.u.

C. Shape — 0.2
Within the pseudopotential framework it is important to Na)
keep the consistency between the pseudopotential and th}
form of the pseudoatomic orbitals in the core region. This is
done by using as basis orbitals the solutions of the same
pseudopotential in the free atom. The shape of the orbitals a 0.1
larger radii depends on the cutoff radi(see aboveand on :
the way the localization is enforced. The first propbsased
an infinite square-well potentialsee Fig. 1 It has been
widely and successfully used for minimal bases withinahe
initio tight-binding scheme of Sankey and collaboratbus-
ing the FIREBALL program, but also for more flexible bases | I

using the methodology cSIESTA 30 I I I

This scheme has the disadvantage, however, of generatin,— " (_'rc—'rz-) []
orbitals with a discontinuous derivative gt as seen in Fig. > This work r—r;
1. This discontinuity is more pronounced for smatigs and ef‘/ Te—T

tends to disappear for long enough values of this cutoff. It e
does remain, however, appreciable for sensible values of ..3
for those orbitals that would be very wide in the free atom. It 20
is surprising how small an effect such a kink produces in the Sankey r*®° — >
total energy of condensed systefsge below. It is, never- (b)
theless, a problem for forces and stresses, especially if the
are calculated using @oarse finite three-dimensional grid.
Another problem of this scheme is related to its defining
the basis considering the free atoms. Free atoms can prese
extremely extended orbitals, their extension being, beside:
problematic, of no practical use for the calculation in con- ¢
densed systems: the electrons far away from the atom can b
described by the basis functions of other atoms.
Both problems can be addressed simultaneously by add A —
ing a soft confinement potential to the atomic Hamiltonian 1 3 5 7
used to generate the basis orbitals: it smooths the kink ant
contracts the orbital as variationally suited. Two soft confine- r (a.u.)
ment potentials have been proposed in the literatiig 1),
both of the formV(r)=V", one forn=2 (Ref. 14 and the FIG. 1. Shape of the Sorbital of Mg in MgO for the different
other for n=6.1° They present their own inconveniences, confinement schemes) and corresponding potentials).
however. First, there is no radius at which the orbitals be-
come strictly zero, they have to be neglected at some point. An alternative scheme to avoid the kink has also been
Second, these confinement potentials affect the core regigproposed?® Instead of modifying the potential, it directly
spoiling its adaptation to the pseudopotential. modifies the orbitals of the atom. Following ideas of previ-
This last problem affects a more traditional scheme a®us mixed-basis schentéghe atomic orbital is multiplied
well, namely, the one based on the radial scaling of the orby 1— exg —a(r—ry?] for r<r. and zero otherwis® In
bitals by suitable scale factors. In addition to very basicRef. 16 it is the hard confined wave function which is then
bonding argument? it is soundly based on restoring virial's modified, while in Ref. 37 it is the free atom wave function.
theorem for finite bases, in the case of Coulombic potential¥Ve follow Ref. 37. This method is tested in the next section.
(all-electron calculations™ The pseudopotentials limit its This scheme does provide strict localization beyogdbut
applicability, allowing only for extremely small deviations introduces a different problem: for large and smallr. a
from unity (~1%) in the scale factors obtained variationally bump appears in the orbital close ttg, which becomes a
(with the exception of hydrogen that can contract up todiscontinuity in the wave function in the limit of infinite
25%).34 (Ref. 37 (this is not the case in Ref. 16
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In this work we propose a new soft confinement potential TABLE I. Comparison of different confinement schemes on the
avoiding the mentioned deficiencies. It is shown in Fig. 1. Itcohesive properties of MgO, for SZ and DZP basis sets. The gen-
is flat (zerg in the core region, starts off at some internal eralization of the different schemes to DZP is done as explained in
radiusr; with all derivatives continuous, and divergesrat the text. Unconfined refers to using the unconfined pseudoatomic

ensuring the strict localization there. It is orbitals as basisa, B and E; stand for_Iattice parameter, buII§
modulus, and cohesive energy, respectively. The PW calculations
e (emr/(r=ri) were performed with identical approximations as the NAO ones
V(r):VoT- .Y except for the basis. Experimental values were taken from Ref. 40.
In the following the different schemes are compared, their sz DZP
defining parameters being allowed to change variationally. gasis a B E, a B E.
Finally, the shape of an orbital is also changed by the,.heme A ©GPa (V) ((RA) (GPa (eV)

ionic character of the atom. Orbitals in cations tend to shrink,
and they swell in anions. Introducing 8Q in the basis- Unconfined  4.25 119 6.49

generating free-atom calculations gives orbitals betteSankey 4.17 222 10.89 4.12 165 11.82
adapted to ionic situations in the condensed systems. Elsaesser 416 228 11.12 412 163  11.84
Porezag 4.18 196 11.17  4.09 183 11.83

IV. OPTIMIZATION PROCEDURE Horsfield 4.15 221 11.26 4.11 168 11.86

_ o This work 415 226 11.32 410 167  11.87
Given a system and a basis size, the range and shape of

the orbitals are defined by a set of parameters as describeg, 410 168  11.90
above. The parameters are described in the following. Peﬂ__cxpt 421 152 103
atomic species there is a glob#D, an extra chargéositive
or negative added to the atom at the time of solving the
atomic DFT problem for obtaining the basis orbitdee is certainly the case at the DZP level, not so much for mini-
below). ' - mal bases. See the section on transferability below.
Confinement IS |_mposed separ_ately for each angular mo- (iii ) The previous two steps are built in as a function into
mentum shell, with its corresponding parameters that depeng minimization algorithm. As a robust and simple minimiza-

on the scheme used. Hard conflnement |mpl!es one parangy,, method not requiring the evaluation of derivatives, we
eter per shell (), and our soft conflnement lmplle§ three have chosen the downhill simplex methidwe have not
(LC' i andV,). One par%g]eter\(o) is needed only In the  yedicated special efforts to maximizing the efficiency of the
r-confinement schemé;%', and two parameters in the nininization procedure since the systems used for basis op-
scheme of Elsaesset al.™ (r and the width of the cutting iz ation typically involve a small number of atoms and the
function. Finally, for each{ beyond the first, there is & (4(51.energy calculations are quick. The possible improve-
matching radius as mentioned abdve. _ . ment in the minimization efficiency is therefore of no rel-
The_values of these. parameters are defined variationallg,,once to the present study.
according to the following procedure: . We have no argument to discard the existence of several
(i) Given a set of parameters, the Kohn-Sham Hamily,05| minima in the energy function. For the systems studied
tonian (including the pseudopotentjals solved for the iSo-  here there may be sets of parameters giving better bases than
lated atom, in the presence of the confining potential and thg,e ones we obtain. We systematically tested their robustness
extra_chargesQ. (In the case of the scheme of Elsaesseryy restarting new simplex optimizations from the already

etal,” there is no confining potential, but @nposteriori  ,nimized sets. More systematic searches for absolute
modification of the solution wave functiondhis is done for  inima. however. would require much more expensive tech-

all the relevanﬂ shells of_ all the different ato_mic species. niques, which would not be justified at this point. We have
The multiple zetas are built from the former using the matchyy, 5 satisfied ourselves with the ones obtained, that show
ing procedure described abo’s{(’e,according to thern’s  good and consistent convergence characteristics. The values
within the set of parameters. This procedure gives a basis Sghained for the parameters in the optimizations described

for each set of parameter values. o below can be obtained from the authdts.
(i) Given the basis set, a full DFT calculation is per-

formed of the system for which the basis is to be optimized,

normally a condensed system, solid or molecule. The Kohn- V. RESULTS
Sham total energy of this system becomes then a function of
that set of parameters. Note that neither the extra charge nor
the confinement potentials are added to the Kohn-Sham Table | shows the performance for MgO of the different
Hamiltonian of the system, they were just used to define thechemes described above for constructing localized atomic
basis. The total-energy calculations are performed for givewrbitals. The basis sets of both magnesium and oxygen were
structural parameters of the studied system. We have choseariationally optimized for all the schemes. Mg was chosen
to work with experimental structures. This choice is, how-because the Sorbital is very extended in the atom and both
ever, of no great importance since the basis sets are supposi kink and the confinement effects due to other orbitals are
to be transferable enough to render any bias negligible. Thigery pronounced. Results are shown for a(Siigles andp

A. Comparison of different confinement schemes
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TABLE II. Basis comparisons for bulk Sa, B, andE stand for T
lattice parametetin A), bulk modulus(in GP3, and cohesive en-
ergy (in eV), respectively. SZ, DZ, and TZ stand for single
double, and triple{. P stands for polarized, DP for doubly polar-
ized. LAPW results were taken from Ref. 41, and the experlmental> 1.5
values from Ref. 42.

\./ o SZ
> r e SZopt b
Sz Dz Tz SzP DzP TZP TZDP PW LAPW Expt. 58 20z
o 10k e
a 552 549 548 543 540 539 539 538 541 5435 o Dobopr
B 8 87 8 97 97 97 97 96 96 988 — | a1
E. 470 483 485 521 531 532 534 537 528 4.63 % o TZDP
= O0S5F v TZDP opt
x PW
-- Minima
+« Minima opt

channels for both specieand a DZP basi¢doubles andp
channels plus a singlé channel. Figure 1 shows the shape 0.0+ [ | | | |
of the optimal 3 qrpltal for thg different schemes, and the 50 55 52 56 53 6.0
shape of the confining potentials. ) o

The following conclusions can be drawn from the results: Lattice Constant (A)
(i) Within the variational freedom offered here, the &bital 250
of Mg wants to be confined to a radius of around 6.5 bohr,
irrespective of scheme, which is extremely short for the free
atom. This confinement produces a pronounced kink in the = 2.00—
hard scheme(ii) The total energy is relatively insensitive to L
the scheme used to generate the basis orbitals, as long
there is effective confinemertii) The basis made of uncon-
fined atomic orbitals is substantially worse than any of the
others.(iv) The pronounced kink obtained in Sankey’s hard
confinement scheme is not substantially affecting the total
energy as compared with the other schemes. It does perturl
however, by introducing inconvenient noise in the energy  0.50 —
variation with volume and other external parameters, anc
especially in the derivatives of the enerdgy) The scheme | |
proposed in this work is variationally slightly better than the %00 s 3575756725 30 335 —=PW cutoff Ry)
other ones, but not significantly. Its main advantage is the (25 (71) (130) (201) (280) (369) (464) —=PW basis size
avoidance of known problems. In the remainder of the paper,
the confinement proposed in this work will be used unless.
otherwise specified.

DZ (8)

TZ (12
a2 DZP (13) B

TZP (17)

Energy (eV)
T

SzP (9) TZDP (22)

FIG. 2. Convergence of NAO basis sets for bulk @)j. Cohe-
sive curve for different basis sets. The lowest curve shows the PW
results, filled symbols the NAO bases of this wod¢gt), and open
symbols the NAO bases following Ref. 19. Basis labels are like in
B. Basis convergence Table II. (b) Comparison of NAO convergence with PW conver-

- ence. In parentheses is the number of basis functions per atom.
Table Il shows how NAO bases converge for bulk silicon.® P P

This is done by comparing different basis sizes, each of them
optimized. The results are compared to conver(@iRy)  tions. To illustrate this point, Fig.(B) compares the energy
PW results(converged basis limitkeeping the rest of the convergence for PW’s and for NAO's. Even though the con-
calculation identical. Figure(8) shows the cohesion curves vergence of NAO results ia priori not systematic with the
for this system. way the basis is enlarged, the sequence of bases presented in
Even though the main point of this work is testing the the figure shows a nice convergence of total energy with
convergence of NAO basis sets independently of other isrespect to basis sizghe number of basis functions per atom
sues, we consider it interesting to gauge the relevance of there shown in parentheses in the figutee convergence rate
errors introduced by the basis by comparing them with otheirs similar to the one of PW'DZP has three times more
typical errors that appear in these calculations. The NAO andrbitals than SZ, and a similar factor is found for their
PW results are thus compared to all-electron LDAre8ltss  equivalents in PW} For the particular case of Si, Fig. 2
compare basis errors with the ones produced by the pseudshows that the polarization orbitals d 3hel) are very im-
potentials. Experiment gives then reference to the error coportant for convergence, more than the doubling of the basis.
mitted by the underlying LDA. This fact is observed from the stabilization of SZP with re-
The comparisons above are made with respect to thepect to SZ, which is much larger than for DZ.
converged-basis limit, for which we used PW's up to very Figure 2 shows that an atomic basis at the DZP level
high cutoffs. It is important to distinguish this limit from the requires ten times less functions than (@nergetically
PW calculations at lower cutoffs, as used in many computaequivalent PW basis, being Si the easiest system for PW’s.
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TABLE Ill. Equivalent PW cutoff E,) to optimal DZP bases TABLE V. Transferability of basis sets. “Transf.” stands for the
for different systems. Comparison of number of basis functions peDZP basis transferred from other systems, while “Opt.” refers to
atom for both bases. For the molecules, a cubic unit cell of 10 A othe DZP basis optimized for the particular system. For MgO the

side was used. basis was transferred from bulk Mg and a4 molecule, for
graphite the basis was transferred from diamond, and @ H
System No. funct. DZP No. funct. PW E (Ry) was taken from Hand Q. a, B, andE stand for lattice parameter,

bulk modulus, and cohesive energy, respectivaly. stands for the

H, 5 11296 34 energy difference per atom between graphite and a graphene plane.
0, 13 45442 86 E, is the binding energy of the molecule.
Si 13 227 22
Diamond 13 284 59 System Basis Properties
a-quartz 13 923 76
MgO a(A) B (GPa E. (eV)
Transf. 4.13 157 11.81
Opt. 4.10 167 11.87

For other systems the ratio is much larger, as shown in

PW 4.10 168 11.90
Table 111
It is important to stress that deviations smaller than the _ Expt. 421 152 10.30
ones due to the pseudopotential or the DFT used are obtain&JaPhite a(A) cA) AE (meV)
with a relatively modest basis size as DZP. This fact is clear Transf. 2.456 6.50 38
PWA 2.457 6.72 24
b
TABLE IV. Basis comparisons for different solida, B, andE, Expt. 2456 6.674 23
stand for lattice parametéin A), bulk modulus(in GPa, and co- H,0 don (A)  Biom (deg Ep (eV)
hesive energyin eV), respectively. Transf. 0.975 105.0 12.73
Opt. 0.972 104.5 12.94
Exp LAPW Other PW PW  DZP PW 0.967 105.1 13.10
LAPWY  0.968 103.9 11.05
Au a 4.08 4.09 4.0F 4.05 4.07 Expt® 0.958 104.5 10.08
B 173 198 19¢° 191 188
E. 38F - - 419  4.03 3. C. Schabel and J. L. Martins, Ref. 51.
MgO a 420 4.26 - 4.10 411 by, Baskin and L. Mayer, Ref. 52.
B 157 147 - 168 167 °L. A. Girifalco and R. A. Ladd, Ref. 53.
E. 1030 10.4C - 11.90 11.87 9P Serena, A. Baratoff, and J. M. Soler, Ref. 54.
C a 357 3.54 3.54 3.53 3.54 G. Herzberg, Ref. 55.
B 447 47d 43¢ 466 453
E. 7.37 1013 8.9¢ 8.90 8.81 in Table Il for Si, and in Table IV for other systems. Table IV
Si a 54% 547 53¢ 538  5.40 summarizes the cohesion results for a variety of solids of
B 9P 9g" 949 96 97 different chemical kind. They are obtained with optimal DZP
E. 463 528 534 537 531 basis sets. It can be observed t_hat DZP offers res_ults in good
Na a 423 4.08 3.08 3.95 3.08 agreement with con_verged-ba5|s numbers, showing the con-
B 6.9 97 8.7 8.8 9.2 vergence qf propemes other than the tptal energy. The devia-
£ 117 144 128 122 122 tions are similar or smaller than those introduced by LDA or
¢ ' ' ' ' ' by the pseudopotentiél.
Cu a 360 352 3.5¢ - 3.57
B 138 192 1728 - 165
E, 350 4.2 428 ) 4.37 VI. TRANSFERABILITY
Pb a 498 - 4.88 - 4.88 To what extent do optimal bases keep their performance
B 43 - 54 - 64 when transferred to different systems than the ones they were
E. 204 - 3.77 - 3.51 optimized for? This is an important question, since if the
performance does not suffer significantly, one can hope to
&C. Kittel, Ref. 42. tabulate basis sets per species, to be used for whatever sys-
bA. Khein, D. J. Singh, and C. J. Umrigar, Ref. 43. tem. If the transferability is not satisfactory, a new basis set
°B. D. Yu and M. Scheffler, Ref. 44. should then be obtained variationally for each system to be
9F. Finocchi, J. Goniakowski, and C. Noguera, Ref. 40. studied. Of course the transferability increases with basis
€J. Goniakowski and C. Noguera, Ref. 45. size, since the basis has more flexibility to adapt to different
N. A. W. Holzwarthet al., Ref. 46. environments. In this work we limit ourselves to try it on
9M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Ref. 47. DZP bases for a few representative systems.
"C. Filippi, D. J. Singh, and C. J. Umrigar, Ref. 41. Satisfactory transferability has been obtained when check-
'J. P. Perdevet al, Ref. 48. ing in MgO the basis set optimized for Mg bulk and O in a
IM. Sigalaset al, Ref. 49. water molecule. Similarly, the basis for O has been tested in
kP, H. T. Philipsen and E. J. Baerends, Ref. 50. H,O and G, and the basis for C in graphite and diamond.
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TABLE VI. Performance of the basis of Si and O as optimizedbe very important to explore the possibility of enforcing
in ¢-Si and in a water molecule, respectively, for the structuralsmaller ranges in reasonably balanced ways and its effect on

parameters ofr-quartz. the convergence. A systematic study in this direction will be
- subject of future work, we have limited ourselves here to
Expt® PW  PW  PW PW DZzP illustrate the nature of the problem in the particular example
a(A) 492 484 489 481 483 485 Of wquatz. - . .
¢ (A) 541 541 538 532 540 538 The basis has been optimized as bef@#ein bulk Si and
Lo A) 1605 1.611 160 1.605 1611 O in HZQ), b_ut imposing now t|ghterc_s_. The re_sults_ are
5 summarized in Table VII. The constraining of Si orbitals to
dsio (A) lei4 leir 160  1.605 L6116 5 au. affects the geometry only slightly, whilst the contrac-
asios (deg  143.7  140.2 139.0 140.0 :

tion of the O orbitals to 5.0 a.u. implies a substantial con-
traction of the cell due to the decrease of Si-O-Si angle rather
than the shortening of the Si-O bond. Note that, from an
atomic perspective, the confinement of Si to 6 a.u. is tighter
than the 5 a.u. confinement of O.

Allowing for different r.'s for the different channels we
observe that the shrinking of the cell is avoided keeping a

Again, the results show deviations due to the basis that arlong p orbital for O, thes and d remaining comparably

smaller than the errors introduced by the pseudopotential%ag,ftg;'t;]nedgi?fg?gntthgfé?aﬁgteﬁe) different “compressibili-
and/or the DFT functional. The results are shown in Table V. i

Table VI shows the results for the structural parameters o\];v aAsofa dgﬁﬂﬁ:df‘t?ofgzgmﬂgnﬂgf r(lsoi\r/‘ér\:v;ntf)s'{tier?]aall osrlkr)?tglle
SiO, in its a-quartz structure. The DZP numbers have bee y e ' P

n . ; T
. . L . r) as obtained from the unconstrained minimization, a
obtained for a basis that was optimized not fequartz it- l.ﬂ( . _ 3 ar ’
self, but for bulk silicon for the Si basis and for the watert'ghterrc Is chosen such thak(r)=0.01 a.u.”" With the

molecule for the O basis. SjQvas chosen because its being lr:);iigfiznrggatri]r?]?zlse;nkigpi?\ Clet?]gsb;zlrf]iigén é@;nﬂagzeﬁ the
quite sensitive to many approximations and in particular tq P ping J 9

the basis set. It was hard to converge for previous NAOthe Energy raise 1S appreciatishout 70 meV per atomthe .
schemeg? giving® typically longer Si-O bondwith devia- geometry retains an accept_able accuracy, the_orbltals being
tions of éround 1.5% and smaller unit celeviations of quite short, thus allowing quite efficient calculations. Further

around 1.5 and 2% for the andc parameters, respectively work_ is.’. however, needed to explore in detall this and other
The results of Table VI are very satisfactory, showinghe possibilities.

good performance of NAQ'Sji) their transferability in this

case, andiii) the improvement of the basis sets proposed VIIl. CONCLUSIONS

here over previous bases.

4. Levien, C. T. Prewitt, and D. J. Weidner, Ref. 56.

bD. R. Hamann, Ref. 57.

°P. Sautetunpublishedl using ultrasoft pseudopotentials, Ref. 58.
9G.-M. Rignaneset al, Ref. 59.

€F. Liu et al, using ultrasoft pseudopotentigRef. 60.

The variational optimization of NAO basis sets for differ-
ent systems allows us to draw the following conclusidns.
VIl LIMITING THE RANGE The performance of NAO basis sets of modest size as DZP is

In this work we have concentrated on variationally opti- very satisfactory for the systems tried. For this basis size, the
mized basis sets, allowing the cutoff radii for the different&T0rs due to the basis are comparable or smaller than the
orbitals to vary freely, as long as the orbitals remained/T0rs due to the pseudopotential and LDA) The bases
strictly localized. This was done in the spirit of exploring the OPtained here represent a substantial improvement over pre-

capabilities of the NAO basis sets. Some orbitals demande§foUS NAO basis sets. In particular, the optimization in con-
reasonably short values of , others chose long ranges. As densed systems offers better and more efficient bases than

mentioned earlier, the range of the orbitals is important foPurely atomic schemesii) The radial shapes of the orbitals

the efficiency in the calculations. Therefore further work will ©Ptained as proposed in this work offer better bases than
previous schemes from a variational point of view, albeit not

a substantial difference is obtaingd@) The elimination of
the discontinuity in the derivative, while retaining strict lo-
calization and leaving the core region untouched as in this

rS (@.u) rO (a.u) a ¢ di, dd, asos WOTkandin Ref. 16 gives bases of better quality from the
s p d s p d®A& A A @A) (deg pomt of view of the energy, its derlv'atlves, and computa-
tional efficiency. (v) The bases obtained showed enough
8.0 80 80 80 80 80 4.85 538 1611 1.612 140.0 transferability to expect that a basis tabulation would be use-
6.0 6.0 6.0 80 80 80 485 535 1.607 1.608 140.0 ful, and that the optimization of the basis for each particular
6.0 6.0 6.0 50 50 50 4.74 529 1.610 1.610 134.0 system will not be necessary. Finallyj) the selective sen-
6.0 6.0 6.0 45 45 45 469 526 1.610 1.610 132.0 sitivity to orbital-range tightening has been shown, making
6.0 6.0 6.0 50 6.5 4.0 4.84 536 1.607 1.608 139.7 clear the need of further work systematically to control the
56 63 42 40 53 2.8 481 534 1.607 1.610 138.2 cutoff radii for improving efficiency without loss of accu-
racy.

TABLE VII. Tightening the confinement of the basis in
a-quartz.
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