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Mott-Hubbard transition in infinite dimensions
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We analyze the unanalytical structure of metal-insulator trans{ii ) in infinite dimensions. A multiple-
valued structure in Green’s function and other thermodynamical quantities with respect to the interaction
strengthU are observed at low temperatures by introducing a transformation into the dynamical mean-field
equation of Hubbard model. A complete description of stable, metastable, and unstable phases is established in
the regimeU .1 (T) <U<U,(T). The Maxwell construction is performed to evaluate the MIT lsie(T). We
show how the first-order MIT dt* (T) for T>0 evolves into the second-order onelht(0) for T=0. The
phase diagram near MIT is presented.
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[. INTRODUCTION haviors of the system under external influences. Tradition-
ally, the first-order nature of MIT is disclosed from the hys-
The Mott-Hubbard metal-insulator transitioMIT) is one  teresis or discontinuity in some relevant physical quantities
of the classic topics in strongly correlated electronwith respect toU. In this way, the unanalytical feature of
systems:3 The one-band Hubbard model is thought to bethese quantities is not displayed, and the Maxwell construc-
the minimum one such that the main features of the MIT ardion cannot be performed explicitly to produce the MIT line
grasped. Early studies by Hubbard, and Brinkman and Ric¥*(T). Hence the MIT deserves further study in this direc-
explain very well the high and low energy behaviors of thetion. In this paper, a trans_format_lon is introduced to th_e
local single-particle spectrum, respectivélin recent years, DMFT self-co_n5|stent equ:cmon to investigate th(_a unanalyti-
the transition between a Fermi-liquid phase and an insulatin§@! Structure in the Green's function, local density of states
phase is extensively studied in the framework of dynamica 09 a_nd double_ occupation probability in termsaf I_:or
mean-field theory(DMFT),>® by utilizing many methods eachU in the regimeU q,(T) <U<U,(T), three solutions

. ) . 2 arise: stable, metastable, and unstable non-Fermi-liquid me-
such as iterative perturbation thedif?T),” quantum Monte . . o
e 10 : o tallic solutions. The Maxwell construction is performed to
Carlo (QMC) calculation} exact diagonalization

(ED) 12 projective self-consistent techniq@@SCT = and produce the MIT lineU*(T). The second-order MIT at

ical lizati thitd® Bel i =T, is found to persist at a metastable level in the low
numerical renorma‘ization group methot.=below a ciit- e mperature limit. When temperature approaches zero, the
cal temperaturel,® a paramagneti¢PM) metallic phase

‘ - i ¢ first-order transition atU*(T) evolves into second-order
and a PM InSiJgéllgllil?g pha%féc_oeXISt in the regime&Jcy(T)  ond® at U_,(0). Finally an ED phase diagram of MIT is
<U <Uc,(T), ™ 'whereU is the on-site Coulomb repul- presented.
sion, andU.;(T) andU,(T) are boundaries of the coexist-
ence regime at temperatufe WhenU increases, the metal-
lic phase characterized by a finite density of spectrum at the
Fermi level disappears discontinuously @g,(T). On the We start with the single-band Hubbard model at half-
other hand, the insulating phase in the latderegime is filling for the PM solution:
destroyed abruptly whebl decreases tt;(T).1° Between
U.1(T) and U(T) lies a first-order MIT lineU*(T), at
which the free energies of the two coexisting phases are H=—t<2
equal’®’ At the critical temperaturd, both U (T) and
U.(T) equal toU. and a second-order transition occurs. The notations are conventional. A semicircular bare density
Above T, whenU increases, the system changes from me-of states is usedd (&) = (2/7W?) VW?— 2, andW=1.0 is
tallic into insulating phase through crossovet’ At zero  taken as the energy unit. To introduce our method, denote a
temperature, it is found that the metallic phase has a lowethermodynamical quantity bQ. For a specific temperature,
energy in the coexisting regime. The MIT occurs @t the formal dependence @ on the on-site interactiok is
=U,(0) in such a way that the energy difference betweerwritten asQ=fo(U). We consider the analogy between MIT
the two coexisting solutions disappears quadratically, i.e.and conventional liquid—gas transition, which was put for-
Ey—Egy ~[Ue(0)—UJEE ward by Castellanet al?° In this analogyU corresponds to
Despite the enormous efforts on this problem, there is ndhe pressurd® as the driving force of phase transition, and
complete description for the stable, metastable, and unstabl@=(n;n ) corresponds to the inverse density This anal-
phases. These phases always appear near the first-oraegy is helpful for us to understand the characters of RIIf.
phase transition and are important for understanding the behe mean-field treatment of MIT, unanalyticity of thermody-

Il. MODEL AND METHOD

ciT(,c,-(,JrEi unin;, . (1)
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namical quantities versud should appear in a similar way
as that appears in the isothetwns=v (P) of van der Waals

equation. In this way, we realize that for an appropriate quan-

tity Q, the functionfy(U) should be continuous, but may
have “Z"- or “ S"-shaped structure. Now we focus on the
Green'’s function at an imaginary time As an example, we
chooseQ=G(B/2). A discontinuous jump irG(8/2) was
observed when we directly swept alobgaxis. In order to
avoid such discontinuity, instead of directly calculating
G(B/2)=1fg(2)(VU) for eachU, we try to find a solution of
G(B/2) for the transformed self-consistent equation,

G(BI12)=TgptU—NA-G(B/2)]}, 2

where the parametefsand\ are assigned such th@t( 5/2)
is single valued with respect ttJ even if the function
fo(pz)(U) has a Z"- or “ S’-shaped structure. Existence of

such an unanalytical structure is strongly indicated by the

discontinuity of G(8/2). After the new equation is solved,
the original functional dependend®(3/2)=fgg2)(U’) is
recovered by plotting the self-consistent solutiG{3/2)
versus the argumerl)’ =U—A[A—G(B/2)]. In practice,
Eq. (2) is combined with the DMFT self-consistent equations
by iterative calculation. For fixed, A, and\, in each itera-
tion, we first calculateU’'=U—-N[A—G(B/2)], where
G(B/2) is taken from previous iteration. Take the chemical
potential u=U'/2 to realize the constraint of half-filling.
ThenU’ is used to replacel in the conventional algorithfn

to proceed with the calculation in this iterati¢or from ini-
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FIG. 1. (8 U-dependence of minus imaginary-time Green's
function —G(7) at 7= /2, obtained usingNs=5 (squar¢ and
Ns=6 (dot). (b) The three coexisting solutions of Green’s function
on Matsubara frequency axis, obtained ustkg=6 at U=2.47.

tialization). At the end, besides the new set of parameters foBoth figures are foll =0.01, and the thin lines are for guiding eyes.

the effective single-impurity Anderson model, a n&§3/2)

is also produced. Both of them are used in next iteratibn.
varies with iteration until the Green’s function converges.
Then both Eq(2) and the DMFT equations will be fulfilled.

No additional computational effort is needed in implement-

Inset of (&) —G(7) versus—G(B/2) asU varies (Ns=6). From
top to bottom,r= /32, B/16, B/8, BlA.

T=0.01, the results evaluated by ED technique of five and
six sites are very well consistent. We find that our results are

ing our scheme. After the convergence is reached, otheéndependent of sufficiently largk, the value ofA, or the

guantities, such a&(7) for a generalr, the double occu-
pancy(n;n ), and the local DOS at the Fermi surfaeg0),

initial seeding of iteration. We ploG(7) versusG(B/2) as
shown in the inset of Fig.(&). The analytical behaviors of

can be calculated from the converged Green’s functiorthese curves appear clearly that for eaeh[0,8], G(7) is

G(iw,) and U’. The whole functional dependenc®
=fo(U") can be obtained by sweeping in Eq. (2). This

unanalytical in terms of). Moreover, the coexistence bound-
aries of G(7) have the same values irrespective 0fThe

modified self-consistency scheme was used in the study dfourier transformatiois (i w,) as well as all other quantities
phase separation in double-exchange systémibis method  will have the same boundary of coexistence, if only they
is also effective to reveal the unanalyticity in MIT, and the depend on the Green’s functions analytically. So, the bound-
final results are essentially independent of the selectioh of aries of coexistenct,(T) andU,(T) are well defined in
and\ if only |\| is large enough to “stretch” the curve. In MIT.
this paper, the finite-temperature ED technique is used to In Fig. 1(b), three coexisting solutions of the Matsubara
implement the above scherfleThis technique, originally Green’s function aT =0.01 andU =2.47 are presented. The
proposed by Caffarel and Krauthusesy? fit to obtain new upper and the lower curves are similar with those from
parameters of the effective Anderson impurity model in theQMC21° One is metallic-like (squares and the other is
iteration process. insulating-like (up triangles. A new metallic-like solution
(dotg is found between them. At finite temperatures, this
newly discovered solution has the highest free energy among
the threes and is unstable. In this paper, we do not intend to
quest for the highest numerical precision, but focus on the
gualitative features of the Mott-Hubbard transition and its
temperature evolution. All our results in the following are
obtained usindNs=6 (Ns is the number of sitgs

The minus imaginary-time Green’s functionG(r) at 7

Ill. RESULTS AND DISCUSSION

The minus imaginary-time Green’s function &t B/2 is
plotted versudJ in Fig. 1(a) for T=0.01, which is lower than
the critical temperaturd .. It is shown that—G(B/2)=
—fs(p2)(U) is indeed continuous with aZ”-shaped struc-
ture. Three solutions d&(B/2) coexist in an extent df}. At
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08 ———TT T T T T T T T curves. Within our numerical precision, the three kinds of
. ; curves produce the same value of critical poldt ( T.) and
0.06 F (a) the same boundaries of coexistence regimed foif .. This

is consistent with our conclusion that the unanalytical struc-
ture is universal for all thermodynamical quantities. The

[ 0.04 . critical temperaturd ; and interactiorlJ; are thus estimated
< to beT,~0.025,U.~2.34, which agree quite well with that
Q@ 6.8 s ] obtained from QMC:T,=0.026+0.003, U.=2.38+0.028
At the critical point, all three quantities have divergent slopes
with respective tdJ. From Figs. 2a)—2(c), the boundaries of
0.00 - coexistence regimé.4(T) andU,(T) are easily obtained,
0.12 = in contrast to previous approachi8s>1’
The double occupancl is of special thermodynamical
0.10 | significance. The free energy can be evaluated by integrating
along theD-U lines in Fig. Zb):
0.08 -
u
O gl F(U,T)zF(O,T)—i—f D(U',T)dU'. )
. 0
0.04 - In Fig. 2(b), D—U curves have similar unanalytical behavior
with v—P isotherms of van der Waals equation. BT,
002F . the curves ofD-U are similar with those from IP? and

QMC 28 The Mott critical point U, T,) was studied in de-
tail by QMC® and Landau theory of phase transitfomt 0
<T<Tc, three solutions coexist in a regime arouugd. We
compare free energies of the three solutions for a fteshd
find that the phase with intermediae has the highest free
energy. For the metalliéwith largestD) and the insulating
(with smallestD) phases, their free energies cross at the
point U=U*(T), i.e., Fy(U*, T)=F,(U*,T). We solved
this equation numerically to determitg* (T). As U passes
by U* from below, a stable metallic phadeéFy(U,T)
<F;(U,T)] transits into a stable insulating phase
[Fi(UT)<Fu(U,T)] (see Fig. 3 This transition is accom-
panied with a finite jumpAD of the double occupanc,
which is determined by the Maxwell construction line as
FIG. 2. (a) U-dependence of-G(pB/2) at T=0.04, 0.025,  shown in Fig. 2b). Hence the MIT at finite temperatures is

0.015, and 0.005(From top to bottom on the left-hand siléb)  jgentiied as a generic first-order phase transition. TAt
and (c) Double occupancyD [in (b)] and DOS at Fermi surface 1 _“jt js interesting that there is a discontinuous jump in

p(0) [in (c)] versusU at T=0.04(squarep 0.025(down triangles th _ . .
) e - e slope of theD—U curve atU=U_(T). At this point,
0.015 (dotg, and 0.005(up triangle$. Thin lines are for guiding aF/aUED is continuous buBZF/&UZS(al)D/(?U is dizcon-

eyes. The thick vertical line ifb) shows Maxwell construction for tinuous. It means that the transition is of second order. This
T=0.005. In smallU regime, the minor deviation of(0) at T . oL " "
—0.005 from 24W originates from the finite-size effect. singularity is directly evolved from that of the critical point
(U.,T,) as temperature decreases. It turns out that the
=2, the double occupandy=(n;n ) and the local DOS second-order MIT al =T, does not disappear in the regime
at Fermi surface(0) are plotted versubl for several tem- T<T., but persists to the absolute zero temperature at a
peratures in Figs. (3), 2(b), and Zc), respectively. In Fig. metastable level. This feature of MIT is not unigue among
2(a), — G(B/2) decreases monotonously whgnncreases at the first-order phase transitions. In the double-exchange
T=0.04. As the temperature decreases, it decays more rapodel for manganites, a similar feature was observed in the
idly in the intermediateJ regime. AtT=0.025, a singular isotherm of charge density versus chemical potentiak
point arises all = 2.34 where the slope diverges. Below this (see Fig. 2 in Ref. 21 There, when the phase separation
temperature, the curve is still continuous, but has dalso a typical first-order phase transitidretween paramag-
“Z"-shaped structure. With decreasing temperature, thenetic (PM) and ferromagnetidFM) phases appears at
curve is compressed alongG(B/2) axis and the coexisting <T,, the second-order PM—FM transition persists at the
regime extends along tHe axis. This leads to a more pro- metastable level down to zero temperature.
nounced multiple-valued structure. We do not find slowing Now we discuss the phenomenon of critical slowing
down of this tendency as temperature is lowered dowfi to down. In a previous QMC study of MI¥ the critical slow-
=0.0025. Similar temperature evolution behaviors are alséng down in the convergence of iteration was observed near
observed inD—U [Fig. 2(b)] and p(0)—U [Fig. 2c)] the boundaries of coexistence regime, and it was used as the
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0.04 i XKoo x I : stable metal, metastable insulator
I1: stable insulator, metastable metal
I+IL: unstable non-Fermi-liquid metal .
- q FIG. 3. Phase diagram of Mott-Hubbard tran-
0.03 |- X==X

sition obtained from ED method. The squares and
crosses mark out the coexistence boundaries and
the MIT line U*(T), respectively. Thin lines are
eye-guiding lines. Crosses with horizontal dashed
lines aboveT; show the crossover regime. PSCT
(Ref. 13 (circle) and NRG(Ref. 14 (diamond$
results forT=0 are also shown. PM, Pl denote
paramagnetic metal and paramagnetic insulator,
respectively. The properties of phases in drda
andl+Il are noted in the figure.
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PM P

0.01 |

0.00 ] . ] . L . L N
22 23 24 25 26 27 28 29

indicator to determine these boundaries. Such critical slowinteraction and remains its noninteracting valuen2i(), as
ing down arises as one tries to directly calculate the “Z"- required by Luttinger theorem for momentum independent
shaped curve for the first-order phase transition. In our calself-energy. At temperatures abov&, [e.g., the curve for
culations we did not observe the critical slowing down of theT=0.04 in Fig. Zc)], the Fermi-liquid phase in small re-
same kind since what we practically calculated is agime evolves continuously into an insulating phase in large
“stretched” single-valued functionfo[U—A(A—G(B/2)], U regime through a crossover. At temperatures belpwthe
and the coexistence of solutions is removed by the transfolhehavior ofp(0) in the small and large) regime are similar
mation. In contrast, we observed a weak slowing down ofyith previous result&!® In the coexisting regime, the metal-
convergence at the singular point@tU,(T) where the |ic phase atU,, is smoothly connected to the insulating
Slope ofD—U curve is discontinuous. This slowing down is phase at).,; through a non-Fermi-”quid phase_ According to
associated with the metastable second-order phase transitigie integral along theD—-U lines, this non-Fermi-liquid
identified above. Hence it is different from that discussed inphase has the highest free energy. In light of the present
Ref. 10. result, the discontinuity and hysteresis @f0) in Ref. 15

At zero temperature, Rozenbefgnd Moellet® found @ originates from numerical instabilities at the boundaries of
second-order MIT all;=U,(0). Here, we discuss how the the coexisting regime. Physically, such instabilities reflect
first-order MIT at finite temperature evolves into the second+the unstable character of the metastable phases near phase
order one at zero temperature. Figuké)hows that when  poundaries. The metastable second-order transition at
temperature decreases, the linear behavioDelJ curve  y_,(T) is now identified as the transition between metallic
becomes dominant and the intermediate brancib ajoes (p(0)>0) and insulating p(0)~0] phases. When tempera-
closer to the insulating solution. As a result, the first-orderyyre decreases, the intermediate solution p60) moves
transition pointU* (T) moves towards)»(T) according to  gownwards, but there is no obvious tendency that it will
the Maxwell construction. This tendency continues when thf?nerge with the insulating solution gf(0) in the limit T
lowest temperatur@ =0.0025 in this paper is reached. Itis _.g. This is in contrast to th® —U curve as shown in Fig.
anticipated that atT=0, the intermediate branch dd  2(p). From Fig. Zc), we conclude that in the low temperature
merges with the lowest branch and they become degeneraigyit, as U passes by ,(0) from below,D varies continu-
The linear metallid>-U line meets the insulating branch at gysly butp(0) will jump to zero from a finite value as was
U2(0)=U*(0), where the jump oD disappears. Hence the ghserved in NRG studk? Other quantities characterizing the
transition is of second order &t=0, and it is consistent with  M|T such as the quasi-particle weight(Ref. 11 and local
the D-U curves shown in Fig. 34 of Ref. 6. The quadratic spin—spin correlatiodM,(7)M,(0)) (Ref. 17 should have
relation Ey—Eg'~[U(0)—U]* (Ref. 12 is obtained by  similar unanalyticity in terms o).
assuming a strict linedd-U curve atT=0. Here it is worth Based on the analysis of the Green’s function and other
pointing out that the terraecond-ordetransition in this con-  physical quantities, we can determine the phase diagram near
text means that atU*(0), JE/9U is continuous and the MIT. In Fig. 3, two boundaries of the coexistence regime
9E?/3%U is discontinuous, wher‘é=min(E'g,Eg"). Thistran-  meet at a critical pointJ.~2.34, T,~0.025. Above this
sition is special in that metastable state still exists near theoint, the metallic phase in smdll regime evolves into an
transition point at zero temperature. insulating phase in largd regime through a crossover area.

In Fig. 2(c), the local DOS at the Fermi surfag€0) is  Following Ref. 15, theU regime where—dp(0)/dU is
calculated by extrapolating- Im G(iw,)/ 7 to the limit w, larger than its half maximum is regarded as the crossover
—0%. In the smallU regime, p(0) does not change with regime. BelowT., between the two boundary lines three
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phases coexist, i.e., stable, metastable, and unstable phaseéb. technique at finite temperatures, the *“Z"-shaped
Positions and properties of these phases are labeled in Fig. Bwltiple-valued structure of several quantities in term&Jof
The MIT line U*(T) from Maxwell construction resembles is obtained. An unstable non-Fermi-liquid phase as well as
that obtained by Joet all° Compared with the phase dia- the two phases discovered previously are found in the regime
gram of other authors, thel,,(T) line agrees pretty well U (T)<U<U¢,(T). The MIT line U*(T) is obtained by
with NRG resultst® and theU,(T) line lies between that Maxwell construction. The second-order MIT & T, per-
from NRG® and QM studies. Although the lowest tem- sists at the metastable level down to zero temperature, and
perature in the present paperTis- 0.0025, our phase bound- the first-order MIT atU*(T) evolves into second-order one
aries extrapolated to zero temperature is in good consisten@t U,(0) when temperature approaches zero. The method
with the results of NRGRef. 14 and PSCH3 used in this paper should be useful for the study of other
first-order phase transitions.
IV. SUMMARY

In summary, we introduce a transformation into the
DMFT self-consistent equations to study the unanalytical be-
havior of thermodynamical quantities in the Mott-Hubbard  This work was supported by a CRCG of the University of
metal-insulator transition in infinite dimensions. Using theHong Kong and a RGC grant of Hong Kong.
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