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Mott-Hubbard transition in infinite dimensions
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We analyze the unanalytical structure of metal-insulator transition~MIT ! in infinite dimensions. A multiple-
valued structure in Green’s function and other thermodynamical quantities with respect to the interaction
strengthU are observed at low temperatures by introducing a transformation into the dynamical mean-field
equation of Hubbard model. A complete description of stable, metastable, and unstable phases is established in
the regimeUc1(T),U,Uc2(T). The Maxwell construction is performed to evaluate the MIT lineU* (T). We
show how the first-order MIT atU* (T) for T.0 evolves into the second-order one atUc2(0) for T50. The
phase diagram near MIT is presented.
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I. INTRODUCTION

The Mott-Hubbard metal-insulator transition~MIT ! is one
of the classic topics in strongly correlated electr
systems.1–3 The one-band Hubbard model is thought to
the minimum one such that the main features of the MIT
grasped. Early studies by Hubbard, and Brinkman and R
explain very well the high and low energy behaviors of t
local single-particle spectrum, respectively.4 In recent years,
the transition between a Fermi-liquid phase and an insula
phase is extensively studied in the framework of dynam
mean-field theory~DMFT!,5,6 by utilizing many methods
such as iterative perturbation theory~IPT!,7 quantum Monte
Carlo ~QMC! calculation,8–10 exact diagonalization
~ED!,11,12 projective self-consistent technique~PSCT!,13 and
numerical renormalization group method.14,15 Below a criti-
cal temperatureTc ,8 a paramagnetic~PM! metallic phase
and a PM insulating phase16 coexist in the regimeUc1(T)
,U ,Uc2(T),10,15,17whereU is the on-site Coulomb repul
sion, andUc1(T) andUc2(T) are boundaries of the coexis
ence regime at temperatureT. WhenU increases, the metal
lic phase characterized by a finite density of spectrum at
Fermi level disappears discontinuously atUc2(T). On the
other hand, the insulating phase in the largeU regime is
destroyed abruptly whenU decreases toUc1(T).15 Between
Uc1(T) and Uc2(T) lies a first-order MIT lineU* (T), at
which the free energies of the two coexisting phases
equal.10,17 At the critical temperatureTc , both Uc1(T) and
Uc2(T) equal toUc and a second-order transition occu
Above Tc , whenU increases, the system changes from m
tallic into insulating phase through crossover.17,18 At zero
temperature, it is found that the metallic phase has a lo
energy in the coexisting regime. The MIT occurs atU
5Uc2(0) in such a way that the energy difference betwe
the two coexisting solutions disappears quadratically,
Eg

I 2Eg
M;@Uc2(0)2U#2.13

Despite the enormous efforts on this problem, there is
complete description for the stable, metastable, and unst
phases. These phases always appear near the first-
phase transition and are important for understanding the
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haviors of the system under external influences. Traditi
ally, the first-order nature of MIT is disclosed from the hy
teresis or discontinuity in some relevant physical quantit
with respect toU. In this way, the unanalytical feature o
these quantities is not displayed, and the Maxwell constr
tion cannot be performed explicitly to produce the MIT lin
U* (T). Hence the MIT deserves further study in this dire
tion. In this paper, a transformation is introduced to t
DMFT self-consistent equation to investigate the unanal
cal structure in the Green’s function, local density of sta
~DOS! and double occupation probability in terms ofU. For
eachU in the regimeUc1(T),U,Uc2(T), three solutions
arise: stable, metastable, and unstable non-Fermi-liquid
tallic solutions. The Maxwell construction is performed
produce the MIT lineU* (T). The second-order MIT atT
5Tc is found to persist at a metastable level in the lo
temperature limit. When temperature approaches zero,
first-order transition atU* (T) evolves into second-orde
one19 at Uc2(0). Finally an ED phase diagram of MIT is
presented.

II. MODEL AND METHOD

We start with the single-band Hubbard model at ha
filling for the PM solution:

H52t (
^ i , j &s

cis
† cj s1(

i
Uni↑ni↓ . ~1!

The notations are conventional. A semicircular bare den
of states is used:D(«)5(2/pW2)AW22«2, andW51.0 is
taken as the energy unit. To introduce our method, deno
thermodynamical quantity byQ. For a specific temperature
the formal dependence ofQ on the on-site interactionU is
written asQ5 f Q(U). We consider the analogy between MI
and conventional liquid–gas transition, which was put f
ward by Castellaniet al.20 In this analogy,U corresponds to
the pressureP as the driving force of phase transition, an
D5^n↑n↓& corresponds to the inverse densityv. This anal-
ogy is helpful for us to understand the characters of MIT.8 In
the mean-field treatment of MIT, unanalyticity of thermod
©2001 The American Physical Society09-1
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namical quantities versusU should appear in a similar wa
as that appears in the isothermv5v(P) of van der Waals
equation. In this way, we realize that for an appropriate qu
tity Q, the function f Q(U) should be continuous, but ma
have ‘‘Z’’- or ‘‘ S’’-shaped structure. Now we focus on th
Green’s function at an imaginary timet. As an example, we
chooseQ5G(b/2). A discontinuous jump inG(b/2) was
observed when we directly swept alongU axis. In order to
avoid such discontinuity, instead of directly calculatin
G(b/2)5 f G(b/2)(U) for eachU, we try to find a solution of
G(b/2) for the transformed self-consistent equation,

G~b/2!5 f G(b/2)$U2l@A2G~b/2!#%, ~2!

where the parametersA andl are assigned such thatG(b/2)
is single valued with respect toU even if the function
f G(b/2)(U) has a ‘‘Z’’- or ‘‘ S’’-shaped structure. Existence o
such an unanalytical structure is strongly indicated by
discontinuity ofG(b/2). After the new equation is solved
the original functional dependenceG(b/2)5 f G(b/2)(U8) is
recovered by plotting the self-consistent solutionG(b/2)
versus the argumentU85U2l@A2G(b/2)#. In practice,
Eq. ~2! is combined with the DMFT self-consistent equatio
by iterative calculation. For fixedU, A, andl, in each itera-
tion, we first calculateU85U2l@A2G(b/2)#, where
G(b/2) is taken from previous iteration. Take the chemic
potential m5U8/2 to realize the constraint of half-filling
ThenU8 is used to replaceU in the conventional algorithm6

to proceed with the calculation in this iteration~or from ini-
tialization!. At the end, besides the new set of parameters
the effective single-impurity Anderson model, a newG(b/2)
is also produced. Both of them are used in next iteration.U8
varies with iteration until the Green’s function converge
Then both Eq.~2! and the DMFT equations will be fulfilled
No additional computational effort is needed in impleme
ing our scheme. After the convergence is reached, o
quantities, such asG(t) for a generalt, the double occu-
pancy^n↑n↓&, and the local DOS at the Fermi surfacer(0),
can be calculated from the converged Green’s funct
G( ivn) and U8. The whole functional dependenceQ
5 f Q(U8) can be obtained by sweepingU in Eq. ~2!. This
modified self-consistency scheme was used in the stud
phase separation in double-exchange systems.21 This method
is also effective to reveal the unanalyticity in MIT, and th
final results are essentially independent of the selection oA
andl if only ulu is large enough to ‘‘stretch’’ the curve. In
this paper, the finite-temperature ED technique is used
implement the above scheme.22 This technique, originally
proposed by Caffarel and Krauth,11 usesx2 fit to obtain new
parameters of the effective Anderson impurity model in
iteration process.

III. RESULTS AND DISCUSSION

The minus imaginary-time Green’s function att5b/2 is
plotted versusU in Fig. 1~a! for T50.01, which is lower than
the critical temperatureTc . It is shown that2G(b/2)5
2 f G(b/2)(U) is indeed continuous with a ‘‘Z’’-shaped struc-
ture. Three solutions ofG(b/2) coexist in an extent ofU. At
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T50.01, the results evaluated by ED technique of five a
six sites are very well consistent. We find that our results
independent of sufficiently largel, the value ofA, or the
initial seeding of iteration. We plotG(t) versusG(b/2) as
shown in the inset of Fig. 1~a!. The analytical behaviors o
these curves appear clearly that for eachtP@0,b#, G(t) is
unanalytical in terms ofU. Moreover, the coexistence bound
aries of G(t) have the same values irrespective oft. The
Fourier transformationG( ivn) as well as all other quantitie
will have the same boundary of coexistence, if only th
depend on the Green’s functions analytically. So, the bou
aries of coexistenceUc1(T) andUc2(T) are well defined in
MIT.

In Fig. 1~b!, three coexisting solutions of the Matsuba
Green’s function atT50.01 andU52.47 are presented. Th
upper and the lower curves are similar with those fro
QMC.8,10 One is metallic-like ~squares! and the other is
insulating-like ~up triangles!. A new metallic-like solution
~dots! is found between them. At finite temperatures, th
newly discovered solution has the highest free energy am
the threes and is unstable. In this paper, we do not inten
quest for the highest numerical precision, but focus on
qualitative features of the Mott-Hubbard transition and
temperature evolution. All our results in the following a
obtained usingNs56 (Ns is the number of sites!.

The minus imaginary-time Green’s function2G(t) at t

FIG. 1. ~a! U-dependence of minus imaginary-time Green
function 2G(t) at t5b/2, obtained usingNs55 ~square! and
Ns56 ~dot!. ~b! The three coexisting solutions of Green’s functio
on Matsubara frequency axis, obtained usingNs56 at U52.47.
Both figures are forT50.01, and the thin lines are for guiding eye
Inset of ~a! 2G(t) versus2G(b/2) asU varies (Ns56). From
top to bottom,t5b/32, b/16, b/8, b/4.
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5b/2, the double occupancyD5^n↑n↓& and the local DOS
at Fermi surfacer(0) are plotted versusU for several tem-
peratures in Figs. 2~a!, 2~b!, and 2~c!, respectively. In Fig.
2~a!, 2G(b/2) decreases monotonously whenU increases at
T50.04. As the temperature decreases, it decays more
idly in the intermediateU regime. At T50.025, a singular
point arises atU52.34 where the slope diverges. Below th
temperature, the curve is still continuous, but has
‘‘ Z’’-shaped structure. With decreasing temperature,
curve is compressed along2G(b/2) axis and the coexisting
regime extends along theU axis. This leads to a more pro
nounced multiple-valued structure. We do not find slowi
down of this tendency as temperature is lowered down tT
50.0025. Similar temperature evolution behaviors are a
observed inD2U @Fig. 2~b!# and r(0)2U @Fig. 2~c!#

FIG. 2. ~a! U-dependence of2G(b/2) at T50.04, 0.025,
0.015, and 0.005.~From top to bottom on the left-hand side.! ~b!
and ~c! Double occupancyD @in ~b!# and DOS at Fermi surface
r(0) @in ~c!# versusU at T50.04~squares!, 0.025~down triangles!,
0.015 ~dots!, and 0.005~up triangles!. Thin lines are for guiding
eyes. The thick vertical line in~b! shows Maxwell construction for
T50.005. In smallU regime, the minor deviation ofr(0) at T
50.005 from 2/pW originates from the finite-size effect.
23510
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curves. Within our numerical precision, the three kinds
curves produce the same value of critical point (Uc , Tc) and
the same boundaries of coexistence regimes forT,Tc . This
is consistent with our conclusion that the unanalytical str
ture is universal for all thermodynamical quantities. T
critical temperatureTc and interactionUc are thus estimated
to beTc'0.025,Uc'2.34, which agree quite well with tha
obtained from QMC:Tc50.02660.003, Uc52.3860.02.8

At the critical point, all three quantities have divergent slop
with respective toU. From Figs. 2~a!–2~c!, the boundaries of
coexistence regimeUc1(T) andUc2(T) are easily obtained
in contrast to previous approaches.10,15,17

The double occupancyD is of special thermodynamica
significance. The free energy can be evaluated by integra
along theD –U lines in Fig. 2~b!:

F~U,T!5F~0,T!1E
0

U

D~U8,T!dU8. ~3!

In Fig. 2~b!, D2U curves have similar unanalytical behavi
with v –P isotherms of van der Waals equation. AtT>Tc ,
the curves ofD –U are similar with those from IPT23 and
QMC.8 The Mott critical point (Uc , Tc) was studied in de-
tail by QMC8 and Landau theory of phase transition.23 At 0
,T,Tc, three solutions coexist in a regime aroundUc . We
compare free energies of the three solutions for a fixedU and
find that the phase with intermediateD has the highest free
energy. For the metallic~with largestD) and the insulating
~with smallestD) phases, their free energies cross at
point U5U* (T), i.e., FM(U* ,T)5FI(U* ,T). We solved
this equation numerically to determineU* (T). As U passes
by U* from below, a stable metallic phase@FM(U,T)
,FI(U,T)# transits into a stable insulating phas
@FI(U,T),FM(U,T)# ~see Fig. 3!. This transition is accom-
panied with a finite jumpDD of the double occupancyD,
which is determined by the Maxwell construction line
shown in Fig. 2~b!. Hence the MIT at finite temperatures
identified as a generic first-order phase transition. AtT
,Tc , it is interesting that there is a discontinuous jump
the slope of theD2U curve atU5Uc1(T). At this point,
]F/]U5D is continuous but]2F/]U25 ]D/]U is discon-
tinuous. It means that the transition is of second order. T
singularity is directly evolved from that of the critical poin
(Uc ,Tc) as temperature decreases. It turns out that
second-order MIT atT5Tc does not disappear in the regim
T,Tc , but persists to the absolute zero temperature a
metastable level. This feature of MIT is not unique amo
the first-order phase transitions. In the double-excha
model for manganites, a similar feature was observed in
isotherm of charge densityn versus chemical potentialm
~see Fig. 2 in Ref. 21!. There, when the phase separati
~also a typical first-order phase transition! between paramag
netic ~PM! and ferromagnetic~FM! phases appears atT
,Tc , the second-order PM–FM transition persists at
metastable level down to zero temperature.

Now we discuss the phenomenon of critical slowi
down. In a previous QMC study of MIT,10 the critical slow-
ing down in the convergence of iteration was observed n
the boundaries of coexistence regime, and it was used a
9-3
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FIG. 3. Phase diagram of Mott-Hubbard tra
sition obtained from ED method. The squares a
crosses mark out the coexistence boundaries
the MIT line U* (T), respectively. Thin lines are
eye-guiding lines. Crosses with horizontal dash
lines aboveTc show the crossover regime. PSC
~Ref. 13! ~circle! and NRG~Ref. 14! ~diamonds!
results forT50 are also shown. PM, PI denot
paramagnetic metal and paramagnetic insula
respectively. The properties of phases in areaI , II
and I1II are noted in the figure.
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indicator to determine these boundaries. Such critical sl
ing down arises as one tries to directly calculate the ‘‘Z
shaped curve for the first-order phase transition. In our
culations we did not observe the critical slowing down of t
same kind since what we practically calculated is
‘‘stretched’’ single-valued functionf Q@U2l(A2G(b/2)#,
and the coexistence of solutions is removed by the trans
mation. In contrast, we observed a weak slowing down
convergence at the singular point atU5Uc1(T) where the
slope ofD2U curve is discontinuous. This slowing down
associated with the metastable second-order phase tran
identified above. Hence it is different from that discussed
Ref. 10.

At zero temperature, Rozenberg12 and Moeller13 found a
second-order MIT atUc5Uc2(0). Here, we discuss how th
first-order MIT at finite temperature evolves into the seco
order one at zero temperature. Figure 2~b! shows that when
temperature decreases, the linear behavior ofD –U curve
becomes dominant and the intermediate branch ofD goes
closer to the insulating solution. As a result, the first-ord
transition pointU* (T) moves towardsUc2(T) according to
the Maxwell construction. This tendency continues when
lowest temperatureT50.0025 in this paper is reached. It
anticipated that atT50, the intermediate branch ofD
merges with the lowest branch and they become degene
The linear metallicD –U line meets the insulating branch
Uc2(0)5U* (0), where the jump ofD disappears. Hence th
transition is of second order atT50, and it is consistent with
the D –U curves shown in Fig. 34 of Ref. 6. The quadra
relation Eg

I 2Eg
M;@Uc2(0)2U#2 ~Ref. 12! is obtained by

assuming a strict linearD –U curve atT50. Here it is worth
pointing out that the termsecond-ordertransition in this con-
text means that atU* (0), ]E/]U is continuous and
]E2/]2U is discontinuous, whereE5min(Eg

I ,Eg
M). This tran-

sition is special in that metastable state still exists near
transition point at zero temperature.

In Fig. 2~c!, the local DOS at the Fermi surfacer(0) is
calculated by extrapolating2Im G( ivn)/p to the limit vn
→01. In the smallU regime,r(0) does not change with
23510
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interaction and remains its noninteracting value 2/(pW), as
required by Luttinger theorem for momentum independ
self-energy.5 At temperatures aboveTc @e.g., the curve for
T50.04 in Fig. 2~c!#, the Fermi-liquid phase in smallU re-
gime evolves continuously into an insulating phase in la
U regime through a crossover. At temperatures belowTc , the
behavior ofr(0) in the small and largeU regime are similar
with previous results.6,15 In the coexisting regime, the meta
lic phase atUc2 is smoothly connected to the insulatin
phase atUc1 through a non-Fermi-liquid phase. According
the integral along theD –U lines, this non-Fermi-liquid
phase has the highest free energy. In light of the pres
result, the discontinuity and hysteresis ofr(0) in Ref. 15
originates from numerical instabilities at the boundaries
the coexisting regime. Physically, such instabilities refl
the unstable character of the metastable phases near p
boundaries. The metastable second-order transition
Uc1(T) is now identified as the transition between metal
(r(0).0) and insulating@r(0)'0# phases. When tempera
ture decreases, the intermediate solution ofr(0) moves
downwards, but there is no obvious tendency that it w
merge with the insulating solution ofr(0) in the limit T
→0. This is in contrast to theD –U curve as shown in Fig.
2~b!. From Fig. 2~c!, we conclude that in the low temperatu
limit, as U passes byUc2(0) from below,D varies continu-
ously butr(0) will jump to zero from a finite value as wa
observed in NRG study.14 Other quantities characterizing th
MIT such as the quasi-particle weightZ ~Ref. 11! and local
spin–spin correlation̂Mz(t)Mz(0)& ~Ref. 17! should have
similar unanalyticity in terms ofU.

Based on the analysis of the Green’s function and ot
physical quantities, we can determine the phase diagram
the MIT. In Fig. 3, two boundaries of the coexistence regim
meet at a critical pointUc'2.34, Tc'0.025. Above this
point, the metallic phase in smallU regime evolves into an
insulating phase in largeU regime through a crossover are
Following Ref. 15, theU regime where2dr(0)/dU is
larger than its half maximum is regarded as the crosso
regime. BelowTc , between the two boundary lines thre
9-4
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phases coexist, i.e., stable, metastable, and unstable ph
Positions and properties of these phases are labeled in F
The MIT line U* (T) from Maxwell construction resemble
that obtained by Jooet al.10 Compared with the phase dia
gram of other authors, theUc2(T) line agrees pretty well
with NRG results,15 and theUc1(T) line lies between that
from NRG15 and QMC10 studies. Although the lowest tem
perature in the present paper isT50.0025, our phase bound
aries extrapolated to zero temperature is in good consiste
with the results of NRG~Ref. 14! and PSCT.13

IV. SUMMARY

In summary, we introduce a transformation into t
DMFT self-consistent equations to study the unanalytical
havior of thermodynamical quantities in the Mott-Hubba
metal-insulator transition in infinite dimensions. Using t
ev

B

er

23510
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ED technique at finite temperatures, the ‘‘Z’’-shap
multiple-valued structure of several quantities in terms oU
is obtained. An unstable non-Fermi-liquid phase as wel
the two phases discovered previously are found in the reg
Uc1(T),U,Uc2(T). The MIT line U* (T) is obtained by
Maxwell construction. The second-order MIT atT5Tc per-
sists at the metastable level down to zero temperature,
the first-order MIT atU* (T) evolves into second-order on
at Uc2(0) when temperature approaches zero. The me
used in this paper should be useful for the study of ot
first-order phase transitions.
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