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Diagrammatic self-energy approximations and the total particle number

Arno Schindimay* P. Garca-Gonzéez? and R. W. Godby
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradaywe@ 414195 Berlin-Dahlem, Germany
’Departamento de Bica Fundamental, Universidad Nacional de EducacioDistancia, Apartado 60141, 28080 Madrid, Spain
3Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
(Received 17 May 2001; published 19 November 2001

There is increasing interest in many-body perturbation theory as a practical tool for the calculation of
ground-state properties. As a consequence, unambiguous sum rules such as the conservation of particle number
under the influence of the Coulomb interaction have acquired an importance that did not exist for calculations
of excited-state properties. In this paper we obtain a rigorous, simple relation whose fulfilment guarantees
particle-number conservation in a given diagrammatic self-energy approximation. H&g\Wg approxima-
tion does not satisfy this relation and hence violates the particle-number sum rule. Very precise calculations for
the homogeneous electron gas and a model inhomogeneous electron system allow the extent of the noncon-
servation to be estimated.
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[. INTRODUCTION self-energy satisfying all of these relations can be repre-
sented as the derivativE= 5®/5G of a generating func-
Many-body perturbation theory is a powerful method for tional ®, and that in this case the Green function obtained
studying interacting electron systems, because the partigkelf-consistently from Dyson’s equatidnmoreover yields
summation of self-energy diagrams allows an efficient andhe exact particle number. In particular, this applies to the
systematically converging description of the dominant scatfully self-consistentGW approximation, in which both the
tering mechanismb.In solid-state physics, Hedin§&W  Green functionG and the screened Coulomb interactidh
approximatiofi includes dynamic screening in the random-are dressed by self-energy insertions in accordance with a
phase approximation and has been applied with great successlf-consistent solution of Dyson’s equatibhHowever, it
to a large range of materialswhile calculations have long has since become clear tihtderivability is a sufficient but
focused on electronic excitations, such as band structdres, not a necessary requirement for the fulfilment of the particle-
that are not normally accessible by variational mean-fielchumber sum rule. For instance, the partially self-consistent
schemes, there is now increasing interest in using many-bodgW, approximation, in which only the Green function is
perturbation theory also to obtain ground-state properties likepdated self-consistently but the screened Coulomb interac-
the charge densityor the total energly *°in order to circum-  tion remains undressed, i@t & derivable but nevertheless
vent well-known limitations of standard approximations in produces the exact particle numB&ron the other hand,
density-functional theory* Unlike the calculation of excited without self-consistency even in the Green function, the par-
states, which are given immediately by the pole structure oficle number is not, in general, given correctlybut this
the spectral function, this generally requires a multidimen-computationally efficientG,W, approach still remains the
sional integration over the hole part of the Green function, apreferred method for most practical applications.
in Galitskii and Migdal's expression for the total enefgAs More complicated self-energy expressions like the cumu-
a consequence, sum rules that could hitherto be ignored havant expansioff or the T matrix'® have already been success-
gained new prominence. The most important of these is theully applied to solids, leading to an improved description of
conservation of particle number, i.e., the requirement that thegatellite resonances. Like th&W approximation, these
integral schemes are typically implemented without full self-
L consistency and are hence mtderivable. In order to avoid
_ 3 R expensive numerical tests in such situations, it would be de-
N= 2mi E(T: j d rf do Golr,rw)e™” @ sirable to have clear diagrammatic criteria for the fulfilment
of the particle-number sum rule that could be checheuti-
over the diagonal elements of the Green functi®requals  ori without actual calculations.
the true number of electrons. Hevedenotes the spin vari- Unfortunately, Baym’s proof, which is based on Lutting-
able and is a positive infinitesimal that forces the fre- er’s examination of the exact thedfyand determines the
guency contour to be closed across the upper complex halfolume of the Fermi sea directly, cannot easily be extended,
plane. because it relies explicitly on the existence of the generating
In a seminal paper Baym and Kadartdfhvestigated the functional®. We therefore take a different approach by de-
evolution of nonequilibrium Green functions and derived ascribing the switching on of the Coulomb potential as a time-
set of symmetry relations for diagrammatic many-body ap-dependent process that connects the noninteracting and the
proximations that guarantee the overall conservation of pareorresponding interacting electron system on a finite time
ticle number, total energy, and momentum under time-scale. In this way we can examine the differential conserva-
dependent external perturbations. Ba§hater showed thata tion laws and deduce a diagrammatic symmetry relation for
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particle-number conservatiobefore taking the adiabatic \yjth “Sezoé(w,_oo). At this stage the Gell-Mann and Low
limit. The theoretical framework is developed in Sec. Il. Thetheorem! asserts that it is, in general, permissible to take the
non-self-consistertsW, approximation, which violates this - adjabatic limite— 0. However, in the following we continue
symmetry relation and does not conserve the particle numbgp perform a time-dependent perturbation analysis for finite
when the interaction is switched on, deserves special atterpg only take the adiabatic limit after establishing the con-
tion owing to its pre-eminent role in practical implementa- servation criteria that apply during the transition. The time-
tions. In Sec. Ill we therefore present very precise numericabrdered products in E¢5) may be evaluated in the usual
calculations of the particle number for the homogeneousyay by invoking Wick's theorend? because the exponentials
electron gas and a model inhomogeneous system in order fge scalar functions and commute with the field operators.
assess the quantitative deviation. Finally, in Sec. IV we sumgence the perturbative treatment generates the standard se-
marize our conclusions. Atomic units are used throughout. ries of connected and topologically distinct Feynman
diagrams’® made up of the noninteracting Green functi®g
[l. PARTICLE-NUMBER CONSERVATION and the two-body Coulomb potential, but the latter now ac-

i i _quires an additional prefactor and is given by
In order to connect the interacting electron system with

the corresponding noninteracting system, whose properties
are supposedly known exactly, we consider the Hamiltonian (xx') e el
v(x,x")=
r=r]

S(t—t"). (6)
ﬂ(t):H0+e_€‘t|H1. (2)

i - . N The formal identity of the perturbation expansion in the
The one-body parti, contains the kinetic energy as well as time-dependent and the adiabatic, time-independent case is a

the external potentia¥e,;, and the Coulomb interactioi;  .ycial result that forms the basis of our discussion in this

is switched on exponentially wite>0. At large times, both g ction.

in the past and in the future, the Hamiltonian reducesl §p For an analysis of the conservation properties we now

which constitutes a solvable problem. The noninteractingollow Ref. 13 and write the perturbation series as

Green functionG, is readily constructed from the solutions

of the single-particle Schdinger equation and yields the

correct number of particles. On the other hand{-ad the f Go (X, x1)G(xq,X)dXq

full Coulomb interaction is effective, and the Green function

is defined as

=6(x—x')—iJ (X, X1) Go(X, X1 ;X , X1 )dXq,

IR UICOTACIEY @ @

(V[w) |

G(x,x")=

where the shorthand notatior= (r,o,t) indicates a set of invoking the two-particle Green functidd,. The superscript
spatial, spin, and temporal coordinatgéd;) denotes the x* indicates that a positive infinitesimal is added to the time
ground-state wave function of the interacting electron systervariable to ensure the proper ordering. An equivalent form is
in the Heisenberg picture, aridis Wick’s time-ordering op-  the adjoint equation of motion

erator that rearranges the subsequent symbols in ascending

order from right to left with a sign change for every pair

commutation. Furthermore)'(x’') and ¢(x) represent the f G(x,X1)Gg H(x1,x")dx,

electron creation and annihilation operator in the Heisenberg

picture, respectively. o - ,

The unknown many-body wave functionl) evolves =5(X—X )_'f Ga(X, X1 ;X" X Jo (X", Xg)dX; .
from the noninteracting ground staté ;) and can formally 8
be expressed d¥)=U0(0,—=)|¥,), wheré ®)

(=) . The inverse noninteracting Green function is identical to the

OJt,t)=2, | f dt;- - f dt, e~ e(ltal+ - +ItD) operator

v=0 V: t t

- ...H g 1

><T[Hl(tl) Hl(tv)] (4) Gal(x,xr): |ﬁ+§V2—Vext(r))5(X_X')
represents the time-development operator. With this defini-
tion the Green function may be rewritten as J 1

=| i RV Vet | axx), (9)
s AWlTIS A0 P (x)][Wo)
G(x,x")=—i - (5)
(PolSW¥o) so that after substracting E(B) from Eq. (7) we obtain
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| ST e S
E*—; +§(V+V ) (V=V")|G(x,x") @ T = ,
3——4
=TV -V NG ' A _
[Vex(1) Ve 1) 1G(X,X') i 6= 2+:>C*:E:
Xf [U(X,Xl)_U(X'yxl)]Gz(X,Xlixl,XI)dxl- AW = e o O\/VV\:

(10
When we sek’=x", the terms on the right-hand side can- B ﬁ&
cel, while the left-hand side reduces to the differential con- (b) £ = 2

servation law for the particle number

3———4
G,= + X + 2
on(r,t) | ——2

+V-.j(r,H)=0 (12)

at
: . . AW = ==---- + -ee-- ©\/\/\/y
with the electron densitg(r,t)=—i=_G(x,x") and current

j(rt)==—33,[(V=V")G(x,x")]x—x+. Thus whenever

Egs.(7) and(8) are satisfied simultaneously, the total particle s = i’&
number is conserved while the interaction is switched on. © ) 2

This does not depend on the value efand, in particular, w1
remains true in the adiabatic limit, which can now be taken, G,= + X + g
turning G into the equilibrium Green function of the inter- |—2

acting electron system. . FIG. 1. Diagrammatic representation of the self-energy
By multiplying Egs.(7) and(8) with G from the left and s (x, x,) and the corresponding two-particle Green function

right, respectively,' and then subtracting one from the otheer(lexa;lele) in (a) the fully self-consistentGW approxima-
their mutual consistency can be stated in the more conveion, (b) the partially self-consistenW, approximation, andc)

nient form, the non-self-consister@®,W, approximation.
oyl oyt derived from Dyson’s equation. The diagrammatic represen-
J GOX2)v (X0 %) GalXa X XXy )y X, tation of 3 is shown in Fig. 1a). The corresponding two-
particle Green function is obtained by comparing Dyson’s
:f Go(X, X1 X2, X7 ) (X0,X1) G (X2, X" ) Xq dXp, equation with the equation of motiaiT), which yields the
identity
(12
that may easily be verified by visual inspection of a given —if v (X,X1) Ga(X,X1; X, X7 )dXg

diagrammatic approximation for the two-particle Green
function. Evidently it is the same criterion as derived by
Baym and Kadanoff for particle-number conservation un-
der time-dependent external perturbations. This is no coinci-
; ; ; (14
dence, of course, because the termwise cancellation of dia-
grams on the right-hand side of E@10) is of purely  whereVy(x)=—ifv(x,X1)G(X1,X; )dx, indicates the Har-
topological origin and does not depend on the mathematicatee potential. The two-particle Green function correspond-
properties of the constituent propagators. Hence it is inconing to theGW approximation for the self-energy is also dis-
sequential whether, as in Refs. 13 and G}, contains a played in Fig. 1a). It is easily seen that it satisfies the
time-dependent perturbation while the interaction is constanéymmetry relatior{12), which is essentially a horizontal left-
or, as in the physical situation considered here, the noninteright symmetry for the building blocks of,, and hence
acting Green function is invariant under temporal translaconserves the total particle number when the Coulomb inter-
tions while the Coulomb potential instead acquires a time-action is switched on. Of course, this result also follows from

=Vu(X)G(x,x")+ J’ 2 (X,X1)G(Xq,Xx")dXq,

dependent prefactor. the existence of the generating functiodal*
As an example we now consider tW approximation. The partially self-consister®W, approximation
The self-energy, when applied with full self-consistency, is .
given by Z(x,x")=1G (X, X" )Wo(x",x"), (15
3 (X)) =G (X, X YW(xH,x") (13) in which the screened Coulomb interactids, is evaluated

with the noninteracting Green functidg,, is not ® deriv-
where the screened Coulomb interacthtakes the math- able, which would require an additional vertical mirror sym-
ematical form of the random-phase approximation but ismetry G,(Xq,X3;X2,X4) = G2(X3,X1;X4,X5) in the diagram-
evaluated using the dressed Green function self-consistentipatic structure of the two-particle Green function that has
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been lost in the transition from full to partial self- systemg Since bothG and G, behave as 1 for large
consistency. Nevertheless,, shown in Fig. 1), still obeys frequencies, we can apply Cauchy’s theorem and write Eq.
the consistency relatiofl2) and hence guarantees the cor- (17) alternatively as

rect total particle number, as previously confirmed by ex-
plicit integration of the spectral functiofi.In contrast, the

1 [+ . .
non-self-consisten®,W, approximation oN= ;ﬁx dot[G(utio)=Golpotio)], (18

whereu andug are the chemical potentials of the interacting

and the noninteracting system, respectively, which corre-
spond, by definition, to the position of the pole of the Green
function at the Fermi surface. As the characteristic sharp
structure ofG(w) (quasiparticle peaks and satellitedoes

S (XX =1Go(X,x YWy(x",x") (16)

leads to a two-particle Green function with lower internal
symmetry, displayed in Fig.(&), that no longer satisfies Eq.

(12), implying an incorrect total particle number. The quan- appear in the analytic continuati®(u+iw), Eq. (18)

tlfcat_||ve deV|at|ontr|]s |nvest|gat(ta_d in the fo{!owmfg ?ﬁctﬁn. Ina is preferred for numerical integration. We hence follow some
simiiar manner, the conservation properties ot other diagramMg 10 jgeas suggested by Rojaisal 2’ and work exclusively
matic self-energy approximations are easily established b

. i fih derlving t iicle G funcii ¥ an imaginary time and frequency representation. An accu-
an inspection ot the underlying two-particie Lreen Tunction. 5iq eyajuation of Eq(18) furthermore requires a treatment

of the high-frequency tails o6, which can be done easily
1. NUMERICAL RESULTS with the numerical procedures described in Ref. 28.
. ) For the homogeneous electron gas, an analytic expression
In the previous section we proved that B8/ andGWo  exists for the noninteracting Green functiGg(r,i 7) in real
approximations conserve the particle number for an arb|trar¥pace and imaginary tinfd,while the screened Coulomb
elec_tron system when the .Coulomb mtgracﬂoq is SW't,Cheq'nteractionWO(k,iw) in the random-phase approximation is
on, in contrast toGoWy. This, coupled with their superior given analytically in reciprocal space by the dynamic
performance in ground-state total-energy calcul_at?dr‘?s, Lindhard functior’® The evaluation of the self-energy ac-
might be thought to suggest that tBgW, approach is use-  cording to 3 (r,i7)=iG(r,i 7)Wo(r,i7) therefore only re-
less if one is interested in ground-state properties. Howeveauires the numerical Fourier transformWo(k,iw)
a many-body calculation at only th@,W, level is already —W,(r,i7). It is this largely analytic approach that makes
sufficient to correct typical limitations of mean-field density- o present calculation especially precise.
functional theories, such as their inaccuracy in highly inho- A this stage we remark that the self-energy given by Eq.
mogeneous systems or their failure to describe van der Waal§g) has the same analytic structure as the underlying Green
forces™ Moreover, the Green function arising rom&Wo  function Gy, i.e., the poles oF (w) are located in the upper
calculation may be ussed as input in the vanatlc_)nal Lutt|nger(|ower) complex half-plane for energies smalltarge than
and Ward functiona?® and prospective calculations suggestMO:%k§1 where ke denotes the Fermi wave vector. As a

that t_h|§6 IS an excellent approach for calculating tOtaI.consequence, an inconsistency arises because the true self-
energies. Since these methods are more amenabl_e to appl%nergy should have a polar structure identical toitieract-
cations in complex systems than the fully or partially self-

. GW o o q >~ ing Green function with the chemical potentjal The self-
consisten approximations, It Is important to determine energy must therefore be appropriately shifted along the real
whether the underlying violation of the particle-number sum

) . frequency axis. In the imaginary time/frequency representa-
rule in the GoW, framework is small enough to be safely i, s shift is automatically included in the backward

ignored. transform
There are some indications that such an error is indeeJ

fairly small for the homogeneous electron gas at metallic +o0 A
densities’® a Hubbard model systeM, and typical S(ptio)= —iJ drX(ir)e'". (19
semiconductor8. Here, bearing in mind that many-body o
total-energy calculations are intended to be used in extremghe calculation off (u+iw), therefore, does not require an
situations where standard implementations of densityadvance knowledge qf, which can now be obtained from
functional theory fail, we present numerical results for thinthe relationu = wo+ 2 (Kg, ).
jellium slabs, whose most relevant feature is the strong inho- Finally, the interacting Green function is calculated in re-
mogeneity of the electron-density profile, as well as for theciprocal space according to
homogeneous electron gas over a wide range of densities.

Our concern is the evaluation of the particle-number dif- 1

Gk utiow)= .
ference, (ke ) io—SKP—3(k,putio)+u

(20

—j [+ In the same representation, the noninteracting Green function
5N=?ﬁ dw tr{G(w) —Gy(w)], (17 is given by
. . - . . 1
where tr denotes the spatial tra@ee omit the explicit spatial Go(k,potiw)=——->—, (21)
variables for clarity and also consider only spin-unpolarized fo—3K "+ ugo
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FIG. 2. Violation of the particle-number sum rule for the homo-
geneous electron gas in tkiyW, approximation. The relative error

in the density is always negative and of the order of 0.1% in the G- 3. Relative violation of particle number in t[tG’OWO ap-
range of metallic densities. proximation for thin jellium slabs of fixed 2D densit¢®= 3/4r as

a function of their thicknes& (and the corresponding 3D density

so that the density variation is readily obtained from parameter ). A typical error bar is reported.

B [+ed Coulomb interaction is then easily calculated by a matrix
5n:f f —w[G(k1M+iw)_Go(k,,lLo+ia))]. inversion for each value d€ and the real-space representa-
m

(2m)3) - tion is given by expanding
(22
In Ei . . . . ) d’k [+*dw
n Fig. 2 the relative devatiodn/n, from the exact density Wo(p,z,2'5i7)=i2, f —gl(em+kp)
is displayed as a function of the Wigner-Seitz radiys In B J (2m)?%) =2
the high-density regionrg<1.8 the particle number is X £(2)£o(2 Wk ) 23

slightly overestimated<0.01%), while it is underestimated
for lower densities. In the range of metallic densities thisThe Green functiotG,(p,z,z’;i 7) is readily calculated from
underestimation is of the order of 0.1%, but the error be‘the Kohn-Sham eigenstateS, and by emp|oying (Ea) we
comes increasingly important in the dilute limit-(L.7% for  obtain the self-energy in real space and imaginary time as
rs=10 and—6.1% forr=20). well as, eventually, its representati@r(k, u+iw),m in the
As pointed out above, it is also of interest to investigateKohn-Sham basis set. The presence of infinite confining
the error resulting from th&,W, method in the total num-  walls implies a quick convergence with respect to the num-
ber of particles for a strongly inhomogeneous system. Theer of cosine and Kohn-Sham wave functions used in the
model we have chosen is a thin jellium slab with a back-calculation. The convergence is further accelerated by the
ground densitynoz(‘g‘vrrg)‘l and width L. The slab is analytic treatment of the asymptotic time and frequency tails
bounded by two infinite planar walls, so that, if charge neu-of all operators.
trality is assumed, the system is fully characterized by the The Green function is calculated in the basis of Kohn-
lengthsrg andL. In this caseG, corresponds to the Kohn- Sham eigenstates according to
Sham system obtained self-consistently with the local- _ . i .
density approximationLDA) for the exchange-correlation C(K.utiw)=[iw—hks(k) =2 (k,pu+iw).+Vy(K)+u]
potentialV,., as is typically done in practicab initio cal- (24)
culations. by a matrix inversion in the indicasm. Finally, the variation
With z chosen as the coordinate perpendicular to the plaof the number of particles per surface unit is given by
nar walls, the translational symmetry of the system inxie
plane allows an efficient semianalytic evaluation of the rel- SN d?k [+=dw
evant propagators. The screened Coulomb interaction is == f j —[G(k,u+iw)mm
. gt ) . . S ‘= (2m)? T
given byWy= €, v, wheree, denotes the dielectric function
in the random-phase approximation. The latter is calculated —Go(k, ot i@)mmls (25
as eg(k,iw)p in the basisga(z)eprK-p)/\/Q Here {,(2) . ) .
is a set of cosine functionk= (k,,k,) andp=(x,y) denote where we have used the invariance of the trace with respect
the two-dimensional momentum and the position vector iff® any wave-function representation. _
the xy plane, respectively, ang is the slab surface. The In Fig. 3 we plot the relative _deV|.at|on of the particle
matrix elements can be calculated analytically in terms of théumbersN/N in the GoW, approximation for several con-
scalar productig’a(ﬁnlcﬁm),z“l where ¢, (2)exp(k- p)/ /S figurations of the model system, keeping the exact number of
are the single-particle eigenstates of the Kohn-Sham Hamilparticles per surface unin?P= n0L=L/(‘3—‘7rr§’) constant.
tonian hys. The matrix elements(k),s of the Coulomb  The limit L—0 thus corresponds to a two-dimensiofi)
potential are likewise obtained analytically. The screenechomogeneous electron gas with densif. Over the wide

— o0
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variation of the degree of homogeneity shown in the figure, iforming a very precise integration of the spectral function,
is seen that’N/N remains of similar magnitude as in the we have furthermore calculated the size of the error in the
homogeneous cases(0.2%). This observation remains true GyW, particle number in two simple, but very distinct, fami-
for other 2D densities inside the rang@1,1]. lies of electron systems. The error becomes large only out-
side the range of densities of physical interest.
IV. CONCLUSIONS

. . . . ACKNOWLEDGMENTS
In this paper we have rigorously obtained a general crite-

rion which allows, by simple inspection, to verify whether a  The authors thank Professor C.-O. Alimbladh and Dr. J. E.
diagrammatic self-energy approximation satisfies theAlvarellos for a thorough reading of the manuscript and for
particle-number sum rule for an interacting electron systemvaluable discussions. This work was funded in part by the
As an application, we have demonstrated that the so-calleBU through the NANOPHASE Research Training Network
GoW, method does not yield the correct particle number,(Contract No. HPRN-CT-2000-001§7the Spanish Educa-
generalizing the conclusions of a previous analytic study fotion Ministry DGESIC Grant No. PB97-1223-C02-02, and
a Hubbard model Hamiltonian defined only on a discreteby the Deutscher Akademischer Austauschdienst and the
latticel’ Thus this limitation of theG,W, approximation has British Council under the British-German Academic Re-

been fully confirmed for arbitrary electron systems. By per-search CollaboratiofARC) program.

*Electronic address: schindimayr@fhi-berlin.mpg.de

1A.L. Fetter and J.D. Waleck&uantum Theory of Many-Particle
SystemgMcGraw-Hill, New York, 197).

2L. Hedin, Phys. Rev139 A796 (1965.

3F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Péys237
(1998.

“M.S. Hybertsen and S.G. Louie, Phys. Rev. LB&.1418(1985);
Phys. Rev. B34, 5390(1986.

SR.W. Godby, M. Schiter, and L.J. Sham, Phys. Rev. L&,
2415(1986; Phys. Rev. B35, 4170(1987.

5M.M. Rieger and R.W. Godby, Phys. Rev.38, 1343(1998.

’B. Holm, Phys. Rev. Lett83, 788(1999.

8B. Holm and F. Aryasetiawan, Phys. Rev.68, 4858(2000).

9p. Smchez-Friera and R.W. Godby, Phys. Rev. L&, 5611
(2000.

0p, Garca-Gonzéez and R.W. Godby, Phys. Rev. &, 075112
(2001.

1p. Hohenberg and W. Kohn, Phys. R&B6 B864 (1964); W.
Kohn, and L.J. Shanibid. 140, A1133(1965.

12y M. Galitskii and A.B. Migdal, zZh. Ksp. Teor. Fiz.34, 139
(1958 [Sov. Phys. JETRH, 96 (1958].

138G, Baym and L.P. Kadanoff, Phys. Re\24, 287 (1961).

1G. Baym, Phys. Rev127, 1391 (1962.

15 J. Dyson, Phys. ReV5, 486 (1949; 75, 1736(1949.

16B. Holm, Ph.D. thesis, Lund University, 1997.

17A. Schindimayr, Phys. Rev. B6, 3528(1997.

18F. Aryasetiawan, L. Hedin, and K. Karlsson, Phys. Rev. L&ff.
2268(1996.

19M. Springer, F. Aryasetiawan, and K. Karlsson, Phys. Rev. Lett.
80, 2389(1998.

203 M. Luttinger, Phys. Revi19 1153(1960.

2IM. Gell-Mann and F. Low, Phys. Re84, 350 (1951).

22G.C. Wick, Phys. Rev80, 268 (1950.

ZR.P. Feynman, Phys. Re¥6, 749 (1949; 76, 769 (1949.

24p. Garca-Gonzéez and R. W. Godbyunpublisheil

253 M. Luttinger and J.C. Ward, Phys. Réd8 1417 (1960.

26C.-0. Aimbladh, U. von Barth, and R. van Leeuwen, Int. J. Mod.
Phys. B13, 535(1999.

2TH.N. Rojas, R.W. Godby, and R.J. Needs, Phys. Rev. L7it.
1827(1995.

28|, Steinbeck, A. Rubio, L. Reining, M. Torrent, 1.D. White, and
R.W. Godby, Comput. Phys. Commut5, 105 (2000.

29A. Schindimayr, Phys. Rev. B2, 12 573(2000.

30J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. MedzB, 8
(1954).

8IA.G. Eguiluz, Phys. Rev. B1, 3303(1985; J.M. Pitarke and
A.G. Eguiluz,ibid. 63, 045116(2001).

235106-6



