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Diagrammatic self-energy approximations and the total particle number
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There is increasing interest in many-body perturbation theory as a practical tool for the calculation of
ground-state properties. As a consequence, unambiguous sum rules such as the conservation of particle number
under the influence of the Coulomb interaction have acquired an importance that did not exist for calculations
of excited-state properties. In this paper we obtain a rigorous, simple relation whose fulfilment guarantees
particle-number conservation in a given diagrammatic self-energy approximation. Hedin’sG0W0 approxima-
tion does not satisfy this relation and hence violates the particle-number sum rule. Very precise calculations for
the homogeneous electron gas and a model inhomogeneous electron system allow the extent of the noncon-
servation to be estimated.
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I. INTRODUCTION

Many-body perturbation theory is a powerful method f
studying interacting electron systems, because the pa
summation of self-energy diagrams allows an efficient a
systematically converging description of the dominant sc
tering mechanisms.1 In solid-state physics, Hedin’sGW
approximation2 includes dynamic screening in the random
phase approximation and has been applied with great suc
to a large range of materials.3 While calculations have long
focused on electronic excitations, such as band structure4,5

that are not normally accessible by variational mean-fi
schemes, there is now increasing interest in using many-b
perturbation theory also to obtain ground-state properties
the charge density6 or the total energy7–10 in order to circum-
vent well-known limitations of standard approximations
density-functional theory.11 Unlike the calculation of excited
states, which are given immediately by the pole structure
the spectral function, this generally requires a multidime
sional integration over the hole part of the Green function
in Galitskii and Migdal’s expression for the total energy.12 As
a consequence, sum rules that could hitherto be ignored
gained new prominence. The most important of these is
conservation of particle number, i.e., the requirement that
integral

N5
1

2p i (
s

E d3r E dv Gss~r ,r ;v!eivh ~1!

over the diagonal elements of the Green functionG equals
the true number of electrons. Heres denotes the spin vari
able andh is a positive infinitesimal that forces the fre
quency contour to be closed across the upper complex
plane.

In a seminal paper Baym and Kadanoff13 investigated the
evolution of nonequilibrium Green functions and derived
set of symmetry relations for diagrammatic many-body
proximations that guarantee the overall conservation of p
ticle number, total energy, and momentum under tim
dependent external perturbations. Baym14 later showed that a
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self-energy satisfying all of these relations can be rep
sented as the derivativeS5dF/dG of a generating func-
tional F, and that in this case the Green function obtain
self-consistently from Dyson’s equation15 moreover yields
the exact particle number. In particular, this applies to
fully self-consistentGW approximation, in which both the
Green functionG and the screened Coulomb interactionW
are dressed by self-energy insertions in accordance wi
self-consistent solution of Dyson’s equation.13 However, it
has since become clear thatF derivability is a sufficient but
not a necessary requirement for the fulfilment of the partic
number sum rule. For instance, the partially self-consist
GW0 approximation, in which only the Green function
updated self-consistently but the screened Coulomb inte
tion remains undressed, isnot F derivable but nevertheles
produces the exact particle number.16 On the other hand,
without self-consistency even in the Green function, the p
ticle number is not, in general, given correctly,17 but this
computationally efficientG0W0 approach still remains the
preferred method for most practical applications.

More complicated self-energy expressions like the cum
lant expansion18 or theT matrix19 have already been succes
fully applied to solids, leading to an improved description
satellite resonances. Like theGW approximation, these
schemes are typically implemented without full se
consistency and are hence notF derivable. In order to avoid
expensive numerical tests in such situations, it would be
sirable to have clear diagrammatic criteria for the fulfilme
of the particle-number sum rule that could be checkeda pri-
ori without actual calculations.

Unfortunately, Baym’s proof, which is based on Luttin
er’s examination of the exact theory20 and determines the
volume of the Fermi sea directly, cannot easily be extend
because it relies explicitly on the existence of the genera
functionalF. We therefore take a different approach by d
scribing the switching on of the Coulomb potential as a tim
dependent process that connects the noninteracting and
corresponding interacting electron system on a finite ti
scale. In this way we can examine the differential conser
tion laws and deduce a diagrammatic symmetry relation
©2001 The American Physical Society06-1
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particle-number conservationbefore taking the adiabatic
limit. The theoretical framework is developed in Sec. II. T
non-self-consistentG0W0 approximation, which violates this
symmetry relation and does not conserve the particle num
when the interaction is switched on, deserves special at
tion owing to its pre-eminent role in practical implement
tions. In Sec. III we therefore present very precise numer
calculations of the particle number for the homogene
electron gas and a model inhomogeneous system in ord
assess the quantitative deviation. Finally, in Sec. IV we su
marize our conclusions. Atomic units are used throughou

II. PARTICLE-NUMBER CONSERVATION

In order to connect the interacting electron system w
the corresponding noninteracting system, whose prope
are supposedly known exactly, we consider the Hamilton

Ĥ~ t !5Ĥ01e2eutuĤ1 . ~2!

The one-body partĤ0 contains the kinetic energy as well a
the external potentialVext, and the Coulomb interactionĤ1
is switched on exponentially withe.0. At large times, both
in the past and in the future, the Hamiltonian reduces toĤ0,
which constitutes a solvable problem. The noninteract
Green functionG0 is readily constructed from the solution
of the single-particle Schro¨dinger equation and yields th
correct number of particles. On the other hand, att50 the
full Coulomb interaction is effective, and the Green functi
is defined as1

G~x,x8!52 i
^CuT@ĉ~x!ĉ†~x8!#uC&

^CuC&
, ~3!

where the shorthand notationx[(r ,s,t) indicates a set of
spatial, spin, and temporal coordinates,uC& denotes the
ground-state wave function of the interacting electron sys
in the Heisenberg picture, andT is Wick’s time-ordering op-
erator that rearranges the subsequent symbols in ascen
order from right to left with a sign change for every pa
commutation. Furthermore,ĉ†(x8) and ĉ(x) represent the
electron creation and annihilation operator in the Heisenb
picture, respectively.

The unknown many-body wave functionuC& evolves
from the noninteracting ground stateuC0& and can formally
be expressed asuC&5Ûe(0,2`)uC0&, where1

Ûe~ t,t8!5 (
n50

`
~2 i !n

n! E
t8

t

dt1•••E
t8

t

dtn e2e(ut1u1•••1utnu)

3T@Ĥ1~ t1!•••Ĥ1~ tn!# ~4!

represents the time-development operator. With this de
tion the Green function may be rewritten as

G~x,x8!52 i
^C0uT@Ŝeĉ~x!ĉ†~x8!#uC0&

^C0uŜeuC0&
~5!
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with Ŝe5Ûe(`,2`). At this stage the Gell-Mann and Low
theorem21 asserts that it is, in general, permissible to take
adiabatic limite→0. However, in the following we continue
to perform a time-dependent perturbation analysis for finite
and only take the adiabatic limit after establishing the co
servation criteria that apply during the transition. The tim
ordered products in Eq.~5! may be evaluated in the usua
way by invoking Wick’s theorem,22 because the exponentia
are scalar functions and commute with the field operato
Hence the perturbative treatment generates the standar
ries of connected and topologically distinct Feynm
diagrams,23 made up of the noninteracting Green functionG0
and the two-body Coulomb potential, but the latter now a
quires an additional prefactor and is given by

v~x,x8!5
e2eutu

ur2r 8u
d~ t2t8!. ~6!

The formal identity of the perturbation expansion in t
time-dependent and the adiabatic, time-independent case
crucial result that forms the basis of our discussion in t
section.

For an analysis of the conservation properties we n
follow Ref. 13 and write the perturbation series as

E G0
21~x,x1!G~x1 ,x8!dx1

5d~x2x8!2 i E v~x,x1!G2~x,x1 ;x8,x1
1!dx1 ,

~7!

invoking the two-particle Green functionG2. The superscript
x1 indicates that a positive infinitesimal is added to the tim
variable to ensure the proper ordering. An equivalent form
the adjoint equation of motion

E G~x,x1!G0
21~x1 ,x8!dx1

5d~x2x8!2 i E G2~x,x1 ;x8,x1
1!v~x8,x1!dx1 .

~8!

The inverse noninteracting Green function is identical to
operator

G0
21~x,x8!5S i

]

]t
1

1

2
¹22Vext~r ! D d~x2x8!

5S 2 i
]

]t8
1

1

2
¹822Vext~r 8!D d~x2x8!, ~9!

so that after substracting Eq.~8! from Eq. ~7! we obtain
6-2
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F i S ]

]t
1

]

]t8
D 1

1

2
~¹1¹8!•~¹2¹8!GG~x,x8!

5@Vext~r !2Vext~r 8!#G~x,x8!2 i

3E @v~x,x1!2v~x8,x1!#G2~x,x1 ;x8,x1
1!dx1 .

~10!

When we setx85x1, the terms on the right-hand side ca
cel, while the left-hand side reduces to the differential co
servation law for the particle number

]n~r ,t !

]t
1¹• j ~r ,t !50 ~11!

with the electron densityn(r ,t)52 i (sG(x,x1) and current
j (r ,t)52 1

2 (s@(¹2¹8)G(x,x8)#x85x1. Thus whenever
Eqs.~7! and~8! are satisfied simultaneously, the total partic
number is conserved while the interaction is switched
This does not depend on the value ofe and, in particular,
remains true in the adiabatic limit, which can now be tak
turning G into the equilibrium Green function of the inte
acting electron system.

By multiplying Eqs.~7! and ~8! with G from the left and
right, respectively, and then subtracting one from the oth
their mutual consistency can be stated in the more con
nient form,

E G~x,x2!v~x2 ,x1!G2~x2 ,x1 ;x8,x1
1!dx1 dx2

5E G2~x,x1 ;x2 ,x1
1!v~x2 ,x1!G~x2 ,x8!dx1 dx2 ,

~12!

that may easily be verified by visual inspection of a giv
diagrammatic approximation for the two-particle Gre
function. Evidently it is the same criterion as derived
Baym and Kadanoff13 for particle-number conservation un
der time-dependent external perturbations. This is no coi
dence, of course, because the termwise cancellation of
grams on the right-hand side of Eq.~10! is of purely
topological origin and does not depend on the mathema
properties of the constituent propagators. Hence it is inc
sequential whether, as in Refs. 13 and 14,G0 contains a
time-dependent perturbation while the interaction is cons
or, as in the physical situation considered here, the nonin
acting Green function is invariant under temporal trans
tions while the Coulomb potential instead acquires a tim
dependent prefactor.

As an example we now consider theGW approximation.
The self-energy, when applied with full self-consistency,
given by

S~x,x8!5 iG~x,x8!W~x1,x8!, ~13!

where the screened Coulomb interactionW takes the math-
ematical form of the random-phase approximation but
evaluated using the dressed Green function self-consiste
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derived from Dyson’s equation. The diagrammatic repres
tation of S is shown in Fig. 1~a!. The corresponding two-
particle Green function is obtained by comparing Dyso
equation with the equation of motion~7!, which yields the
identity

2 i E v~x,x1!G2~x,x1 ;x8,x1
1!dx1

5VH~x!G~x,x8!1E S~x,x1!G~x1 ,x8!dx1 ,

~14!

whereVH(x)52 i *v(x,x1)G(x1 ,x1
1)dx1 indicates the Har-

tree potential. The two-particle Green function correspo
ing to theGW approximation for the self-energy is also di
played in Fig. 1~a!. It is easily seen that it satisfies th
symmetry relation~12!, which is essentially a horizontal left
right symmetry for the building blocks ofG2, and hence
conserves the total particle number when the Coulomb in
action is switched on. Of course, this result also follows fro
the existence of the generating functionalF.14

The partially self-consistentGW0 approximation

S~x,x8!5 iG~x,x8!W0~x1,x8!, ~15!

in which the screened Coulomb interactionW0 is evaluated
with the noninteracting Green functionG0, is not F deriv-
able, which would require an additional vertical mirror sym
metry G2(x1 ,x3 ;x2 ,x4)5G2(x3 ,x1 ;x4 ,x2) in the diagram-
matic structure of the two-particle Green function that h

FIG. 1. Diagrammatic representation of the self-ener
S(x1 ,x2) and the corresponding two-particle Green functi
G2(x1 ,x3 ;x2 ,x4) in ~a! the fully self-consistentGW approxima-
tion, ~b! the partially self-consistentGW0 approximation, and~c!
the non-self-consistentG0W0 approximation.
6-3
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been lost in the transition from full to partial sel
consistency. Nevertheless,G2, shown in Fig. 1~b!, still obeys
the consistency relation~12! and hence guarantees the co
rect total particle number, as previously confirmed by e
plicit integration of the spectral function.16 In contrast, the
non-self-consistentG0W0 approximation

S~x,x8!5 iG0~x,x8!W0~x1,x8! ~16!

leads to a two-particle Green function with lower intern
symmetry, displayed in Fig. 1~c!, that no longer satisfies Eq
~12!, implying an incorrect total particle number. The qua
titative deviation is investigated in the following section. In
similar manner, the conservation properties of other diagr
matic self-energy approximations are easily established
an inspection of the underlying two-particle Green functio

III. NUMERICAL RESULTS

In the previous section we proved that theGW andGW0
approximations conserve the particle number for an arbitr
electron system when the Coulomb interaction is switch
on, in contrast toG0W0. This, coupled with their superio
performance in ground-state total-energy calculations7,10

might be thought to suggest that theG0W0 approach is use
less if one is interested in ground-state properties. Howe
a many-body calculation at only theG0W0 level is already
sufficient to correct typical limitations of mean-field densit
functional theories, such as their inaccuracy in highly inh
mogeneous systems or their failure to describe van der W
forces.24 Moreover, the Green function arising from aG0W0
calculation may be used as input in the variational Luttin
and Ward functional,25 and prospective calculations sugge
that this is an excellent approach for calculating to
energies.26 Since these methods are more amenable to ap
cations in complex systems than the fully or partially se
consistentGW approximations, it is important to determin
whether the underlying violation of the particle-number su
rule in the G0W0 framework is small enough to be safe
ignored.

There are some indications that such an error is ind
fairly small for the homogeneous electron gas at meta
densities,16 a Hubbard model system,17 and typical
semiconductors.6 Here, bearing in mind that many-bod
total-energy calculations are intended to be used in extr
situations where standard implementations of dens
functional theory fail, we present numerical results for th
jellium slabs, whose most relevant feature is the strong in
mogeneity of the electron-density profile, as well as for
homogeneous electron gas over a wide range of densitie

Our concern is the evaluation of the particle-number d
ference,

dN5
2 i

p E
2`

1`

dv tr@G~v!2G0~v!#, ~17!

where tr denotes the spatial trace~we omit the explicit spatial
variables for clarity and also consider only spin-unpolariz
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systems!. Since bothG and G0 behave as 1/v for large
frequencies, we can apply Cauchy’s theorem and write
~17! alternatively as

dN5
1

pE2`

1`

dv tr@G~m1 iv!2G0~m01 iv!#, ~18!

wherem andm0 are the chemical potentials of the interactin
and the noninteracting system, respectively, which co
spond, by definition, to the position of the pole of the Gre
function at the Fermi surface. As the characteristic sh
structure ofG(v) ~quasiparticle peaks and satellites! does
not appear in the analytic continuationG(m1 iv), Eq. ~18!
is preferred for numerical integration. We hence follow som
of the ideas suggested by Rojaset al.27 and work exclusively
in an imaginary time and frequency representation. An ac
rate evaluation of Eq.~18! furthermore requires a treatmen
of the high-frequency tails ofG, which can be done easily
with the numerical procedures described in Ref. 28.

For the homogeneous electron gas, an analytic expres
exists for the noninteracting Green functionG0(r ,i t) in real
space and imaginary time,29 while the screened Coulom
interactionW0(k,iv) in the random-phase approximation
given analytically in reciprocal space by the dynam
Lindhard function.30 The evaluation of the self-energy ac
cording to S(r ,i t)5 iG0(r ,i t)W0(r ,i t) therefore only re-
quires the numerical Fourier transformW0(k,iv)
→W0(r ,i t). It is this largely analytic approach that make
the present calculation especially precise.

At this stage we remark that the self-energy given by E
~16! has the same analytic structure as the underlying Gr
function G0, i.e., the poles ofS(v) are located in the uppe
~lower! complex half-plane for energies smaller~larger! than
m05 1

2 kF
2 , where kF denotes the Fermi wave vector. As

consequence, an inconsistency arises because the true
energy should have a polar structure identical to theinteract-
ing Green function with the chemical potentialm. The self-
energy must therefore be appropriately shifted along the
frequency axis. In the imaginary time/frequency represen
tion, this shift is automatically included in the backwa
transform

S~m1 iv!52 i E
2`

1`

dt S~ i t!e2 ivt. ~19!

The calculation ofS(m1 iv), therefore, does not require a
advance knowledge ofm, which can now be obtained from
the relationm5m01S(kF ,m).

Finally, the interacting Green function is calculated in r
ciprocal space according to

G~k,m1 iv!5
1

iv2 1
2 k22S~k,m1 iv!1m

. ~20!

In the same representation, the noninteracting Green func
is given by

G0~k,m01 iv!5
1

iv2 1
2 k21m0

, ~21!
6-4
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so that the density variation is readily obtained from

dn5E d3k

~2p!3E2`

1`dv

p
@G~k,m1 iv!2G0~k,m01 iv!#.

~22!

In Fig. 2 the relative devationdn/n0 from the exact density
is displayed as a function of the Wigner-Seitz radiusr s. In
the high-density regionr s,1.8 the particle number is
slightly overestimated (,0.01%), while it is underestimate
for lower densities. In the range of metallic densities t
underestimation is of the order of 0.1%, but the error
comes increasingly important in the dilute limit (21.7% for
r s510 and26.1% for r s520).

As pointed out above, it is also of interest to investiga
the error resulting from theG0W0 method in the total num-
ber of particles for a strongly inhomogeneous system. T
model we have chosen is a thin jellium slab with a ba

ground densityn05( 4
3 pr s

3)21 and width L. The slab is
bounded by two infinite planar walls, so that, if charge ne
trality is assumed, the system is fully characterized by
lengthsr s andL. In this case,G0 corresponds to the Kohn
Sham system obtained self-consistently with the loc
density approximation~LDA ! for the exchange-correlatio
potentialVxc , as is typically done in practicalab initio cal-
culations.

With z chosen as the coordinate perpendicular to the
nar walls, the translational symmetry of the system in thexy
plane allows an efficient semianalytic evaluation of the r
evant propagators. The screened Coulomb interaction
given byW05e0

21v, wheree0 denotes the dielectric functio
in the random-phase approximation. The latter is calcula
as e0(k,iv)ab in the basisza(z)exp(ik•r)/AS. Hereza(z)
is a set of cosine functions,k5(kx ,ky) andr5(x,y) denote
the two-dimensional momentum and the position vector
the xy plane, respectively, andS is the slab surface. The
matrix elements can be calculated analytically in terms of
scalar productŝ zafnufm&,24,31 where fn(z)exp(ik•r)/AS
are the single-particle eigenstates of the Kohn-Sham Ha
tonian hKS. The matrix elementsv(k)ab of the Coulomb
potential are likewise obtained analytically. The screen

FIG. 2. Violation of the particle-number sum rule for the hom
geneous electron gas in theG0W0 approximation. The relative erro
in the density is always negative and of the order of 0.1% in
range of metallic densities.
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Coulomb interaction is then easily calculated by a mat
inversion for each value ofk, and the real-space represent
tion is given by expanding

W0~r,z,z8; i t!5 i(
a,b

E d2k

~2p!2E2`

1`dv

2p
ei (vt1k•r)

3za~z!zb~z8!W0~k,iv!ab . ~23!

The Green functionG0(r,z,z8; i t) is readily calculated from
the Kohn-Sham eigenstates, and by employing Eq.~16! we
obtain the self-energy in real space and imaginary time
well as, eventually, its representationS(k,m1 iv)nm in the
Kohn-Sham basis set. The presence of infinite confin
walls implies a quick convergence with respect to the nu
ber of cosine and Kohn-Sham wave functions used in
calculation. The convergence is further accelerated by
analytic treatment of the asymptotic time and frequency t
of all operators.

The Green function is calculated in the basis of Koh
Sham eigenstates according to

G~k,m1 iv!5@ iv2hKS~k!2S~k,m1 iv!.1Vxc~k!1m#21

~24!

by a matrix inversion in the indicesnm. Finally, the variation
of the number of particles per surface unit is given by

dN

S
5(

m
E d2k

~2p!2E2`

1`dv

p
@G~k,m1 iv!mm

2G0~k,m01 iv!mm#, ~25!

where we have used the invariance of the trace with res
to any wave-function representation.

In Fig. 3 we plot the relative deviation of the partic
numberdN/N in the G0W0 approximation for several con
figurations of the model system, keeping the exact numbe

particles per surface unitn2D5n0L5L/( 4
3 pr s

3) constant.
The limit L→0 thus corresponds to a two-dimensional~2D!
homogeneous electron gas with densityn2D. Over the wide

e FIG. 3. Relative violation of particle number in theG0W0 ap-
proximation for thin jellium slabs of fixed 2D densityn2D53/4p as
a function of their thicknessL ~and the corresponding 3D densit
parameterr s). A typical error bar is reported.
6-5
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variation of the degree of homogeneity shown in the figure
is seen thatdN/N remains of similar magnitude as in th
homogeneous case (&0.2%). This observation remains tru
for other 2D densities inside the range@0.1,1#.

IV. CONCLUSIONS

In this paper we have rigorously obtained a general cr
rion which allows, by simple inspection, to verify whether
diagrammatic self-energy approximation satisfies
particle-number sum rule for an interacting electron syste
As an application, we have demonstrated that the so-ca
G0W0 method does not yield the correct particle numb
generalizing the conclusions of a previous analytic study
a Hubbard model Hamiltonian defined only on a discr
lattice.17 Thus this limitation of theG0W0 approximation has
been fully confirmed for arbitrary electron systems. By p
23510
t

-

.
d

,
r

forming a very precise integration of the spectral functio
we have furthermore calculated the size of the error in
G0W0 particle number in two simple, but very distinct, fam
lies of electron systems. The error becomes large only o
side the range of densities of physical interest.
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