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Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium
of a model microcavity
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We consider a generalization of the Dicke model. This model describes localized, physically separated,
saturable excitations, such as excitons bound on impurities, coupled to a single long-lived mode of an optical
cavity. We consider the thermal equilibrium of this model at a fixed total number of excitons and photons. We
find a phase in which both the cavity field and the excitonic polarization are coherent. This phase corresponds
to a Bose condensate of cavity polaritons, generalized to allow for the fermionic internal structure of the
excitons. It is separated from the normal state by an unusual reentrant phase boundary. We calculate the
excitation energies of the model, and hence the optical absorption spectra of the cavity. In the condensed phase
the absorption spectrum is gapped. The presence of this gap distinguishes the polariton condensate from the
normal state and from a conventional laser, even when the inhomogeneous linewidth of the excitons is so large
that there is no observable polariton splitting in the normal state.
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I. INTRODUCTION cavity. In the language of semiconductors, it includes a
“saturation” or “band-filling” nonlinearity, produced by the
In the strong-coupling regime for matter and light, radia-fermionic internal structure of the excitons.

tive decay of a material excitation gives way to coupled os- Polaritons are not conserved particles, so there is ulti-
cillations of the polarization of the matter and of the electro-mately no equilibrium condensate. We may, however, treat
magnetic field. The quasiparticles corresponding to sucipolaritons as conserved particles if their lifetime is much
coupled modes are known as polaritdrEhe classic realiza- 10nger than the time required to achieve thermal equilibrium
tion of polaritons is excitons in a bulk semiconductor &t & f|xeq pola.rlton.n.umber__ We \{VIII study this quaS|equ|I|t_)-
coupled to photons in free space, as discussed many yedid™m regime, since it is in this regime that Bose condensation
ago by Hopfield In this example, wave-vector conservation 'S Well defined? _
ensures that each exciton is coupled only to a single mode of In Sec. ll, we m_troduce the model, qnd explain how the
the electromagnetic field, leading to the formation of polari-Concept of a polariton can be generalized to allow for the

tons which are superpositions of a sinale exciton and photo nonlinearity of the model. We then present, in Secs. Ill and
Perp 9 P r]v, a simple variational technique for calculating the ground

Recently, there has. been'a lot o'f.interest in polgritons fqrmegtate of the model at a fixed density of polaritons. In Sec. V
from photons confined in cavities: such cavity polarltonsWe investigate the thermodynamics of the model using an

have now been observed for confined photons coupled tQyernative technique based on functional integrals. This
atoms; to two-dimensional excitons in quantum we‘ilﬂao_ technique demonstrates that the variational approach is es-
bulk excitons, to excitons in films of organic sentially exact, and allows us to consider finite temperatures.
semiconductor§; and to charged exciton complexés. In Sec. VI, we use the expressions derived by the functional

Since polaritons are photons coupled to other excitationgntegral method to study the phase diagram for condensation,
they are bosons, and so are candidates for Bosghile in Sec. VI, we use these expressions to calculate the
condensation.Recent observatiohs** of bosonic behavior excitation spectra of the model. These excitation spectra pro-
for cavity polaritons have renewed interest in this idea. vide a physical picture of the transition to the condensed

However, there is a conceptual difficulty with a Bose con-state, and determine the absorption spectrum of the cavity.
densate of polaritons: while polaritons are usually considere&inally, in Sec. VIII we discuss our conclusions.
in the low-excitation linear regime, Bose condensates are The functional integral approach to the thermodynamics
stabilized by nonlinearitie¥ For cavity polaritons, there is of our model has already been the subject of a brief relfort.
also the following more practical difficulty. Bose conden- We extend this earlier report to allow for a distribution of the
sates are characterized by coherence, and in a polariton coenergies of the electronic excitations, i.e., inhomogeneous
densate this coherence will appear in the photons. Given thi®roadening, which is significant in many potential realiza-
how is a polariton condensate distinct, conceptually and obtions of the polariton condensate.
servationally, from a laser?

In this paper we address these problems by developing a
theory of polariton condensation in the Dicke motfeThis
nonlinear model of confined photons coupled to matter is one The Dicke modéf8 consists of a set dil two-level os-
of the basic models of laser physics. It allows us to go becillators coupled to a single mode of the electromagnetic
yond the conventional linear-response concept of a polaritorfield by the dipole interaction. The two-level oscillators do
including effects due to finite excitations of the matter in thenot interact with one another, except through their common

1. MODEL
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coupling to the electromagnetic field. We generalize the ) 1
original Dicke model to include an energy distribution of the Npo=L+N2=y¢ g+ 5 > (b'b—a'a)+N/2, (4
two-level oscillators. Making the rotating-wave approxima-

tion (see, e.g., Refs. 18 and)19ve consider the Hamiltonian which i a conserved quantity for the mod#). Equation(4)

E,(N) defines the operatdr, which we refer to as the excitation
H=> 2 (b'b—a'a)+w y+H’, (1)  number. We define a corresponding excitation dengity
2 =(L)/N, which is the total number of photons and electronic
excitations, per two-level oscillator, minus one-half. Since
g the numbers of photons and electronic excitations are posi-
\/_ﬁ 2 (b'ay+y'a’b). tive, the lowest excitation density is0.5. Since the number
of electronic excitations is always less thidnthe electronic
Here the two-level oscillators are indexed by the variable contribution top, is always less than 0.5.
which is summed over. We use a fermionic representation for The thermal equilibrium of the Dicke model, in the ab-
the two-level oscillators, describing each one in terms of @aence of an externally created population of polaritons, has
pair of fermions with annihilation operatoi® and b. For  been studied extensively since the pioneering exact solution
brevity we suppress the indexon the fermionic operators. of Hepp and Liel#* These authors showed that, even in the
The fermions are subject to the single-occupancy constraindbsence of external excitation, the Dicke model has a phase
transition to a Bose condensed state. Such an equilibrium
b'b+afa=1 2 condensate is a static, coherent state of photons: it is a
ferroelectric>® Here we are interested in the thermal equilib-
rium of a population of polaritons: the quasiequilibrium
problem posed by Eq1) at a fixed excitatiork.. The quasi-
equilibrium condensate which we find in this regime is a

_The .Harlniltor?ian ﬁl) s a simple model Ofl a It_hree— time-varying generalization of the ferroelectric state discov-
dimensional cavity(photonic do}, containing localized, 4 oq by Hepp and Lieb.

physically separated electronic excitations. Although simpli-

fied, it is a useful starting point for many systems. For ex-

ample, each of the two-level oscillators could describe the I1l. VARIATIONAL APPROACH
presence or absence of a localized exciton in a given eigen- ) _ , )
state of the disorder potential in a disordered quantum well, Ve can write down a variational state which describes the
on a given molecule in an organic film, or trapped on gPolariton condensate by noting that Bose condensates are

particular impurity. The restriction to singly occupied statesdeScribed by coherent states. This produces a variational

is an idealization of the hard-core repulsion produced by thd/@ve function closely related to the BCS wave function used

fermionic structure of such excitations. It describes spinles%0 describe superconductors and exciton condensates. As has

J exciton
excitations localized in traps which are only big enough to?€€n stressed by Comte and Noei?® this class of wave

contain a single exciton. It is straightforward to generalizef“nCt'on can describe an exciton condensate in both the low-

our calculations to describe larger traps, which allow for a2Nd high-density limits. It thus permits a smooth interpola-
finite number of excitons on each site. tion from low densities, where the excitons are simple

H' couples the photons to excitations of the two-leve|Posons, to high densities, where their fermionic internal

osiletors, created by the operal ~(INN)Sb'a. Il S 8IS0 08 S L slous b o sxore
Eq4(n) =E4 then the excited states which are createdShy b y y reg

from the vacuum are eigenstates of the bare Hamiltohian Wh'llszk?ep(?()ligi?gzn?;eo?itarﬂlyrg Ogitlacjje(r:i%densate are the exci-
If furthermore N is large and the two-level oscillators are prop

near to their ground state tations.of_the_whole system,. counted byl_n general, such.
' an excitation is a superposition of an excitation of the cavity
1 mode and an excitation of the electronic states. Thus we take
> > (b'b—afa)~—N/2, (3)  for our trial wave-function a coherent state of such a super-
position:

H'=

on each sites is the annihilation operator for the cavity
mode, E4(n) is the energy of theath two-level oscillator,
andg is the strength of the dipole coupling.

then S, is approximately a bosonic creation operator, and

the Hamigtonian_ (1) becomes two coupled boson |)\,w>=e"‘/’T*(1’V’N)2 Wnb1a|vac>, )
oscillators?? Polaritons are usually presented as the eigen- n

states of such a model.

Away from the low-excitation limit(3), S, is not a where the statévac has a single fermion in the lower state
bosonic creation operator, and the conventional descriptionf each two-level oscillator. The statb) has a finite polar-
of polaritons breaks down. To go beyond the low-excitationization of the electronic excitations as well as a finite ampli-
limit, we generalize the concept of a polariton to be thetude for the cavity field\ andw,, are the variational param-
guantum of excitation of the coupled matter-light system.eters. Expanding the exponential, Ef) explicitly becomes
The polariton number is then the total number of photons superposition of a coherent state of photons and a BCS
and excited two-level oscillators, state of the fermions,
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auo)=eM T (u,bT+u,e%nat)|o). 6 2o L os en
ou)=e 1T (vab"+ une?ra’)|o) ©®) P\ 50 S T (11)
Here\,u,,v,, and ¢, are the variational parameters, and where we define
|0) denotes the vacuum state with no fermions in any of the
levels. By construction, this variational state obeys the Enzsgr(gn)\/gﬁ—f— g2\ |2 (12)
single-occupancy constraint®). We fix the overall phase of ) ) _ _
the condensate by choosingto be real. Thep, have been Equation(10) is analogous to the BCS gap equation, with an
explicitly introduced to make tha andv real. They are the Order parametex.
phase differences between the cavity field and the polariza-
tions of the electronic states. IV. ZERO-TEMPERATURE PROPERTIES

To find the ground state of Ed1) at fixed excitation

number we minimize To investigate the expressio$0)—(12), we replace the

summations over sites with an integral over the energy dis-
tribution of the two-level oscillators. We take this distribu-
(H— el )= @ N2+ >, En(vﬁ—uﬁ)+21)\unvncos{ $,), tionto be a Gaussian with medfy and variancerg. The
n JN remaining parameters in our quasi-equilibrium problem are
(7)  then the excitation density,, and the dimensionless detun-
ing between the energy of the cavity mode and the center of
the exciton lineA=(w.—Ey)/Q.

For a Gaussian density of states, the summation on the
right of Eq. (10) diverges as\—0, and approaches zero as
N—o. Thus for anyu.,<w. there is always a condensed
solution,\ #0, to Eq.(10): the system is condensed at arbi-
frarily small excitation densities. This behavior is produced
malization conditionsi2+ v2=1. by the tails of the Gaussian distribution. Because of these

noon tails, we have excitons at arbitrarily low energies, and hence

Although the overall phase of the condensate is arbitrary, . N .
X i . also bound exciton-photon states at arbitrarily low energies.
the relative phase,, are not: there is only one order param- .~ ~ . : : .
It is impossible to populate just the excitons, because no

eter. The relative phasef, are fixed by the last term in Eq. matter how smallu,, is, there is always a bound state in-

7), the dipole coupling. This term ensures that all the two- " . . :
I(e\)/el osciﬁators W?licr? have a finite dipole moment,( volving photons below it. We expect that if the density of

+0.,1) are mutually coherents, = ¢, when the energy is states has a lower cutoff, and is continuous at this cutoff,
e ; yC Cmn o 9IS there would be a finite criticgleo, below which there is no
minimized. It is the dipole interaction which is responsible

. . : . condensed solution to E¢LO).
for Bose condensation, and its accompanying coherktioe, Let us investigate the dependence saf, on in the
the present system. Settinfy,=0 and defining an intensive 9 b x O Pex

. absence of inhomogeneous broadening,0. At low densi-
N by rescalingA—\+/N, the condensate parameters are_ _ . )
given by the real solutions withu,v, <0 to ties, pex= — 0.5, uey can be obtained from E@10). Expand

ing this expression for smal and comparing the leading
terms, we find thaje, is given by the conventional linear-
DN+ % > uv,=0, (8) response polar_it(_)n energy, fiex= Eipg=3[(wc+ Eg)_
n —g/A%+4]. At finite densities we calculatg,, numeri-
cally, by solving Eqs(10) and (11) to determin€pe,(ttey)-
28 Unvn— g\ (v2—Uu2)=0. The results are plotted in the right-hand panel of Fig. 1, for
A=0,1, and 3. At low densities we are describing a conden-

ex Was introduced as a Lagrange multiplier constrainingSate of conventional polaritons, and so haug=E pg. AS
the excitation number. It is the chemical potential for ourthe density is increased the exciton states saturate, forcing

coupled modes, and is related implicitly to the excitationthe excitat.ions to become more photonlli-ke. Thus the chemi-
density by cal potential approaches, at high densities. FoA>2 the

separation between the excitonlike and photonlike excita-
1 1 1 tions persists tp.,=0.5, where the exciton states are com-
pex=N< l/le/ﬁLz > b'b—ata)=r2+ N > (v2-ud). pletely saturated. This results in a discontinuity.ig, at this
n point, since no further excitation can be added to the exciton
©  states.

The dependence Q.4 ON pey in the inhomogeneously
broadened case is also illustrated in the right-hand panel of
Fig. 1. It is qualitatively rather similar to the homogeneous
2 case. Instead of the finite intercept of the homogeneous case
g°A 1 _ _ : L
== , (10 ~ We now havepgy— — as pex— 0.5. Th|s b'ehgwo.r is
2N 5 |E,| again caused by the tails of the Gaussian distribution. To

We=Wc™ Uex:

~ Eg(n)_ﬂex
SHZT,

with respect to the variational parameters, subject to the no

Eliminating u, andv, from Egs.(8) and (9) we can re-
write these expressions as

WA=
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FIG. 1. Right-hand panel: dependence of the chemical potential
on excitation density for detuningd=0, 1, and 3 and variances
0=0, 0.5, and 1. Left-hand panel: absorption spectrum for a micro-

cavity atp.,=—0.5 andT=0 for 0=0.5 and the same three detun-
ings.

demonstrate hovue, approaches the conventional polariton

energyE, pg in the homogeneous, low-density limit, we com- pex
pare the behavior (?he,x with the density of states for. the FIG. 3. The order parameter as a function of density, for
linear-response excitations of the emppy(= —0.5) cavity.

- g ) - ) g=0.5 and A=0 (top curve, 1 (middle curve, and 3 (bottom
This de'nS|ty of_states is Fhe optical absorption spectrum Ofurve. A2 is the photon number per two-level oscillator in the con-
the cavity, and is plotted in the left-hand panel of Fig. 1 for gensed state.

o0=0.5andA=0,1, and 3. We will describe how it is calcu-

lated in Sec. VII. At very low densitiesp,ex lies in the tails in the po|ariton Condensate, fQﬂzg, 0=0.5, and various

of the exciton distribution. With increasing density, thesedensities_ The Occupation number of thl two-level oscil-
states quickly saturate, producing a sharp risgdR. AS uex  lator is

reaches the polariton peak, the sharp rise in the density of
states for the coupled modes produces a kink in the chemical 1 1 en
potential. In the homogeneous limit, this kink moves to zero S(2-ud+1)=5|1- —|.

. : ; 2 2 |E.l
density and corresponds to the usual polariton energy. Since

the density of states at this point is infinite in the homoge-As is clear from the figure, this is a Fermi step broadened by

neous limit, these polaritons are simple bosons. _ the interaction with the photons, just as the electronic distri-
Figure 2 shows the occupation of the two-level oscillatorspution in a BCS superconductor is a Fermi step broadened

by the pairing interaction. The states in the broadened region
1 T 1 of the step have a finite dipole moment and are involved in
WA & e the condensate. The Fermi step moves up through the exciton

k A line as the excitation is increased fropp,= —0.5 and the

y low-lying electronic states saturate. At very large densities
! 1 there are a large number of photons, and the Fermi step is
almost completely flat: rather than the electronic system
completely saturating in the high-density limit, it approaches
half filling. This is because the half filled state maximizes the
polarization of the electronic states and hence minimizes the
dipole interaction between the excitons and the macroscopi-
cally occupied cavity mode.
_ Careful inspection of Fig. 2 reveals that the broadening of
N the Fermi step produced by the photons does not increase
1‘\ 4 \‘\_.\‘)‘_\"_.} | . monotonically with density. This corresponds to a nonmono-
0 ] 0 tonic dependence of the field amplitudeon density. This

=2 0 2 4 dependence is illustrated in Fig. 3. The field amplitude is

(E_EO)/g related to the electronic polarization by the first of E@3. It

is proportional to the electronic polarization and inversely
FIG. 2. Occupation of the two-level oscillators at zero tempera-Proportional to the separation between the chemical potential
ture as a function of energg for A=3, T=0, 0=0.5, and densities and the cavity mode. The electronic polarization depends on
pex=—0.4, —0.2, 0, 0.2, 0.4, 0.6dot-dashed curves, increasing the density of states in the vicinity of the chemical potential
from left to right and p.,= 100 (dotted curve The shaded region (Fig. 2); the peak in the density of states at the center of the
shows the Gaussian distribution of oscillator energies used. exciton line produces the peak in Fig. 3.

\.\I ......... o] 05

Occupation number
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Density of states
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V. LARGE- N EXPANSION Rescaling the boson fiel¢g— Ny and transferring the

The variational approach of Secs. Il and IV becomes exJermionic integrals into the action gives

act in the thermodynamic limiN—oc. Physically, this is
because it corresponds to a mean-field treatment of the inter- Q= f Dy|J|e NS
action between electronic excitations. This interaction, be- ’
tween a large numbédiN) of electronic excitations, is medi-
ated by a small numbeione of cavity modes. In a mean- With an effective action
field treatment of this interaction, each electronic excitation
is coupled to the average field produced in the cavity by the B — ~ 1
other electronic excitations. This becomes exact when there Sef= fo d7g(d,+ ‘”CW_N ; St (13
are a large number of electronic excitations contributing to a
small number of field modes, since the fluctuations of the
field are then negligible. _ — _a\a-SBy P
In this section, we develop a mean-field theory for the Sf'”_lnj Dol —1)e 70 e,
thermodynamics of the modell) from the functional-
integral representation of the partition function. In this rep-in which the P, are the matrix operators!, after rescaling
resentation, the partition function can be rigorously evaluihe boson field, and denotes the trivial Jacobian arising
ated, for largeN, using a saddle-point analysiSFrom such  from this rescaling.
an analysis, we derive finite-temperature generalizations of
the variational expression€l0)—(12), thus demonstrating A. Mean-field equation
that they are rigorous in the limit of large.

The functional integral techniques used here have previ- FOr largeN, the dominant contribution to the partition
ously been uséd?®to calculate the partition function and function Q comes from those functiong,(7) which mini-

excitation energiein the absence of a constraint on the po- Mize the actiorS. Such functions obey the Euler-Lagrange
lariton numberof a simplification of the Dicke model. While €duation. For the actio(13), this takes the form
the Hamiltonian of the model discussed in Refs. 27 and 28 is

given by Eq.(1) with E4(n) =E,, the local constraints pro- - 1 8Si

hibiting two fermions on the same site, Eg), are replaced (I @) o(T) = > 5—'

with a global constraint. In contrast, we retain E8) as "oy ¥(7)=g(7)

local constraints, as well as including a distribution Ef

and a constraint on the polariton number. __9 2 <§(7)b (7)) (14)
As in Secs. Ill and IV, we work in a grand-canonical N & e

ensemble, using a chemical potentja}, to constrain the _ _ _ o .
excitation number. We consider the partition function associwhere the right-hand side of this expression is the polariza-

ated with this ensemble, tion of the two-level oscillators in thermal equilibrium driven
by an external fieldsy(7). This polarization appears because
Q=Tre AH red), the field o(7) modifies the eigenstatesof the electronic

The coherent-state functional-integral formalism allows us tosystem. A thermal population of these new eigenstates can

) . correspond to a finite polarization of the original fermions.
ierﬁgg?;SQ, for the model(), as the constrained functional Equation(14) is a self-consistency condition: the cavity field

is driven by the polarization of the fermions, which itself
. arises from the renormalization of the fermions produced by
Q=f DY [P pama—1)1eS, the photons.
n Assuming that the self-consistent fiefg)(7) is indepen-
with the action dent of 7, we can calculate the polarization term on the right
of Eqg. (14) by making a Bogolubov transformation,

B . - I
S:JOdﬂ//((?ﬁwc)er; 7aMnp7y. cogf)e'’  —sin(o) )(%)

=\ sine)  cog e i (15

We have introduced a Nambu spinor n

from the b, and a,, fermions to new fermions, and v, .

This transformation diagonalizeB,, when ¢=arg\ and

tan 20=g|\|/z,. The 8, and vy, quasiparticles then have

for each two-level oscillator. The matrid,, is energies* E, respectively, withE, defined by Eq.(12).
Since Eq.(15) is a rotation iny space, it preserves the single
occupancy constraints. Thermally populating the new fermi-

. ons in accordance with the single occupancy constraints we
have

b,

an

=

( 0, +en QYN
- QE/\/N &T_En
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_ 1 i o — — of the electromagnetic field. The kernel 8§, G, is the
(anbn) = 5 €'7siN(26)(S,0n= yn¥n) inverse of the thermal Green’s function for the photons.
The integral over fluctuations in Eq19) contributes a
1 term
—Ee sin(20)tanh BE,,),
1
and Eq.(14) becomes Nln detg?!
- g\ 1 _ _ . .
wc)\zm 2 E—tanF(BEn)- (16) to the free-energy density. Since the mean-field solution
n n

should be a minimum of the action, the eigenvalueg of
should be positive. Then Indét ! is finite asN—, there

is no fluctuation contribution to the free-energy density in
this limit, and the mean-field theory becomes exact.

Equation(16) is the finite-temperature generalization of
the variational result(10). This generalization is rather
straightforward: we have just acquired taggj factors de-
scribing the thermal occupation of the two-level oscillators.

If we remove the constraint on the polariton number, by C. Effective action for fluctuations
settingue,=0, and seEy(n) =Ey, then Eq(16) is the form However, we have yet to check whether the solutions to
originally derived by Hepp and Liébfor the unconstrained gq. (16) are actually minima of the action or merely extrema,
equilibrium of the Dicke model. In that problem, the exis- je. whether the mean-field solutions are stable against fluc-
tence of a condensate requires tuations. To check this, we will need the effective act@®n

which we derive in this section.
wcEq To obtainS,, we calculate théfunctiona) second deriva-
tives of S, and evaluate them on the extremd r)

2
] g. =yo(7)=\. In the frequency representation, the compo-
since otherwise Eq(16), with ue=0 andEg(n)=Egy, has  nents ofS, are

only the trivial solution\ =0. However, it is shown in Refs.
30 and 31 that thé? terms of the minimal-coupling Hamil-

<1, (17)

; . : . 39S ~ 2
tonian, neglected in the mod@l), modify the inequality(17) o Tt =B8(w' —w)|iwtws— —
in a way which is inconsistent with the Thomas-Kuhn-Reich IP(w) (") N
sum rule. This sum rule requireeEg/gz>1, wherex is the 8
coupling constant for thé\? term, while the modified in- X D f e (o, (1)} (0))
equality (17) reads n Jo
(wc+2K)Eg<1 18 — (o, o )dr|, (20)
g2
Since this inequality cannot be satisfied, the phase transitiof"d
in the unconstrained case is an unphysical artifact of the
model (1). However, we do not believe that th& terms 3% Sest ) 1
PR, i ———=— 808w tw)=
prevent condensation in the constrained case, because the I @) (") N
inequality corresponding to E¢18) will be
B .
(@t 20)(Eg— pe) _, X2 fo e (0, (1)o7 (0))
9° '
—(oq o ))dr. (21)

and the parametei,, is not restricted by the sum rule.
o and o' denote bosonic Matsubara frequencies,
B. Effect of fluctuations =ba, is the polarization operator for theth two-level os-

Let us now consider the effect of small fluctuatios7) cillator, and the integrands are the susceptibilities of the two-

around the mean-field solution. Expandifig; to second or- €Vl oscillators in the self-consistent field _
der in a functional Taylor series around the mean-field solu- EQuations(20) and (21) describe coupled fluctuations of
tion we have the cavity field and the electronic polarization. They are

analogous to the Dyson-Gor’kov-Beliaev equatfdnsf the
— theory of superconductors and weakly interacting Bose
Q*efNSOf D(Sp)|3|e™ N4, (19 gases. Because we are working with a condensed system
there is an anomalous contribution$g, Eq.(21), from fluc-
HereS, is the action evaluated on the extremal trajectory anduations which do not conserve the number of excitations
S, is the quadratic action from the second order term in theabove the condensate, i.e., those in which an excitation en-
Taylor seriesS; is the effective action for small fluctuations ters or leaves the condensate.
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To calculate the susceptibilities which appear in &§), We show in the Appendix that the single zero eigenvalue
we rewrite them in terms of the renormalized two-level os-describes a change in the overall phase of the condensate. It
cillators using the transformatiol5), transform to the is the Goldstone mode corresponding to the broken gauge
Schralinger representation, and take thermal and quantunsymmetry of the condensate. Because we are considering a
mechanical averages over the renormalized eigenstates. Thisoken symmetry state, we should not integrate over these

gives fluctuations when calculating the partition function. Since
the other eigenvalues ¢f * are always positive for the con-
B o) densed solutions, these solutions are stable against physical
S oy, o4l=5 % (8h(w),8(— )G+ o))’ fluctuations, and the mean-field theory is exact. In the Ap-

pendix, we give a formal demonstration that the zero mode

K. K does not contribute to the free-energy densityNas «, so

gl:( 1 2) (22) that the presence of the zero mode does not invalidate the
Ky K3 discussion of Sec. V B.

Turning now to the normal solutiorn=0, we find from

g2 i Lo— 28 _ 2|)\|2 Eq. (23) that this is a minimum of the action unless
Ki=io+ ot — E —tanr(,BEn) >
N 5 wz-i-4En gz
<——=tanh Bz). (24)
2¢e
+ 5wan|)\|292
This is just the condition for the extremal equatidé) to
have a condensed solution. Thus we have the usual scenario
_g4)\2 2 of a continuous phase transition: there is a phase boundary
Ka= N < | E, (w?+4E2) tanh(BE,) + 6, |, (24), at which the normal state becomes unstable and a
" " stable, condensed solution appears.
B : .
an=— —sech(BE,), E. Density equation
As well as the mean-field equatioil6), we need the
which simplifies to equation relating the densipg, to the corresponding chemi-
cal potentialue,. This is obtained from the partition func-
L tion in the standard way,
$=B2 Syl(w)|iw+w
=— InQ. 25
1 92i ~ x BN dpey Q 29
TN D o= tanhBey) [dw) (23
n w—2iey, The asymptotic form for the partition function @~e N,

where Sy is the minimal action. Inserting this asymptotic

in the normal state.=0. form in Eq. (25) gives, for the solutionyy(7) =N\,

An unusual feature of Eq22) is that it changes form at
zero frequency due to the Kronecker delta terms. These
terms come from a static piece of the electronic susceptibili- .
ties in Eqgs.(20) and (21). This piece describes the grand- Pex=
canonical fluctuations in the occupation numbers of the
renormalized two-level oscillators. Hence the change in formwhich is the generalization of E¢L1) to finite temperatures.
of Eq. (22) at zero frequency is due to the fluctuations of the  The first term in Eq(26) is the contribution to the exci-

, 1 o
NP5 2 g tanhBE), (26)
n

condensate density in the grand-canonical ensemble. tation density from the macroscopic electromagnetic field,
while the second term is the contribution from the thermal
D. Nature of the extrema population of renormalized electronic excitations. In the ab-

sence of a macroscopic electromagnetic fik0, both the
photon contribution and the renormalization of the electronic
excitations disappear. The expressi@s) is then the famil-
iar form for the excitation of a set of two-level oscillators.

We now use the expressiof2)—(23) to investigate the
nature of the extrema whefy(n)=E,. Considering first a
condensed solution\#0, we use the extremal equati@hb)
to eliminate (1E,)tanh(8E,) from the matrixG 1. The ei-
genvalues of the resulting matrix are all strictly positive pro-
vided thatw.>0, except for a single zero eigenvaluecat
=0. From Eq.(16) we see that the condensed solutions al-  From Eqs.(24) and(26) we find critical temperatures for
ways havew.>0. Thus we conclude that, at a condensedthe transition between the normal and condensed states, as a

solution, the action has a minimum in all but one direction,function of the excitation density, in the homogeneous
and is locally flat in this one direction. model:

VI. PHASE DIAGRAM
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FIG. 4. Phase boundaries far=0 (left-hand pangl A=1 (cen- S c
ter pane), and A=3 (right-hand pang| and variancesr=0 (solid

lines), 0~0.5 (dotted lines, and o—1 (dashed lines For A3, FIG. 5. Dependence of the critical density on the inhomoge-

neous broadeningr, for A=0 (left-hand paneland A=1 (right-

while for A=3, 0=0.5 the lower branch is indistinguishable from “hand pang| ands=1 (top curve, 3, 5, 7, 9, 11, 13lowest curve.

the homogeneous case. . L .
g tion, which is determined byA and g. Near thep.,=0.5

. limit, the electronic system is constrained to be fully occu-
9= 4 tanh *(2pey) 27 pied, and the normal state consists of a small humber of
A+ \/AZ—speX' holes in an other_wise completely excited el_ectronic system.
i ) These holes again interact through the cavity mode, and so
The two-valued phase bounda(7) gives regions of 'eN- the transition occurs when the density of holes,~05,,
trance in the phase diagram, where the condensate exists @Qceeds a critical value. AA—= the critical densities of
both the high- and low-temperature sides of the normal statg,s|es and excitons become identical, so the phase diagram is
Note that_ the qrmcal temperatures dep_end Ioganthmlcally Osymmetric aboup=0. For finiteA, the interaction is stronger
the density, with a scale set by the interaction strergth o the holes than for excitons, since they are nearer in en-

_This contrasts with a model of_propagating, weakly i_nteract-ergy to the cavity mode, and so the phase boundary becomes
ing bosons, where the transition temperature varies as &ewed to the forms shown.

power law of the density with a scale set by the mass of the ,; temperatures which are high compared with the inho-

bosons. At low densities, Eq27) is the phase boundary mogeneous broadeningg, thermal fluctuations dominate
separating a population of electronic excitations with energy)«r the inhomogeneous broadening. Thus at these tempera-
E, from a population of conventional polaritons with energy res the inhomogeneous broadening has little effect, as can
Eipg. To see this, note that such a transition would occulhe seen in Fig. 4. However, at low temperatures the inhomo-
when the chemical potentla_ll for the electror_uc eXC|tat|0nsgeneous broadening suppresses condensation by increasing
reaghesE EEPB’ corresponding t0 a densitype,+ 0.5  the energy separation between the electronic excitations and
~e #lFoELes), which is the low-density limit of EQ(27).  the photons, collapsing the phase boundaries towards

For the inhomogeneous model, we calculate the phase g "The effects of inhomogeneous broadening are further
boundary numerically, assuming the same Gaussian distribustrated in Fig. 5, which shows the dependence of the criti-

tion of energies as in Sec. IV. We obtain the critical chemical,g, density ono at various temperatures for detunings-0
potential for condensationy.(8.), by demanding that EQ. gngA=1.

(16) have a repeated root=0, and then use Eq26) to
obtain the critical density.(8.).

In Fig. 4 we plot the homogeneous phase bound##@és VII. EXCITATION ENERGIES
along with numerical results for the inhomogeneous model |, this section, we use Eq$22) and (23) to study the
with 0=0.5 and 1. On resonanca=0, the transition tem-  excitation spectra of the quasiequilibrium states of the model
perature increases monotonically with density. The system I81). The excitation spectra we calculate explain the form of
always condensed fgr,,>0, because to exceed this density the phase diagrams in Fig. 4. The excitation spectra of the
would require a chemical potential above the center of theg,q quasiequilibrium states are different from each other,
energy distribution of the electronic excitations, and hencgng also from the excitation spectrum of a conventional la-
above the bosonic cavity mode. While farcO (not illus-  ser, Since the excitation spectrum is directly related to the
trated the phase boundary is qualitatively unchanged frompptical absorption spectrum of the cavity, which is an experi-

the resonant case, fd>0 we find reentrant behavior. This mentally accessible quantity, these spectra offer a clear ex-
behavior is the result of the saturable nature of the electronlﬁerimemm signature of polariton condensation.

states. It can be understood by considering the limits—
+0.5 whenA is large and positive. Near thg,,=—0.5
limit, the normal state consists of a small humber of elec-
tronic excitations, weakly interacting with each other We begin with the normal state of the homogeneous
through the cavity mode. They condense when their densitynodel. The inverse of the normal-state Green’s function con-
exceeds a critical value set by the strength of their interactained in Eq.(23) can be written as a sum of simple poles

A. Homogeneous model
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C. N C_
iw,tE, iw,tE_’

G(wn)= (28)

The structure of this thermal Green’s function is clear: we
have two excitations, with quasiparticle energies,

E.itpe=[(wct Eg)ig VA2_8Pex]/21

and corresponding weights,

(E_-o)/g
(M~ )/

C.=+(2e—E.)I(E_—E,).

These normal-state excitations are polaritons in the genere Pex Pex
sense of Hopfield:coupled modes involving the linear re-
sponse of the electronic system around its equilibrium state. FIG. 6. Excitation energies and chemical potentials as a function
The gap in the spectrum is increased over the bare detunirf density for the homogeneous model &0 (left-hand panel
A owing to the dipole coupling between the excitons and thet"d A=2 (right-hand pang| both with g8=2. Thin solid lines:
cavity mode. The presence of excitation in the ground Staté]orma!-state exgitation energigs. Thick solid lines: cor?densed-stgte
either driven by finite temperatures or by finjig,, causes excitation energies. Dashed lines: norma_l-state che_mlcal potenngl.
the two polariton branches to attract. This attraction is due t&?°t-dashed lines: condensed-state chemical potential. The shading
the decrease in the polarizability of the electronic states aarks the condensed region for tiis
their population increases and saturation occurs. It can also
be understood in terms of an angular momentumnormal and condensed states on this figure. The left panel of
representatiolf for the collective states of the electronic sys- this figure should be compared to tig8=2 line of the
tem. In such a representation, the excitation of the electronieorresponding phase diagram, which is the left-hand panel of
states corresponds to the z component of an angular momepig. 4. WhenA =0 andp.,= — 0.5 the system is in the nor-
tum, while their polarization corresponds to the raising op-mal state. Increasing,, populates the electronic excitations,
eratorS, . Thus the polarizability of the electronic states is jncreasing the chemical potential and decreasing the polar-
maximized at('S,) = —N/2. » iton splitting. Eventually the chemical potential crosses the
Since condensation is a phase transition, we expect Rwer polariton branch from below and the system con-
qualitatively different excitation spectrum in the condensedyanses. At the critical density, the lower polariton branch
state. Frorr’1 Eqs(.22) and(16), we find for the normal ther- joins to the phase mode at the chemical potential, the upper
mal Green's function branch joins to the “pair breaking” excitation, and an exci-
tation appears below the chemical potential. This latter exci-
, tation has zero weight at the transition. It corresponds to an
(iog)X(iwg+ &) (iw,— &) excited state to ground-state transition, where an exciton-
(29) photon complex is absorbed into the condensate. There is no

with &= \/(Z) +27a)2+4gz|)\|2 The form(29) is only valid corresponding excitation in the normal-state Green’s func-
= . )

at finite frequencies, since we have discarded the KroneckdlP™ becaPse the ground state of We-1 partlc_le system
deltas in Eq.(22). We are considering this finite-frequency (N+1 excitong cannot be reached from the excited states of
form because it describes only the excitation spectrum of thi1€ N particle system Ki—1 excitons and 1 polaritgnby
condensate, while the zero-frequency form also includes th@dding a photon. o
thermodynamic fluctuations of the condensate. Tilag (2 in The relationship between the excitation spectrum and the
Eq.(29) is associated with the phase mode of the condensat@hase diagram is slightly different when the transition occurs
discussed in the Appendix. The remaining polesaat = ¢ for pe,>0. For example, in the right panel of Fig. 6 the
describe the quasiparticle excitations. These quasiparticleshemical potential crosses the lower polariton branchgat
are coupled exciton-photon modes in the presence of the0 without the condensate appearing. It is not until the
macroscopic electromagnetic field of the condensétés  chemical potential crosses the upper polariton branch that the
analogous to the pair breaking energy in a superconductor: ttansition occurs. This can be understood by considering the
is the energy required to extract an exciton-photon complexigns of the quasiparticle weigh@. . A positive quasipar-
from the condensate. Note that if we remove the photon contcle weight corresponds to absorption of an external fiald
tribution to this energy, by setting.= 0, then¢ becomes the particlelike transitioh whereas a negative quasiparticle
familiar expressiof? for the energy of an electron-hole pair weight corresponds to gaifa holelike transition For pey,
in the presence of a classical electromagnetic field at fre>0, the lower polariton branch has a negative weight: it has
quUeNCY they- become holelike, and must be below the chemical potential
In Fig. 6, we illustrate the evolution of the excitation en- for stability. At the transition it is now this lower branch
ergies of the microcavity with increasing density. To explainwhich joins to the “pair forming” excitation of the conden-
the relationship between the excitation energies and theate, while the upper branch joins to the phase mode and the
phase diagram, we also plot the chemical potentials for thépair breaking” excitation appears above the phase mode.

w02+ 207\ |?) —i w(w?+4E%+ 2w.e)

Gu(io,#0)=
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FIG. 7. Spectral function€p-
tical absorption spectyd\(w), for
A=0, gB=2, =1, and chemi-
cal potentials ftex—Eg)/g=—5,
-15,-1.0,-0.76,-0.75-0.70,
increasing from top left to bottom
right through the transition at

T ot ") T (ex—Eg)/g=—0.76. The top
L ! L : ! 0 =-0.08 - row of plots are in the normal
| I | e state, the bottom left-hand plot at
2 ! — ! ! — the transition and the remaining
| | 1 .
3 | I ] plots in the condensed state. The
| : I : : i vertical dashed lines mark the
0 | 1 chemical potential.
| 1 I
| | |
B | 1 B | | 1
| 1 |
) ] 1| 1 | | 1| 1 | | 1 1 ]
-2 0 2 -2 0 2 -2 0 2
(0-E)/g (@-E /g (0-E)/g
B. Inhomogeneous model ing. However, since the polaritons are now resonant with a

Since the inhomogeneous model has a distribution of exsignificant density of electronic states they become broad-

citations, we must study the spectral functifw). A(w) is ened. Increasing the chemical potential, but remaining in the

proportional to the imaginary part of the retarded Green'd'0rmal state, we see the thermal occupation factors produc-
function ing gain below the chemical potential and increased absorp-

tion just above. The collapse of the polariton splitting evident
A(w)=2 IMGR(— o+ pey). (30) in Fig. 6 is hardly noticeable at these low densities. As the
) _ _ i . density is increased still further a pole appearé () at the
It is proportional to the optical absorption coefficient of the chemical potential; this marks the onset of condensation.
cavity at frequency, i.e., the imaginary part of the electro- apove the critical density the coherent cavity field, oscillat-
magnetic su;ceptlb_mty. We obtaiGR f_rom .the thermal ing at frequencyu.y, produces a gap of magnitudg|a| in
Green’s function using the stand&@ontinuation the spectrum. The peak on the high-energy side of the gap
R, o~ — . connects smoothly to the upper polariton peak of the normal
GCHw)= “m+g('w”_w_' ), 3D state, just as in the homogeneous case. In the homogeneous
70 case we noted the appearance of an excitation below the
which will again omit the thermodynamic fluctuations of the chemical potential as we crossed the transition. This is still
condensate described by the Kronecker delta pieces of E@resent in the inhomogeneous case, but for the parameters
(22). Inverting theG ! contained in Eq(22) and using Egs. used in Fig. 7 it is far too weak to be visible.
(30) and (31) expresse#\(w) in terms of integrals over the
distribution of energies of the two-level oscillators. We
evaluate these integrals in the limjt-0 by settingn=0 in
the integrands and deforming the contour of integration Real microcavities are far more complex than the ideal-
around the poles of the integrand on the real axis. The corized model(1). However, like our model, they consist of
tribution to the integrals from the detour around the polesphotons coupled to electronic excitations which are bosons at
can be performed analytically, leaving a principal value intedow densities, but reveal their fermionic internal structure at
gral which we evaluate numerically. high densities. We have shown how the polariton condensate
Figure 7 shows the evolution of our calculated absorptiormay be generalized to allow for the saturation nonlinearity
spectraA(w) as we increase the density through the transiproduced by such fermionic structure. The saturation nonlin-
tion, forgB=2, o=1, andA=0. The corresponding chemi- earity can producé) a collapse of the splitting between the
cal potential is marked as the dashed line. For the emptpeaks in the absorption spectrum of the normal state with
cavity, pe,= — 0.5, we recover the absorption spectrum cal-increasing densityji) a shift of the chemical potential of the
culated by Houdreet al®* Comparison with Fig. 6 shows condensate away from the conventional polariton energy, and
that, for these parameters, the positions of the polaritoriii) an unusual reentrant phase boundary for condensation.
peaks are largely unaffected by the inhomogeneous broaden- Experimental work on cavity polaritons has concentrated

VIIl. CONCLUSIONS
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on microcavities containing high-quality GaAs quantumorder parameter but no gap in the single-particle spectrum.
wells. In these systems, the excitons are weakly bound, anthis regime should correspond to the conventional semicon-
rather delocalized. Thus while the saturation nonlinearity disductor laser, although the actual damping mechanisms will
cussed here is present for these excitations, it will be accongliffer.

panied by other nonlinearities produced by the overlap of the The nonequilibrium analdg of the crossover illustrated
wave functions of different excitons and the ionization ofin Figs. 6 and 7, from a two-peaked polariton spectrum to a
excitons>*%® These effects may well prevent condensation, Stark triplet,” has been observed experimentally in Ref. 42.
but are separated from the saturation nonlinearity considered@ this experiment, the gapped absorption spectrum is ob-
here in systems with localized, tightly bound excitons. NoteServed simultaneously with the excitation pulse. Thus there

also that tightly bound excitons have a large dipole couplings no thermalization involved in producing this spectrum. It
g, and hence the transition temperature will be large. is the result of coherence in the excitation pulse, rather than

For real examples of localized oscillators, there will bethe spontaneous coherence of condensation. Nonetheless,
some energ\E,, above which delocalized states exist. Thethese experiments demonstrate the renormalization of the
picture of a condensate formed from localized oscillatorselectronic states that is essential in the polariton condensate.
then only holds whetE,,— .y is large compared with~* To reach the quasiequilibrium regime we have described
andg. By considering Fig. 6, we deduce that to Comp|ete|yrequires a system where the polariton lifetime is long com-
realize a reentrant phase diagram like that shown in Fig. #ared with the time required to reach thermal equilibrium at
requires an energy gapE Separating the localized and de- a f|Xed numbe-r OT pola“tons. Current Sem|CondUCt0r mICI‘OT
localized excitations; this gap must be large compared gith cavities have I|fet|mes. for the photor_ls, 'and hencg the polari-
and B! Such a gap could occur in organic tons, of the order of picoseconds. Finding an exciton system
semiconductor&’ In these systems, excitons are stronegWhiCh thermalizes on this time scale may_b_e c_JIifficuIt._ How-
bound and therefore smalFrenke). They readily self-trap ~€Ver, there seems no reason to suppose it is impossible, par-
on local lattice distortions and on impurities in these, oftenticularly beyond the linear regime, since nonlinearities can
highly disordered, materials. An energy gAf could exist enhange re_Iax.atlo]r?. Furthermore, microcavities are avail-
in inorganic quantum wells if the excitons move in a poten-able with lifetimes far greater than picoseconds. For ex-
tial containing deep, well-separated traps, perhaps associat8f'Ple, silica microspheres have confined modes with life-
with interface islands in narrow quantum welfs3® times of microsecond$.

The disordered quantum wells studied by Hegattyal >°
provide an example of a system without a gap separating the
localized and delocalized excitations. These systems show a ACKNOWLEDGMENT
single inhomogeneously broadened exciton line, unlike the Thjs work was supported by the Engineering and Physical
quantum wells of Refs. 36-38. The “mobility edg&’, lies  Sciences Research Council, U.K.
near to the center of the exciton line. One may be able to
form a condensate which does not involve delocalized exci-
tations using this type of quantum well if the inhomogeneous APPENDIX: THE PHASE MODE
broadening is large compared withand 8 and the cavity
mode is placed low down in the exciton line. The transition 1 i " =
would then occur when the chemical potential is well sepa¥ ~ that appeared while studying the stability of the conden-
rated fromE,,,. sate in the homogeneous case. We first prove that this zero is

The polariton condensate described here is formed from &S0 Ppresent in the inhomogeneous model, and that it de-
quasithermal population of electronic excitations which are>ciPes phase fluctuations of the condensate. It is thus the
renormalized by the coherent photons in the cavity. Thisoldstone mode reflecting the degeneracy of the ground
renormalization, embodied in the Bogolubov transformatiorState with respect to the phase of the order parameter. We
(15), produces a gap of magnitudela| in the absorption then argue that thls zero eigenvalue doe's not_contrlbute to the
spectrum of the condensate. Such renormalizations, arige€-€nergy density in the thermodynamic limit. Although the
hence the gap, are absent in conventional semiconduct®YSics we discuss in this Appendix is well understood in
lasers’ for which a quasithermal population of tHeare general, it is particularly tra_nsparent in ou.rIS|mpIe mc_)del.
electronic excitations is assumed. Thus the presence or ab- e note_tf;at, aw=0, K, is real and positive. The eigen-
sence of a gap allows the polariton condensate to be distiy2lues ofG™" are thenK,*[Kj|. Since from the explicit
guished from a conventional laser. forms of K, Koy, a_md t_he extremal equatiofi6) we have_

In a conventional laser, the renormalization of the elec/K2l=Ki, as required in general by the Hugenholtz-Pines
tronic excitations by the photons, and hence the gap, is atelation?”**G~* has a zero eigenvalue.
sent because the electronic polarization is very heavily To illustrate that the zero eigenvalue is the phase mode of
damped. The destruction of a gap by damping is well knowrthe condensate, note that since lagg=2 argh =2¢ we can
in superconductors, where it is associated with magnetic imwrite
purities. Such impurities suppress the gap, eventually to zero.

The destruction of the gap does not coincide with the de-
struction of the order parameter, however: near tdhere is g—lo<<
a regime of gapless superconductivity, in which there is an

In this Appendix we investigate the zero eigenvalue of

1 e
e 2 1 )
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The eigenvector of this matrix with zero eigenvalue is per-system pin the phase of the order parameter. They are

pendicular in the complex plane to the order parameter  sources and sinks for the photons, and appear in the effective
Since we are considering a broken symmetry system, Wection Sy as (14/N)(yJ+J¢). These terms do not contrib-

should not include states with different phases of the ordeite directly to Eq.(22), but appear as a source term in Eq.

parameter when calculating the partition function. Thus on16). The original zero eigenvalue ¢ * is now K, — |K,|

physical grounds, we should discard this zero mode Whe&_\]/(l/lo\/ﬁ). Since for the equilibrium solution we must

computing the partition function.

have ¢—argJ= 7, the contribution of the original zero ei-

A formal _approach_which aIIov_vs calt_:ulations in the Pres-genvalue to the free-energy density is proportional to
ence of this zero eigenvalue is to introduce symmetry-

breaking terms which are taken to zero after the thermody-

namic limit. This is the standard method for applying
statistical mechanics to broken symmetry systéiighe ap-

propriate symmetry-breaking terms for a Bose condensed

9|
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